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1 Introduction

The main hallmark of integrable field theories is the factorisation of scattering events
into sequences of two-body scattering processes [2, 3]. This is due to the presence of a
tower of conserved charges, which severely restrict possible scattering events. In particular,
scattering is purely elastic and there is no particle production or annihilation. The property
that three-body scattering factorises into a sequence of two-body scattering events in a
consistent way imposes the following constraint on the two-body S-matrix

S23S12S23 = S12S23S12. (1.1)

This is the celebrated Yang-Baxter equation [4–6].
Integrable field theories have made numerous appearances in the context of the

AdS/CFT correspondence [7–9] and on various string backgrounds the 1 + 1 dimensional
theory on the string worldsheet defines an integrable QFT, see for example [10–14]. This is
achieved by fixing the uniform light-cone gauge and decompactifying the worldsheet to a
plane where the notion of asymptotic states and hence an S-matrix can be defined. From
here, one can study scattering in perturbation theory for example.

It is clearly not feasible to explicitly compute a scattering process to all orders in
perturbation theory. Instead one can make use of symmetry considerations. While fixing
the light-cone gauge breaks some of the initial background isometries, the residual symmetry
often remains highly constraining. We will focus our attention in this work on the AdS3 ×
S3 × T 4, AdS3 × S3 × S3 × S1 and AdS2 × S2 × T 6 backgrounds which are known to
lead to integrable QFTs, see for example [15–18]. At one loop the residual symmetry
algebras can be determined by explicit calculation. From here one can conjecture the exact
all-loop symmetry algebra. The symmetry algebras together with integrability (imposing
the Yang-Baxter equation) completely determine the S-matrix up to the dressing phase,
which is constrained by crossing symmetry instead.

An interesting question is the study of deformations of integrable QFTs which preserve
integrablity. Numerous such deformations of the models described above have been con-
structed, for example η and λ deformations [19–24]. In these cases the isometry algebra
is known to undergo a q-deformation. For instance, in the case of the AdS5 × S5 back-
ground whose lightcone gauge fixed model has su(2|2)ce symmetry, the deformed model
has Uq(psu(2|2)ce) symmetry [25, 26]. These deformations have also been worked out for
the AdS3 models and various generalisations and other deformations of our mentioned
backgrounds have been constructed, see e.g. [20, 27–33].

The deformations just discussed are usually constructed at the level of the superstring
action and it is not always clear how these deformations lift to the level of the worldsheet S-
matrix and the corresponding symmetry algebra. In [1] we classified all possible S-matrices
of integrable systems of the so-called 6- and 8-vertex type. Physically, these correspond to
S-matrices which preserve fermion number. We can embed the superstring S-matrices in
these models by fixing various free functions and parameters. By varying these parameters
we subsequently obtain integrable deformations of the S-matrices. Hence, we actually find a
complete classification of possible integrable deformations to the aforementioned superstring
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Figure 1. New deformations of AdS3 and AdS2 R-matrices.

S-matrices. In this way we therefore identify the possible integrable deformations of these
holographic models.

We find an interesting possible deformation structure, summarised in figure 1. The mas-
sive scattering matrix of the AdS2 superstring only admits one integrable deformation. It is
an elliptic deformation, parameterized by the elliptic modulus. It exhibits the same Lie alge-
bra, but in a different representation. Remarkably, the deformation does seem to affect the
higher Yangian symmetry generators and hence might define a new type of quantum algebra.

More interestingly the S-matrix of the AdS3 × S3 ×M4 string sigma model admits two
distinct deformations. The first deformation of the S-matrix is related to the quantum defor-
mation found in [28, 33] and the only extra degrees of freedom stem from the fact our func-
tions are unconstrained and do not need to satisfy relations involving the physical constants
such as the mass. This is why we refer to such deformations as functional deformations.

The second deformation is an elliptic deformation and it is a novel deformation. We
show that it satisfies all the usual physical requirements such as crossing symmetry and
braiding unitarity. Remarkably, for this model part of the symmetry algebra seems to be
broken for non-zero values of the deformation parameter. It would be very interesting to
see if the corresponding sigma model can be found. In particular, we find that the elliptic
deformation is not a further deformation of the q-deformed model [28].

Finally, it is also interesting to notice that all the deformations of AdS2,3 S-matrices
satisfy the free fermion condition [34]. This allows for a great simplification in known results
for lower-dimensional instances of AdS/CFT, including backgrounds supported by various
fluxes. For 6-vertex like AdS3 models and its deformations, the transfer matrix was rewritten
for an arbitrary number of sites in a free-fermion form using Bogoliubov transformations.

Outline of this paper. In this paper we examine the structure of these integrable
deformations in more detail. In section 2 we review the 6- and 8-vertex R-matrices which
the conventional AdS2,3 integrable systems can be embedded in. In section 3 we discuss
the AdS2 deformations while in section 4 we discuss the AdS3 deformations and extend our
deformed R-matrices for same-chirality scattering in order to account for scattering processes
between particles with opposite chirality. In section 5 we give the explicit map to recover
known AdS3 S-matrices, as well as its q-deformations. The deformed symmetry algebras are
presented in section 6. Finally, in section 7 we discuss crossing symmetry and provide the
crossing equations for all the deformations explicitly. We end with discussion and conclusions.
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2 Review and notation

In order to preserve fermion number, for boson φ and fermion ψ the allowed scattering
processes are

φφ→ φφ+ ψψ

ψψ → φφ+ ψψ

φψ → φψ + ψφ

ψφ→ ψφ+ φψ

with some weighting associated to each process, or in matrix form we have

R(u, v) =


r1 0 0 r8
0 r2 r6 0
0 r5 r3 0
r7 0 0 r4

 (2.1)

where u, v are the spectral parameters and each of the functions rj is assumed to depend
on them. We will also use the (p, q) instead of (u, v) throughout the text to emphasize
that these parameters correspond to the momenta of the particles being scattered. The
R-matrices classified in [1] are the most general R-matrices of the above form.

The R-matrices of this type can be separated into two categories — so-called 6-vertex
and 8-vertex models. Physically, 6-vertex models are those for which spin is conserved
in scattering processes and so a boson pair cannot scatter to produce a fermion pair and
vice-versa and as a result r7 = r8 = 0. In [1] both 6- and 8-vertex were further divided into
two subcategories, dubbed A and B. These categories are described by the free fermion
condition [34]. For applications to AdS integrable systems it is only the 6-vertex B and
8-vertex B which are relevant. Hence, for notation simplicity we will simply refer to them
as 6-vertex or 6vB and 8-vertex or 8vB.

6-vertex. The R-matrix for the 6-vertex case has r7 = r8 = 0 and can be written as

r1(p, q) = h2(q)− h1(p)
h2(p)− h1(p) ,

r2(p, q) = (h2(p)− h2(q))X(p)Y (p),

r3(p, q) = h1(p)− h1(q)
(h2(p)− h1(p))(h2(q)− h1(q))

1
X(q)Y (q) ,

r4(p, q) = h2(p)− h1(q)
h2(q)− h1(q)

X(p)Y (p)
X(q)Y (q) ,

r5(p, q) = Y (p)
Y (q) ,

r6(p, q) = X(p)
X(q) . (2.2)

h1, h2, X, Y are free functions. The Yang-Baxter equation is satisfied for any choice of
them. Compared to [1] we have some extra functions in our R-matrix, namely X and Y .
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This is due to the fact that the R-matrix in [1] was solved by fixing some functions in the
Hamiltonian using identifications such as normalization and local basis transformations.
The new functions X,Y simply correspond to a twist and are important for the identification
with the AdS3 models and in order to obtain the crossing equations presented in section 7.

8-vertex. The R-matrix is most conveniently written using Jacobi elliptic functions and
we use the shorthand notation

sn = sn(u− v, k2), cn = cn(u− v, k2), dn = dn(u− v, k2), (2.3)

to denote the elliptic functions of modulus k. To avoid potential ambiguities in conventions
let us stress that we follow the convention that the elliptic functions written above is how
they would be entered in Mathematica, and so we have, for example

dn2 + k2 sn2 = 1 . (2.4)

The entries of the R-matrix are given by

r1 = 1√
sin η(u)

√
sin η(v)

[
sin η+

cn
dn − cos η+sn

]
,

r2 = −1√
sin η(u)

√
sin η(v)

[
cos η−sn + sin η−

cn
dn

]
,

r3 = −1√
sin η(u)

√
sin η(v)

[
cos η−sn− sin η−

cn
dn

]
,

r4 = 1√
sin η(u)

√
sin η(v)

[
sin η+

cn
dn + cos η+sn

]
,

r5 = r6 = 1,

r7 = r8 = k sn cn
dn , (2.5)

where η± = η(u)±η(v)
2 .

3 Deforming the AdS2 S-matrix

The massive S-matrix for the AdS2 integrable model [17] can only be embedded in the
model 8vB due to the presence of the components r7,8. In order to construct the embedding
we need to first perform various integrability-preserving transformations on the R-matrix
which can be found in [35].

