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1 Introduction

There is a long-appreciated, close connection between vacuum stability/causality/unitarity,
and analyticity/positivity properties of scattering amplitudes, going back to the 1960’s S-
matrix program. In this standard story, there are three fundamental origins of positivity:
the positivity of energies (vacuum stability), the sharp localization of signals inside the
lightcone (causality) and the positivity of probabilities (unitarity). These basic positivities,
together with analyticity properties of scattering amplitudes meant to reflect causality,
allow the derivation of more non-trivial positivity constraints on coefficients of higher-
dimension operators in low-energy effective field theories (as in [1–3]). In recent years,
a sort of opposite of the S-matrix program has emerged in a number of theories, where
notions of positivity take a central role, determining certain “positive geometries” in the
kinematic space of particle scattering with a fundamentally combinatorial definition, from
which the amplitudes are naturally extracted. In this picture, locality and unitarity are
not taken as fundamental principles, but instead arise, joined at the hip, from the study
of the boundary structure of the positive geometries. These examples suggest that there is
vastly more “hidden positivity” in scattering amplitudes than meets the eye, with locality
and unitarity as derived from, rather than the origin of, positivity properties.

Motivated by these discoveries, in this paper we will revisit the positivity properties of
2→ 2 scattering amplitudes, and re-examine the usual positivity properties dictated by an-
alyticity, causality and unitarity. We will find that there are infinitely many constraints on
the coefficients of higher-dimension operators, and that these constraints involve very sim-
ilar mathematical structures as have already been seen in the story of positivity geometries
and amplituhedra.

– 1 –



J
H
E
P
0
5
(
2
0
2
1
)
2
5
9

To illustrate the nature of the constraints, consider for simplicity the scattering ampli-
tudes for two massless scalars ab → ab, and suppose we are working in an approximation
where we have integrated out massive states but not yet accounted for massless loops in
the low-energy theory. Then, the low-energy amplitude has a power-series expansion in
the Mandelstam variables s, t:

A(s, t) =
∑
∆,q

a∆,qs
∆−qtq (1.1)

and all the information in the low-energy effective field theory is captured in the coefficients
a∆,q which we can organize into a table:

q=0 1 2 3 · · ·
∆=1 a1,0 a1,1
∆=2 a2,0 a2,1 a2,2
∆=3 a3,0 a3,1 a3,2 a3,3
...

...
...

...
...

...

. (1.2)

There are infinitely many constraints on the a∆,q, forcing this infinite table of coefficients
to lie inside “the EFT-hedron”.

These constraints quantify certain intuitions about “garden variety” higher dimension
operators contributing to ab→ ab scattering, into sharp bounds. For instance we shouldn’t
expect operators of the same mass dimension ∆ to have vastly different coefficients; these
correspond to the coefficients in the same row in our table. But we might also think that
this is a consequence of “naturalness”, and that by fine-adjustments of the parameters in
the high-energy theory, we can engineer any possible relative sizes between these operators
we like. The EFT-hedron shows that this is not the case: not everything goes, and indeed
the coefficients a∆,q for a fixed ∆ must satisfy linear inequalities, that force them to lie
inside a certain polytope. We would also expect all operators to be suppressed by a similar
scale, i.e. not to have dimension 6 operators suppressed by the TeV scale while dimension
8 operators are suppressed by the Planck scale, though again one might think this can
be done with suitable fine-tuning. Again, the EFT-hedron shows this is impossible, and
imposes non-linear inequalities between different a∆,q, which in the simplest case constrain
the relative sizes of coefficients at fixed q, in a fixed column of the table. We will initiate
a systematic study of the EFT-hedron in this paper. But before diving in, let us give a
high-level overview of the physical and mathematical engines at work.

The physical starting point is a dispersive representation of 2 → 2 scattering ampli-
tudes, as a function of s working at fixed t. To begin with we will assume, as mentioned
above, that we integrate out massive states of some typical mass M , which generates
higher-dimension operators in the low-energy theory, and for the purpose of these intro-
ductory comments let us ignore the further running of these higher dimension operators
by massless loops in the low-energy theory (we will revisit this point in the body of the
paper). Working at fixed t with |t| �M2, it can be argued that the amplitudes only have
singularities on the real s axis, with discontinuities reflecting particle production in the s
and u channels. The discontinuity across these cuts has a partial wave expansion, as a
sum over spins with positive coefficients. Furthermore, causality is reflected in a bound on
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the amplitude at large s for fixed |t|. In a theory with a mass gap, we have the Froissart
bound telling us the amplitude is bounded by A < s log2s. In quantum gravity, we expect
that for any UV completion with a weak coupling (like in string theory), the high-energy
amplitude in the physical region, with fixed negative t, is bounded by A < sp with p < 2.
Thus at fixed t, for any theory, we have a dispersive representation for the amplitude at
fixed t, of the form

A(s, t) = A0(t)+A1(t)s+
∫
dM2∑

l

pl(M2)Gl
(

1+ 2t
M2

)( 1
s−M2 + 1

u−M2

)
(1.3)

where Gl(x) are Gegenbauer polynomials.
Now, this dispersive representation has the two basic and crucial long-appreciated

positivities we have alluded to: the positivity of energies is reflected in M2 > 0, and the
positivity of probabilities in pl(M2) > 0. The new surprise we will explore in this paper, are
further hidden positive structures associated with the propagator 1/(s−M2), and with the
Gegenbauer polynomials Gl(x). It is these new positivities that are responsible for the non-
trivial geometry of the EFT-hedron and the associated infinite number of new constraints on
the a∆,q. Here we content ourselves here with summarizing the basic mathematical facts of
these hidden positivities, whose consequences we will explore in detail in body of the paper.

Let’s begin with the positivity associated with propagators, which can be illustrated
in a simplified setting, where we imagine a dispersive representation for a function F (s) of
the form

F (s) =
∫
dM2 p(M2)

M2 − s
(1.4)

This has a power-series expansion at small s, F (s) = ∑
n fns

n, where

fn =
∫
dM2 p(M2)

M2

( 1
M2

)n
(1.5)

This can be interpreted geometrically as saying that the vector f = (f0, f1, f2, · · · ) lies in
the convex hull of the continuous moment curve (1, x, x2, · · · ), where here x = 1/M2, so
we also impose that x > 0. Thus we have a well-posed mathematical question: what is
the region in f space that is carved out by the convex hull of the half-moment curve with
x > 0? This question has a beautifully simple answer. To begin with, we associate a
“Hankel matrix” F with the vector f via Fij = fi+j :

F =


f0 f1 f2 · · ·
f1 f2 f3 · · ·
f2 f3 f4 · · ·
f3 f4 f5 · · ·

 (1.6)

Then the allowed region in f space is completely specified by demanding that all of the
square k×k minors of the Hankel matrix F are positive! This is abbreviated by saying the
F is a “totally positive” matrix. For k = 1, this just tells us that all the fn are positive,
which is essentially the amplitude positivity found in the early works of [3]. But there are
also infinitely many non-linear positivity conditions. It is striking to see “all minors of a
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matrix positive” conditions — earlier seen in the context of the positive grassmannian [4]
and the amplituhedron [5] for N = 4 SYM, show up again in a different setting, and in
such a basic way, for completely general theories.

Note that all these conditions are homogeneous in the mass dimension of the operators,
as they should be, since we have not input any further knowledge of the UV mass scales.
But suppose we were also given the gap Mgap to the first massive states. In this case, the
vector f would lie in the convex hull of the moment curve, starting at x = 0 and cut-off at
x = xgap = 1/M2

gap. Working in units where Mgap = 1, the region in f space is carved out
by looking not only at f , but also of its discrete derivatives,

f0
f1
f2
...

 ,

f1 − f2
f2 − f3
f3 − f4

...

 ,


(f2 − f3)− (f3 − f4)
(f3 − f4)− (f4 − f5)
(f4 − f5)− (f5 − f6)

...

 , · · · (1.7)

and demanding that the Hankel matrices associated with all of these vectors are totally pos-
itive. A simple illustration of the region in (f1/f0, f2/f0) space carved out with (patterned
region) and without knowledge of the gap is shown in the following plot:

.

Now to illustrate Gegenbauer positivity, let us again focus on simplest example illus-
trating the non-trivial point. Consider a dispersive representation for some function F (s, t)
only containing s-channel (and no u-channel) poles:

F (s, t) =
∫
dM2∑

l

pl(M2)Gl(1+2t/M2)
M2−s

(1.8)

and consider the low-energy expansion in powers of s, (2t), as F (s, t) = ∑
∆,q f∆,qs

∆−q(2t)q,
yielding 

f∆,0
f∆,1
...

f∆,∆

 =
∑
l

Pl


G

(0)
l (x=1)

G
(1)
l (x=1)

...
G

(D)
l (x=1)

 where Pl =
∫
dM2 pl(M2)

(M2)∆+1 > 0 . (1.9)

Here G(q)
l (x = 1) are the q’th derivatives of the Gegenbauer polynomials, evaluated at the

“forward limit” where x = 1. The above expression tells us that the projective vector f∆ =
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(f∆,0, · · · , f∆,∆) lies in the convex hull of all the “Gegenbauer derivative” vectors. Finding
the space of all consistent f∆ is then a standard polytope problem: we are given a collection
of vectors (an infinite number in this case) whose convex hull specifies some polytope, and
we’d like to determine how to characterize the polytope instead by the inequalities that
cut out its facets. As we will review in the body of the paper, the facet structure of a ∆-
dimensional polytope, in turn, is fully captured by the knowledge of the signs of the all the
determinants made from any (∆+1) vectors of the vertices. In our context, then, we should
look at the infinite “Gegenbauer matrix” Gl,q = G

(q)
l (x = 1), and consider the top ∆+1 rows

of this matrix and look at all the corresponding (∆+1)×(∆+1) minors. Remarkably, it turn
out that all these minors of the Gegenbauer matrix are positive! This is another appearance
of the “matrix with all positive minors” phenomenon, and it immediately allows us to fully
determine the inequalities cutting out the corresponding polytope in f space, which are the
famous “cyclic polytopes”. Cyclic polytopes have already made a prominent appearance
in the story of N = 4 SYM amplitudes, as the simplest example of “amplituhedra” for
the case of next-to-MHV tree scattering amplitudes. Indeed tree amplituhedra can be
thought of as grassmannian generalizations of the notion of cyclic polytopes. It is again
interesting to see the same objects show up in the totally different, very general setting of
the EFT-hedron. A morally similar geometry was seen in the conformal bootstrap [6].

We close our introductory remarks with two comments. First, we stress that these
constraints on effective field theory are non-trivial statements about any theory, and in
particular non-trivial constraints on quantum gravity in the real wold. Of course we don’t
usually care about relative sizes of very high dimension, “garden variety” operators, for
phenomenological purposes, but we nonetheless find it fascinating that the structure of low-
energy dynamics is vastly more constrained than previously appreciated. As a sampling of
our results, let’s look at some of the constraints for photon and graviton scattering. For
the (−,−,+,+) helicity configuration, where it’s identical helicity in the s-channel, the
amplitude for the D8F 4 and D8R4 operator takes the form:

〈12〉2h[34]2h
(
a4,0s

4+a4,1s
3t+a4,2s

2t2 · · ·
)
, (1.10)

where h = 1, 2 for photon and graviton respectively. The allowed region for a4,1
a4,0

,
a4,2
a4,0

is
given as:

photon graviton

Note that the allowed region are bounded.

– 5 –



J
H
E
P
0
5
(
2
0
2
1
)
2
5
9

It is also important to note that, while the EFT-hedron places extremely constraints
on the effective field theory expansion, sensible effective field theories do not appear to
populate the entire region allowed by the EFT-hedron, but cluster close to its boundaries.
The reason is likely that the physical constraints we have imposed, while clearly necessary,
are still not enough to capture consistency with fully healthy UV theories. In particular,
our dispersive representation at fixed t, does not make it easy to impose the softness of
high-energy, fixed-angle amplitudes where both s, t are large with t/s fixed. It would be
fascinating to find a way to incorporate this extra information about UV softness into the
constraints.

Having given this high-level overview of the physical and mathematical basis for our
results, we proceed to a more systematic discussion. Through sections 2, 3, 4, 5 we will
present an elementary introduction of EFT amplitudes with explicit examples, the analytic
definition of aD,q through dispersion relations and their potential obstructions, and finally
the theory space that emerges from the dispersive representation. Next in section 6, we
take a brief sojourn in the positive geometries relevant to our analysis, giving a pedagogical
discussion of convex hulls of moment curves and cyclic polytopes. These geometries will be
immediately utilized to define the s-channel EFT-hedron in section 7, where we focus on
the theory space for scalar EFTs that allow for preferred ordering and hence the absence of
u-channel thresholds. This will be generalized to include u-channel thresholds in section 8,
as well as photon and gravitons in section 9. We will study explicit examples of EFTs and
their “positions” in the EFT-hedron in section 10. Finally IR logarithms generated by the
massless loops will be incorporated in section 11.

Many of the results of this paper have been presented in conferences and schools over
the past few years [7–9]. As we were preparing our manuscript, a number of independent
works appeared on the arxiv overlapping with some of this work. In particular, new
positivity constraints involving scale dependent “arc moments” were introduced in [10], are
intimately related to the geometry of the gap discussed in subsection 7.4. These constraints
arises from the knowledge of the precise UV cut off, and hence the reach of validity for the
EFT description. Bounds involving the combination of positivity away from the forward
limit and full permutation invariance was discussed in [11] and [12], which have some
overlap with the s-u polytope discussion in subsection 8.1. Other related works can be
found in [13–16].

2 EFT from the UV

Let’s begin by considering a few concrete examples of EFTs emerging from their UV parent
amplitudes. We will give a broad stroke description of what types of high energy theo-
ries/amplitudes they can arise from, the features that we will be focusing on and their
relations to local operators, leaving the detailed analysis to the remainder of the paper.

2.1 Explicit EFT amplitudes

The amplitude for the low energy degrees of freedom may originate from a UV amplitude
where they interact through a tree-level exchanges of massive particles. A simple example

– 6 –
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(I) (II)

Figure 1. Different origins for the EFT: (I) Integrating away massive states in tree exchanges,
for example the Higgs for the Sigma model and the infinite tower of higher spin states in string
amplitudes, (II) or massive states in the loop, for example the ϕX2 coupling.

is the case of the linear sigma model in the broken phase:

L = 1
2(∂µh)2−m

2
h

2 h2 +
(

1+h

v

)2 1
2(∂π · ∂π) + V (h) (2.1)

where v = mh

√
2
λ , λ is the quartic coupling for the potential in the unbroken phase. As

the massless Goldstone boson π couples to the massive Higgs via cubic coupling π2h, the
following four π amplitude in the UV is given by (see figure 1):

M(s, t) = − λ

8m2
h

(
s2

s−m2
h

+ t2

t−m2
h

+ u2

u−m2
h

)
, (2.2)

where s = (p1+p2)2, t = (p1+p4)2 and u = (p1+p3)2, and as the pions are massless
s+t+u = 0. In the center of mass frame, we have s = E2

CM the center of mass energy
and t = − s

2(1 − cos θ), where θ is the scattering angle. At low energies, all Mandelstam
variables are small compared to the UV scale mh, and thus the low energy EFT amplitude
is obtained by expanding in p2

m2
h
� 1,

M IR(s, t) = λ

8m2
h

(
s2+t2+u2

m2
h

+s3+t3+u3

m4
h

+ · · ·
)

= λ

8

∞∑
n=2

σn
m2n
h

, (2.3)

where σn = sn+tn+un. We see that the IR description is given by an infinite series
of polynomial terms, reflecting the presence of an infinite number of higher dimensional
operators from integrating out the massive Higgs.

Note that the residues of the poles for the UV amplitude eq. (2.2), say in the s-
channel, are constants. This reflects the fact exchanged particle is spinless. In general a
spin-J exchange in the s-channel will lead to a residue that is polynomial in t up to degree
J . For example, consider the four-gluon amplitude of type-I open string theory, given by

M(1−2−3+4+) = −gsα′2〈12〉2[34]2 Γ[−α′s]Γ[−α′t]
Γ[1−α′s−α′t] , (2.4)

where we have put the gauge bosons in a four-dimensional subspace and thus the helicity
dependence is carried by the spinor brackets. The definition of these brackets as well
as their relation to the local operators will be introduced shortly. Here gs is the string
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coupling and in this paper we will set the string scale α′ = 1. The gamma functions in
the numerator have poles at s, t ∈ N+, reflecting an infinite number of massive states. The
residue at s = n is given by

gs〈12〉2[34]2 (−)n
n!

n−1∏
i=1

(t+ i) , (2.5)

where the non-trivial dependence in t reflects the spinning nature of the exchanged particle.
Since α′ = 1 low energy is simply p2 � 1, and the low energy amplitude is given as:

M IR(1+2+3−4−) = gs〈12〉2[34]2
(
− 1
st

+ ζ2 + ζ3(s+ t) + · · ·
)
, (2.6)

where the leading term contains massless poles corresponding to the field theory Yang-Mills
piece. The coefficients for the polynomials are now zeta values ζn ≡

∑∞
`=1

1
`n , reflecting

the fact that each term in the polynomial expansion receives contribution from the infinite
number of UV states at integer values of m2. The same feature can be found for the
four-graviton amplitude of type-II closed string theory:

M(1−22−23+24+2) = g2
s〈12〉4[34]4 Γ[−s]Γ[−t]Γ[−u]

Γ[1+s]Γ[1+u]Γ[1+t] , (2.7)

where the low energy expansion gives:

M IR(1−22−23+24+2) = M(s, t)|α′→0 = GN 〈12〉4[34]4
(−1
stu

+2ζ3+ζ5σ2+2ζ2
3stu · · ·

)
.

(2.8)
The leading piece with the massless poles 1

stu correspond to the contribution from the
Einstein-Hilbert term and we’ve identified GN = g2

s .
Instead of tree-level exchanges, the massive UV states can also contribute via loop

process. For example consider a massless scalar ϕ coupled to massive X via λϕX2. In the
UV four ϕs can interact through a massive X loop, and the amplitude is simply the scalar
box-integral (see figure 1):

M(s, t) = λ4
∫

d4`

(2π)4
1

[`2−m2
X ][(`−p1)2−m2

X ][(`−p1−p2)2−m2
X ][(`+p4)2−m2

X ]
+perm(2, 3, 4) . (2.9)

The analytic result of the box integral is given as [17]:

I4[s, t] = 1
(4π)2

uv

8βuv

2 log2
(
βuv + βu
βuv + βv

)
+ log

(
βuv − βu
βuv + βu

)
log

(
βuv − βv
βuv + βv

)
− π2

2

+
∑
i=u,v

[
2Li2

(
βi − 1
βuv + βi

)
− 2Li2

(
−βuv − βi

βi + 1

)
− log2

(
βi + 1
βuv + βi

)] , (2.10)

where u = −4m2
X
s and v = −4m2

X
t , and

βu =
√

1 + u, βv =
√

1 + v, βuv =
√

1 + u+ v . (2.11)
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Figure 2. An operator of four fields will contribute to the four-point amplitude as a polynomial,
and the six-point amplitude as a rational term.