The main issue to be overcome is that the spectral parameters appearing in both models
are different despite being denoted by the same letters u and v. To get around this we need
to transform (u, v) 7→ (G(u), G(v)) in one of the R-matrices and we take this to be in R8vB .
Notice, also that the R-matrix as in equation (2.5) is the boson-boson one, so in order to
compare it with [17] one needs to do the appropriate modifications.
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In [1] we compared the corresponding Hamiltonians to show that RAdS2 is a special
case of R8vB, but it is also instructive to compare the R-matrices directly. We start by
considering the (1, 4) component of both R-matrices which are [17], for R8vB and RAdS2

respectively,

(R8vB)14 = k sn(G(u)−G(v)) cn(G(u)−G(v))
dn(G(u)−G(v)) , (3.1)

(RAdS2)14 = 1√
x+
u x
−
u x

+
v x
−
v

(
x−u − 1

x+
u

)√
x+

u

x−
u
−
(
x−v − 1

x+
v

)√
x+

v

x−
v

1− 1
x+

u x
−
u x

+
v x

−
v

(3.2)

where x± are the Zhukovski variables. Clearly, the (1, 4) component of R8vB is of difference
form, that is it only depends on the difference G(u)−G(v) of the spectral parameters.

Let us expand the (1, 4) component of the AdS2 R-matrix in u around v. We find(
x+x−

)′
2
√
x−
√
x+(x+x− − 1)

(u− v) +O
(
(u− v)2

)
. (3.3)

In order to be purely of difference form we must have that the coefficient of u − v is a
constant which we denote A: (

x+x−
)′

2
√
x−
√
x+(x+x− − 1)

= A. (3.4)

Hence, after reinstating the G dependence, we solve to obtain

x+(v) =
Tanh

(
AG(v) + c1

2
)

x−(v) . (3.5)

This completely fixes G in terms of x±.
After substituting (3.5) back into the (1, 4) component of the AdS2 R-matrix we find

that it reduces to simply1

(RAdS2)14 = −Tanh(A(G(u)−G(v))) . (3.6)

A comparison with the (1, 4) component of the 8vB R-matrix then tells us that we should
take the limit k → ∞ in order to have this entry reduce to Tanh and furthermore the
precise agreement requires that A = −i and we can take c1 = 0, and so we find that2

x+(u) = −Tan2(G(u))
x−(u) . (3.7)

Next, we make the substitution η(u)→ arccot(kF (u)) and expand the 8vB R-matrix
around k →∞. By subsequently expanding around u = v we find that setting

F (u) = −1
2csc(G(u)) sec(G(u)) cot(G(u))x− + i

cot(G(u))x− − i (3.8)

1Working in an appropriate region such that we avoid branch cut issues.
2This relation is somewhat reminiscent of the procedure to arrive at the massless gamma variable [36, 37].
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indeed reproduces the AdS2 R-matrix. Notice that x− is in principle defined implicitly via
the shortening condition

x+ + 1
x+ − x

− − 1
x−

= 2im
h
, (3.9)

where m is the mass, and the h is the coupling constant. But this relation is not needed for
the mapping between the two models. Reversely, we can define m in terms of F, G in this way.

Deformation. In order to embed RAdS2 into R8vB we sent the elliptic modulus k to
infinity. We then immediately see a source of deformation comes from flowing away from
infinity to finite values of k. This is the only available non-trivial source of deformation.

There are also functional deformations corresponding to shifts of the form

η(u)→ η(u) + λ η̃(u) (3.10)

where η̃(u) is an arbitrary function and λ is a deformation parameter. These deformations
correspond to making the mass depend on the spectral parameter m 7→ m(u).

This completes the embedding of RAdS2 into R8vB. Later, we will discuss the deformed
symmetry algebra in section 6.

4 Deforming the AdS3 S-matrix

In [1, 35] we derived the most general 4× 4 integrable R-matrices of 8-vertex type. These
are exactly the R-matrices that are compatible with the graded structure that arises for
the holographic integrable models. Hence, by embedding the R-matrices of AdS3 in these
R-matrices, we find the most general way in which they can be deformed compatible with
the splitting in chiral blocks.

In this section we show that the massive S-matrix for the AdS3 [14, 18, 38] integrable
model can be embedded in both 6-vertex B and 8-vertex B extended models.

Let us explain how to construct the full 16×16 R-matrix given we have the 4×4 regular
R-matrix, and then we apply this procedure to lift the models described in (2.1)–(2.5).

4.1 General procedure

Following the construction in [14], we decompose the full R-matrix R as

R =



rLL
1 0 0 0 0 rLL

8 0 0 0 0 0 0 0 0 0 0
0 rLL

2 0 0 rLL
6 0 0 0 0 0 0 0 0 0 0 0

0 0 rLR
1 0 0 0 0 rLR

8 0 0 0 0 0 0 0 0
0 0 0 rLR

2 0 0 rLR
6 0 0 0 0 0 0 0 0 0

0 rLL
5 0 0 rLL

3 0 0 0 0 0 0 0 0 0 0 0
rLL
7 0 0 0 0 rLL

4 0 0 0 0 0 0 0 0 0 0
0 0 0 rLR

5 0 0 rLR
3 0 0 0 0 0 0 0 0 0

0 0 rLR
7 0 0 0 0 rLR

4 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 rRL

1 0 0 0 0 rRL
8 0 0

0 0 0 0 0 0 0 0 0 rRL
2 0 0 rRL

6 0 0 0
0 0 0 0 0 0 0 0 0 0 rRR

1 0 0 0 0 rRR
8

0 0 0 0 0 0 0 0 0 0 0 rRR
2 0 0 rRR

6 0
0 0 0 0 0 0 0 0 0 rRL

5 0 0 rRL
3 0 0 0

0 0 0 0 0 0 0 0 rRL
7 0 0 0 0 rRL

4 0 0
0 0 0 0 0 0 0 0 0 0 0 rRR

5 0 0 rRR
3 0

0 0 0 0 0 0 0 0 0 0 rRR
7 0 0 0 0 rRR

4



(4.1)
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where R ≡ R(u, v) and rAB
i ≡ rAB

i (u, v) and A,B ∈ {L,R}. The full R-matrix R satisfies
the usual Yang-Baxter equation

R12(u, v)R13(u,w)R23(v, w) = R23(v, w)R13(u,w)R12(u, v) (4.2)

and Rij act on three vector spaces V of dimension four V⊗ V⊗ V.
Let us allow for arbitrary scalar factors σLR, then the functions rAB

i (u, v) are matrix
elements of the 4× 4 R-matrices

RAB(u, v) = σAB


rAB

1 0 0 rAB
8

0 rAB
2 rAB

6 0
0 rAB

5 rAB
3 0

rAB
7 0 0 rAB

4

 (4.3)

where RLL and RRR are regular, i.e.,

RLL(u, u) ∼ P and RRR(u, u) ∼ P , (4.4)

and P is the permutation operator for a Hilbert space of dimension two. The functions
σAB(u, v) are at this point arbitrary, but they will have to satisfy certain properties in order
for both the blocks and the full R-matrix to satisfy crossing symmetry and braiding unitarity.

The fact that YBE (4.2) for the full 16× 16 is satisfied is equivalent to the fact that the
blocks {RLL(u, v), RRL(u, v), RLR(u, v), RRR(u, v)} satisfy eight Yang-Baxter equations
given by all possible ways to distribute two chiralities into three Hilbert spaces:

YBE(A,B,C) = RAB
12 (u, v)RAC

13 (u,w)RBC
23 (v, w)−RBC

23 (v, w)RAC
13 (u,w)RAB

12 (u, v) = 0.
(4.5)

Each RAB
ij (u, v) acts on V (A)⊗V (B)⊗V (C), where each V (A) is a vector space of dimension

two and A,B,C ∈ {L,R}. So, each two dimensional vector space has a chirality associated
to itself.

For example, for A = L, B = R and C = L we have

YBE(L,R,L) = RLR
12 (u, v)RLL

13 (u,w)RRL
23 (v, w)−RRL

23 (v, w)RLL
13 (u,w)RLR

12 (u, v) = 0.
(4.6)

So, in other words, if RRR, RLL, RRL and RLR satisfy all the eight YBE’s defined
in (4.5) then the full R-matrix (4.1) will satisfy the equation (4.2).

At this point, it is important to remember that the method developed in [1] only allows
one to compute regular R-matrices. So, our starting point is to put those matrices in the
left-left and right-right blocks and use the six remaining YBE in (4.5) to fix the left-right
and right-left blocks.

The complete procedure is the following:

1. We start by assuming that RLL and RRR are given by a regular 4× 4 R-matrix as for
example in equation (2.1). We will assume that both of these blocks can be deformed
independently and so we use different names for the functions in the LL and RR
blocks.

Notice that with this YBE(L,L,L) and YBE(R,R,R) are already satisfied.

– 7 –
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2. We assume RLR(u, v) and RRL(u, v) of the form (4.3). Then, we substitute RLR(u, v)
together with RLL(u, v) in YBE(L,L,R) and solve them for rLR

i . Similarly, solving in
YBE(R,R,L) we construct rRL

i .

3. The previous step fixes RLR(u, v) and RRL(u, v) apart from functions of one variable.
We use the remaining four YBE(A,B,C) to fix these functions.

4. The last step is to substitute all rA B
i in the full R-matrix (4.1) and check that it

indeed satisfies YBE (4.2).

For the final result, one of course needs to check braiding unitarity and to find the
crossing relations. Braiding unitarity is checked in the next two sections, while crossing
symmetry is discussed on a case by case basis in section 7.

4.2 A deformation of AdS3: 6-vertex B

Now, for the 6 vertex B model, we present the four blocks obtained by applying the
procedure above. For the left-left sector, (A = L and B = L) we have

rLL
1 = hL

2 (q)− hL
1 (p)

hL
2 (p)− hL

1 (p)
, rLL

7 = 0 = rLL
8 , (4.7)

rLL
2 =

(
hL

2 (p)− hL
2 (q)

)
XL(p)Y L(p), (4.8)

rLL
3 = hL

1 (p)− hL
1 (q)(

hL
2 (p)− hL

1 (p)
)(
hL

2 (q)− hL
1 (q)

) 1
XL(q)Y L(q) , (4.9)

rLL
4 = hL

2 (p)− hL
1 (q)

hL
2 (q)− hL

1 (q)
XL(p)Y L(p)
XL(q)Y L(q) , (4.10)

rLL
5 = Y L(p)

Y L(q) , rLL
6 = XL(p)

XL(q) . (4.11)

This block satisfies YBE(L,L,L) = 0. Notice that RLL looks slightly different from the
R-matrix introduced in [1]. This is due to a twist3 performed in order to make it satisfy
crossing symmetry and compare it with AdS3 R-matrix.

For the right-right sector (A = R and B = R) we have

rRR
1 = hR

2 (q)− hR
1 (p)

hR
2 (p)− hR

1 (p)
, rRR

7 = 0 = rRR
8 (4.12)

rRR
2 = hR

2 (p)− hR
2 (q)

hR
2 (p)2 XR(p)Y R(p), (4.13)

rRR
3 =

hR
2 (q)2

(
hR

1 (p)− hR
1 (q)

)
(
hR

2 (p)− hR
1 (p)

)(
hR

2 (q)− hR
1 (q)

) 1
XR(q)Y R(q) , (4.14)

rRR
4 = hR

2 (q)2

hR
2 (p)2

hR
2 (p)− hR

1 (q)
hR

2 (q)− hR
1 (q)

XR(p)Y R(p)
XR(q)Y R(q) , (4.15)

rRR
5 = hR

2 (q)
hR

2 (p)
XR(p)
XR(q) , rRR

6 = hR
2 (q)
hR

2 (p)
Y R(p)
Y R(q) . (4.16)

3A twist in the R-matrix is allowed because it keeps YBE invariant. It is also necessary in order to
6-vertex B R-matrix be a deformation of the R-matrices in [14, 18, 28, 38].

– 8 –
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This block is independent of RLL block and from the R-matrix introduced in [1] again due
to a twist. Also, RRR satisfies YBE(R,R,R) = 0. So, the functions in RLL and RRR are
independent and what connects them are the blocks of opposite chirality introduced now.

The right-left sector (A = R and B = L) is given by

rRL
1 = 1, rRL

5 = 0 = rRL
6 (4.17)

rRL
2 = − hR

2 (p)2

hR
2 (p)− hR

1 (p)
1 + hL

1 (q)hR
1 (p)

1 + hL
1 (q)hR

2 (p)
1

XR(p)Y R(p) , (4.18)

rRL
3 = −

(
hL

2 (q)− hL
1 (q)

)1 + hL
2 (q)hR

2 (p)
1 + hL

1 (q)hR
2 (p)

XL(q)Y L(q), (4.19)

rRL
4 = −hR

2 (p)2 h
L
2 (q)− hL

1 (q)
hR

2 (p)− hR
1 (p)

1 + hL
2 (q)hR

1 (p)
1 + hL

1 (q)hR
2 (p))

XL(q)Y L(q)
XR(p)Y R(p) , (4.20)

rRL
7 = i hR

2 (p) h
L
2 (q)− hL

1 (q)
1 + hL

1 (q)hR
2 (p)

Y L(q)
Y R(p) , (4.21)

rRL
8 = −i hR

2 (p) h
L
2 (q)− hL

1 (q)
1 + hL

1 (q)hR
2 (p)

XL(q)
XR(p) . (4.22)

Finally, the left-right sector (A = L and B = R) is given by

rLR
1 = 1, rLR

5 = 0 = rLR
6 (4.23)

rLR
2 = − 1

hL
2 (p)− hL

1 (p)
1 + hL

1 (p)hR
1 (q)

1 + hL
2 (p)hR

1 (q)
1

XL(p)Y L(p) , (4.24)

rLR
3 = −h

R
2 (q)− hR

1 (q)
hR

2 (q)2
1 + hL

2 (p)hR
2 (q)

1 + hL
2 (p)hR

1 (q)
XR(q)Y R(q), (4.25)

rLR
4 = − 1

hR
2 (q)2

hR
2 (q)− hR

1 (q)
hL

2 (p)− hL
1 (p)

1 + hL
1 (p)hR

2 (q)
1 + hL

2 (p)hR
1 (q))

XR(p)Y R(p)
XL(p)Y L(p) , (4.26)

rLR
7 = i

hR
2 (q)

hR
2 (q)− hR

1 (q)
1 + hL

2 (p)hR
1 (q)

XR(q)
XL(p) , (4.27)

rLR
8 = − i

hR
2 (q)

hR
2 (q)− hR

1 (q)
1 + hL

2 (p)hR
1 (q)

Y R(q)
Y L(p) . (4.28)

With these four blocks satisfying all the eight YBE(A,B,C), the full R-matrix R is given
by (4.1), and it satisfies (4.2). It is remarkable that it is possible to deform the left-left and
right-right blocks independently and still obtain meaningful right-left and left-right blocks.
Because of this independence of the diagonal blocks, 6-vertex B is both a deformation of
AdS3 × S3 × T4 [14, 38] and AdS3 × S3 × S3 × S1 [18]. More details about the comparison
between these models and the undeformed ones are given in section 5.

We find braiding unitarity in each of the four blocks

RRR(p, q)PRRR(q, p)P = BRR(p, q)I, (4.29)
RLL(p, q)PRLL(q, p)P = BLL(p, q)I, (4.30)
RRL(p, q)PRLR(q, p)P = BRL(p, q)I, (4.31)
RLR(p, q)PRRL(q, p)P = BLR(p, q)I (4.32)
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where

BRR(p, q) = hR
2 (p)− hR

1 (q)
hR

2 (p)− hR
1 (p)

hR
2 (q)− hR

1 (p)
hR

2 (q)− hR
1 (q)

σRR(p, q)σRR(q, p), (4.33)

BLL(p, q) = hL
2 (p)− hL

1 (q)
hL

2 (p)− hL
1 (p)

hL
2 (q)− hL

1 (p)
hL

2 (q)− hL
1 (q)

σLL(p, q)σLL(q, p), (4.34)

BRL(p, q) = 1 + hL
2 (q)hR

2 (p)
1 + hL

1 (q)hR
2 (p)

1 + hR
1 (q)hL

1 (p)
1 + hR

1 (p)hL
2 (q)

σRL(p, q)σLR(q, p), (4.35)

BLR(p, q) = 1 + hL
2 (p)hR

2 (q)
1 + hL

1 (p)hR
2 (q)

1 + hR
1 (q)hL

1 (p)
1 + hR

1 (q)hL
2 (p)

σLR(p, q)σRL(q, p). (4.36)

With the above expressions, if

B(p, q) ≡ BRR(p, q) = BLL(p, q) = BRL(p, q) = BLR(p, q) (4.37)

then the full R-matrix R (4.1) automatically satisfies braiding unitarity

R(p, q)PR(q, p)P = B(p, q)1. (4.38)

4.3 A deformation of AdS3: 8-vertex B

In this section we present the four 4× 4 blocks (and consequently the full R-matrix) for the
8-vertex model introduced in [1]. This model can be seen as a deformation of AdS3×S3×M4

R-matrix introduced in [14, 18, 38]. The following notation will be used

η± = η(u)± η(v)
2 , snAB

± = sn(GA(u)±GB(v), k2), (4.39)

cnAB
± = cn(GA(u)±GB(v), k2), dnAB

± = dn(GA(u)±GB(v), k2). (4.40)

The explicit form of each matrix element rAB
i is presented below, starting by the left-left

block

rLL
1 = 1√

sin(η(u)) sin(η(v))

(
− cos η+snLL

− +
cnLL
−

dnLL
−

sin η+

)
,

rLL
2 = − 1√

sin(η(u)) sin(η(v))

(
cos η−snLL

− −
cnLL
−

dnLL
−

sin η−

)
,

rLL
3 = − 1√

sin(η(u)) sin(η(v))

(
cos η−snLL

− −
cnLL
−

dnLL
−

sin η−

)
,

rLL
4 = 1√

sin(η(u)) sin(η(v))

(
cos η+snLL

− +
cnLL
−

dnLL
−

sin η+

)
,

rLL
5 =

√
gL(v)
gL(u) , rLL

6 =
√
gL(u)
gL(v) ,

rLL
7 = kα√

gL(u)gL(v)
cnLL
− snLL

−
dnLL
−

, rLL
8 = k

√
gL(u)gL(v)
α

cnLL
− snLL

−
dnLL
−

. (4.41)
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This is simply the 8-vertex B R-matrix where we added a diagonal local basis transformation
with component gL. This block satisfies the YBE(L,L,L) (equation (4.5)).