This gives the following low energy expansion:

M IR(s, t) = g4

2m4
X

(
1+ 1

5!
σ2
m4
X

+ 20
7!3

σ3
m6
X

+ 2
7!3

σ2
2

m8
X

+ 1
6!33

σ3σ2
m10
X

+ · · ·
)
. (2.12)

Note that in general for identical scalars, the polynomial part of the four-point amplitude
can be expanded on the basis of two permutation invariant polynomials σ2 and σ3.

2.2 From local amplitudes to local operators

In this paper we are interested in theories whose IR description admits an expansion in
terms of local operators, i.e. L = Lkin + LI [φ, ∂φ], with LI [x] being polynomial functions.
A local operator that contains n fields, for example (∂φ · ∂φ)φn−2, will contribute to the
n-point scattering amplitude as a polynomial of Mandelstam invariants si,j . At higher
points, it appears in factorization channels, contributing to the residue of rational terms,
as illustrated in figure 2. This translates to the low energy four-point amplitude will taking
the form:

M IR(s, t) ≡M(s, t)|s,t→0 = {massless poles}+{polynomials} , (2.13)

where {massless poles} reflect the presence of cubic operators, and {polynomials} quartic
ones. The coefficients of the cubic operators appear in the residue for the {massless poles},
while that of quartic operators are linearly mapped in to the Taylor coefficients in
{polynomials}. Here we have ignored the logarithms arisings massless loops. These effects
are of course intimately tied with what we mean by EFT coefficients, as they inevitably
run. However, for the sake of simplicity in our presentation, we will focus on tree-level
EFT amplitudes for now, and assign section 11 to discuss how these results extends to the
situation where massless loops are present.

Let’s begin with operators involving only scalars. First, since the momentum inner
products vanish for three-point kinematics,

p2
3 = (p1+p2)2 = 2p1 · p2 = 0 , (2.14)

the only non-trivial three-point amplitude is a constant. In terms of cubic operators, this
is a reflection of the fact that any three-scalar operator with derivatives much vanish via
equations of motion:

(∂φ · ∂φ)φ ∼ φ2�φ = 0 , (2.15)

i.e. it can be removed by a field redefinition. At four-points the amplitude can be expressed
as:

M IR(s, t) = {massless poles} +
∑
k,q

ak,q s
k−qtq . (2.16)

– 9 –
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Here k labels the total degree in Mandelstam variables, q the degree in t,. This labeling
will be convenient for considering the expansion near the forward limit, i.e. t = 0. For
fixed k these correspond to dimension 2k+4 operators in four-dimensions. For example,
(∂φ · ∂φ)2, (∂φ · ∂φ)(∂2φ · ∂2φ), translate to

(∂φ · ∂φ)2 → (2s2+2t2+2st), (∂φ · ∂φ)(∂2φ · ∂2φ)→ −st2 − s2t . (2.17)

Thus the coefficients of the EFT operators are translated into the coefficients of the poly-
nomials sk−qtq. Note that we do not have an k = 1 operator (∂φ · ∂φ)φ2, since on-shell
it vanishes by momentum conservation s+t+u = 0. Once again, as with the three-point
example, this illustrates the important advantage of such “on-shell basis” eq. (2.16): it is
free from field redefinition or integration by parts ambiguities.

Generally, it is unnatural for scalars to be massless unless they’re Goldstone bosons for
some broken symmetry. Thus the degrees of freedom in low energy effective field theories
are more naturally associated with photons and gravitons, and the local operators are built
out of field strengths and Riemann tensors (Ricci tensor and scalars vanish under Einstein
equations). Their imprint on the amplitudes can be more conveniently captured by the
spinor-helicity variables, where one express the momenta as:

piµ → piαα̇ = piµ(σµ)αα̇ = λiαλ̃iα̇ . (2.18)

Under the massless U(1) little group, these transforms as λiα → e−i
θi
2 and λ̃iα̇ → ei

θi
2 λ̃iα̇.

The polarization vectors are then expressed as

ε+
iαα̇ = 1√

2
ηαλ̃iα̇
〈iη〉

, ε−iαα̇ = 1√
2
λ̃iαηα̇
[iη] (2.19)

where 〈ij〉 = λαi λjα = εαβλiβλjα, and [ij] = λ̃iα̇λ̃
α̇
j = εα̇β̇λ

β̇
i λ

α̇
j . Here η are the reference

spinors parameterizing the gauge redundancy associated with the polarization vectors, and
drops out for any gauge invariant quantity. Polarization tensors are just the square of these
vectors. It is straight forward to see, in terms of these on-shell variables, the field strength
and the linear part of Riemann tensor are expressed as:

Fµν → Fαα̇,ββ̇ = F+
α̇β̇
εαβ+F−αβ εα̇β̇ , F+

α̇β̇
=
√

2λ̃α̇λ̃α̇, F−
α̇β̇

=
√

2λαλα,

Rµνρσ → Rαα̇ββ̇γγ̇δδ̇ = εαβεγδ R
+
α̇β̇γ̇δ̇

+εα̇β̇εγ̇δ̇ R
−
αβγδ

R+
α̇β̇γ̇δ̇

=
√

2λ̃α̇λ̃β̇λ̃γ̇ λ̃δ̇, R−αβγδ =
√

2λαλβλγλδ , (2.20)

where the± superscript indicates the ±h helicity of the polarization (tensors)vector. Indeed
up to an overall constant, the above form are uniquely fixed by the little group scaling and
dimension analysis.

Thus polynomials of spinor brackets can be straightforwardly translated to local oper-
ators of field strengths and Riemann tensors. For example for the three-point amplitude,
possible polynomial representation for self interacting spin-1 and 2 particles can be imme-
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diately translated into F 3 and R3 operators:

M3(1−2−3−)→ 2
√

2〈12〉〈23〉〈31〉= (F−1 )α β(F−2 )β γ(F−3 )γ α

M3(1+2+3+)→ 2
√

2[12][23][31] = (F+
1 )α̇ β̇(F+

2 )β̇
γ̇(F+

3 )γ̇ α̇

M3(1−22−23−2)→ 2
√

2〈12〉2〈23〉2〈31〉2 = (R−1 )α1α2
β1β2(R−2 )β1β2

γ1γ2(R−3 )γ1γ2
α1α2

M3(1+22+23+2)→ 2
√

2[12]2[23]2[31]2 = (R+
1 )α̇1α̇2

β̇1β̇2(R+
2 )β̇1β̇2

γ̇1γ̇2(R+
3 )γ̇1γ̇2

α̇1α̇2 (2.21)

Note that there are no amplitudes associated with R2, reflecting the fact that the Gauss-
Bonnet term is a total derivative in four dimensions. Higher dimensional R2 upon dimen-
sional reduction, will reduce to φR2 in four-dimensions, and generates the amplitude for a
dilaton coupled to two gravitons:

M3(102+23+2)→ 2[23]4 = (R+
1 )α̇1α̇2

β̇1β̇2(R+
2 )β̇1β̇2

α̇1α̇2 ,

M3(102−23−2)→ 2〈23〉4 = (R−1 )α1α2
β1β2(R−2 )β1β2

α1α2 , (2.22)

and similar amplitudes for φF 2.
Extending to four-points we find that there are three possible helicity structures that

admit polynomial representations. For spin-1 we have for the lowest mass-dimensions:

M4(1+2+3+4+)→ 4
(
[12]2[34]2+[13]2[24]2+[14]2[23]2

)
= (F+

1 · F
+
2 )(F+

3 · F
+
4 ) + (F+

1 · F
+
3 )(F+

4 · F
+
2 ) + (F+

1 · F
+
4 )(F+

2 · F
+
3 )

M4(1+2+3−4−)→ 4[12]2〈34〉2 = (F+
1 · F

+
2 )(F−3 · F−4 ) (2.23)

where (F+
i · F

+
j ) ≡ (F+

i )α β(F+
j )β α and similar definition for (F−i · F−j ). We also have

M4(1−2−3−4−) which is simply changing the square brackets of M4(1+2+3+4+) to an-
gles. It is straight forward to translate this back to vector representations, for which the
independent F 4 contractions are given by:

(F 2)2 ≡ (FµνFµν)2, (F 2)(FF̃ ) ≡ (FµνFµν)(εµνρσFµνFρσ), (FF̃ )2 . (2.24)

The linear map between to two are given as:

M4(1+2+3+4+) = 8
(
(F 2)2 − 4(FF̃ )2 + 2(F 2)(FF̃ )

)
M4(1+2−3+4−) = 8(F 2)2 + 32(FF̃ )2

M4(1−2−3−4−) = 8
(
(F 2)2 − 4(FF̃ )2 − 2(F 2)(FF̃ )

)
. (2.25)

From the above we immediately see that the combination (F 2)2+1
4(FF̃ )2, which is the

square of the Maxwell stress-tensor, only generates the MHV helicity configuration. Similar
identification applies to spin-2, where we also have three distinct tensor structure for R4

mapping to the three helicity structures. For higher derivative operators such as D2nF 4

or D2nR4, we simply have extra Mandelstam variables multiplying the spinor brackets.
For example

σ2〈12〉4[34]4 → D4R4 . (2.26)
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Thus the EFT amplitude for massless spinning particles, can in general be written in
a way such that the spinor brackets are prefactors:

M IR
4 (1+2+3+4+) = [12][34]

〈12〉〈34〉 ×

∑
k,q

aall +
k,q sk−qtq


M IR

4 (1+2+3+4−) = [12][23]〈24〉
〈12〉〈23〉[24] ×

∑
k,q

asingle−
k,q sk−qtq


M IR

4 (1−2−3+4+) = 〈12〉2[34]2
stu

×

∑
k,q

aMHV
k,q sk−qtq

 (2.27)

where the spinor prefactors are written in such a way that all possible massless poles are
contained and is invariant under the permutation of the same helicity legs. The superscript
for the Taylor coefficients a···k,q label the helicity configuration.

Let’s consider explicit examples. The low energy expansion for Type-I and II super-
string in eq. (2.6) and eq. (2.8) gives prime examples of gauge and gravitational EFT
amplitudes. However due to being supersymmetric, only MHV configurations are present.
For a more general set up, lets consider the open bosonic string amplitude, which contains
all three sectors:

f++++ = [12][34]
〈12〉〈34〉stu

(
1− 1

s+1−
1

u+1−
1
t+1

)
MBos(s, t) = Γ[−s]Γ[−t]

Γ[1+u] f{I}, f+++− = stu
[12][23]〈24〉
〈12〉〈23〉[24]

f++−− = −[12]2〈34〉2
(

1− tu

s+1

)
(2.28)

The low energy EFT is then given as:

M IR(1+2+3+4+) = 2u [12][23][34][41]
st

+2[13]2[24]2−[12][23][34][41](π
2

3 −2) + · · ·

M IR(1+2+3+4−) = [12]2[23]2〈24〉2
(
− 1
st

+ π2

6 −uζ3+ π4

360(4s2+st+4t2)+ · · ·
)

M IR(1+2+3−4−) = [12]2〈34〉2
(
− 1
st

+u

s
+π2

6 −u(1+ζ3)+ · · ·
)
, (2.29)

where we’ve rewritten the spinor brackets in a form that exposes the massless poles. It
is instructive to identify local operators in each helicity sector. For the all plus helicity
the leading term correspond to the gluon exchange between the Yang-Mills vertex and
F 3, followed by two types of contractions for (F+)4. For the single minus sector, we have
massless poles associated with the exchange of a vector between (F+)3 and a Yang-Mills
vertex, while the leading four-point local operator correspond to D2(F+)3F−. For the
MHV sector, we have two sets of massless poles, the leading corresponding to the exchange
between the Yang-Mills vertex, and the subleading is between (F+)3 and (F−)3. The
leading four-point local operator is (F+)2(F−)2.
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3 Dispersive representation for EFT coefficients

In the previous section, we’ve seen that given the UV theory, the low energy EFT can
be obtained by expanding the UV amplitude in Mandelstam variables, leading to an IR
amplitude of the form

M(s, t)|s,t�m2 = M IR(s, t) = {massless poles} +
∑
k,q

ak,q s
k−qtq . (3.1)

Mapping to on-shell local operators is then a straight forward task. However, it has been
long appreciated that general principles of unitarity and Lorentz invariance imposes non-
trivial constraint on the IR description. These constraints arises through the analyticity of
the scattering amplitude, where the poles and branch cuts on the complex Mandelstam vari-
able plane are associated with threshold productions. For the four-point amplitude, such
analytic property allows us to equate the low energy couplings ak,q to the discontinuities of
the branch cuts (or residues of poles), giving a dispersive representation for the couplings.

Let’s begin by holding t = t∗ � m2 fixed, where m2 is the characteristic mass asso-
ciated with the UV completion, and consider four-point amplitude M(s, t∗) as a function
of s. We will imagine that we are only integrating out the massive states, which generate
contact terms in the low-energy effective theory. Of course there will also be calculable
massless loops in the low-energy effective theory, which induce logarithmic variation in
these coefficients. We will return to discussing this point later in section 11. Note, how-
ever, that the very notion of “higher dimension operators” is only well-defined when there
is a weak coupling in the UV theory, so that the contact operators induced by integrating
out the massive states dominate over the ones generated by massless loops in the low-
energy theory, so that this first-pass analysis captures the most interesting UV physics. In
practice, we are assuming that, for small fixed t � m2, the amplitude is analytic in the
s plane for small s, and develops its first singularity (be it a pole at tree-level, or more
generically a branch cut associated with UV particle production) at s=m2.

It is important that when t is� m2, the only singularities of the amplitude are on the
real s axis, and correspond to particle production thresholds. This is not true when t is
comparable to m2, where new sorts of singularities, simplest amongst them the infamous
“anomalous thresholds”, with no Lorentzian particle production interpretation, also appear.
But for our purposes of controlling EFT coefficients, we only need t� m2 and never have
to worry about anomalous thresholds. See appendix B for a more detailed discussion of
these issues.

As is standard from the study of dispersion relations, we consider the contour integral

i

2π

∫
C0

ds

sn+1M(s, t∗) , (3.2)

where C0 represents the contour that encircles the origin. Since at the origin both s, t∗ � m2

we know that amplitude takes its low energy form in eq. (3.1), and the residue for the
measure 1

sn+1 will be given by terms in eq. (3.1) proportional to sn. In absence of t-channel
massless pole, this residue will be a polynomial function of t, giving a well defined Taylor
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Figure 3. We define the low energy couplings through a contour integral on the complex s-
plane, where the contour C0 encircles the origin. On the complex plane, if the amplitude only has
singularities on the real-s axes, either poles or branch points, then we can deform to contour C∞.

expansion around t = 0. Thus we find that ak,q can be identified as:

ak,q = 1
q!

[
∂q

∂tq
i

2π

∫
C0

ds

sk−q+1M(s, t)
]∣∣∣∣
t=0

. (3.3)

In other words, the low energy couplings can be analytically defined through the on-shell
amplitude. Note that taking the residue is equivalent to taking derivatives, and the result
of this action is often referred to as the subtracted amplitude. Now instead of C0 we
deform to the contour encircling infinity C∞. If the non-analyticities are associated with
particle production, they occur on the real axes where depending their origin as s or u-
channel threshold, they will lie on the positive or negative real s-axes respectively. Thus
the contour C∞ takes the form shown in figure 3, where one picks up the discontinuity on
the real axes as well as boundary contributions. At large s, if the amplitude falls of faster
than sk−q then the latter simply yields zero, and we would have an identity between ak,q
and the residues or discontinuities.

Let us consider the linear sigma model as an explicit example. Once again the UV
tree-amplitude is given as:

M(s, t) = − λ

8m2
h

(
s2

s−m2
h

+ t2

t−m2
h

+ u2

u−m2
h

)
. (3.4)

As s→∞ the amplitude grows linearly in s, the contour deformation of eq. (3.3) will have
no boundary contributions when k−q ≥ 2. Focusing on the couplings with q = 0, i.e. those
that survive in the forward scattering limit t = 0, we find eq. (3.3) implies:

ak,0 = − 1
(m2

h)k+1

(
RessM(s, 0)+(−)kResuM(s, 0)

)
. (3.5)

That is, the coupling ak,0 is given by the residue of the Higgs pole in the s and u channel.
Plugging in Ress=m2

h
M(s, 0) = −λm2

h
8 and Ress=−m2

h
M(s, 0) = −λm2

h
8 , we have

ak,0 = λ

4(m2
h)k , k ∈ even, (3.6)

and 0 for k ∈ odd. Indeed this reproduces the low energy couplings in eq. (2.3), for k ≥ 2.
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In general for theories whose four-point amplitude admits a convergent partial wave
expansion, causality and unitarity dictates that the four-particle amplitude at t = 0 is
bounded by s logD−2 s, i.e. the Froissart bound [18, 19]. When massless particles are
present, such as in gravity, the t-channel singularity obstructs a convergent polynomial
expansion in t and the Froissart analysis no longer holds. However, assuming a weakly
coupled UV completion for gravity, causality consideration requires the presence of an
infinite tower of massive higher spin states, leading to the forward amplitude behaving as
sp for p < 2 at large s for fixed negative t [20]. From now on we will assume that for |t| � m2

the amplitude is bounded by s2 at large s. For a more detailed discussion, see appendix A.
For general tree-level UV completions it is obvious that all poles lies on the real s-axes.

More generally, the amplitude admits a dispersive representation

M(s, t)|t�m2 = MSub +
∫ ∞
M2
s

dM2 ρs(M2)
s−M2 +

∫ ∞
M2
u

dM2 ρu(M2)
u−M2 (3.7)

where MSub represents the appropriate subtraction terms, representing the contributions
from infinity in the dispersion relation. Note again the importance of keeping t� m2 here.
In general, we don’t have good control on the analytic structure even of 4pt amplitudes in
general theories. But we do have good control on the analytic structure of 2-pt functions as
restricted by causality and unitarity. Intuitively, by keeping t� m2, our 4-pt amplitude is
close to forward scattering and hence a 2-pt function. A standard justification that the only
singularities for t� m2 are associated with usual particle production is given by studying
Landau equations. In appendix B we give a different, more direct derivation following
directly from Feynman/Schwinger parametrization of loop integrals. Putting everything
together, we conclude that for k−q ≥ 2:

ak,q = − 1
q!
∂q

∂tq

(∑
a

Ress=m2
a
M(s, t)

(m2
a)k−q+1 +

∫
4m2

a

ds′

s′k−q+1DisM(s, t)
)∣∣∣∣∣

t=0
+{u} , (3.8)

here a labels all the massive states and {u} represents the u-channel contributions.
Let us study the above identity with two explicit examples, the infinite resonance of a

string theory tree level exchange and the one-loop massive bubble in three-dimensions.