Similarly, let us now introduce the right-right block

rRR
1 = 1√

sin(η(u)) sin(η(v))

(
− cos η+snRR

− +
cnRR
−

dnRR
−

sin η+

)
,

rRR
2 = − 1√

sin(η(u)) sin(η(v))

(
cos η−snRR

− +
cnRR
−

dnRR
−

sin η−

)
,

rRR
3 = − 1√

sin(η(u)) sin(η(v))

(
cos η−snRR

− −
cnRR
−

dnRR
−

sin η−

)
,

rRR
4 = 1√

sin(η(u)) sin(η(v))

(
cos η+snRR

− +
cnRR
−

dnRR
−

sin η+

)
,

rRR
5 =

√
gR(u)
gR(v) , rLL

6 =
√
gR(v)
gR(u) ,

rRR
7 = k

√
gR(u)gR(v)

α

cnRR
− snRR

−
dnRR
−

, rRR
8 = kα√

gR(u)gR(v)
cnRR
− snRR

−
dnRR
−

, (4.42)

that satisfies the YBE(R,R,R). Notice that a priori RLL(u, v) and RRR(u, v) can have
different elliptic moduli kL, kR and different functions ηL,R. However, by computing the
LR and RL blocks we find that the parameters need to be related and the same is true for
the function η. Indeed, by using different ηL and ηR in each block we found that they are
related by ηR = π − ηL.

Using the method described in section 4.1 we can then construct the following right-left
block

rRL
1 = 1√

sin(η(u)) sin(η(v))

√
gR(u)
gL(v)

(
cos η−snRL

+ +
cnRL

+
dnRL

+
sin η−

)
,

rRL
2 = 1√

sin(η(u)) sin(η(v))

√
gR(u)
gL(v)

(
cos η+snRL

+ −
cnRL

+
dnRL

+
sin η+

)
,

rRL
3 = 1√

sin(η(u)) sin(η(v))

√
gR(u)
gL(v)

(
cos η+snRL

+ +
cnRL

+
dnRL

+
sin η+

)
,

rRL
4 = 1√

sin(η(u)) sin(η(v))

√
gR(u)
gL(v)

(
− cos η−snRL

+ +
cnRL

+
dnRL

+
sin η−

)
,

rRL
5 = −kgR(u)

α

cnRL
+ snRL

+
dnRL

+
, rRL

6 = kα

gL(v)
cnRL

+ snRL
+

dnRL
+

,

rRL
7 = −gR(u)

gL(v) , rRL
8 = 1, (4.43)
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and finally the left-right block

rLR
1 = 1√

sin(η(u)) sin(η(v))

√
gR(v)
gL(u)

(
cos η−snLR

+ +
cnLR

+
dnLR

+
sin η−

)
,

rLR
2 = 1√

sin(η(u)) sin(η(v))

√
gR(v)
gL(u)

(
cos η+snLR

+ −
cnLR

+
dnLR

+
sin η+

)
,

rLR
3 = 1√

sin(η(u)) sin(η(v))

√
gR(v)
gL(u)

(
cos η+snLR

+ +
cnLR

+
dnLR

+
sin η+

)
,

rLR
4 = 1√

sin(η(u)) sin(η(v))

√
gR(v)
gL(u)

(
− cos η−snLR

+ +
cnLR

+
dnLR

+
sin η−

)
,

rLR
5 = − kα

gL(u)
cnLR

+ snLR
+

dnLR
+

, rLR
6 = kgR(v)

α

cnLR
+ snLR

+
dnLR

+
,

rLR
7 = −gR(u)

gL(v) , rLR
8 = 1. (4.44)

We can now immediately construct the full R-matrix R (4.1) and check that it indeed
satisfies the Yang-Baxter equation (4.2).

Now let us discuss braiding unitarity. For the four blocks just presented we have

RRL(u, v)PRLR(v, u)P = BRL(u, v)I, (4.45)
RLR(u, v)PRRL(v, u)P = BLR(u, v)I, (4.46)
RRR(u, v)PRRR(v, u)P = BRR(u, v)I, (4.47)
RLL(u, v)PRLL(v, u)P = BLL(u, v)I, (4.48)

where

BLL(u,v)
σLL(u,v)σLL(v,u) = cn2

L,L,−

dn2
L,L,−

(
− sin2 η+

sinη(u)sinη(v) +k2sn2
L,L,−

)
−sn2

L,L,−
cos2 η+

sinη(u)sinη(v) (4.49)

BRR(u,v)
σRR(u,v)σRR(v,u) = cn2

R,R,−

dn2
R,R,−

(
− sin2 η+

sinη(u)sinη(v) +k2sn2
R,R,−

)
−sn2

R,R,−
cos2 η+

sinη(u)sinη(v) (4.50)

gR(v)
gL(u)

BLR(u,v)
σLR(u,v)σRL(v,u) =− cn2

L,R,+

dn2
L,R,+

sin2 η−

sinη(u)sinη(v) +sn2
L,R,+

cos2 η−

sinη(u)sinη(v)−1 (4.51)

gR(u)
gL(v)

BRL(u,v)
σRL(u,v)σLR(v,u) =− cn2

R,L,+

dn2
R,L,+

sin2 η−

sinη(u)sinη(v) +sn2
R,L,+

cos2 η−

sinη(u)sinη(v)−1, (4.52)

where cnA,B,± = cn(GA(u)±GB(v), k2), and similarly for dn and sn.
In order for the full R-matrix R(u, v) to satisfy braiding unitarity

R(u, v)PR(v, u)P = B(u, v)I (4.53)

it is necessary that

B(u, v) ≡ BLL(u, v) = BRR(u, v) = BRL(u, v) = BLR(u, v). (4.54)

This imposes additional constraints on σAB.
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5 Embeddings of AdS3 × S3 × M4

Let us now show how to precisely embed the various AdS3 R-matrices into the general ones
that we derived in the previous section.

5.1 Recovering AdS3 × S3 × S3 × S1 R-matrix from 6-vertex B

Now we compare the 6 vertex B full R-matrix R(u, v) with the R-matrix for AdS3 × S3 ×
S3 × S1 [18] given in section A.1 and we obtain

hR
1 (p) = −x

−
R(p)
β

hL
1 (p) = β x−L (p), (5.1)

hR
2 (p) = −x

+
R(p)
β

hL
2 (p) = β x+

L (p), (5.2)

where β is an arbitrary constant.
Also

XL(p) = ρ

γL(p) , Y L(p) = γL(p)
βρ
(
x−L (p)− x+

L (p)
)
√√√√x−L (p)
x+

L (p)
, (5.3)

XR(p) = −i ρ x
+
R(p)
γR(p) , Y R(p) = −i γ

L(p)
β ρ

√
x−R(p)x+

R(p)
x−R(p)− x+

R(p)
, (5.4)

where ρ is an arbitrary constant; and

σLL(p, q) = x+
L (p)− x−L (p)
x+

L (q)− x−L (p)
(5.5)

σRR(p, q) = x+
R(p)− x−R(p)
x+

R(q)− x−R(p)
(5.6)

σLR(p, q) =

√√√√x−L (p)
x+

L (p)
1− x+

L (p)x−R(q)
1− x−L (p)x−R(q)

ζLR(p, q), (5.7)

σRL(p, q) =

√√√√x−R(p)
x+

R(p)
1− x+

R(p)x−L (q)
1− x−R(p)x−L (q)

ζRL(p, q). (5.8)

Notice that the left and right sectors have their own Zhukovsky variables. As explained in
appendix A, the AdS3 × S3 × T4 is a special case of this where the x± variables in both
sectors coincide.

5.2 Recovering the AdS3 q-deformation from 6-vertex B

The R-matrix in [28, 33] can be obtained from the full 6vB R-matrix by making the following
identifications:

hR
1 (p) = −x

−
R(p)
β

, hL
1 (p) = β x−L (p), (5.9)

hR
2 (p) = −x

+
R(p)
β

, hL
2 (p) = β x+

L (p), (5.10)

where β is an arbitrary constant.
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Also,

XL(p) = ρ

γL(p) , Y L(p) = 1
β ρ

γL(p)
UL(p)VL(p)WL(p)

1
x−L (p)− x+

L (p)
, (5.11)

Y R(p) = 1
β ρ

x+
R(p)
γR(p) , XR(p) = − ρ γR(p)

UR(p)VR(p)WR(p)
x+
R(p)

x−R(p)− x+
R(p)

, (5.12)

where ρ is an arbitrary constant; and

σLL(p, q) = −UL(p)VL(p)WL(p)
UL(q)VL(q)WL(q)

x−L (p)− x+
L (p)

x−L (q)− x+
L (p)

, (5.13)

σRR(p, q) = −UR(p)VR(p)WR(p)
UR(q)VR(q)WR(q)

x−R(p)− x+
R(p)

x−R(q)− x+
R(p)

, (5.14)

σLR(p, q) = UR(q)VR(q)WR(q)(1− x+
L (p)x−R(q))

(1− x+
L (p)x+

R(q))
, (5.15)

σRL(p, q) = UL(q)VL(q)WL(q)(1− x+
R(p)x−L (q))

(1− x+
R(p)x+

L (q))
. (5.16)

In particular, notice that the identifications (5.9)–(5.12) are invertible. This means that
the provided q-deformation is the most general deformation possible. The only source of
further deformations comes from the fact that our functions are completely unconstraint.
This basically translates in making the constants in the q-deformed model, such as the
mass, dependent on the spectral parameter. This is what we call a functional deformation.

5.3 Recovering AdS3 × S3 × S3 × S1 R-matrix from 8-vertex B

In order to recover the AdS3 × S3 × S3 × S1 R-matrix we need to take the limit k → 0 in
the full 8-vertex R-matrix as presented in section 4.3 and compare it with [14, 38] which is
given in appendix A.1.

After the limit k → 0, the map to recover AdS3×S3×S3×S1 R-matrix is the following:

σLR(p, q) =

√√√√x−R(q)
x+
R(q)

x−L (p)− x+
L (p)

1− x−L (p)x−R(q)
γR(q)
γL(p) , (5.17)

σRL(p, q) =

√√√√x−R(p)
x+
R(p)

x−L (p)− x+
L (p)

1− x−L (q)x−R(p)
γR(p)
γL(q) , (5.18)

σLL(p, q) =
√
gL(q)√
gL(p)

x−L (p)− x+
L (p)

x−L (p)− x+
L (q)

γL(q)
γL(p) , (5.19)

σRR(p, q) =
√
gR(q)√
gR(p)

x−R(p)− x+
R(p)

x−R(p)− x+
R(q)

γR(q)
γR(p) . (5.20)

Moreover,

gL(p) = τ
x−L (p)− x+

L (p)
γL(p)2

√√√√x+
L (p)
x−L (p)

and gR(p) = τ
x−R(p)− x+

R(p)
γR(p)2

√√√√x+
R(p)
x−R(p)

, (5.21)
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and

GL(p) = π − i

4 log
(√

x−L (p)x+
L (p)

)
(5.22)

GR(p) = π − i

4 log
(√

x−R(p)x+
R(p)

)
(5.23)

η(p) = − i2 log


√√√√x+

L (p)
x−L (p)

, (5.24)

where τ = ±1. This identification only works since x+
L

x−
L

= x+
R

x−
R

.

6 Deformed symmetry algebras

Let us now try to get some insight into the physical interpretation of the deformations that
we have derived. The natural starting point for this is to consider the symmetry algebras
that these models exhibit. We will determine the algebra generated by generators x such
that quasi-cocommutativity is satisfied

∆op(x)R = R∆(x) . (6.1)

6.1 General procedure

For a given R-matrix, the symmetry algebra is generated by the so-called RTT-relations

R12(u, v)T1(u)T2(v) = T2(v)T1(u)R12(u, v). (6.2)

The T -matrices are matrices whose entries are the formal generators of the algebra and the
above relations describe the fundamental commutation relations between them. Usually
these relations describe algebras such as Yangian or quantum affine algebras corresponding
to some underlying Lie algebra [39, 40]. The procedure for dealing with the RTT-realization
was first formulated in [41] for the AdS5 × S5 S-matrix and the Hubbard model and was
later applied to AdS2,3 [42–44].

The symmetry relations can be determined by expanding T around some point where
R becomes (almost) the identity operator. For clarity, let us assume that this point is at
u =∞. We write

R(u, v) = Ri1i2j1j2
Ei1j1 ⊗ Ei2j2 (6.3)

and
Ta(u) = Eij ⊗ 1⊗ T ij(u), Tb(u) = Eij ⊗ T ij(u)⊗ 1, (6.4)

then write (6.2) in component form. Next, we write an expansion of T as

T ab(u) = T a
(−1)b +

∞∑
s=0

T a
(s)b u

−1−s. (6.5)

Then, it is easy to see that the RTT-relations reduce to regular commutation relations of
some Lie algebra generated by the generators T a(0)b. The component T a(−1)b ≡ δabUa gives
rise to the braiding element [41] of the underlying coproduct which is also completely fixed.

– 15 –



J
H
E
P
0
5
(
2
0
2
2
)
0
1
2

Now, remarkably, the R-matrix does not only inherently contain the symmetry algebra,
but also (part of) the representation theory of this algebra. Indeed, by considering the map

ρF : Ta(u) 7→ Rab(θ, u) (6.6)

and using the Yang-Baxter equation we see that the components of the R-matrix provides
the defining representation of the symmetry algebra. By a fusion procedure, more general
representations can then also be constructed [45].

Conversely, the R-matrix is the unique object that intertwines the coproduct and
opposite coproduct in the defining representation of the symmetry algebra (including higher-
order generators). This is actually the method that is used in holographic integrable models.
The symmetry algebra is determined by direct computation and then the scattering matrix
is derived from this. In our situation, however, we already have the R-matrix and can now
construct the corresponding symmetry algebra and compare this again with the symmetry
algebras and representations of the integrable models coming from AdS2,3 superstring
sigma models.

6.2 Alternative direct calculation

The standard procedure of expanding the R-matrix around a point where it becomes
diagonal crucially relies on the existence of such a point. In fact, for the specific case of the
8-vertex deformation of AdS3 it is not possible to find such a point, despite the fact that
the R-matrix is related to that of AdS2, for which it does work.

In light of this, we will extract the (defining representation of the) symmetry algebra
directly from the 8vB R-matrix in a manner which does not depend on the specific model at
hand (i.e. on the choice of free functions) nor on the existence of a point where the R-matrix
becomes diagonal. We can then fine tune the obtained algebra to the model at hand.

Consider some symmetry generator Q. We put Ř(u, v) = PR(u, v) where P is the
permutation operator and define

Q12(u, v) = Q(u)⊗ 1 + U(u)⊗Q(v), (6.7)

where the tensor product is graded when we have both bosonic and fermionic degrees of
freedom in our representation. Then the symmetry algebra relation (6.1) is that

Q12(v, u)Ř(u, v) = Ř(u, v)Q12(u, v). (6.8)

We can then differentiate this equation with respect to u and subsequently put u → v,
which leaves us with a set of ODEs

[Q⊗ 1 + U⊗Q,H] = Q′ ⊗ 1 + U′ ⊗Q− U⊗Q′ , (6.9)

which can be solved directly and we have introduced the Hamiltonian density H(v) =
∂u Ř(u, v)

∣∣∣
u→v

. Notice that this equation greatly resembles the Sutherland equation that is
crucial in the boost operator formalism of [1]. Moreover, we also see here that the symmetry
algebra is fixed by the Hamiltonian density H of the system which nicely ties in to the
bottom-up approach of our classification method [1].
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Our approach will be to simply solve (6.9) for the derivatives of the remaining functions
and plug them back in, obtaining a set of algebraic equations for the functions themselves.
This approach is especially useful if the R-matrix does not have a nice asymptotic behaviour.

6.3 6-vertex deformation of AdS3

Let us now consider the 6-vertex deformation of the full AdS3 R-matrices. We will start by
considering two supercharges Q± which we assume to have the form

Q± =
(
QL
± 0

0 QR
±

)
(6.10)

with

QL
+ =

(
0 0
a+ 0

)
, QL

− =
(

0 a−
0 0

)
(6.11)

QR
+ =

(
0 b+
0 0

)
, QR

− =
(

0 0
b− 0

)
. (6.12)

We will equip these charges with coproducts ∆(Q±) which we assume to have the form
together with coproducts of the following form

∆(Q+) = Q+ ⊗ 1 + U−1 ⊗Q+, ∆(Q−) = Q− ⊗ 1 + V−1 ⊗Q− (6.13)

where U and V are block diagonal matrices acting as

U =
(
UL 0
0 UR

)
, V =

(
VL 0
0 VR

)
(6.14)

where each of UL,R and VL,R are scalar multiples of the identity operator.
By imposing the required commutation relations between the supercharges and the

R-matrix we easily obtain

a+ = 1
XL

1
t− hL

2
, a− = XLh

L
1 − hL

2
s− hL

1

b+ = i
Y R

hR
2

hR
1 − hR

2
1 + t hR

1
, b− = i

hR
2

Y R
1

1 + s hR
2

(6.15)

where s and t are arbitrary constants and

UL = XLY L(hL
1 − hL

2 ) t− h
L
2

t− hL
1
, UR = hR

2
XR

hR
2

Y R
1

hR
1 − hR

2

1 + t hR
1

1 + t hR
2

VL = 1
XL

1
Y L

1
hL

1 − hL
2

s− hL
1

s− hL
2
, VR = XR

hR
2

Y R

hR
2

(hR
1 − hR

2 )1 + s hR
2

1 + s hR
1
.

(6.16)

At first glance it seems we have two one-parameter families of conserved charges Q+(t) and
Q−(s). However only two such charges from each family are actually independent since for
example for any T we can write

Q+(T ) = αQ+(t1) + βQ−(t2), t1 6= t2 (6.17)
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and as a result there are four independent supercharges Q+(t1), Q+(t2), Q−(s1), Q−(s2).
The logic can then be reversed — starting from these supercharges the R-matrix is completely
constrained up to normalisation in each of the four blocks by the requirement

∆op(Q)R = R∆(Q) . (6.18)

We will now examine the resulting algebra more closely. We have the following commutation
relations

{Q+(t1),Q+(t2)} = 0, {Q−(s1),Q−(s2)} = 0 . (6.19)

We introduce a two-parameter family of operators P(t, s) defined by

P(t, s) = {Q+(t),Q−(s)} . (6.20)

Clearly there are four independent such charges and all of them are central elements of the
algebra. Their coproducts are given by

∆(P) = P⊗ 1 + V−1U−1 ⊗P . (6.21)

The coproducts of the braiding factors are given by ∆(U) = U⊗ U and ∆(V) = V⊗V.
Finally, the algebra can be extended by an additional C factor B with the commutation

relations
[B,Q±] = ±2Q± (6.22)

and with trivial coproduct.

6.4 Symmetries of deformed AdS2

Let us now work out the symmetries of the different deformed models.