Tree-level dispersive representation. Let’s begin with the type-I string amplitude
introduced in eq. (2.4), where the s-channel residue is given as:

Ress=n

[
−Γ[−s]Γ[−t]

Γ[1 + u]

]
= −(t+ 1)(t+ 2) · · · (t+n−1)

n! (3.9)

Now using eq. (3.8) we have,

ak,q = 1
q!
∂q

∂tq

( ∞∑
n=1

1
n!

(t+ 1)(t+ 2) · · · (t+n−1)
nk−q+1

)
. (3.10)

First consider the coefficients relevant to the strict forward limit, ak,0, which corresponds
to setting t = 0 in the above, and we find:

ak,0 =
∞∑
n=1

1
nk+2 = ζk+2 . (3.11)
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Indeed this is the reproduces the ζ2 and ζ3 for the constant and the coefficient for s in
eq. (2.6) respectively. Now let’s move away from the strict forward limit and consider
coefficients of t to the first power. From eq. (3.10) we have,

ak,1 =
∞∑
n=2

1
nk+1

(
1+1

2+1
3+ · · ·+ 1

n−1

)
. (3.12)

Explicitly expanding eq. (2.4) to the fifth power in Mandelstam variables one find,

a5,1 = − 1
90
(
π4ζ3+15π2ζ5−270ζ7

)
, (3.13)

which once again agrees with eq. (3.12).

Loop-level dispersive representation. Consider a three-dimensional theory with a
massless scalar φ and a massive one X, interacting via the quartic coupling λφ2X2. At
low energies we have an effective action for φ, generated by integrating away the massive
X loops. For example at leading order in λ, operators of the form ∂2nφ4 are obtained by
integrating out X from the one-loop bubble diagrams:

1

2 3

4

X

. (3.14)

This yields the following UV amplitude,

M(s, t) = λ2
[
I3

bubble(s) + I3
bubble(t) + I3

bubble(u)
]
,

I3
bubble(s) =

∫
d`3

(2π)3
1

(`2 −m2)((`+ p12)2 −m2) = 1
8π
√
s

log
(

2m+
√
s

2m−
√
s

)
.

(3.15)

The low energy expansion yields,

M IR(s, t) = λ2

8πm

(
3+ σ2

80m4 + σ3
448m6 + σ4

2304m8

)
+O

( 1
m11

)
. (3.16)

Now since the UV amplitude eq. (3.15) behaves as ∼ s0 as s→∞, we expect that through
eq. (3.8) we can recover all low energy coefficients in eq. (3.16) with degree 1 and higher in s
from the discontinuity of the bubble integrals. For fixed t, only the s- and u-channel bubble
integrals contain branch cuts. The I3

bubble(s) has a branch cut starting from 4m2 to∞, with
the discontinuity given by i

4
√
s
, while the branch cut for I3

bubble(u) is on the negative real
s-axes from −4m2 − t to −∞, with discontinuity i

4
√
−t−4m2 . Thus from eq. (3.8), we find

an+q,q = 1
q!
∂q

∂tq

[ 1
2πi

(∫ ∞
4m2

1
sn+1

i

4
√
s

+
∫ −∞
−t−4m2

1
sn+1

i

4
√
−t− 4m2

)]∣∣∣∣
t=0

. (3.17)
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For example to reproduce the coefficients of s2tq, we take n = 2 in the square bracket
above, yielding:

1
640m5π

+ 1
64πt5/2

(
3π − 6 tan−1

(2m√
t

)
− 4m

√
t(12m2 + 5t)

(4m2 + t)2

)

= 1
320m5π

− 3t
3584m7π

+ t2

3072m9π
+O(t3) . (3.18)

Indeed the first three terms in the t expansion matches with the coefficients of s2, s2t and
s2t2 in eq. (3.16) respectively.

Before closing this section, we comment on two potential obstructions in utilizing the
dispersive representation:

• The the residue at s = 0 contains t-channel singularity.

• The presence of massless cuts, which leads to branch point singularity at the origin.

A 1/t pole in the residue at s = 0 renders the Taylor expansion in eq. (3.3) ill defined.
More precisely since by Cauchy theorem the t-channel pole must be reproduced by the sum
over residues and branch cuts, the singularity in the t → 0 limit indicates that the sum
is not convergent. The graviton pole mentioned previously is a famous example of such
obstruction. We will discuss this in great detail in the following section.

At loop-level there are two forms of non-analyticity at the origin for massless theo-
ries, IR singularities and massless cuts. For those with massless three-point interactions,
such as gravity, loop-corrections are accompanied by collinear divergences. However, if we
assume that the UV completion occurs while the self-coupling of the massless states are
still perturbative, these divergences can be suppressed or computed order by order. The
presence of massless cuts imply that one can no longer define the EFT couplings via the
contour at C0. As previously mentioned this is reflecting the subtlety in what we mean by
EFT couplings when log runnings are present. As we will see in section 11, the choice of
“scale” against which the couplings run, are naturally introduced by moving the contour
off the origin. After introducing such “generalized coupling” the remaining analysis are
almost identical of the tree amplitude.

4 Obstructions from the massless poles

The presence of massless poles in the four-point amplitude, can potentially forbid a near for-
ward limit dispersion representation. Take for an example an IR amplitude that behaves as

M IR(s, t)|s,t→0 ∼
sn

t
+ an,0s

n+O(t) . (4.1)

Applying the dispersive representation for an,0 in eq. (3.8), we find:

1
t

+ an,0+
∑
a

Ress=m2
a
M(s, t)

(m2
a)n+1

∣∣∣∣∣
t=0

= 0 . (4.2)
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Now since the above equality holds in the limit where t → 0, the divergent behaviour of
the 1

t pole tells us that the remaining summation cannot be convergent. For a concrete
example, let’s consider the four gluon amplitude in type-I super string. Stripping off the
spinor factors, the following contour integral yields,

i

2π

∫
C0
ds
MTypeI(1+2+3−4−)

[12]2〈34〉2 = 1
t
. (4.3)

This isolates the field theory contribution 1
st in the low energy amplitude. Now at large s

and small t, the amplitude scales as

MTypeI(1+2+3−4−)
[12]2〈34〉2

∣∣∣∣∣
s→∞

< s−1 . (4.4)

Thus if we deform the contour to C∞, there are no boundary contributions and one only
picks up poles on the real axes, whose residue is given by eq. (3.9). Thus we have

1
t
−
∞∑
n=1

(t+1)(t+2) · · · (t+n−1)
n! = 0 , (4.5)

and setting t = 0 we indeed find that the summation is non convergent, ∑∞n=1
1
n =∞!

In this paper, we will focus on a, b → a, b scattering where a, b may or may not be of
the same type. When embedded in a gravitational theory one inevitably encounters the
t-channel graviton exchange. For example consider the four-dilaton amplitude of type-II
string theory

MType-II(10203040) = g2
s(st+ tu+ su)2 Γ[−s]Γ[−u]Γ[−t]

Γ[1+s]Γ[1+u]Γ[1+t] . (4.6)

At low energies, beyond the tree-level graviton exchange the leading local amplitude is
associated with D8φ4,

M IR(10203040) = GN

(
−st
u
− tu
s
−su
t

+2ζ3(st+ tu+ su)2 + · · ·
)
. (4.7)

Note that there are no four derivative couplings D4φ4, which appears to violate the posi-
tivity bound a2,0 > 0 introduced long ago [3]. The resolution precisely lies in the presence
of the t graviton pole! Let us see how this play out in detail. First, as the amplitude enjoy
s↔ u symmetry, we manifest this symmetry by switching to

z = s+ t

2 , (4.8)

then s↔ u translates to z ↔ −z. We take the contour integral in z-plane, and defining the
low energy coupling via its degree in z, t. Now let’s compare the dispersive representation
for the coupling of the four- and eight-derivative couplings, a4,0 a2,0. The integrals of
interest are then:

i

2π

∫
C0

dz

z3 M
Type-II(10203040) = −1

t
+
∞∑
q=0

aq+2,qt
q,

i

2π

∫
C0

dz

z5 M
Type-II(10203040) =

∞∑
q=0

aq+4,qt
q (4.9)
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Note that the contour C0 picked up residues at z = 0,±t/2, since t → 0. Comparing
the two integrals we see that the dispersive representation should be convergent for aq+4,q
(including a4,0), but not for aq+2,q (including a2,0). As the representation is not convergent
for a2,0, positivity based on such dispersive arguments are no longer applicable.

However, the presence of massless t-poles in the field theory amplitude does not neces-
sarily imply an obstruction. Consider a gravitational EFT whose low energy limit is given
by the Einstein-Hilbert action and no modification to the graviton cubic couplings (i.e. no
R3). The low energy amplitude for M(1+22+23−24−2) is given by

M IR(1+22+23−24−2) = [12]4〈34〉4
 1
stu

+
∑
k,q

ak,qs
k−qtq

 . (4.10)

Even though the low energy amplitude contains massless t poles, the C0 contour actually
picks up multiple 1/t that cancels∫

C0

ds

sn
M IR(1+22+23−24−2)

[12]4〈34〉4 = − 1
tn+2 + 1

tn+2 +
∑
q

aq+n−1,qt
q . (4.11)

This can be tied to the massless poles coming in the combination 1
stu . This result is deeply

tied to the fact that the amplitude for minimally coupled self-interacting massless particles
are “3-particle constructible”, i.e. consistent factorization in one channel automatically
enforces consistency in all other channels.

Thus in summary, while graviton exchanges can introduce t-channel singularity, if
the four-point amplitude is 3-particle constructible, then the combined contributions cancel
each other and we are free of t-channel obstruction. Examples include four-graviton am-
plitude of pure Einstein-Hilbert gravity, as well as the gravitational Compton amplitude
for minimally coupled particles. If we have extra symmetry which relates the amplitude
to a 3-particle constructible partner, or that it suppresses the t-channel exchange, one can
similarly avoid the t-channel obstruction. Let us go through explicit examples for spin-0,
1 and 2 amplitudes with graviton exchange.

Scalars. We have discussed identical scalars in eq. (4.9). For distinct scalars, we can
arrange the scalars such that there are no t-channel exchanges. For example a pair of
complex scalars with U(1) symmetry, the graviton exchange is given by:

M IR(φ1φ2φ3φ4) = tu

s
+ st

u
, (4.12)

where there would be no t-channel poles and free from obstructions.

Photons. The graviton poles and its residues are dictated by its minimal coupling, F 2φ

and RF 2 operators. Let’s start by choosing the same helicity to be in the t-channel, one has:

M IR(1−2+3+4−) = [23]2〈14〉2
(1
s

+ 1
u

+ α1
1
t

+ α2
su

t
+ · · ·

)
, (4.13)

where α1 and α2 represents contribution from φF 2 and RF 2 respectively. Note that due
to the helicity arrangements, the contribution from the latter only appears in t-channel.
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Factoring out the universal helicity factor and taking the contour integral near the origin
we find,

∫
dz

zn+1

(
4t

4z2 − t2
+ α1

t
+ α2

(
t

4 −
z2

t

))
=
{

α1
t + α2t

4 for n = 0
−α2

t for n = 2 (4.14)

while the integral vanishes for other n. Thus we see that minimal coupling does not intro-
duce t-channel poles, while the presence of φF 2 and RF 2 leads to t-channel obstruction for
the four and eight derivative terms respectively. Following our scalar example, let’s arrange
the helicity such that contributions from these higher-derivative operators only appear in
the s-channel, as:

M IR(1−2−3+4+) = [34]2〈12〉2
(1
t

+ 1
u

+ α1
1
s

+ α2
tu

s
+ · · ·

)
. (4.15)

This time we find,∫
du

un+1

(1
t

+ 1
u
− α1

1
u+ t

− α2
tu

u+ t

)
= 1
t
− α2t for n = 0 (4.16)

and zero otherwise. Since we’ve factored out the spinor brackets, we see that t-channel
singularities from minimal coupling obstructs the convergence of four derivative operators.

Let’s consider the case where we wish to apply dispersive representation to the coeffi-
cient of F 4 operators, relevant for the analysis of weak gravity conjecture. After factoring
out the spinor brackets, the coefficient of F 4 is mapped to a0,0. For helicity (1−2−3+4+)
the spinor brackets are s2 and thus we can bound a0,0. However due to eq. (4.16) we
see that a0,0 suffers the t-pole obstruction. One might attempt to use the configuration
(1−2+3+4−), where there are no t-pole obstruction for the four-derivative term. However
in this case the spinor prefactor is simply t2 up to a phase, thus the coefficient for F 4 is
mapped to the coefficient of s0 for which the dispersive representation is not applicable
due to boundary contributions.

Gravitons. For external gravitons, the analysis is parallel to the photon case except
that the relevant couplings are now the Einstein-Hilbert term, φR2 and R3. For the MHV
amplitude, with equal helicity in the s-channel we have

M IR(1−22−23+24+2) = [12]4〈34〉4
(
− 1
stu

+ α1
1
s

+ α2
tu

s

)
, (4.17)

where now α1 and α2 represents φR2 and R3 respectively. Since as previously discussed
summing over the massless residues cancels for the Einstein-Hilbert term, there are no
potential t-channel singularities. If we were to choose the other two channels, then from
t-channel exchanges between φR2 or R3, we would have encounter the similar obstruction
as the photon case for the eight and twelve derivative terms respectively.

The t-channel pole and Reggie behaviour. In cases where the t-channel singularity
implies non-convergence of the dispersive representation, it is instructive to see how the
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singularity is analytically reproduced. Let’s reexamine the summation eq. (4.5) in the
t→ 0 limit. In such case it can be approximated as

∞∑
n=1

(t+1)(t+2) · · · (t+n−1)
n! ∼

∞∑
n=1

1 + t+ t
2 + · · · t

n−1
n

∼
∞∑
n=1

1 + t log n
n

∼
∞∑
n=1

et logn

n

(4.18)
Finally, the last line simply becomes ∑∞n=1 n

t−1 which after approximating the sum as an
integral, yields 1

t . Recall that the summation is over the residues of the amplitude at s = n,
which is the dominant contribution for the amplitude as s nears threshold. The fact that
at small t the residue is approximated by nt, implies that the amplitude behaves as st in
the near forward limit. This is nothing but the linear Regge behaviour of string theory,
except that it holds true for large but finite values of s. Of course this is not surprising
given that in order for equation eq. (4.5) to hold, the amplitude is required to die off at
s→∞, which is true precisely due to such Regge behaviour.

5 Theory space as a convex hull

As we have reviewed, there is a simple expression for the coefficients of low-energy effective
field theory coefficients in terms of the spectrum and discontinuities of the high-energy
amplitude:

ak,q = − 1
q!
∂q

∂tq

(∑
a

Ress=m2
a
M(s, t)

(m2
a)k−q+1 +

∫
4m2

a

ds′

s′k−q+1DisM(s, t)
)∣∣∣∣∣

t=0
+{u} . (5.1)

Since optical theorem tells us that the sum of residue and discontinuity of the forward
amplitude is proportional to the total cross-section σ(s), Im M(s, 0) = −sσ(s), one imme-
diately concludes that ak,0 > 0.

However, this is not the whole story since the optical theorem is really a “coarse
grained” description of the residues and discontinuity. Lorentz invariance and factorization
tells us vastly more than just the positivity in the forward limit. In particular when
combined with unitarity, Lorentz invariance tells us that the discontinuities are positively
expandable on a preferred polynomial basis! To see this, consider the 2 → 2 scattering of
scalar particles M(1a, 2b, 3b, 4a), where a, b labels the distinct species. Let’s consider the
general form of the residue from a tree-level spin-` exchange:

1

2 3

4 (5.2)

The residue is given by the product of three-point amplitudes for two scalars a, b coupled
to the spin-` state. The amplitude is fixed by Lorentz invariance to be:

M3(1a, 2b, εI) = ic`(p1 − p2)µ1 · · · (p1 − p2)µ`εIµ1···µ` , (5.3)
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where c` is the coupling constant, εIµ1···µ` is the polarization tensor and I labels the compo-
nents of the spin-` representation of the SO(D-1) massive Little group. The residue is then:∑

I

M3(1a, 2b, εI)M3(3b, 4a, εI) . (5.4)

Denoting (p1−p2) and (p3−p4) as (X,Y ), in the center of mass (c.o.m) frame these are
(D−1)-dimensional vectors. The sum over the I converts the product of polarization ten-
sors into a polynomial of ηµνs, which is symmetric and traceless in the Lorentz indices on
both sides of the factorization pole. This suggests that eq. (5.4) is simply a polynomial
function of (X2, Y 2, X ·Y ) that is of degree ` in X and Y respectively, and vanishes under
the Laplacian ∇2

X and ∇2
Y . The last constraint is a reflection of the traceless condition.

In other words, one can read off the polynomial from the D−1 dimension solution to the
Laplace equation:

1
(X2 − 2X · Y + Y 2)D−3

2
. (5.5)

Without loss of generality, we can scale |X| = 1, |Y | = r, and X · Y = r cos θ, where θ is
the scattering angle. Then the polynomial can be identified through

1
(1− 2r cos θ + r2)D−3

2
=
∞∑
`=0

r`G(D)
` (cos θ) , (5.6)

which is the generating function for the Gegenbauer polynomials. For D = 4 this re-
duces to Legendre polynomial, while the three-dimensional counter part is the Chebyshev
polynomials. From now on we will suppress the superscript (D) unless needed.

We’ve seen that the residue is simply a sum of Gegenbauer polynomials. Now due to our
specific choice of external states, M(1a, 2b, 3b, 4a), the three-point couplings on both sides
of the (u) s-channel exchange are identical, i.e. the coupling constants squared c2

` . Thus
we see that the residue is a function that is positively expandable on the Gegenbauer basis:

Ress=m2M(s, t) = −
∑
`

p`G`(cos θ), p` ≥ 0 , (5.7)

where cos θ = 1+ 2t
m2 . Functions that have such property are referred to as positive func-

tions, and they enjoy the feature that such positivity is preserved under multiplication
and differentiation. Note that since Gegenbauer polynomials are positive when θ = 0, the
optical theorem is simply a corollary of eq. (5.7). Gegenbauer polynomials is a particu-
lar example of orthogonal polynomials that are orthogonal to each other under prescribed
integration measure. Gegenbauer polynomials are orthogonal with respect to SO(D−1)
invariant measure (sin θ)D−4d cos θ. Since SO(D−1) symmetry is simply a reflection of our
kinematic setup, it is applicable for discontinuities as well. Indeed as we will demonstrate
in appendix C, when combined with unitarity, the discontinuity in the near forward limit
is again given by a positive sum of Gegenbauer polynomials:

Diss≥4m2M(s, t) = −
∑
`

p`(s)G`(cos θ) , p`(s) ≥ 0 . (5.8)
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Here, p`(s) is the positive “spinning” spectral function. Note that at weak couplings, p` > 0
is all we can say. The full non-linear constraint implied by unitarity, Im[a`(s)] ≥ |a`(s)|2
where a`s are the partial wave coefficients, is only relevant for theories where the amplitudes
becomes genuinely large/the theory is genuinely strongly coupled in the UV.