Direct approach and defining representation. As with the AdS3 model above we
will start our considerations by considering a supercharge Q of the form

Q =
(

0 b

a 0

)
(6.23)

with coproduct ∆(Q) = Q⊗ 1 + U⊗Q. Imposing as usual that ∆op(Q)R = R∆(Q) leads
to the following constraints

a = b

ω1ω2

ω1 dn(2v)− 1
sn(2v)

U = ω1ω2 cos η sn(2v) + ω2 sin η cn(2v)
sin η + ω1ω2sn(2v)

(6.24)

where ω1, ω2 ∈ {−1, 1}. From the condition ∆op(Q)R = R∆(Q) it is also possible to extract
an ODE for b. However, it is very difficult to express the solution in a useful form. To this
end, we will follow a different approach. Namely P = 1

2{Q,Q} is central and as a result we
have that ∆op(P) = ∆(P) which implies P = ρ(1−U2) where ρ is some irrelevant constant.
This relation provides an algebraic equation linking a, b and U allowing the symmetry
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generators to be completely determined. Note that the mentioned equation has two
solutions. However, the two solutions differ only by a sign which in turn, along with ρ, only
affects the normalisation of Q. Hence we can set ρ = 1 and choose whichever sign we like.

We now comment on the constructed supercharges corresponding to the four possible
pairs (ω1, ω2). We first note the following inversion property

U|ω1→−ω1
= U−1 (6.25)

for fixed ω2 easily verified by direct calculation. Next, we notice that although we seem
to have four supercharges only two are actually independent since there are only two
independent matrices of the form (6.23). For definiteness we will choose the two independent
supercharges to be given by (ω1, ω2) = (±1,−1) and denote the charges as

Q± = Q|ω1=±1, ω2 = −1 (6.26)

and hence the coproducts are given by

∆(Q±) = Q± ⊗ 1 + U±1 ⊗Q . (6.27)

The explicit form of the supercharges is in general quite complicated involving square
roots of Jacobi elliptic functions. Huge simplifications occur at k = 1 where the elliptic
functions degenerate into hyperbolic functions. The explicit solution is then given by

U = sech(2v) sin η + tanh(2v) cos η
tanh(2v)− sin η

(6.28)

a =
coth(v)

1−ω1
2 (cos(η2 )− ω1 sin(η2 ) tanh(v))

coth(2v) sin η − ω1
(6.29)

b = tanh(v)
1−ω1

2 cosh(v)
cosh(v) sin(η2 )− ω1sinh(v) cos(η2 ) . (6.30)

General approach and higher symmetries. We see that the underlying Lie algebra
is the same for the deformed AdS2 model as for the undeformed model. Let us now look at
the higher symmetry generators by working out the RTT relations similar to [43].

RTT. Let us assume that there is a point at which the 8vB R-matrix becomes diagonal.
Without loss of generality, let us set this point to be at u = 0. We expand

η(u) = a0 + a1u+ a2u
2 + . . . (6.31)

It is easy to see that R only becomes diagonal if a0 = a1 = 0, so we assume this from now on.
Next, we expand our monodromy matrix T in terms of symmetry generators as

T (u) =
(

1 0
0 U

)
+
(
H+B

2 UQ−
Q+ UB−H2

)
u+ . . . (6.32)

and we work out the fundamental commutation relations (6.2) expanded around u = 0.
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To first order we find that U is central, i.e.

[U, T (v)] = 0. (6.33)

At second order we indeed recover the centrally extended psu(1|1)ce algebra together with
the extra central element B.

Remarkably, we find that the k dependence drops out of the RTT relations in the
first two orders, so the commutation relations of the first level Yangian generators are also
unaffected and we therefore reproduce the algebra from [43], including the secret symmetry.

Deformed Yangian. Since the first two levels of our algebra are exactly the same, the
question arises if the deformation is purely realized in terms of the representation. However,
starting from the second level, the deformation parameter appears in the structure constants.
It is not possible to absorb this k dependence into redefinitions of generators of the full
algebra. This seems to indicate that the algebra of this deformed model is not a standard
Yangian. It would be interesting to find out exactly what the structure for the higher
generators is.

Deformed representation. The fact that the Lie algebra of symmetries remains unchanged
and only the representation is modified might suggest that the deformation of the AdS2
model could be trivially absorbed into a redefinition of the physical parameters

e 7→ ek, m 7→ mk, p 7→ pk . (6.34)

There are two ways to see that this is not the case and the deformation is non-trivial.
The first comes from the fact that the AdS2 R-matrix satisfies a certain linear constraint

on the diagonal elements
r1 − r2 − r3 − r4 = 0 (6.35)

It can be easily checked that this condition is not satisfied for the general 8vB model except
at k →∞.

The second comes from the evaluation representation structure of the model. It can be
shown that the fundamental representation of the Yangian does not admit an evaluation
representation. This is in particular clear by looking at the central extensions. Since the k
dependence only manifests itself at second level, we see that both the central extension P

and its first level Yangian counterpart P̂

2P = {Q,Q} and 2P̂ = {Q̂,Q} (6.36)

do not depend on k. However we find that ˆ̂
P = 1

2{Q̂, Q̂} does depend on k. This prohibits
the existence of an evaluation representation unless we take the k →∞ limit. And indeed
the AdS2 model allows evaluation representations [43].

6.5 8-vertex deformation of AdS3

The LL and RR blocks of the full R-matrix correspond to the 4×4 R-matrices which appeared
above in the AdS2 model. As such we have already classified the symmetry generators for
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these blocks. From the above discussion we know now that both the LL and RR scattering
matrices exhibit a centrally extended psu(1|1) symmetry, whose representations depend on
the elliptic parameter k. The question is now if this extends to a symmetry algebra of the
full 16× 16 S-matrix.

Let us write a supercharge Q as

Q =
(
QL 0
0 QR

)
. (6.37)

The matrices QL are precisely of the form given for the AdS2 deformation — we only
need to make the replacement v → GL(v) in the argument of the elliptic functions. The
matrices QR can then be found almost for free — a quick check of the equations coming
from ∆op(Q)R = R∆(Q) yields that the equations involving different blocks do not mix
and further the equations involving the entries of the RR block are identical to those for
the LL block provided we simply swap replace GL → GR, UL → UR, aL → bR and bL → aR.
The only other modification is that for QR we must also include the normalisation factor ρ
since we are only free to set the normalisation of one of the blocks.

A straightforward calculation then yields that there are only two supercharges which
survive for the full R-matrix, namely(

QL
+ 0

0 QR
−

)
,

(
QL
− 0

0 QR
+

)
. (6.38)

As a result the symmetry algebra is given by a single copy of psu(1|1)ce.
The same statements made about the AdS2 model also carry over to the current setting,

namely for generic k the model does not admit evaluation representations and the higher
order Yangian generators become deformed.

7 Crossing symmetry

In this section we study the presence of crossing symmetry in the deformed models. We find
that the usual crossing type relations hold for both the AdS3 and AdS2 deformations, al-
though the explicit form of the charge conjugation matrix C for the AdS2 one is very unusual.

7.1 6-vertex deformation of AdS3

The R-matrix described in section 4.2 satisfies the crossing equations

C1R(p+ ω, q)t1C−1
1 = R(p, q)−1,

C2R(p, q − ω)t2C−1
2 = R(p, q)−1, (7.1)

where the superscript t1 and t2 denote transposition in the first and second vector space,
respectively; ω is the crossing parameter and the conjugation matrix C is given by

C =


0 0 1 0
0 0 0 i

1 0 0 0
0 i 0 0

, (7.2)
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if and only if the following conditions are satisfied:

Condition 1. It is necessary that hL/R
i (p± ω) satisfy

hR
i (p± ω) = − 1

hL
i (p)

, hL
i (p± ω) = − 1

hR
i (p)

, (7.3)

for i = 1, 2 which implies that

hA
i (p± 2ω) = hA

i (p). (7.4)

Condition 2. The functions X,Y need to satisfy

XA(p± 2ω) = −XA(p) and Y A(p± 2ω) = −Y A(p), (7.5)

and
XR(p) = XL(p+ ω) and Y R(p) = Y L(p+ ω). (7.6)

Condition 3. Finally we find conditions on the scalar factors σ

σAB(p+ ω, q)σBB(p, q) = hB
2 (p)− hB

1 (p)
hB

2 (q)− hB
1 (p)

, (7.7)

σAA(p+ ω, q)σBA(p, q) = hB
2 (p)− hB

1 (p)
hB

2 (p)
1 + hA

1 (q)hB
2 (p)(

1 + hB
1 (p)hA

1 (q)
)(

1 + hB
2 (p)hA

2 (q)
) , (7.8)

σAA(p, q − ω) = −hA
2 (p)hB

2 (q)σBB(p+ ω, q), (7.9)
σBA(p, q − ω) = σAB(p+ ω, q) (7.10)

where A, B = {L,R} with A 6= B. In the last two equations we combined both crossing
equations.

Notice that the charge conjugation matrix C (7.2) matches with the one in [18], while
corresponds the complex conjugate of the one appearing in [14]. If one would like the exactly
matching between C in (7.2) and [14] it is enough to perform a local basis transformation
of the form

R 7→ (W⊗W)R (W⊗W)−1, W = diag(1, 1, 1,−1), (7.11)

on our 6-vertex B full R-matrix R.

7.2 8-vertex deformation of AdS3

The full R-matrix for 8-vertex B, deformation of AdS3, described in section 4.3 satisfies
crossing symmetry (7.1) for

C =


0 0 1 0
0 0 0 i

1 0 0 0
0 i 0 0

, (7.12)
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given that its functions satisfy

GL(p+ ω) = 2K −GR(p) = GL(p− ω), (7.13)
GR(p+ ω) = 2K −GL(p) = GR(p− ω), (7.14)
η(p+ ω) = 2π − η(p) = η(p− ω), (7.15)√

gR/L(p+ ω) =
√
gL/R(p) = −

√
gR/L(p− ω) (7.16)

where K is the Elliptic Integral of the first kind.4

Moreover, the overall scalar factors σAB of the different blocks need to satisfy the
following crossing equations5

σLL(p+ω,q)σRL(p,q) = 1

i

√
gR(p)
gL(q)

(
cn2

R,L,+
dn2

R,L,+

sin2 η−
sinη(p)sinη(q)−sn

2
R,L,+

cos2 η−
sinη(p)sinη(q) +1

) , (7.17)

σRR(p+ω,q)σLR(p,q) = 1

i

√
gR(q)
gL(p)

(
cn2

L,R,+
dn2

L,R,+

sin2 η−
sinη(p)sinη(q)−sn

2
L,R,+

cos2 η−
sinη(p)sinη(q) +1

) , (7.18)

σLR(p+ω,q)σRR(p,q) = 1

i

√
gR(q)
gR(p)

(
cn2

R,R,−
dn2

R,R,−

sin2 η−
sinη(p)sinη(q)−sn

2
R,R,−

cos2 η−
sinη(p)sinη(q) +1

) (7.19)

σRL(p+ω,q)σLL(p,q) = 1

i

√
gL(p)
gL(q)

(
cn2

L,L,−
dn2

L,L,−

sin2 η−
sinη(p)sinη(q)−sn

2
L,L,−

cos2 η−
sinη(p)sinη(q) +1

) (7.20)

and

σLL(p, q − ω) = −σRR(p+ ω, q) (7.21)
σRR(p, q − ω) = −σLL(p+ ω, q) (7.22)

σRL(p, q − ω) = σLR(p+ ω, q)gR(q)
gR(p) (7.23)

σLR(p, q − ω) = σRL(p+ ω, q)gL(p)
gL(q) . (7.24)

As expected the crossing matrix (7.12) matches with the one in [18].

7.3 Deformed AdS2

In this section we address the question of whether the AdS2 deformation given by the
8-vertex B R-matrix (2.5) satisfies crossing symmetry for any value of the deformation
parameter k. The answer is particularly interesting. If we consider the boson-fermion
R-matrix we do have crossing symmetry for any value of k as it will be described below.

4One needs to be particularly careful with branch cuts for this calculation. This is the reason why we are
giving the form of √gR/L instead of gR/L itself.

5To avoid cluttered expressions we denote Jacobi elliptic functions as cnR,L,+ etc in contrast to cnR,L
+

which was used earlier in the text.
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In order to satisfy crossing symmetry the R-matrix has to satisfy

C1Rst112 (u+ ω, v)C−1
1 = R12(u, v)−1,

C2Rst212 (u, v − ω)C−1
2 = R12(u, v)−1 (7.25)

where C is the charge conjugation matrix, ω is the crossing parameter and sti indicates
super transposition in the space i. The R-matrix in equations (7.25) is the boson-fermion
version6 of (2.5), but with a dressing phase σ(u, v) and also {u, v} → {G(u), G(v)}.

For C given by7

C =
(

0 1
−i 0

)
(7.26)

equations (7.25) are satisfied for

σ(u+ω,v)σ(u,v) = −i
cn2

dn2
sin2 η−

sinη(u)sinη(v)−sn2 cos2 η−
sinη(u)sinη(v) +1

=σ(u,v−ω)σ(u,v) (7.27)

and

η(u+ ω) = −η(u) + 2πn, η(u− ω) = −η(u) + 2πm,
G(u+ ω) = G(u) + 2nK(k2), G(u− ω) = G(u) + 2mK(k2), m, n ∈ Z, (7.28)

where K(k2) is the Elliptic Integral of the first kind.
Notice, however, that although this R-matrix is a deformation of the AdS2 R-matrix,

the charge conjugation matrix C is not similar to the one of AdS2. The undeformed AdS2
R-matrix ([17]) is diagonal and therefore bosons and fermions are transformed into their
antiparticles by crossing symmetry. In our deformation, however, the C is off-diagonal and
therefore bosons are transformed into fermions and vice-versa, which is highly unusual. It is
important to highlight, that in the limit k →∞ (which lead us back to AdS2) both (7.26)
and the diagonal C given in [17] satisfy the equations (7.25), but the diagonal one is the
correct one on that case. It would be very important to try to construct the sigma model
for this deformation and try to make sense of the off-diagonal C we found for arbitrary k.

For the boson-boson R-matrix there is crossing for any value of k except k = 1. The C
is given by8

C =
(

0 1
−1 0

)
(7.29)

and therefore also off-diagonal. The expression for σ(u± ω, v) is basically the same as the
boson-fermion one, just replacing the overall factor i by 1. Also,

η(u+ ω) = −η(u) + πn, η(u− ω) = −η(u)− πm,
G(u+ ω) = G(u) + nK(k2), G(u− ω) = G(u) + mK(k2), m, n are odd. (7.30)

6Just apply the following transformation: r4(u, v) → −r4(u, v), r7(u, v) → i r7(u, v) and r8(u, v) →
i r8(u, v), keeping the remaining ri(u, v) invariant.

7A similar solution exists for i→ −i in C.
8A similar solution exists for replacing −1→ 1 in the matrix element 21 of C.
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By comparing expressions (7.28) and (7.30) it is possible to see why the boson-fermion
k = 1 case has crossing symmetry while the boson-boson one has not. The reason is that
K(k2) diverges for k = 1, but in the boson-fermion case we still can have m = n = 0 as a
solution so K(k2) does not appear, while for the boson-boson case m and n are odd, and
therefore there is no way to have a finite expression when k = 1.

8 Conclusions

In this paper we classified regular deformations of the S-matrices of the integrable AdS2,3
string sigma models. We found that the AdS2×S2×T6 only admits one type of deformation.
But interestingly, the AdS3×S3×M4 scattering matrix admits two deformations, an elliptic
and a functional one. We showed that all the deformations can be made crossing symmetric.
It would also be important to know how many of our deformations correspond to moduli of
the sigma models and how many would go out of the string theory [46].

There are numerous interesting directions for future research. The most pressing
one would be to find a deformed string sigma model which gives rise to the new elliptic
deformed S-matrix. Since the usual way of deforming by means of the modified classical
Yang-Baxter equations gives rise to quantum deformations, a more general approach might
be needed, e.g. through screening charge formalism for deformed sigma models and study
screening parameter limits [47]. A first hint at what needs to be done is the fact that half
of the symmetry seems to be broken, as it is only compatible with two instead of four
supersymmetry generators. It would also be interesting to carry out the Bethe Ansatz for
this model.

This paper also sheds some light on the three parameter deformation [29, 31]. In
particular, we find that the quantum deformed model can only be further deformed
functionally. Hence, it would be good if one could define a meaningful classical limit so that
these models can be compared and gain some insight in the existence and form of the full
quantum scattering matrix of the three parameter model. It is also very interesting to look
if with the present approach one can identify 4-parametric deformation of AdS3 × S3 ×M4,
which could potentially follow from higher vertex models.

In this work we have also classified the possible integrable deformations of the AdS2
model by considering the deformations of the massive modes. We were able to write a charge
conjugation matrix C satisfying the crossing relations, but it still necessary to understand
better such C, since it is of off-diagonal form. We also found a potential new quantum
algebra that underlies this scattering matrix and it would be interesting to figure out its
exact structure and if associated Yangian symmetries lead to known integrable deformations
or create a new class. Even more interesting would be possible extensions of our deformed
scattering matrix to massless modes.
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A AdS3 R-matrices

In order to the comparison between the deformed and underformed R-matrices be performed
it was necessary to rewrite the R-matrices for AdS3×S3×T4 [14, 38] and AdS3×S3×S3×
S1 [18] in a way that they satisfy YBE for any for arbitrary γ(p). Also, what we call γ(p)
here was called η(p) in the referred papers in order to avoid confusion with our notation.

In this appendix, we present the exact form we used in the comparisons.

A.1 AdS3 × S3 × S3 × S1

For AdS3× S3× S3× S1 [18] the full R-matrix is composed of four blocks written according
to chirality of the particles

RAB = fABχAB


rAB

1 0 0 rAB
8

0 rAB
2 rAB

6 0
0 rAB

5 rAB
3 0

rAB
7 0 0 rAB

4

 (A.1)

where RAB ≡ RAB(p, q), rAB
i ≡ rAB

i (p, q) and χAB ≡ χAB(p, q); and A and B are their
chiralities i.e. A, B = R, L. Below we present the explicit form of the four blocks starting
with the same chirality ones: for RR

rRR
1 = 1, rRR

2 =

√√√√x−R(p)
x+

R(p)
x+

R(p)− x+
R(q)

x−R(p)− x−R(q)
,

rRR
3 =

√√√√x+
R(q)
x−R(q)

x−R(p)− x−R(q)
x−R(p)− x+

R(q)
, rRR

4 =

√√√√x−R(p)
x+

R(p)
x+

R(q)
x−R(q)

x−R(q)− x+
R(p)

x−R(p)− x+
R(q)

,

rRR
5 = x−R(p)− x+

R(p)
x−R(p)− x+

R(q)
γR(q)
γR(p) , rRR

6 =

√√√√x−R(p)
x+

R(p)
x+

R(q)
x−R(q)

x−R(q)− x+
R(q)

x−R(p)− x+
R(q)

γR(p)
γR(q) ,

rRR
7 = 0, rRR

8 = 0, (A.2)
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the LL one given by

rLL
1 = 1, rLL

2 =

√√√√x−L (p)
x+

L (p)
x+

L (p)− x+
L (q)

x−L (p)− x−L (q)
,

rLL
3 =

√√√√x+
L (q)
x−L (q)

x−L (p)− x−L (q)
x−L (p)− x+

L (q)
, rLL

4 =

√√√√x−L (p)
x+

L (p)
x+

L (q)
x−L (q)

x−L (q)− x+
L (p)

x−L (p)− x+
L (q)