While the discussion so far is applicable the scattering amplitude of scalars, and hence
scalar EFT, one can easily generalize when ever the three-point couplings of two mass-
less one massive state are kinematically unique. This is the case in four-dimensions with
external helicity states [21], where the corresponding orthogonal polynomials are Jacobi
polynomials. We will review and discuss its property in great detail in section 6.3.1.

Now that we see the residue/discontinuity of the four-point amplitude is given by
a special class of functions, positive functions, we would like to extract the image of this
property on the space of low energy couplings. Naturally this can be done through eq. (3.8).
In other words, we would like to explore the full implication of:

ak,q = 1
q!
dq

dtq

(∑
a

paG`a(1 + 2 t
m2
a
)

(m2
a)k−q+1 +

∑
b

∫
ds′pb,`(s′)

G`(1 + 2 t
s′ )

(s′)k−q+1 + {u}
)∣∣∣∣∣

t=0

, (5.9)

where the equality is understood to hold as a Taylor series in t, i.e. |t| � m2. More precisely,
coefficients of the higher dimensional operators as an expansion away from the forward
limit, must be given as a positive sum of the Taylor expansion of Gegenbauer polynomials.
Note that since the difference between contributions from residues and discontinuities is
simply whether the spectrum of mass is discrete or continuous, by not assuming discreteness
we will cover both. In this context, the previous forward limit positivity constraint at is
really the q = 0 “tip” of the iceberg. It is coarse grained because it did not fully exploit
the fact that the residue and discontinuity is a positive function.

Collecting the low energy couplings, eq. (5.9) is equivalent to:∑
k,q

ak,qs
k−qtq = −

∑
a

paG`a
(

1+ 2t
m2
a

)( 1
s−m2

a

− 1
s+t+m2

a

)
, (5.10)

where again the equality is understood in the sense of Taylor expansion in t, s. In other
words, the near forward limit low energy expansion is captured by the s and u-channel
factorizations alone. Now eq. (5.10) is gives us a relation between ak,q and the Taylor
coefficients of the Gegenbauer polynomials expanded around 1,

G`(1 + 2δ) =
∑
q=0

v`,q δ
q . (5.11)

If we only have s-channel contribution, eq. (5.10) implies:

s channel : ak,q =
∑
a

pa
v`a,q

(m2
a)k+1 pa ≥ 0 (5.12)

If u-channel contributions are present, we redefine the coupling in terms of expanding in
(t, z), i.e. ak,qzk−qtq, we find eq. (5.10) can instead be rewritten as:

s−u channel : ak,q =
∑
a

pa
u`a,k,q

(m2
a)k+1 pa ≥ 0 (5.13)
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where u`,k,q is a linear combination of v`,q with its explicit form given in eq. (8.5). For
q = 0, u`,k,0 > 0 and we are back to the old forward limit positivity constraint. For q 6= 0,
u`,k,q can have either sign and we no longer have strict positive bounds for individual ak,q,
and naively there is no constraint. However, while there may no longer be constraint for
individual ak,q with q 6= 0, there are non-trivial constraints as a collective. For example
collecting the coefficients with fixed k but distinct q into a vector ak, we find

ak ≡


ak,0
ak,1
ak,2
...

 , ~u`,k ≡


u`,k,0
u`,k,1
u`,k,2
...

 ⇒ ak =
∑
a

pa~u`a,k pa ≥ 0 , (5.14)

where we absorbed the positive factors (m2
a)k+1 into pa. In other words, ak must be in

the convex hull of the vectors ~u`,k! That is the boundary of “theory space”, the space of
allowed ak, is given by the boundaries of the hull.

Let us “see” explicitly examples of what this space looks like. For simplicity consider
color ordered EFT amplitude whose UV completion does not include u-channel contribu-
tions. Taking k = 1 we find that eq. (5.13) tells us:

a2 =
(
a1,0
a1,1

)
=
∑
a

pa

(
v`a,0
v`a,1

)
. (5.15)

Since pa is positive, the equality is projective in nature and we can rescale the top compo-
nent of each vector to be 1. This then implies the following inequality,

a2,1
a2,0
≥Min

[
v`,1
v`,0

]
(5.16)

Taking D = 4, we have v`,0 = 1 and v`,1 = `(`+1), and we conclude that a2,1
a2,0
≥ 0. For

k = 2, the vector a3 lives in P2

a3 =

 a2,0
a2,1
a2,2

 =
∑
a

pa

 v`a,0v`a,1
v`a,2

 →
(
a2,1/a2,0
a2,2/a2,0

)
=
∑
a

pa

(
v`a,1
v`a,2

)
, (5.17)

where after the rescaling, besides pa ≥ 0, we further have ∑a pa = 1. Using v`,2 = (1)`+2
4(`−2)! ,

the allowed region is now given as:

a2,2
a2,0

a2,1
a2,0
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Once again, the positivity bound of [3] simply tells us that a2,0 > 0 and thus has no
constraint for the above plot. As we extend to higher degree in k, eq. (5.12) and eq. (5.13)
becomes the statement that ak,q lives in the convex of vectors ~v` and ~u`,k for fixed k, and
the relevant question is what are the boundaries of this hull.

In general the spin is unbounded especially when the UV completion involves massive
loops, thus the number of vectors that constitute the hull is infinite. Naively determining
the boundaries of such space is computationally prohibitive. Note that these polytopal
constraints, being for fixed k, bound operators of the same dimension. At the same time, we
should expect non-trivial constraints that are cross dimensional since operators of different
dimension are constrained by the same UV completion. As we will see these fascinating
questions have a beautiful geometric answer to be explored in the remaining sections.

6 Hidden total positivity from unitarity and locality

In this section we briefly review the positive geometries relevant for our analysis. The
spaces that we will be interested in are invariantly constructed as a positive sum of a fix
set of vectors {Va}:

a ∈
∑
a

paVa, pa > 0 . (6.1)

Such construction are referred to as convex hulls and the resulting geometry convex poly-
topes. Given a convex polytope, we will seek the complete set of inequalities that defines
its interior. In other words we would like to “carve out” the subspace satisfying eq. (6.1)
through equations of the form:

fi(a) > 0 . (6.2)

In the above i labels the distinct constraints. Depending on the nature of vectors, we
will find that fi can be either linear or non-linear functions of a. In the context of con-
straints for EFT, a is identified with the space of EFT couplings {ak,q} and the vectors Va

are determined by Lorentz invariance and locality, properties that we assume for the UV
completion.

6.1 Convex hulls and cyclic polytopes

Let us begin with the definition of convex hull. Given a set of d+1-dimensional vectors
Va, consider the subspace spanned by its positive weighted sum:

a ∈
∑
a

paVa, pa > 0 . (6.3)

The number of vectors will in general be greater than the dimension, and one must first
determine whether this span the whole space. For example consider three vectors in two
dimensions as in figure 4. In the first case the three vectors span the whole space, as
any point on the two-dimensional plane can be written as some positive sum of the three
vectors. This is not the case for the second configuration since all vectors are on one side
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Figure 4. The convex hull of these three vectors encloses the origin, and hence trivially covers the
entire two-dimensional plane.

of the horizontal axes. Thus in order for the hull to be non-trivial, all the vectors must be
on the same side of some hyper plane, or equivalently there are no non-trivial solutions to∑

a

paVa,= 0 pa > 0 , (6.4)

i.e. the vectors do not enclose the origin.
Clearly for any a that satisfies eq. (6.3), so will ρa with ρ > 0. Thus the solution

space is naturally projective, and we identify a ∼ ρa and Va ∼ ρaVa. Since all the vectors
lie on the same side of some hyperplane, we can choose our coordinates such that the top
component is always positive, which we choose to normalize to 1:

Va =
(

1
~va

)
, X =

(
1
~x

)
. (6.5)

In terms of (~va, ~x) the canonical definition of convex hull is written as:

Conv[~va] =
{∑

a

pa ~va,
∣∣∣∣∣ (∀ a : pa > 0) ∧

∑
a

pa = 1
}
. (6.6)

As we will see it will be useful to retain the use of homogeneous coordinates, i.e. considering
the vectors in its full (d+1)- component, and consider the hull as a projective polytope in Pd:

Conv[Va] =
{∑

a

pa Va,

∣∣∣∣∣ (∀ a : pa > 0)
}
. (6.7)

The advantage of this is that it allows us to define various co-plane or incidence condi-
tions projectively with the help of the d+1-dimensional Levi-Cevita tensor, εI1I2···Id+1. For
example, for the 3 vectors to be on a line in P2 we have

〈a, b, c〉 ≡ εI1I2I3V
I1
a V I2

b V I3
c = 0 , (6.8)

where Ii = 1, 2, 3. Similarly for d+1 vectors to lie on a d−1-dimensional plane in Pd, tells us
that the bracket 〈a1, a2, · · · , ad+1〉 = 0. In this paper, the dimension of the angle brackets
〈· · · 〉 will be implicit from the number of entires or the surrounding discussions.
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While eq. (6.7) gives us a d-dimensional polytope, not all vectors in Va are vertices of
the polytope, some might be inside. Thus given a convex hull, one needs to identify the
vectors that constitute the vertices which ultimately defines the polytope. The polytope
can equivalently be defined through its boundaries, which are a set of co-dimension one
hyper-planes or facets. The advantage of such facet point of view is that the polytope can
be carved out successively one facet at a time. Not surprisingly, these facets can also be
defined through the vertices of the polytope. More precisely, a co-dimension one plane is
defined by a set of d distinct vectors, say (Va1 ,Va2 , · · · ,Vad). We can represent this plane
as a d+1 component dual vector Wi, where i labels the set of {ai} that defined the plane,
and its components given by:

(Wi)I ≡ εII1I2···IdV
I1
a1 , V

I2
a2 , · · · , V

Id
ad

= 〈∗, a1, a2, · · · , ad〉 . (6.9)

Then the inside of polytope is then given by the condition that a lies on one side of the
facet Wi. This constraint can be phrased in terms of a positivity condition:

Wi · a = (Wi)IaI = 〈a, a1, a2, · · · , ad〉 > 0, ∀a ∈ Conv[Va] . (6.10)

It is useful to see how such constraint arrises in simple setup. Consider a polygon in P2:

a

b

c

.

The line bc is a boundary since the interior of the polygon is on one side of the line. This
is not the case for ac. Not only does points of the interior lie on both sides, it can be
on the line, i.e. collinear with (a, c). Since collinear means 〈a, a, c〉 = 0, this implies that
〈a, a, c〉 is positive on one side of ac, and negative one the other. Thus if Wi is a boundary,
Wi · a must have the same sign for all a, which we can always chose to be positive by
appropriately arranging the sequence of vectors in {ai} eq. (6.9).

Given the complete set of {Wi}, we now have a set of inequalities fi(a) > 0 that carves
out the space. The function fi in this case is linear in a:

fi(a) = Wi · a ≥ 0 . (6.11)

The equal sign refers to points that are on the boundary. Now one can see that given a
set of vectors Va, to determine the full set of {Wi}, one would need the to compute the
sign of 〈a1, a2, · · · , ad+1〉 for all d+1-tuples. The sign patterns will tell us which vectors
are vertices that form facets, and which ones are inside. For n vectors, this involves the

computation of
(

n

d+1

)
number of d+1×d+1 determinants, which becomes intractable for

large n. In the context of our EFT setup, n is associated with the number of Gegenbauer
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polynomials which is infinite. Thus the problem appears intractable, unless some reasonable
truncation can be established. As we will now see, if the vectors satisfy special positivity
conditions, the boundary and the vertices can be straight forwardly determined before
hand. Remarkably, for us these properties are readily satisfied as a consequence of Lorentz
invariance and locality of the UV completion!

Cyclic polytopes. Let’s start with a set of vectors Va that are endowed with some
preferred ordering. If all “ordered” d+1× d+1 determinants are positive:

〈a1, a2, · · · , ad+1〉 > 0, ∀a1 > a2 > · · · > ad+1 , (6.12)

then the convex hull Conv[Va] yields a cyclic polytope. The canonical example for a
cyclic polytope is the convex hull of points on a moment curve. A moment curve is the
embedding of the real line in d-dimensional space, such that each point on the line maps
to a d-component vector with successive “moments”, i.e. (z, z2, · · · , zd), with z ∈ R. The
convex hull of points on a moment curve is then a positive weighted sum of vectors taking
the form:

Va =



1
za
z2
a
...
zda


. (6.13)

Naturally, Va can be ordered by the value of za. In such case 〈a1, a2, · · · , ad+1〉 is simply
the determinant of the Vandermonde matrix:

Det



1 1 · · · 1
z1 z2 · · · zd+1

(z1)2 (z2)2 · · · (zd+1)2

...
...

...
...

(z1)d (z2)d · · · (zd+1)d


=
∏
i<j

(zj − zi) . (6.14)

Indeed this determinant is positive for ordered points, z1 < z2 < · · · < zd+1.
Given eq. (6.12) one can straight forwardly see that the boundaries for a cyclic polytope

in Pd are simply given as:

d ∈ even → P2 : 〈∗, i, i+1〉, P4 : 〈∗, i, i+1, j, j+1〉,
d ∈ odd → P3 : 〈0, ∗, i, i+1〉, 〈∗, i, i+1,∞〉,

P5 : 〈0, ∗, i, i+1, j, j+1〉, 〈∗, i, i+, j, j+1,∞〉, (6.15)

where i, i+1 represents vectors that are adjacent in the ordering, and 0, ∞ is the first and
final vector. To see that these are true boundaries, we must show for each of the walls in
eq. (6.15), any point inside the hull a ∈ Conv[Va] will satisfy 〈a, · · · 〉 ≥ 0 or 〈0,a, · · · 〉 ≥ 0.
Let’s take 〈0, ∗, i, i+1, j, j+1〉 as an example:

〈0,a, i, i+1, j, j+1〉 =
∑
a

pa〈0, a, i, i+1, j, j+1〉 , (6.16)
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since each bracket in the sum is even permutation away from canonical ordering, they
are positive due to eq. (6.12). As pa > 0 the r.h.s. is a sum of positive terms and thus
establishes 〈0, ∗, i, i+1, j, j+1〉 being a boundary of Conv[Va]. Note that similar argument
also tells us that there are no other boundaries.

Thus in summary, if the vectors Va satisfy eq. (6.12), then the boundaries for Conv[Va]
is completely determined and constructed from consecutive pairs as illustrated in eq. (6.15).
Furthermore since eq. (6.15) are boundaries for any i, j, · · · , all vectors are vertices.

6.2 Hankel matrix total positivity

Let us consider a simple example where the positive geometry of cyclic polytopes arises in
our EFT discussion. Take the following four point amplitude:

M(s) =
∑
a

− pa
s−ma

. (6.17)

This arrises naturally as the dispersive representation of the four-point amplitude in the
forward limit. Note that the positivity of pa is a reflection of unitarity and the simple pole
in s is a reflection of locality. Thus the geometry that arrises from eq. (6.17) will have its
origin in the union of unitarity and locality.

Expanding eq. (6.17) in small s we find

∑
k

ak s
k =

∑
a

pa
m2
a

(
1 + s

m2
a

+ s2

m4
a

+ · · ·
)
. (6.18)

Matching both sides of the above equation we immediately see that the aks are positive.
But there is more! If we collect the couplings into a vector ~a, eq. (6.18) becomes:

a =



1
a1/a0
a2/a0

...
ak/a0


=
∑
a

p′a


1
xa
...
xka

 , xa ≡
1
m2
a

, (6.19)

where we’ve used the projective nature of the problem to rescale the top component to be
1. We find that eq. (6.18) tells us that ~a lies in the convex hull of moment curves! Note
that since m2

a > 0, we are really considering the “half” moment curve where xa ∈ R+.
Using what we’ve learned in the previous subsection, we have

Wi · a ≥ 0 (6.20)

where Wi are the boundaries listed in eq. (6.15) with Va determined by xa and we have
an infinite number of constraint on the couplings! However these constraints are not ideal
as they rely on the explicit vectors Va and for a low energy theorist we are not privy to
the information of the UV spectrum, i.e. we do not know what the xas are. It would be
desirable to find constraints fi(a) ≥ 0, such that the functions fi do not depend on the
explicit values xa, while reflecting the fact that xa ∈ R+.
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Let’s start by assuming the knowledge of the spectrum and see if we can rewrite
Wi · a > 0 in such a way that the information of the spectrum decouples. We can assume
the spectrum to be continuous without lost of generality, since any of the pas can be set
to be arbitrarily to match with any specific spectrum. Beginning with d = 1, we have
a = (1, a1

a0
) and there is only one boundary W = (1, 0). Thus we have:

W · a = 〈0,a〉 = a1
a0

> 0, (6.21)

which is trivial since we know that a0, a1 > 0. For d = 2, a = (1, a1
a0
, a2
a0

) and the constraint is

〈a, a, a+ 1〉 > 0 . (6.22)

Since the spectrum is continuous, given a point xa on the moment curve we can take a+1 to
be arbitrarily close to a, such that 〈∗, a, a+1〉 → 〈∗, a, ȧ〉, where ȧ represents the derivative.
The determinant then becomes

〈X, a, a+ 1〉 = Det

 1 1 0
a1
a0
xa 1

a2
a0
x2
a 2xa

 = a2 − 2a1xa + a0x
2
a

a0
. (6.23)

We see that the minimum occurs at xa = a1
a0
, and thus for eq. (6.22) to hold we must have:

a0a2 − a2
1 = Det

[
a0 a1
a1 a2

]
> 0 . (6.24)

Note that is non-linear in a and no longer depends on the point xa! Moving on to d = 3,
the analysis for 〈0,a, a, a+ 1〉 is identical to that for the d = 2 case, leading to

a1a3 − a2
2 = Det

[
a1 a2
a2 a3

]
> 0 . (6.25)

Two comments are in order. First note that we have not considered constraints involving
the infinity vertex. This is because projectively, the infinity vector is simply (0, · · · , 0, 1)
and when plugged into 〈· · · , a, a+1,∞〉, it reduces to the constraint one dimension lower.
Second, as we move from even to odd dimensions, we obtain the same constraint as be-
fore only with ai → ai+1, for example eq. (6.24) and eq. (6.25). This can be understood
as follows: the facets in both cases are comprised of the same set of vertices, just with
the inclusion of the origin 0 for the odd case. In taking the determinant, 0 removes the
first component of each vector, and the remaining part is proportional to the vector one
dimension lower. Thus the condition in the odd dimension is simply and overall factor mul-
tiplying that of one dimension lower. Importantly since we are on a half moment curve,
the overall prefactor will be positive. For example:

〈0,a, a, a+1〉 = Det


x0 1 1 1
a1 0 xa xa+1
a2 0 x2

a x
2
a+1

a3 0 x3
a x

3
a+1

 = xa+1xaDet

 a1 1 1
a2 xa xa+1
a3 x

2
a x

2
a+1

 . (6.26)
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Since xa, xa+1 > 0, the fact that the very l.h.s. is positive translate to the positivity on
the very r.h.s., i.e. in eq. (6.25). Let’s consider one more example before moving on to the
general constraint. For d = 4 we have

〈a, a, a+1, b, b+1〉 = Det


1 1 0 1 0
a1
a0
xa 1 xb 1

a2
a0
x2
a 2xa x2

b 2xb
a3
a0
x3
a 3x2

a x
3
b 3x2

b
a4
a0
x4
a 4x3

a x
4
b 4x3

b

 = (xa−xb)4(a4−2αa3+a2(α2+2β)+β(a0β−2a1α)) ,

(6.27)
where α = (xa+xb) and β = xaxb. The minima in terms of α occurs at α = βa1+a3

a2
.