,

rLL
5 =

√√√√x−L (p)
x+

L (p)
x+

L (q)
x−L (q)

x−L (q)− x+
L (q)

x−L (p)− x+
L (q)

γL(p)
γL(q) , rLL

6 = x−L (p)− x+
L (p)

x−L (p)− x+
L (q)

γL(q)
γL(p) ,

rLL
7 = 0, rLL

8 = 0, (A.3)

while LR is

rLR
1 =

√√√√x−L (p)
x+

L (p)
1− x+

L (p)x−R(q)
1− x−L (p)x−R(q)

, rLR
2 = 1,

rLR
3 =

√√√√x−L (p)
x+

L (p)
x−R(q)
x+

R(q)
1− x+

L (p)x+
R(q)

1− x−L (p)x−R(q)
, rLR

4 = −

√√√√x−R(q)
x+

R(q)
1− x−L (p)x+

R(q)
1− x−L (p)x−R(q)

,

rLR
7 =

√√√√x−L (p)
x+

L (p)
x+

R(q)− x−R(q)
1− x−L (p)x−R(q)

γL(p)
γR(q) , rLR

5 = 0,

rLR
8 = −

√√√√x−R(q)
x+

R(q)
x+

L (p)− x−L (p)
1− x−L (p)x−R(q)

γR(q)
γL(p) , rLR

6 = 0, (A.4)

and RL is given by

rRL
1 =

√√√√x−R(p)
x+

R(p)
1− x+

R(p)x−L (q)
1− x−R(p)x−L (q)

, rRL
2 = 1,

rRL
3 =

√√√√x−R(p)
x+

R(p)
x−L (q)
x+

L (q)
1− x+

R(p)x+
L (q)

1− x−R(p)x−L (q)
, rRL

4 = −

√√√√x−L (q)
x+

L (q)
1− x−R(p)x+

L (q)
1− x−R(p)x−L (q)

,

rRL
7 =

√√√√x−L (q)
x+

L (q)
x+

R(p)− x−R(p)
1− x−R(p)x−L (q)

γL(q)
γR(p) , rRL

5 = 0,

rRL
8 = −

√√√√x−R(p)
x+

R(p)
x+

L (q)− x−L (q)
1− x−R(p)x−L (q)

γR(p)
γL(q) , rRL

6 = 0. (A.5)

Also, the χAB that appear in (A.1) are given by

χLR(p, q) =
(
x+

L (p)
x−L (p)

)−1/4(
x+

R(q)
x−R(q)

)−1/4
1− 1

x−
L (p)x−

R(q)

1− 1
x+

L (p)x+
R(q)

, (A.6)

where χRL(p, q) can be obtained from χLR(p, q) by doing {L↔ R} while

χRR = 1 = χLL. (A.7)
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Also, notice that

γL(p+ ω) = i γR(p)
x+

R(p)
, and γR(p+ ω) = i γL(p)

x+
L (p)

, (A.8)

and
x±L (p+ ω) = 1

x±R(p)
, and x±R(p+ ω) = 1

x±L (p)
. (A.9)

Comparing with [18] notice that their p̄ is equal to p̄ = p+ ω.

A.2 AdS3 × S3 × T4

Following [14, 38], the four blocks can be written as follows

RAB = ζAB


rAB

1 0 0 rAB
8

0 rAB
2 rAB

6 0
0 rAB

5 rAB
3 0

rAB
7 0 0 rAB

4

 (A.10)

where RAB ≡ RAB(p, q), rAB
i ≡ rAB

i (p, q) and ζAB ≡ ζAB(p, q); and A and B are their
chiralities i.e. A, B = R, L. Below we present the explicit form of the four blocks starting
with the ones with same chirality: for RR

rRR
1 = −

√
x−(q)
x+(q)

x+(p)
x−(p)

x−(p)− x+(q)
x−(q)− x+(p) , rRR

2 =
√
x−(q)
x+(q)

x+(p)− x+(q)
x+(p)− x−(q) ,

rRR
3 =

√
x+(p)
x−(p)

x−(p)− x−(q)
x+(p)− x−(q) , rRR

4 = −1,

rRR
5 = −

(
x−(q)
x+(q)

x+(p)
x−(p)

)3/4
x+(p)− x−(p)
x+(p)− x−(q)

γ(q)
γ(p) , rRR

7 = 0,

rRR
6 = −

(
x−(p)
x+(p)

x+(q)
x−(q)

)1/4
x+(q)− x−(q)
x+(p)− x−(q)

γ(p)
γ(q) , rRR

8 = 0, (A.11)

and then for LL

rLL
1 = −

√
x−(q)
x+(q)

x+(p)
x−(p)

x−(p)− x+(q)
x−(q)− x+(p) , rLL

2 =
√
x−(q)
x+(q)

x+(p)− x+(q)
x+(p)− x−(q) ,

rLL
3 =

√
x+(p)
x−(p)

x−(p)− x−(q)
x+(p)− x−(q) , rLL

4 = −1,

rLL
5 = −

(
x−(q)
x+(q)

x+(p)
x−(p)

)1/4
x+(q)− x−(q)
x+(p)− x−(q)

γ(p)
γ(q) , rLL

7 = 0,

rLL
6 = −

(
x−(q)
x+(q)

x+(p)
x−(p)

)1/4
x+(p)− x−(p)
x+(p)− x−(q)

γ(q)
γ(p) , rLL

8 = 0. (A.12)
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For the blocks of opposite chirality we have for LR

rLR
1 =

√
x+(p)
x−(p)

x+(q)
x−(q)

1− x+(p)x−(q)
1− x+(p)x+(q) rLR

3 =
√
x+(p)
x−(p) ,

rLR
2 = x+(p)

x−(p)

√
x+(q)
x−(q)

1− x−(p)x−(q)
1− x+(p)x+(q) , rLR

4 = −x
+(p)
x−(p)

1− x+(q)x−(p)
1− x+(p)x+(q) ,

rLR
7 =

(
x+(p)
x−(p)

x+(q)
x−(q)

)3/4
x+(q)− x−(q)
1− x+(p)x+(q)

γ(p)
γ(q) , rLR

5 = 0,

rLR
8 = −

(
x−(q)
x+(q)

)1/4(
x+(p)
x−(p)

)3/4
x+(p)− x−(p)
1− x+(p)x+(q)

γ(q)
γ(p) , rLR

6 = 0, (A.13)

and then for RL

rRL
1 =

√
x−(p)
x+(p)

x−(q)
x+(q)

1− x+(p)x−(q)
1− x−(p)x−(q) rRL

3 =
√
x−(q)
x+(q) ,

rRL
2 = x−(q)

x+(q)

√
x−(p)
x+(p)

1− x+(p)x+(q)
1− x−(p)x−(q) , rRL

4 = −x
−(q)
x+(q)

1− x+(q)x−(p)
1− x−(p)x−(q) ,

rRL
7 =

(
x−(q)
x+(q)

)3/4(
x+(p)
x−(p)

)1/4
x+(p)− x−(p)
1− x−(p)x−(q)

γ(q)
γ(p) , rRL

5 = 0,

rRL
8 = −

(
x−(p)
x+(p)

x−(q)
x+(q)

)3/4
x+(q)− x−(q)
1− x−(p)x−(q)

γ(p)
γ(q) , rRL

6 = 0. (A.14)

Notice that although this is the same R-matrix from [14], as mentioned above, we did
two small modifications to it: the first was to write the blocks exclusively in terms of the
Zhakowski variables by using

ei p = x+(p)
x−(p) ; (A.15)

while the second was to rewrite the blocks RAB in a way that they satisfy YBE without
the need to specify an expression for γ(p). Notice that by assuming

γ(p) = e
i p
4

√
i h

2 (x−(p)− x+(p)) (A.16)

we can recover the R-matrices in [14].

A.3 Obtaining the S-matrix of AdS3 × S3 × T4 from AdS3 × S3 × S3 × S1

One can actually obtain the R-matrix for AdS3 × S3 × T4 starting from the one of AdS3 ×
S3 × S3 × S1. In order to do that we need the following changes for x+

R,L and x−R,L

x−L → x−, x−R → x−, x+
L → x+ and x−R → x+, (A.17)

for γR,L

γL(p) = a

(
x+(p)
x−(p)

)1/4

γ(p) and γR(p) = a

(
x−(p)
x+(p)

)1/4

γ(p), (A.18)
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with a being a constant, while fAB (in (A.1)) are given by

fLL(p, q) = −
√
x+(p)
x−(p)

x−(q)
x+(q)

x−(p)− x+(q)
x−(q)− x+(p)ζ

LL(p, q),

fRR(p, q) = −
√
x+(p)
x−(p)

x−(q)
x+(q)

x−(p)− x+(q)
x−(q)− x+(p)ζ

RR(p, q),

fLR(p, q) = x+(p)
x−(p)

√
x+(q)
x−(q)

1− x−(p)x−(q)
1− x+(p)x+(q)

ζLR(p, q)
χLR(p, q) ,

fRL(p, q) =
√
x−(q)
x+(q)

ζRL(p, q)
χRL(p, q) . (A.19)

Open Access. This article is distributed under the terms of the Creative Commons
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any medium, provided the original author(s) and source are credited.
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