Plugging into the r.h.s. of the above and requiring it to be positive leads to:

Det

 a0 a1 a2
a1 a2 a3
a2 a3 a4

 > 0 . (6.28)

We are now ready to give the result for general d. Collecting the coefficients of ~a into
the symmetric Hankel matrix:

K(~a) =


a0 a1 · · · ap−1
a1 a2 · · · ap
...

...
...

...
ap−1 ap · · · a2p−2

 , (6.29)

then the coefficients are in the convex hall of the half-moment curve if and only if the Hankel
matrix is a totally positive matrix! A totally positive matrix has the property that all of its
minors are non-negative. This is the well known solution to the Stieltjes moment problem.
Note that due to K being a symmetric matrix, not all minors are independent. The
independent constraints are the positivity of the principle minors of K(~a) and K(~a)i→i+1.
That is

i ∈ even : Det


a0 a1 · · · a i

2

a1 a2 · · · a i
2 +1

...
...

...
...

a i
2
a i

2 +1 · · · ai

 ≥ 0, i ∈ odd : Det


a1 a2 · · · a i+1

2

a2 a3 · · · a i+3
2...

...
...

...
a i+1

2
a i+3

2
· · · ai

 ≥ 0

(6.30)
Its validity can be seen by the analytic representation of eq. (6.30):

i ∈ even :
∑{

b1,b2,··· ,b i
2 +1

}


i
2 +1∏
k=1

pbk

 ∏
1≤k<l≤ i

2 +1

(xbk − xbl)
2 ,

i ∈ odd :
∑{

b1,b2,··· ,b i+1
2

}


i+1
2∏

k=1
pbkxbk

 ∏
1≤k<l≤ i+1

2

(xbk − xbl)
2 (6.31)
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For i ∈ even it is manifestly positive, thus must hold for the convex hull of general moment
curves. Indeed this was already noted in [22]. For i ∈ odd, its positivity then relies on
xa > 0, and thus only hold for the convex hull of half moment curves.

6.3 The Gegenbauer cyclic polytopes

We now turn to the positivity associated with the Gegenbauer polynomials. From the
its definition from the generating function in eq. (5.6), it is straight forward to see that
G

(n)
` (1) ≡ 1

n!∂
n
zG`(z)|z=1 ≥ 0. However, just as the case with moments and Vandermonde

determinants, further positive properties can be found when the components are organized
into matrices. Let us consider the following Gegenbauer matrix

Det


G`1(z1) G`2(z1) · · · G`n(z1)
G`1(z2) G`2(z2) · · · G`n(z2)

...
...

...
...

G`1(zn) G`2(zn) · · · G`n(zn)

 . (6.32)

It turns out, the above matrix is totally positive if 1≤ z1<z2< · · ·zn and `1<`2< · · ·<`n.
For Chebychev polynomials, which are the Gegenbauer polynomials in D= 3, this can be
straightforwardly proven, and we present the result in appendix E. For general D, the
proof follows from that presented by Karlin and McGregor for general orthogonal polyno-
mials [23]. In appendix E, we also give a direct computation of the relevant determinants
for the Gegenbauer case of interest to us, allowing us to see the positivity explicitly

Such “position space” positivity, where the zis are evaluated at separate points, is not
convenient for our EFT analysis. In anticipating the Taylor expansion in eq. (5.9), we would
like to instead extract conditions on the derivatives of the polynomials. This can be done
by taking the positions to be close to some common point, say 1. Then the determinant of
the Gegenbauer matrix becomes that for derivatives of Gegenbauer polynomial evaluated
at zi = 1. For example, defining

G` ≡



G
(0)
` (1)

G
(1)
` (1)

G
(2)
` (1)
...

G
(n)
` (1)


, (6.33)

the determinant of the Gegenbauer matrix with 1 ≤ z1 < z2 < · · · zn < 1 + ε becomes the
determinant of the “Taylor” scheme matrix

(G`1(1), G`2(1), · · · , G`n+1(1)) . (6.34)

Thus the positivity of the Gegenbauer matrix in position space will imply the determinant
of the above matrix is positive. Let’s write out the explicit Taylor coefficients:

G`(1 + 2δ) =
∑̀
q=0

v`,qδ
q , v`,q =


2q

q!(`−q)!
(α)`+q∏q

a=1(α+2a−1) for q ≤ `
0 for q > `

, (6.35)
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where α = D−3. Note that the coefficients are all positive, which reflects the fact that
the derivative of G`(x) is again a positive function.1 Using this one can show that the
determinant of eq. (6.34) is (see appendix E):

Det
[
G`1 , · · · , G`n+1

]
= 2

n(1+n)
2

(
n+1∏
i=1

(α)`i
`i!

1∏i−1
a=1(α+2a−1)a!

)∏
i<j

(`j−`i)(α+`j+`i) ,

(6.36)
which is manifestly positive for ordered spins, `1 < `2 < · · · < `d+1. This immediately tells
us that

the convex hull of the G` is a cyclic polytope! (6.37)

Thus just as for the convex hull of points on the moment curve, the boundaries for Conv[G`]
are simply given by:

d ∈ even → P2 : 〈∗, `i, `i+1〉, P4 : 〈∗, `i, `i+1, `j , `j+1〉,
d ∈ odd → P3 : 〈0, ∗, `i, `i+1〉, 〈∗, `i, `i+1,∞〉,

P5 : 〈0, ∗, `i, `i+1, `j , `j+1〉, 〈∗, `i, `i+, `j , `j+1,∞〉 . (6.38)

Going back to the position space Gegenbauer matrix, instead of setting all of the
positions close to 1, lets have z∗ ≤ z1 < z2 < · · · < zn < z∗ + δ, with 1 < z∗, the eq. (6.32)
becomes

Det


G`1(z1) G`2(z1) · · · G`n(z1)
G`1(z2) G`2(z2) · · · G`n(z2)

...
...

...
...

G`1(zn) G`2(zn) · · · G`n(zn)

 = Det [G`1(z∗), · · · , G`n(z∗)] > 0 . (6.39)

Thus the convex hull of G`(z∗) is in fact a cyclic polytope for all z∗ ≥ 1! Now consider a
series of cyclic polytope,

Polyi = Conv[G`(zi)] , (6.40)

defined with 1≤ z1<z2< · · · . Since the derivative of G`(z) is a positive function, i.e.

dG`(z)
dz

=
∑
`′

c``′G`′(z) c``′ ≥ 0 (6.41)

we can deduce

G`(z + δ) =


G`(z) + δG′`(z)
G′`(z) + δG′′` (z)

...

+O(δ2) = G`(z)+
∑
`′

c``′G`′(z)+O(δ2) . (6.42)

That is, a positively shifted G`(z) can be positively re-expanded on G`(z). Now starting
with z1 < z2, since we’ve concluded G`(z2) is positively expanded on G`(z1), its convex

1This can be deduced by taking the derivative on the generating function. Such extended positivity
away from the forward limit was suggested long ago in [24], and utilized as consistency conditions for EFT
in [25], deriving bounds in [26].
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hull is inside the polytope Pol1. Thus given a series of ordered points, z1 < z2 < z3, the
corresponding Polyi defined in eq. (6.40) satisfies:

Poly3 ⊂ Poly2 ⊂ Poly1 for z1 < z2 < z3 (6.43)

In other words, as we push z away from 1, not only is the convex hull of G`(z) a cyclic
polytope, it goes deeper and deeper inside the original polytope!

6.3.1 Spinning Gegenbauer cyclic polytope

Recall that the Gegenbauer polynomial being the unique polynomial for scalar amplitude
with a spin-` exchange is rooted in the three-point amplitude of two scalars and a spin-`
particle is unique. For general three-point amplitudes with spins this is no longer true.
However as discussed in [21], in four-dimensions given the helicities of the two massless
particles and the spin of the massive particle, the amplitude is fixed. This allows one to
define a set of “spinning” Gegenbauer polynomial basis.

To see this, lets consider the three-point amplitude involving a massive spin-` particle
and massless particles with helicity h1, h2. We again have a polarization tensor εµ1µ2···µ`
needing ` vectors to contract. Due to h1, h2 6= 0, besides from p12 we now have two new
vectors q = λ1λ̃2 and q̃ = q∗ = λ2λ̃1, that can be used to contract with the polarization
tensor. Up to an overall constant, the amplitude is fixed by {h1, h2, `} to be:

qµ1qµ2 · · · qµh2−h1 (p12)µh2−h1+1 · · · (p12)µ`εµ1···µ` , for h2−h1 > 0
q̃µ1 q̃µ2 · · · q̃µh1−h2 (p12)µh1−h2+1 · · · (p12)µ`εµ1···µS , for h1−h2 > 0 . (6.44)

We can now glue the two three-point amplitudes together to construct the residue for a
spin-` exchange. As discussed in [21], since the polarization tensors form irreps of the little
group, the gluing of the three-point amplitude is simplified by first rewriting it in SL(2,C)
irreps as:

[12]`+h1+h2
(
λ`+h2−h1

1 λ`+h1−h2
2

)
{α1···α2`}

, (6.45)

then contract the SL(2,C) indices between both sides of the factorization channel. In the
center of mass frame, we can parameterize the spinors as:

λ1 = m
1
2

(
1
0

)
, λ2 = m

1
2

(
0
1

)
, λ3 = im

1
2

(
sin θ

2
− cos θ2

)
, λ4 = im

1
2

(
cos θ2
sin θ

2

)
. (6.46)

We can identify the three-point coupling in eq. (6.45) involving legs 1, 2 as a spin-` state
with “Jz” quantum number m = h1 − h2. Replacing 1, 2 with 3, 4 we then have a spin-`
state with quantum number m = h3 − h4, acted upon a rotation matrix in the “y”-axes
by θ. The gluing of the three-point amplitude on both sides then simply corresponds to
computing the overlap of the two states, which is nothing by the Wigner d-matrix! Thus
we see that for general spinning particles the polynomial is simply:

d`h1−h2,h3−h4(θ) , (6.47)

where djm′,m(θ) is the Wigner d-matrix defined by djm′,m(θ) = 〈j,m′|e−iθJy |j,m〉.
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Let us consider as an example the residue for a spin-` exchange in the helicity config-
uration (+h,−h,+h,−h). Writing it as a product of three point amplitudes, we find:

n
{+h,−h,+h,−h}
` = A(1+h2−hP`)A(3+h4−hP`)

= |c`|
2([12][34])`
m4`−2

(
λ`−2h

1 λ`+2h
2

){α1···α2`} (
λ`−2h

3 λ`+2h
4

)
{α1···α2`}

= |c`|2[13]2h〈24〉2h ([12][34])τ
m4`−2−4h [(λτ1λτ2) · (λτ3λτ4)] ,

= |c`|2m2d`2h,2h(θ) , (6.48)

where P` indicates a spin-` state with P 2 = (p1+p2)2 =m2, τ = `−2h and we’ve normalized
the amplitudes such that the coupling constant c` is dimensionless. Note that the `-
independent prefactor [13]2h〈24〉2h is required from helicity constraints, indicating that
d`2h,2h(θ)∝ cos4h θ

2 . Exchanging 3,4 one obtains the residue for other helicity configurations:

n
{+h,−h,−h,+h}
` =

∑
`

|c`|2m2(−1)`d`2h,−2h(θ) . (6.49)

Note that n{+h,−h,−h,+h}` = (−1)`n{+h,−h,+h,−h}` |θ→θ+π.2 For example, the polynomials for
the first few spins in n{+1,−1,+1,−1}

` are:

d2
2,2(θ) = cos4 θ

2
d3

2,2(θ) = cos4 θ

2(3 cos θ−2)

d4
2,2(θ) = cos4 θ

2(1−7 cos θ+7 cos2 θ)

d5
2,2(θ) = cos4 θ

2(1+3 cos θ−18 cos2 θ+15 cos3 θ) . (6.50)

Note that one starts from ` = 2 a reflection of Landau-Yang’s theorem.
Now following the previous discussion, since the Wigner d-matrices are also orthogonal

polynomials, we expect that their Taylor vectors yield a positive definite matrix when the
spins are ordered. Indeed consider the Taylor vectors for d`2,2(θ) expanded around θ = 0.
The Taylor vectors for spins 2, 3, · · · , 9 are given as:

h=1 :



1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

0 3
4

7
4 3 9

2
25
4

33
4

21
2

0 0 7
4

27
4

135
8

275
8

495
8

819
8

0 0 0 15
4

165
8

275
4

715
4

3185
8

0 0 0 0 495
64

3575
64

15015
64

47775
64

0 0 0 0 0 1001
64

9009
64

5733
8

0 0 0 0 0 0 1001
32

10829
32

0 0 0 0 0 0 0 1989
32


(6.51)

It is straight forward to verify that, just as the vectors from Gegenbauer polynomials, the
above is a totally positive matrix. Thus we see that the convex hull of the Taylor vectors
from the spinning polynomial yields a cyclic polytope.

2We thank Z. Bern, A. Zhiboedov, and D. Kosmopoulos for pointing out this relation.

– 35 –



J
H
E
P
0
5
(
2
0
2
1
)
2
5
9

7 The s-channel EFT-hedron

In the previous section we’ve seen that for a to reside inside a convex hull, the geometry
set up in eq. (5.12), (5.13), it can be cast into a (infinite) set of positivity conditions:

fi(a) ≥ 0 . (7.1)

The explicit function fi depends on the vectors that constitute the hull, and can be linear
or non-linear functions of a. Let us now explore the geometry for the simplest class of
EFTs where the massless degrees of freedom are colored state. We can then focus on color
ordered four-point amplitude and assume the absence of UV states in the u-channel. In
such case we have eq. (5.12)

ak,q =
∑
a

pa
v`a,q

(m2
a)k+1 pa ≥ 0 , (7.2)

where once again v`,q is the q-th Taylor coefficient in expanding G`(1 + 2δ). The couplings
ak,q are naturally dimensionful, but since our bounds will be projective in nature, only
dimensionless ratios will be constrained. Note that since we are considering color ordered
amplitudes, cyclic symmetry implies that the amplitude is symmetric under s↔ t. Trans-
lated to the EFT couplings we have that they must lie on the “cyclic plane” XCyc defined by

ak,q = ak,k−q . (7.3)

Thus the geometry of interest will be the intersection of the convex hull in eq. (7.2), with
the cyclic plane XCyc.

Recall that the origin of eq. (7.2) is the fact that the low energy amplitudes can
be reproduced from the s-channel singularities. This can be recast into the following
equivalence:

∑
k,q

ak,q sk−qtq =
∑
a

−
pa G`a

(
1 + 2 t

m2
a

)
s−m2

a

for s, t� m2 , (7.4)

where the equality is understood as the matching of Taylor series in s, t on both sides,
with n ≥ 2. Thus the sum on the r.h.s. is only expected to reproduced ak,q with q ≤ k−2.
Writing out the Taylor series for the r.h.s.,

∑
k,q

ak,q sk−qtq =
∑
a

pa
m2
a

(
1 + s

m2
a

+ s2

m4
a

+ · · ·
)(

v`a,0 + v`a,1
t

m2
a

+ v`a,2

(
t

m2
a

)2
+ · · ·

)
,

(7.5)
we immediately see the emergence of two types of geometries, one is the coefficients asso-
ciated with the expansion in t and the other is the expansion in s. The geometry encoded
in the former is a reflection of UV Lorentz invariance, since the convex hull depends on
the details of the Gegenbauer polynomials, while the geometric series of the later reflects
locality, i.e. that the only singularities of the four-point amplitude are in the Mandelstam
variables. We will begin our analysis by disentangling the two geometry, taking the point
of view of either fixed k or fixed q, and end in the geometry that is defined by its union.
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7.1 Fixed k: the Gegenbauer cyclic polytope

Identifying the coefficient for sk−qtq on both sides of eq. (7.5), we have

ak,q =
∑
a

pa
[
xk+1
a v`a,q

]
xa ≡

1
m2
a

. (7.6)

Now consider terms with the same mass-dimension, corresponding to fixed k. We write

ak =


ak,0
ak,1
...

 =
∑
a

paxk+1
a


v`a,0
v`a,1
...

 . (7.7)

Since pa, xa > 0, this says that
ak ∈ Conv[G`] , (7.8)

that is, the coefficients for the distinct polynomials associated with the mass-dimension
2k+4 operator must live inside the Gegenbauer cyclic polytope! We will refer to Conv[G`]
as the unitary polytope Uk, where the subscript k indicates that the polytope is in Pk−2.
The dimension is projectively k−2, since there are k+1 distinct polynomials at given k,
with ak,k and ak,k−1 not subject to the constraints implied by eq. (7.2).

Furthermore, cyclic symmetry requires that the couplings lie on the cyclic plane Xcyc.
For k < 5 cyclic symmetry simply relates the coefficients ak,k and ak,k−1 to those that
are constrained by Uk. For k ≥ 5 the cyclic plane Xcyc defines a dk+1

2 e−1-dimensional
subspace inside Uk, i.e. the space of allowed couplings are now given by the intersection
of the cyclic plane Xcyc with the unitary polytope Uk, i.e. Uk ∩ Xcyc, as illustrated in
figure 5. In the following, we will consider explicit examples up to k = 5.

• k=2 : D4φ4:
MD4φ4(s, t) = (a2,0s

2+a2,1st+a2,2t
2) (7.9)

we will only be able to bound a2,0 and the geometry is P0. From the fact that v`,0
is a positive number, we simply have a2,0 > 0, the forward limit positivity bound
discussed in [3].

• k=3 : D6φ4

MD6φ4(s, t) = (a3,0s
3+a3,1s

2t+ · · · ) (7.10)

where from now on we’ll suppress listing the couplings that cannot be bounded. The
geometry is now P1, and a3 = (1, a3,1

a3,0
) is bounded by the minimum and maximum

value of v`,1v`,0
, which is 0 and ∞ respectively. Thus we simply have a3,0, a3,1 > 0.

• k=4 : D8φ4

MD8φ4(s, t) = (a4,0s
4+a4,1s

3t+a4,2s
2t2+ · · · ) (7.11)

we have a4 = (1, a4,1
a4,0

,
a4,2
a4,0

) ≡ (1, x, y). The boundaries of the two-dimensional poly-
gon are given by (i, i+1), and the constraint on a4 is given by 〈a4, i, i+1〉 > 0 and
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X

U

Figure 5. The s-channel geometry at fixed k. The vector ak must live on the intersection between
the cyclic plane Xcyc with the unitary polytope Uk.
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y

Figure 6. The allowed region satisfying 〈a4, i, i+1〉 > 0. We have plotted the combined constraint
for i ≤ 40. For larger is, the constraint does not appear for the range of (x, y) displayed in the plot.

〈a4,∞, 0〉 > 0, where

〈a4, i, i+1〉 = Det

 1 vi,0 vi+1,0
x vi,1 vi+1,1
y vi,2 vi+1,2

 (7.12)

Listing the first sets of constraint:

〈a4,0,1〉> 0⇒ y > 0, 〈a4,1,2〉> 0⇒ 6−3x+2y > 0, 〈a4,2,3〉> 0⇒ 18−4x+y > 0 .
(7.13)

The combined constraint is plotted in figure 6.

• k=5 : D10φ4

MD10φ4(s, t) =
(
a5,0s

5+a5,1s
4t+a5,2s

3t2+a5,3s
2t3+ · · ·

)
(7.14)

– 38 –



J
H
E
P
0
5
(
2
0
2
1
)
2
5
9

0 5 10 15 20 25 30

0

20

40

60

80

100

x

y

Figure 7. The constraints curved out from 〈a5, i, i+1,∞〉 > 0.

In this case, the cyclic plane a5 ∈ Y = (1, x, y, y) is two dimensional and thus
represent a subspace of the three-dimensional unitary polytope U5. There are two
sets of constraint coming from 〈0,a5, i, i+1〉 > 0 and 〈a5, i, i+1,∞〉 > 0, given as:

〈0,a5, i, i+1〉 =


1 1 vi,0 vi+1,0
0 x vi,1 vi+1,1
0 y vi,2 vi+1,2
0 y vi,3 vi+1,3

 , 〈a5, i, i+1,∞〉 =


1 vi,0 vi+1,0 0
x vi,1 vi+1,1 0
y vi,2 vi+1,2 0
y vi,3 vi+1,3 1

 (7.15)

The first set of constraints simply leads to y ≥ 0, x ≥ y
3 , while the second set is shown

in figure 7. The combined constraint leads to finite region comprised of boundaries
(i, i+1,∞) with i = 0, 1, · · · , 4 and (0, 4, 5) as shown in figure 8.

The fact that the ratio of coefficients ak,q
ak,0

are bounded within finite regions tells us
that, in the on-shell basis, it is not only unnatural to have two distinct operators with the
same dimension yet large differences in their coupling constants, unitarity in the UV tells
us that it is impossible to do so!

Let’s see where explicit EFTs sit inside Uk∩Xcyc. Consider the open superstring four-
gluon amplitude in eq. (2.4), where its low-energy expansion is given in eq. (2.6). Stripping
off the spinor brackets and consider the expansion up to k = 5 we find,

k = 2 : a2,0 = 2ζ2
2

5 , k = 3 : a3,0 = ζ(5), a3,1 = 2ζ(5)−ζ(3)ζ(2)

k = 4 : (x, y) =
(
a4,1
a4,0

,
a4,2
a4,0

)
=
(

3
4 −

945ζ2
3

2π6 ,
23

20160 −
3ζ2

3
4π6

)

k = 5 : (x, y) =
(
a5,1
a5,0

,
a5,2
a5,0

)
=
(

3− π4ζ3 + 15π2ζ5
90ζ7

, 5− π4ζ3 + 24π2ζ5
72ζ7

)
. (7.16)

For k = 2, 3 the coefficients are not only inside Uk, it close to the “boundary”. This
behaviour is more prominent for k = 4, 5 where the EFT couplings are close to the boundary
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Figure 8. The projection of the unitary polytope onto the cyclic plane at k = 5. The boundary is
given by (0, 4, 5) as well as (i, i+1,∞) for i = 0, · · · , 4, displayed as (i, i+1).
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Figure 9. The position of the string theory coefficients given in eq. (7.16) inside the region Uk∩Y,
for k = 4, 5 respectively.

comprised of low spins, as we display in figure 9. This indicates that the pas in eq. (7.2)
is dominated by contributions from low spin sector. In fact, in section 10 we will see that
such behaviour is common amongst all known EFTs.

7.2 Fixed q: Hanekl matrix constraints

Instead of fixed k and considering the constraint on ak, let’s now examine the geometry
associated with fixed q, i.e. that associated with the first parenthesis on the r.h.s. of eq. (7.5).
First taking q = 0, we have

ak,0 =
∑
a

p′a(xa)k , (7.17)

where p′a = xapa v`,0, and the equality holds for the k ≥ 2. Since v`,0 = G`(1) is positive,
p′a > 0. We immediately see that eq. (7.17) implies ak,0 > 0, which is the forward limit
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positivity bound discussed in [3] extended to higher derivatives. We’ve seen this before in
section 6.2, the vector

ã0 =


1
a3,0
a2,0
a4,0
a2,0
...

 =
∑
a

pa


1
xa
...
xka

 , xa ≡
1
m2
a

, (7.18)

lies in the convex hull of points on a half moment curve, and thus the Hankel matrix of its
entries K[ã0] is a totally positive matrix. Note that since v`,q > 0 for all q, the same holds
true for any fixed q. Thus in general we have:

K [ãq] ∈ Total positive matrices ∀q . (7.19)

Once again, lets us demonstrate this for the Type-I string amplitude. Collecting the
coefficients as

~a0 =



2
5ζ

2
2

ζ5
8
35ζ

3
2

ζ7
24
175ζ

4
2

 , ~a1 =


2ζ5−ζ2ζ3
6
35ζ

3
2−1

2ζ
2
3

3ζ7−ζ2ζ5−2
5ζ

2
2ζ3

6
35ζ

4
2−ζ3ζ5

4ζ9−ζ2ζ7−2
5ζ

2
2ζ5− 8

35ζ
3
2ζ3

 . (7.20)

The corresponding Hankel matrix are,

K [~a0] =


2
5ζ

2
2 ζ5

8
35ζ

3
2

ζ5
8
35ζ

3
2 ζ7

8
35ζ

3
2 ζ7

24
175ζ

4
2



K [~a1] =

 2ζ5−ζ2ζ3
6
35ζ

3
2−1

2ζ
2
3 3ζ7−ζ2ζ5−2

5ζ
2
2ζ3

6
35ζ

3
2−1

2ζ
2
3 3ζ7−ζ2ζ5−2

5ζ
2
2ζ3

6
35ζ

4
2−ζ3ζ5

3ζ7−ζ2ζ5−2
5ζ

2
2ζ3

6
35ζ

4
2−ζ3ζ5 4ζ9−ζ2ζ7−2

5ζ
2
2ζ5− 8

35ζ
3
2ζ3

 (7.21)

It is straight forward to check that all minors of the above Hankel matrix are indeed
positive. A more detailed study of the Hankel matrix constraint for superstring amplitude
was recently done in [29].

It is interesting to ask which theories lie on boundaries of the Hankel constraints, i.e.,
for which theories do all the minors of the Hankel matrix greater than some size all vanish?
The answer is extremely simple and satisfying. Only UV amplitudes with a finite number
of poles satisfy this property; that is, only UV theories with N massive states exchanged at
tree-level lie on the boundary of the Hankel constraints. This can be seen from the analytic
expression of the determinants in eq. (6.31), where it is proportional to the Vandermonde
determinant of the masses of the UV state xa. This gives us a way to “detect” the number of
massive states: if there are a massive states, then the (a+1)×(a+1) determinant vanishes.
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Figure 10. We organize the information that each state contributes to the determination of ak,q.
For each fixed row (fixed k), for example the red box, each state’s contribution is proportional to
a Gegenbauer vector multiplied by a universal factor xka. For a fixed column (fixed q), the purple
box, each state contributes to a point on a half moment curve multiplied by universal factor v`a,q.

Figure 11. For a given state, its contribution to each row is the same vector (v`a,0, v`a,1) after
scaling away the moment factor xka.

7.3 The s-channel EFT-hedron

Up to now, we’ve been considering the constraints from the two parenthesis in eq. (7.5)
separately. These, however, are not the full set of constraints. To see this it is useful to
organize the information each state contributes to ak,q as in figure 10. For a given row,
each state contributes a fixed positive factor xka multiplying the Gegenbauer vector, which
led to the constraint that the row vectors must lie in the convex hull of a cyclic polytope.
For a fixed column, each state contributes a point on the half moment-curve weighted by a
positive factor v`,q, and thus implying the constraint that the Hankel matrix of the column
vector is a totally positive matrix.

As one can see from the above description, these are not the complete constraints. For
example, the cyclic polytope constraint does not tell us that the positive proportionality
factor takes the form xka, which is only visible if we consider different ks at the same
time. Put in another way, if we truncate our expansion of t to a fix order, say the first
order, we should see that for different moments (xka), each state contribute the same vector
(v`a,0, v`a,1), as illustrated in figure 11. In other words, not only does each row must lie in
the cyclic polytope, but it must be the same point after scaling away the moment factors!

To recap, the space of higher dimensional operator is given by the tensor product of
two positive geometries, the Gegenbauer cyclic polytope and convex hull of half moment
curve, and we would like to find the full set of inequalities that carve out this space. This
is reminiscent to the (tree) Amplituhedron which gives the scattering amplitude of N = 4
SYM [5]. There we have a subspace of k-planes in k+4 dimensions, Y I

α , given by the
product of two positive geometries

Y I
α =

∑
i=1,n

Cα,iZ
I
i , Cα,i ∈ Gr>0(k, n), ZIi ∈M+(n, k+4) (7.22)
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where the Cα,i is in the positive Grassmannian Gr>0(k, n), a k×n matrix with all ordered
minors positive mod GL(k), and ZIi is a n × k+4 positive matrix with positive ordered
minors. The Zs are the “external data” that is given and already in the positive region.
Note that for k = 1, this is simply a polytope in P4. To carve out this space via inequalities,
we require that Y satisfies:

〈Y1Y2 · · ·YkZiZi+1ZjZj+1〉 > 0 . (7.23)

To see this note that we can interpret eq. (7.22) as expanding Y I
α on the “basis” ZIi , with

coefficients Cα,i. Then the above condition implies

〈Y1Y2 · · ·YkZiZi+1ZjZj+1〉 =
∑

i1<i2<···<ik
〈Ci1Ci2 · · ·Cik〉〈Zi1Zi2 · · ·ZikZiZi+1ZjZj+1〉 > 0 .

(7.24)
For this to hold for any choice of ZIi ∈M+(n, k+4), forces Cα,i ∈ Gr>0(k, n).

For our case, the fixed external data is the Gegenbauer vectors, which automatically
yield positive matrices. This motivates us to first organize all the states with the same
spin together and rewrite eq. (7.6) as:

ak,q =
∑
a

pa
[
xk+1
a v`a,q

]
≡
∑
`

Ck,`V`,q . (7.25)

Here V`,q = v`,q, and Ck,` = ∑
{a:`a=`} pa x

k+1
a , where one sums over all the states with the

same fixed spin `. Collecting the Cs into a column vector C` = {C1,`, C2,`, · · · , Ck,`}, we
see that C` is inside the convex hull of half moment curve. We are now ready to define the
EFT-hedron: the space of consistent coefficients of higher dimension operators are given
by the product (with k ≥ q)

ak,q =
∑
`

Ck,`V`,q (7.26)

where Ck,` is positive in the sense that K[C`] is a totally positive matrix for each `, and V`,q
is positive in that any ordered minor of the vectors are positive. Let us make a comparison
with the amplituhedron [5]. For the EFT-hedron the positivity property in C is defined for
each column (spin) independently, while for the amplituhedron the C being in Gr>0(k, n),
the positivity condition mixes the columns. For the amplituhedron I is locked in with k

being 4+k dimensional, while for the EFT-hedron q can be any dimension independent of k.
Now let us carve out the space via inequalities. Consider a set of “walls”, which are

dual vectors Wq
I , labelled by I, satisfying∑

q

Wq
IV`,q ≥ 0, ∀`. (7.27)

Unit vectors {0, 0, 1, · · · , 0} trivially satisfies this criteria due to the positivity of the Gegen-
bauer Taylor coefficients. We denote these as Wq

II
. There are also walls comprised of the

facets of Conv[V`], taking the form (i, i+1), (1, i, i+1), e.t.c, which in dual vector form is
given by 〈∗, i, i+ 1〉, 〈∗, 1, i, i+ 1〉. We denote these as Wq

Ib
. Given these walls we take the

inner product with the higher dimension operators. Defining:

Ak,I ≡
∑
q

ak,qWq
I , ∀ Wq

I ∈ {W
q
II
,Wq

Ib
} (7.28)
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then the EFT-hedron is carved out by the inequality:

K[ ~AI ] is a totally positive matrix , (7.29)

where ~AI = (A0,I , A1,I , · · · ). In other words, for any of one of the walls Wq
I , the Ak,Is

satisfy the following infinite set of constraints

A0,I ≥ 0, A1,I ≥ 0, Det
(
A0,I A1,I
A1,I A2,I

)
≥ 0, Det

(
A1,I A2,I
A2,I A3,I

)
≥ 0

Det

A0,I A1,I A2,I
A1,I A2,I A3,I
A2,I A3,I A4,I

 ≥ 0, Det

A1,I A2,I A3,I
A2,I A3,I A4,I
A3,I A4,I A5,I

 ≥ 0, · · · e.t.c. (7.30)

Before closing, let us confirm that the inequalities in eq. (7.29), combined with the
information of the walls, indeed carves out the space in eq. (7.25). First take the walls to
be the unit vectors, then K[ ~AII ] being a totally positive matrix simply implies

ak,q =
∑
a

pa,q(xa)k, pa,q > 0 xa > 0 , (7.31)

i.e. for each fixed q, the vector ~aq = (a1,q, a2,q, · · · ) lies in the convex hull of half moment
curves. Next, we consider the walls that are the boundaries of the Conv[V`]. The positivity
of individual Ak,Ib tells us that each row ak,q is inside Conv[V`]. This combined with the
previous result tells us that

ak,q =
∑
a,`

pa(xa)k Oa,k,` V`,q, pa > 0 , xa > 0 , Oa,k,` > 0 . (7.32)

Finally, the total positivity of K[ ~AIb ] then tell us that Oa,k,` must be such that (xa)k
Oa,k,` = (x′a,`)k in other words:

ak,q =
∑
a,`

pa(x′a,`)k V`,q, pa > 0 x′a,` > 0 (7.33)

we see that indeed eq. (7.25) is recovered.

7.4 The geometry of the gap

Let’s suppose we have the extra information of the scale of the UV completion, i.e. the UV
spectrum starts at MGap above the massless modes. This allows us to write

ak,0 =
∑
a

pa
M

2(k+1)
Gap

(
MGap
ma

)2(k+1)
= 1
M

2(k+1)
Gap

∑
a

pa xk+1
a , xa ≤ 1 . (7.34)

Now since xa ≤ 1, we see that the gap implies

a2,0 ≥M2
Gapa3,0 ≥ · · · ≥M2(k−2)

Gap ak,0 ≥ 0 . (7.35)
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The fact that xa ≤ 1 also tells us that the convex hull of ak is now over a restricted region
of the half-moment curve:

ak =
∑
a

pa


1 0 0 0
0 1
M2

Gap
0 0

0 0
... 0

0 0 0 1
M

2(k−2)
Gap




1(

MGap
ma

)2

...(
MGap
ma

)2(k−2)



→


1 0 0 0
0 M2

Gap 0 0

0 0
... 0

0 0 0 M2(k−2)
Gap

ak =
∑
a

pa


1
xa
...

xk−2
a

 , pa > 0, xa ≤ 1 , (7.36)

that is, instead of x ∈ R+ we now have x ∈ [0, 1]. For simplicity we set M2
Gap = 1 from

now on, and we write:

ak =
∑
a

pa


1
xa
...

xk−2
a

 , pa > 0, xa ≤ 1 , (7.37)

where the components of ak have been rescaled by appropriate factors ofM2
Gap to be dimen-

sionless. Now since the curve is bounded by xa = 1, we now have a new boundary vertex

nGap =


1
1
· · ·
1

 . (7.38)

The change in geometry is fully illustrated in the following P2 example

where the convex hull now has a new boundary consists of (0, n), with 0 denoting the spin-0
vector. Extending to higher dimensions we now have a new set of boundary consists of
(0, i, i+1, · · · , n), thus besides the usual Hankel matrix constraints, a now must also respect

〈0,a, i, i+1, · · · , j, j+1, n〉 > 0 , (7.39)

where we recall (i, i+1)→ (i, i̇).
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Now the new constraint eq. (7.39) can be translated to the geometry projected through
the line (0, n). To see this geometry cleanly, we take a GL transformation G that keeps 0
fixed and rotate n to:

G 0 =



1
0
0
...
0


, G n =



0
1
0
...
0


,→ G =



1 −1 0 0 0
0 1 0 0 0
0 1 −1 0 0
...

...
...

...
...

0 0 0 1 −1


, . (7.40)

The action of G on the moment curve yields

G



1
x

x2

x3

...
xd


=



1−x
x

x(1−x)
x2(1−x)

...
xd−1(1−x)


. (7.41)

Thus after the GL transformation, the presence of (0, n) in the determinant 〈0,a, i,
i+1, · · · , j, j+1, n〉 simply knocks out the first two component of the other vectors, and
eq. (7.39) becomes

〈ã, ĩ, ĩ+1, · · · , j̃, j̃+1〉 > 0 (7.42)

where the “ ˜ ” represents the GL transformed vector with the first two components re-
moved. For example

Ga =



a2−a3
a3

a3−a4
a4−a5
a5−a6

...


→ ã =


a3−a4
a4−a5
a5−a6

...

 . (7.43)

Now ĩ takes the form:
xi(1−xi)
x2
i (1−xi)

...
xd−1
i (1−xi)

 = xi(1−xi)


1
xi
...

xd−2
i

 (7.44)

which, since 0 < x ≤ 1, up to a positive factor is once again a moment curve! In other
words, the constraint 〈ã, ĩ, ĩ+1, · · · , j̃, j̃+1〉 > 0 implies that ã, which are twisted sum
of ais, also satisfies the non-linear Hankel matrix constraint! For example, starting with
a ∈ P4, we have ã = (a4−a3, a5−a4, a6−a5), and the Hanel matrix constraint implies
ai > aj for i > j and

(a3 − a4)(a5 − a6)− (a4 − a5)2 > 0 . (7.45)
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The above argument is not all! We have just noted that ĩ is positively proportional
to a moment curve, but once again since x ≤ 1, it is a capped moment curve and we
can reiterate our analysis! The above argument gives an intuitive explanation for the
additional gapped Hankel constraints, but with hindsight it is also easy to derive them
even more directly. We simply note that if (a2, a3, a4, a5, · · · ) is in the convex hull of
(1, x, x2, · · · ), then (a2−a3, a3−a4, a4−a5, · · · ) is the convex hull of x(1−x)× (1, x, x2, · · · ).
Since x(1−x) ≥ 0 for 0 ≤ x ≤ 1, this is the same as the hull of (1, x,2 , · · · ). Thus the
discrete derivative (a2−a3, a3−a4, a4−a5, · · · ) must have a totally positive Hankel matrix!

In summary, with a known gap, we can find that the following sequence of “twisted”
couplings satisfies the positive Hankel matrix constraint:

a2
a3
a4
a5
a6
a7
...


,



a3−a4
a4−a5
a5−a6
a6−a7

...


,


(a4−a5)− (a5−a6)
(a5−a6)− (a6−a7)

...

 . (7.46)

This is known as the Hausdorff moment problem [27, 28]. The extra constraints from the
knowledge of the gap are interesting, however, they are obviously of only academic inter-
est to the low-energy observer that has no knowledge of the gap. Any higher-dimension
operator measured by a low-energy observer could be produced by arbitrarily weakly cou-
pled, arbitrarily low-mass states, and in the limit where the masses and couplings go to
zero we recover the pure Hankel constraints. Note that the pure Hankel constraints are
homogeneous in mass dimensions, comparing sums of products of couplings with the same
total mass dimension, which are the only sorts of constraints we can talk about without
knowledge of an absolute mass scale (such as the gap). For this reason, in the rest of
this paper, we will focus on these types of universal constraints on that can be sensibly
formulated in the low-energy theory, assuming no knowledge of the gap.

8 Scalar EFT-hedron

So far we have restricted ourselves to the geometry arising from singularities on the positive
real s-axis. For a general 2 → 2 process, M(1a, 2b, 3b, 4a), the amplitude will have poles
and discontinuities on both positive and negative real s-axes, reflecting s and u-channel
exchanges:

1

2 3

4 1

2 3

4

(s) (u)

a a a a

b b b b
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The residue or discontinuity on the s-channel as a function of t will be identical to that
in the u-channel since the two diagrams are related via 2 ↔ 3 exchange. However, while
the residues are the same, the u-channel singularities lie on the negative s-axes with a
t-dependent shift: u −m2 = −s − (t+m2). In other words, the low energy couplings are
now governed by the Taylor expansion of:

−
∑
a

p`a
[ 1
s−m2

a

+ 1
−s− t−m2

a

]
G`a

(
1+ 2t

m2
a

)
(8.1)

Recall that in the previous section, the s-channel EFT-hedron is the direct product of the
positive geometry of the Gegenbauer vectors and that of the moment curve. Compared to
the above one can see that we now have a new feature: upon Taylor expansion, the t in the
u-channel will mix with that from G`(1 + 2t

m2 ), and the two geometry is no longer a direct
product, but “entangled”.

Due to the s, u symmetry, it will be more convenient to parameterize our kinematics as

s = − t2 + z, u = − t2 − z , (8.2)

and the four-point amplitude is a function of z, t, M(z, t). The low energy couplings are
now extracted from the Taylor expansion of:

−
∑
a

pa

(
1

− t
2 − z −m2

a

+ 1
− t

2 + z −m2
a

)
G`a

(
1 + 2t

m2
a

)
(8.3)

The resulting Taylor expansion only has even powers of z, which is a reflection of the under-
lying s↔ u symmetry. If we consider the geometry associated with fixed k or fixed q, then
the geometry here is the Minkowski sum of the s- and u-channel convex hull. Thus we have3

ak,qz
k−qtq =

∑
a

pa
[
xk+1
a u`a,k,q

]
zk−qtq k−q ∈ even , (8.4)

where the coefficients u`,k,q are linear combinations of Gegenbauer Taylor coefficients v`,qs:

u`,k,q =
∑
a+b=q

(−)a (k−q + 1)a
a! 2b−av`,b . (8.5)

Thus for fixed k, the couplings must live inside Conv[~u`,k], where

k ∈ even : ~u`,k = (u`,k,0, u`,k,2, · · · , u`,k,k)
k ∈ odd : ~u`,k = (u`,k,1, u`,k,3, · · · , u`,k,k) . (8.6)

Importantly, the vectors ~u`,k are labeled by both the spin and k. This k-dependence was
absent in the s-channel analysis, where Conv[~v`] only depends on spin. This new feature
leads to an important distinction between s-channel and full EFT-hedron.

3Here we define the couplings ak,q with respect to powers of z, t. To avoid proliferation of new couplings,
we will continue to use the notation ak,q where the context is obvious.
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Due to the absence of zodd terms, at fixed k the dimensionality of ~u`,k is smaller than
~v` (half for k ∈ odd). More precisely, ~u`,k is obtained by a GL rotation of ~v` that projects
away the odd components. For example for k ∈ even we have:

~u`,k =



u`,k,0
0

u`,k,2
...
0

u`,k,k


=



1 0 0 0 0 0
0 0 0 0 0 0

(k−1)2
2

1
22 (k−1)1 1 0 0 0

...
...

...
...

...
...

0 0 0 0 0 0
(1)k
k! 2−k − (1)k−1

k−1! 22−k (1)k−2
k−2! 24−k · · · −2k−2 1





v`,0
v`,1
v`,2
...

v`,k−1
v`,k


. (8.7)

Due to this projection, Conv[~u`,k] does not inherit the positivity of Conv[~v`], and thus we
cannot conclude that Conv[~u`,k] is a cyclic polytope. Similarly for fixed q, comparing the
coefficient of xk+1

a in eq. (8.4) with the s-channel eq. (7.6), we see that the k-dependence
of u`a,k,q results in each moment xk+1

a being weighted differently, and we no longer have a
momentum curve. Thus naively, the positivity geometry that defined the s-channel EFT-
hedron is lost, and we no longer have control over the geometry. As we will now see, there
is in fact a hidden positivity that retains most of the structure of the s-channel cyclic
polytope, and thus allowing us to carve out the EFT-hedron.

8.1 The s−u polytope

Let us consider the boundaries of the (s−u) polytope, i.e. Conv[~u`,k]. We will be interested
in the sign for the determinant of ordered ~u`,ks. Setting k = 4 as an example, we find:

Det
(
~u`1,4 ~u`2,4 ~u`3,4

)
= Det

 v`1,0
v`1,2 − 3

4v`1,1 {`2} {`3}
v`1,4 − 1

4v`1,3 + 1
16v`1,2 −

1
64v`1,1



= Det

 v`1,0v`1,2 {`2} {`3}
v`1,4

− 3
4Det

 v`1,0v`1,1 {`2} {`3}
v`1,4

− 1
32Det

 v`1,0v`1,1 {`2} {`3}
v`1,2



− 1
4Det

 v`1,0v`1,2 {`2} {`3}
v`1,3

+ 3
16Det

 v`1,0v`1,1 {`2} {`3}
v`1,3

+ · · · , (8.8)

where {`i} represent the same as the first column just with `1 → `i, and `1 < `2 < `3. We
see that the determinant for ordered ~u`,k is given by a sum of determinant for ordered ~v`,k
with mixed signs, and thus the positivity of the later do not imply that for the former.

Amazingly, explicit evaluations of eq. (8.8) reveals that the determinant is positive so
long as {`i}s are larger than some critical spin! That is, above some critical spin, `c,

Det[{~u`1,k, ~u`2,k, · · · }] > 0, ∀ `c ≤ `1 < `2 < · · · . (8.9)

In other words the convex hull of Gegenbauer vectors above the critical spin yields a cyclic
polytope.4 For example, focusing on four-dimensions, we find the critical spin at different

4A fun “historic” note, the authors actually first observed the positivity of the ordered determinants for
~u`,k, not ~v`.
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Figure 12. We take the ratio of the four determinants in the second and third line in eq. (8.8),
denoted as mi(`1, `2, `3), for i = 1, · · · , 4. We plot m1(1+n,2+n,3+n)

m2(1+n,2+n,3+n) (red), m1(1+n,2+n,3+n)
m3(1+n,2+n,3+n) (blue),

and m1(1+n,2+n,3+n)
m4(1+n,2+n,3+n) (green), with n = 1, · · · . As we can see, m1(`1, `2, `3) is the largest and the

ratio is an increasing function with spins.

k given as:
k 2 3 4 5 6 7 8 9 10
`c 1 2 2 3 3 4 4 5 5

. (8.10)

It is intriguing to understand how such positivity emerged. In the r.h.s. of eq. (8.8), each
term can be identified as a minor of the Gegenbauer matrix with half of the rows removed.
Consider the ratio of the first term on the r.h.s. of eq. (8.8), against the next three. The
first term has the property that it retains only even Taylor expansion terms. We plot
these ratios for spins (`1, `2, `3) = (1 + n, 2 + n, 3 + n) in figure 12. As we can see, the
leading term is dominant to the others as we increase in spin. Thus the even though
the other determinants in eq. (8.8) may have negative coefficients, their contributions are
overwhelmed by the leading term which leads to the observed positivity. In other words,
the minors with all even (or odd depending on the dimensions) Taylor coefficients take the
maximal value!

The fact that ~u`,k form a cyclic polytope above the critical spin, indicates that for our
s−u polytope, most of the boundaries are known except for those involving spins below
the critical spin, which can be computed straightforwardly. For coefficients that we can
reliably bound, i.e. those proportional to zn with n ≥ 2. For k=2 (D4φ4), we have

MD4φ4 =
(
a2,0z

2 + a2,2t
2
)

(8.11)

which simply gives us a2,0 > 0. For higher k, we have:

• k=3 : D6φ4

MD6φ4 =
(
a3,1z

2t+a3,3t
3
)

(8.12)

Here we again have a single coefficient a3,1 to bound. Since

u`,3,1 = {−3, 1, 9, 21, . . .} , (8.13)

due to the first entry being negative, the positive span of these numbers will cover
the whole real line, meaning we have no bound for the coefficient a3,1.
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• k=4 : D8φ4

MD8φ4 =
(
a4,0z

4 + a4,2z
2t2 + a4,4t

4
)

(8.14)

We can hope to bound (a4,0, a4,2). The ~ul,k for each spin is
(
u`,4,0
u`,4,2

)
=
(

2
3

)
,

(
2
−3

)
,

(
2
−3

)
,

(
2
27

)
, · · · (8.15)

Projectively these are points in P1, and the boundaries are given by the minimum
and maximum value for the ratio u∗,4,2

u∗,4,0
, which is given by −3

2 and ∞ respectively.
Thus we simply have the bound:

a4,2
a4,0
≥ −3

2 . (8.16)

• k=5 : D10φ4

MD10φ4(s, t) =
(
a5,1z

4t+a5,3z
2t3+ · · ·

)
(8.17)

where we’ve suppressed the couplings that we cannot bound. We would like to
bound (a5,1, a5,3) and the space is P1. However, listing the relevant contributions
from each spin

u`,5,3
u`,5,1

=
{1

2 ,−
7
2 ,−

5
14 ,−

33
38 , . . .

}
, (8.18)

we see that just as in the k = 3 case, the positive span will cover the entire P1, and
thus the bound is trivial.

• k=6 : D12φ4

MD12φ4 =
(
a6,0z

6+a6,2z
4t2+a6,4z

2t4+ · · ·
)

(8.19)

we can bound a6=(a6,0, a6,2, a6,4) and the geometry is P2. The boundaries are given
by:

〈a6, 2, 1〉, 〈a6, 1, 4〉, 〈a6, i, i+1〉i≥4, 〈a6,∞, 2〉. (8.20)

We see that Conv[~u`,6] retains most of the boundaries of a cyclic polytope. Note that
since the spin-0 and 3 vector are not involved with any boundary, they are inside
the hull.5

Moving to higher-ks, in general there are no bounds for k ∈ odd, while for k ∈ even
we have the familiar cyclic polytope boundaries above a critical spin and a few additional
boundaries involving spins below the critical spin.

5Here, the critical spin is 4 instead of 3 as listed in table (8.10). This is because here we are only keeping
the first three components of ~u`,6, i.e. u`,6,0, u`,6,2, u`,6,4.
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Identical scalars: intersecting with the permutation symmetry plane. When
the scalars are identical, the amplitude further respects permutation invariance, and at low
energies will be given as a polynomial in σ2 = (s2 + t2+u2) and σ3 = (s3+t3+u3). This
translate to the couplings ak,q living on the permutation plane Xperm, defined through,

Xperm : M (z, t) = M

(
z

2+3t
4 ,−

t

2+z
)
. (8.21)

Thus the geometry of interest is the intersection between Xperm and the unitary polytope,
where the later is now constructed from even spins only. The dimensionality of Xperm is
the number of independent polynomials built from σ3 and σ2. For k = 2, 4 the polynomial
is unique, and the first place where there are two possibilities is k = 6: σ2

3 and σ3
2. On

Xperm the couplings are parameterize as:
a2,0 a2,2
a4,0 a4,2 a4,4
a6,0 a6,2 a6,4 a6,6
a8,0 a8,2 a8,4 a8,6 a8,8

→

e2

3
4e2

e4
3
2e4

9
16e4

e6 f6
45
16e6− 1

2f6
9
32e6+ 1

16f6
e8 f8

21
8 e8+ 1

4f8
21
8 e8− 5

16f8
45
256e8+ 3

64f8

 . (8.22)

For k = 2, 4 we simply have the bound e2, e4 > 0. At k = 6, 8, the boundaries bound the
ratio f

e to be:

k = 6 : −21
4 <

f6
e6
<

183
4 , k = 8 : −8 < f8

e8
<

223
4 . (8.23)

In figure 13 we display the intersection geometry in P2 for k = 6.
These can be explicitly checked against the spinor-bracket stripped type-II closed string

amplitude:
Γ[−s]Γ[−u]Γ[−t]

Γ[1+s]Γ[1+u]Γ[1+t] . (8.24)

We can then identify:

k= 6 : f6
e6

= (8ζ3
3 +31ζ9)
12ζ9

= 3.73895, k= 8 : f8
e8

= 2(2ζ11+ζ5ζ
2
3 )

ζ11
= 6.99512 . (8.25)

We see that it indeed resides in the bounds given by eq. (8.23).

8.2 Deformed moment curves and the EFT-hedron

We’ve seen the k-dependence of ~u`,k leads to a deformation of the cyclic polytope discussed
in the s-channel geometry. Now we would like to see how such mixing modifies the Hankel
constraints, and the EFT-hedron.

Deformed moment curves. Let’s again collect the coefficient with different ks and
fixed q in to a column vector:

a2,q
a4,q
a6,q
· · ·
ak,q

 =
∑
a

pa



u`a,2,q
u`a,4,q xa
u`a,6,q x

2
a

· · ·

u`a,k,q x
k−2

2
a


. (8.26)
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a6,2

a6,0

a6,4

a4,0

Figure 13. The space of allowed (a6,2
a6,0

,
a6,4
a6,0

). The shaded region is carved out by the unitary
polygon, whose boundary is comprised of (`, ` + 2) with ` ≥ 2, and (2,∞). Note that spin-0 is
inside the hull and thus not part of the boundary. Finally the red-line represents in the intersection
of the permutation “line” Xperm, and the unitary polygon.

For q = 0 as u`,k,0 = v`,0 ≥ 0, the vectors on the r.h.s. are just points on a moment curve
multiplied by an overall positive factor and the usual Hankel matrix constraint applies.
For q 6= 0, the k dependence of u`,k,q spoils this overall proportionality. This leads us to
consider a generalization of moment curves: given a set of distinct positive factors αi, we
define a deformed moment curve (1, x, α1x

2, · · · , αn−1x
n). Note that the convex hull of

such deformed moment curve can be straight forwardly carved out by the total positivity
of the rescaled Hankel matrix:

(
a4,q a6,q
a6,q

a8,q
α1

)
,

(
a6,q

a8,q
α1

a8,q
α1

a10,q
α2

)
,

 a4,q a6,q
a8,q
α1

a6,q
a8,q
α1

a10,q
α2

a8,q
α1

a10,q
α2

a12,q
α3

 · · · . (8.27)

However, this is not sufficient to describe eq. (8.26) for two reason: 1. while each vector
on the r.h.s. of eq. (8.26) is a point on a rescaled moment curve, the scaling factors are
distinct for different spins, and 2. the rescaled factor u`,k,q is not necessarily positive.

Let’s instead collect the different qs into row vectors ~u`,k and ~ak, and rewrite
eq. (8.26) as: 

~a2
~a4
~a6
· · ·
~ak

 =
∑
a

pa



~u`a,2
~u`a,4 xa
~u`a,6 x

2
a

· · ·

~u`a,k x
k−2

2
a


. (8.28)
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Here each vector ~u`,k will be of the same dimension. Now denote the boundaries of
Conv[~u`,k] as ~Wk

I . The inner product (~u`,k · ~Wk′
I ) by construction will give a positive

factor when k = k′, but no longer guaranteed for k′ 6= k. If we find some wall such that
(~u`,k · ~WI) is always positive, then we are in business. Thus the task at hand is to find
the boundary for Conv[~u`,2, ~u`,4, · · · ], i.e. we will be interested in the boundary of the
Minkowski sum. Remarkably, numerical analysis so far has shown that the boundaries of
Conv[~u`,2, ~u`,4, · · · ] are simply that of the highest k.

Conv[~u`,k1 ] ⊂ Conv[~u`,k2 ], ∀k1 < k2 , (8.29)

in other words the inner product of ~u`,k with ~Wk′
I is guaranteed do be positive for k ≥ k′.

Let us take eq. (8.28) and dotted into the boundaries of the highest k:
~a2 · ~Wk

I

~a4 · ~Wk
I

~a6 · ~Wk
I

· · ·
~ak · ~Wk

I

 =
∑
a

pa



(~u`a,2 · ~Wk
I )

(~u`a,4 · ~Wk
I )xa

(~u`a,6 · ~Wk
I )x2

a

· · ·

(~u`a,k · ~Wk
I )x

k−2
2

a


(8.30)

Since by construction ~u`,k · ~Wk
I ≥ 0, the r.h.s. gives a sum over points on a set of deformed

moment curves, with the deformation parameters given as {~α`} = {~u`,2 · ~Wk
I , ~u`,4 · ~Wk

I , · · · }.
Note that the {~α`}s are distinct for each spin.

Now we have arrived at a well posed positive geometry: the convex hull of an infi-
nite number of deformed half moment curves. To proceed we will construct a “principle
deformed curve” such that the deformed curves defined by {~α`} resides in the hull of the
former, i.e. we will like to find a set of parameters {α̃i} that defines a deformed moment
curve whose convex hull encapsulates the r.h.s. of eq. (8.30) for all `. Note that since {~α`}
depends on the boundary ~Wk

I , so will {α̃i}. Let us see how this work in practice.

• k=6: beginning with eq. (8.30) and setting k = 6, we would like to find a deformed
moment curve

(1, x, α1x
2) (8.31)

such that the r.h.s. of eq. (8.30) lies inside its convex hull. Since the being inside its
hall translates to total positivity of the deformed Hankel matrix, we conclude that
we need to find α1 such that  ~u`,2 · ~W6

I ~u`,4 · ~W6
I

~u`,4 · ~W6
I

~u`,6· ~W6
I

α̃1

 , (8.32)

is totally positive for all `, or

(~u`,6 · ~W6
I )(~u`,2 · ~W6

I )
(~u`,4 · ~W6

I )2
≥ α̃1, ∀` . (8.33)

Thus there is a maximal value for α̃1 corresponding to the minimal value of the
r.h.s. of the above. Importantly, since some of the vectors ~u`,6 will inevitably be on
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the boundary ~W6
I , the upper bound for α̃1 is actually zero! To this end, it will be

natural to consider boundaries that are outside of Conv[~u`,6], which we will denote
as ~W6′

I ≡ ~W6
I + ∆w. The value for α̃i now becomes ∆w dependent.

• k=8: taking k = 8 on the r.h.s. of eq. (8.30) for fixed ~W8
I , the independent positivity

constraint will be the total positivity of
 ~u`,2 · ~W8′

I ~u`,4 · ~W8′
I

~u`,4 · ~W8′
I

~u`,6· ~W8′
I

α̃1

 ,
 ~u`,4 · ~W8′

I
~u`,6· ~W8′

I
α̃1

~u`,6· ~W8′
I

α̃1

~u`,8· ~W8′
I

α̃2

 , (8.34)

where once again ~W8′
I = ~W8

I + ∆w. To find a set of suitable (α̃1, α̃2), we first solve
total positivity for the first matrix to determine α̃1, and use the result to solve the
second matrix to determine α̃2.

For general k one iteratively solves the α̃i in sequence. As a final example, for k = 10
we simply iteratively solve total positivity of the following three matrices

 ~u`,2 · ~W10′
I ~u`,4 · ~W10

I

~u`,4 · ~W10′
I

~u`,6· ~W10′
I

α̃1

 ,
 ~u`,4 · ~W10′

I
~u`,6· ~W10′

I
α̃1

~u`,6· ~W10′
I

α̃1

~u`,8· ~W10′
I

α̃2

 ,

~u`,2 · ~W10′

I ~u`,4 · ~W10′
I

~u`,6· ~W10′
I

α̃1

~u`,4 · ~W10′
I

~u`,6· ~W10′
I

α̃1

~u`,8· ~W10′
I

α̃2
~u`,6· ~W10′

I
α̃1

~u`,8· ~W10′
I

α̃2

~u`,10· ~W10′
I

α̃3

 .

(8.35)
In all cases, we need to choose a deformed boundary ~Wk′

I = ~Wk
I + ∆w.

The EFT-hedron. We now turn to the full EFT-hedron. Again begin with

~AI =


A2,I
A4,I
· · ·
Ak,I

 =


~a2 · ~WI

~a4 · ~WI

· · ·
~ak · ~WI

 , (8.36)

where we’ve taken k to be even. Firstly Ak,I is positive, whenever ~WI is one of the facets
of Conv[~u`,k]. Furthermore we require total positivity of the deformed Hankel matrix of
~AI , given as

(
A2,I A4,I

A4,I
A6,I
α̃1

)
,

(
A4,I

A6,I
α̃1

A6,I
α̃1

A8,I
α̃2

)
,


A2,I A4,I

A6,I
α̃1

A4,I
A6,I
α̃1

A8,I
α̃2

A6,I
α̃1

A8,I
α̃2

A10,I
α̃3

 , e.t.c. (8.37)

where ~WI is now the deformed boundary of maximal k, ~Wk′
I , and the deformation param-

eters {α̃i}s defined through the total positivity of eq. (8.35). These two constraints are
encapsulated as:

K[ ~AI ]{α̃i} is a totally positive matrix . (8.38)
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Let us compare side by side the s-channel EFT-hedron and the general EFT-hedron:
starting with ~AI given in eq. (8.36), they are defined by:

s-ch EFT-hedron EFT-hedron
Hankel matrix Canonical K[X] Deformed K[X]{α̃i}

WI boundaries of Conv[~v`] boundaries of Conv[~u`,k]

In the following we will consider the P1 geometry.

Example. Let’s consider the explicit example for k = 4, 6, 8, where a4,0 a4,2
a6,0 a6,2
a8,0 a8,2

 =
∑
a

pa

 x
4
a~u`a,4
x6
a~u`a,6
x8
a~u`a,8

 ~u`,k = (u`,k,0, u`,k,2) . (8.39)

Since u`,k,0 is positive for all `, k, we can use it to positively rescale the first entry to 1
and define u(k)

` = u`,k,2
u`,k,0

. Then Conv[~u`,k] is simply a line segment in P1 with its boundary
determined by the minimum value of u(k)

` . From eq. (8.5) one can check that the minimum
value of u(k)

` for fixed k and arbitrary spin is given as:

Min
[
u

(4)
`

]
= −3

2 (` = 1, 2), Min
[
u

(6)
`

]
= −21

4 (` = 2), Min
[
u

(8)
`

]
= −8 (` = 2) .

(8.40)
Note the above agrees with eq. (8.29), which states that the boundary of the Minkowski
sum is given by that of the largest k, here 8. Rescaling (ak,0, ak,2) = ak (1, βk), the above
tells us that the boundaries of Conv[~u`,k] for each k translates to

a4 ≥ 0, a6 ≥ 0, a8 ≥ 0, β4 ≥ −
3
2 , β6 ≥ −

21
4 , β8 ≥ −8 . (8.41)

Furthermore, we also have that ak,0 is inside the convex hull of half-moment curve:

a2
6 − a4a8 ≥ 0 . (8.42)

These inequalities corresponds to A4,I , A6,I , A8,I being positive with WI is chosen to be
the boundary of Conv[~u`,k], and (

A4,I A6,I

A6,I
A8,I
α̃1

)
(8.43)

being totally positive, where WI = (1, 0) and α̃1 = 1.
Next, we consider the positivity of Det[eq. (8.43)] where WI is the boundary of the

Minkowski sum. Since the boundary of Conv[~u`,4, ~u`,6, ~u`,8] is given by (1,−8), the upper
bound for α̃1 is such that(

u
(4)
` + 8 + ∆w

) (
u

(8)
` + 8 + ∆w

)
α̃1

−
(
u

(6)
` + 8 + ∆w

)2
≥ 0, ∀` . (8.44)

Note that we have add a small deformation ∆w. This is needed since here WI is identified
with u(6)

2 , which would cause the first term in the above (with ∆w = 0) to be zero for ` = 2
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and invalidate the inequality. Picking ∆w = 1
100 we find α̃1 ≤ 0.0085. Equipped with this

the positivity of the determinant eq. (8.43) translate to

(β4 + 8 + 1
100)(β8 + 8 + 1

100)
0.0085 −

(
β6 + 8 + 1

100

)2
≥ 0 . (8.45)

Note that in the above it is necessary to consider walls that are deformed away from the
boundary of Conv[~u`,4, ~u`,6, ~u`,8], and α̃1 as well as the non-linear constraint that follows
depends on the choice of deformation parameter ∆w. As we will see in appendix F, the
most stringent non-linear constraint does no necessarily correspond to ∆w being small! In
other words, the true boundary of the EFT-hedron is actually defined by a new wall that
can be far from the boundaries of the cyclic polytope. A more complete understanding of
the true boundaries will be left to future studies.

When the external particles are identical, we should consider even spins only. However,
since the minimum in (8.40) is given by spin-2, the optimal value for α̃1 remains the same.
Thus the problem simply reduces to the intersection of the permutation plane defined
in (8.21) with our P1 geometry. From (8.22), we see that β4 = a4,2

a4,0
is fixed to 3

2 . This
turns (8.45) into a quadratic bound for β6 and β8. Thus for identical scalars, the EFT-
hedron bounds are given by eq. (8.41) and(19

2 + 1
100

)(
β8 + 8 + 1

100

)
− 0.0085

(
β6 + 8 + 1

100

)2
≥ 0 . (8.46)

8.3 Multiple species

Let us now return to the scattering of a, b, but now consider the amplitude M(a, b, b, a) in
combination with all a and all b scattering. For simplicity we will assume each of a, b have
a Z2 symmetry, so the only non-vanishing amplitude involves even number of a’s and b’s.
Now we can get constraints mixing the a4, a2b2 and b4 amplitudes, if we consider ABBA
scattering of general states A = αa+βb,and B = γa+ρb. These must satisfy the EFT-
constraints for all (α, β, γ, ρ); in the special case of A = B (α = γ, β = ρ) we intersect with
the crossing symmetry plane as well. A systematic exploration of the geometry associated
with this envelope of constraints is left for future work, but it is easy and illuminating to
look at the simplest example.

Consider the leading 4-derivative amplitudes

M(a4) = ca(s2+t2+u2), M(b4) = cb(s2+t2+u2), M(abba) = c(s2+u2)+d

2 t
2 . (8.47)

Note our analysis of M(abba) just tells us that c > 0; d can have any sign. But we will
now see that magnitude of d is bounded by ca,b as

cacb − d2 > 0 . (8.48)

To whit, the amplitude for M(ABBA) is given by

M(ABBA) = (αγ)2M(a4)+(βρ)2M(b4)+(γβ)2M(baab)+(αρ)2M(abba)
+ (αβγρ) [M(aabb)+M(baba)+M(abab)+M(bbaa)] . (8.49)
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Note that while the term proportional to d in M(abba) drops out in the forward limit as
t→ 0, this is not the case e.g. for M(aabb) = c(u2+t2)+d

2s
2 which becomes s2(c+ d/2) in

the forward limit.
Taking the t→ 0 limit, the coefficient of s2 in the M(ABBA) amplitude, which must

be positive, is given by

(αγ)2ca+(βρ)2cb+(αβγρ)(2d+4c)+2c((γβ)2+(αρ)2)
= (αγ)2ca+(βρ)2cb+2d(αβγρ)+2c(γβ+αρ)2 . (8.50)

Now of course if we put α = 1, β = 0, γ = 0, ρ = 1, we go back to A = a, B = b, and we
learn that c > 0. But now let’s put γβ+αρ = 0. We then have x2ca + y2cb+2xyd > 0,
where x = −α2ρ/β, y = βρ; note that varying over α, β, ρ, (x, y) can be any real numbers.
Thus we learn that ca,b > 0 and cacb − d2 > 0, or the positivity of the matrix in

(
x y

)( ca d

d cb

)(
x

y

)
. (8.51)

Note it was important in this analysis to allow general AB states; had we taken only
A = B → α = γ, β = ρ, we would find no constraints on d > 0.

This can be straightforwardly generalized to any number of species labelled by the
index i. Again assuming Z2 symmetry for each species, writing

M(i4) = ci(s2 + t2 + u2), M(ijji) = cij(s2+u2)+dijt2 , (8.52)

we find that cij ≥ 0, and that the matrix
c11 d12 d13 · · ·
d12 c22 d23 · · ·
d13 d23 c33 · · ·
...

...
...

...

 , (8.53)

is positive. The positivity of a symmetric matrix S is equivalent to the positivity of all the
leading principle minors (determinant of all upper left square matrices) of the matrix (the
Sylvester’s criterion). As an example we have

det

 c11 d12 d13
d12 c22 d23
d13 d23 c33

 ≥ 0, det

(
c11 d12
d12 c22

)
≥ 0, c11 ≥ 0 . (8.54)

9 The spinning EFT-hedron

So far we have examined constraints on amplitudes with external scalars. The analysis
can be readily extended to external spinning states such as gluons, photons and gravitons,
where the higher dimensional operators of the EFT will be given in terms of field strengths,
Riemann tensors and derivatives there of. In subsection 6.3.1 we’ve seen that the Taylor
vectors of spinning polynomials also generate cyclic polytopes, and thus we can simply
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retrace all of the previous discussion, with v`,q replaced by the Taylor coefficient of the
spinning polynomials.

An important question is which helicity configuration should one select for the dis-
persive representation. The choice should be such that one is expanding around a for-
ward process, i.e. the t → 0 limit corresponds to a, b → b, a scattering. Take for example
M(1+, 2−, 3+, 4−). In the s-channel threshold where 1, 2 are incoming and 3, 4 outgoing, the
process corresponds to 1+2− → 3−4+. Note that the helicity of legs 3 and 4 are flipped since
we’ve defined the helicity forM with all momenta incoming. For it to be forward, we should
identify the state on leg 1 with 4, so we set p4 = p1 and p2 = p3 which indeed corresponds
to t = 0. For the u-channel threshold one instead has 1+3+ → 2+4+, which once again
correspond to a forward process with p4 = p1 and p2 = p3. Similarly M(1+, 2+, 3−, 4−)
also admits a positive expansion. This is in contrast with M(1+, 2−, 3−, 4+), where in the
s-channel we have 1+2− → 3+4−. In order for this to be forward, we need to take p1 = p3
and p2 = p4 which corresponds to u = 0 instead of t = 0. So in this case the small t
expansion of the residue is not an expansion around a forward process, and does not enjoy
the positivity properties we wish to exploit.

As a simple example, the s-channel EFT hedron can be generalized to color ordered
states. From the previous discussion, we’ve seen that expanding in t for M(1+, 2−, 3+, 4−)
corresponds to an expansion around the forward limit. Thus the s-channel residue can be
positively expanded on d`2,2(θ) (see eq. (6.48))

Ress[M(1+, 2−, 3+, 4−)] =
∑
`

p`d`2,2(θ) p` ≥ 0. (9.1)

Removing the overall spinor bracket mandated by the helicity weights, we have:

〈24〉2[13]2
∑
k,q

ak,qs
k−qtq

 = −〈24〉2[13]2
(∑

a

p`a
d̃`a2,2(θ)
s−m2

a

)∣∣∣∣∣∣
θ=arccos(1+2t/m2

a)

(9.2)

where once again the equality is understood in terms of Taylor expansion, and d̃`a2,2(θ) =
d`a2,2(θ)
cos4 θ

2
. We can then bound operators using the boundaries of the cyclic polytopes, as an

example, for k = 2, which corresponds to D4F 4, we have

〈a2, `, `+ 1〉 ≥ 0, a2 = (a2,0, a2,1, a2,2) . (9.3)

The two-dimensional region is then given in figure 14. Imposing cyclic symmetry sets
a2,2/a2,0 = 1 and the region becomes a one dimensional line, and the bound becomes

0 ≤ a2,1/a2,0 ≤
9
5 . (9.4)

For open super-string, we have a2,1
a2,0

= 1
4 and are thus inside the bound.

For photons and gravitons, we need to consider the contributions from both s and
u-channel. Here we choose the amplitude M(1+h, 2+h, 3−h, 4−h), and the s-channel residue
for a spin-` exchange is written as:

Ress
[
M(1+h, 2+h, 3−h, 4−h)

]
= g++

` g−−` [12]2h〈34〉2h d`0,0(θ) , (9.5)
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0 1 2 3 4 5

0

1

2

3

4

5

a2,1

a2,0

a2,2

a2,0

Figure 14. The k = 2 polygon for (+−+−) gluon scattering.

where g++/−−
` is the coupling constant of a real spin-` state to a pair of plus/minus helicity

photon. CPT requires g++
` = (g−−` )∗, and the above yields a positive expansion as expected.

Furthermore under 3, 4 exchange d`0,0(θ) → d`0,0(−θ) = (−)`d`0,0(θ), thus bose symmetry
requires ` ∈ even. The u-channel residue is given as:

Resu
[
M(1+h, 2+h, 3−h, 4−h)

]
= (g+−

` )2[12]2h〈34〉2hd̃`a2,2 (9.6)

where now CPT simply requires g+−
` to be real. Thus we arrive at the following dispersive

representation6

[12]2h〈34〉2h
∑
k,q

ak,qs
k−qtq

 = −[12]2h〈34〉2h
∑

a

p`a
d`a0,0(θ)
s−m2

a

+
∑
b

p̃`b
d̃`b2,2

u−m2
b

 , (9.7)

where p`a and p̃`b are distinct positive coefficients and `a ∈ even.
In the following, we will analyze external photons and gravitons separately. For k =

even the bounds are listed as:

(−h,−h,+h,+h) :
photon graviton

k = 2 D4F 4 (9.10) D4R4 (9.16)
k = 4 D8F 4 (9.13) D8R4 (9.19)

9.1 Photon EFT

For photons, our analysis can be separated into whether or not gravity decouples. For EFTs
whose gravitational dynamics are irrelevant, such as the Euler-Heisenberg theory, one can
bound operators of degree 2 or higher in s. If gravity does not decouple, as discussed

6The first version of this paper had an error in the residue polynomials in the spinning dispersion relation,
which we correct here, modifying the obtained bounds. We thank Zvi Bern, Alexander Zhiboedov, and
Dimitrios Kosmopoulos for pointing out this mistake to us.
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in section 4 the forward limit graviton pole will obstruct any bound on s2. In practice,
starting with the geometry for gravitationally decoupled EFTs, one can incorporate gravity
simply by projecting the geometry onto the directions perpendicular to ak,k−2.7

Note that now the s- and u-channel have distinct polynomials, we will label the vectors
from the s and u channel in eq. (9.7) as `s and `u respectively, and the unitary polytope
is the Minkowski sum of the two polytopes. Furthermore, this helicity configuration is
invariant under t↔ u exchange, and thus the amplitude must lie on the “symmetry plane”
Xsym parameterized as:


a1,0 a1,1
a2,0 a2,1 a2,2
a3,0 a3,1 a3,2 a3,3
a4,0 a4,1 a4,2 a4,3 a4,4

 →


x 0
x y y

x y y 0
x y z 2(z−y) (z−y)

 . (9.8)

We now give the intersection of Xsym with the unitary polytope:

• k=2 : D4F 4

MD4F 4 = 〈12〉2[34]2(a2,0s
2 + a2,1st+ a2,2t

2). (9.9)

Now we would like to bound a2 = (a2,0, a2,1, a2,2) which live in P2. The edge of the
polygon is given by

〈∗, iu+1, iu, 〉iu≥2, 〈∗, is, is+2〉is≥2, 〈∗, 2u, 2s〉 , (9.10)

where is, iu represents the Taylor vectors from dis0,0 and diu−2,−2 respectively. Note that
the majority of the edges for the s- and u-channel cyclic polytope remains a facet for
the Minkowski sum. The polygon is presented in projective coordinates

(
a2,1
a2,0

,
a2,2
a2,0

)
in figure 15, where we’ve labeled the vertices from the (purple)s and (red)u channels
explicitly.

On Xsym we have a2,1
a2,0

= a2,2
a2,0

and the geometry reduces to P1. The region of inter-
section is given as:

− 30
7 ≤

a2,1
a2,0

= a2,2
a2,0
≤ 6 . (9.11)

Note that similar to the intersection of the scalar s−u polytope with the permutation
plane, here the intersection yields leads to EFT coefficients being bounded from
both sides.

• k = 4 : D8F 4

MD8F 4 = 〈12〉2[34]2(a4,0s
4 + a4,1s

3t+ a4,2s
2t2 + a4,3st

3 + a4,4t
4). (9.12)

7We will assume that RF 2 is not relevant for the analysis, although it is straightforward to incorporate.
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Figure 15. The k = 2 polygon for (− − ++) photon scattering. It is bounded by the Minkowski
sum of the vectors originated from the s-channel (purple dots) and u-channel (red dots).

The coupling a4 = (a4,0, a4,1, a4,2, a4,3, a4,4) lives in P4, and is bounded by

〈a4,2u,3u,4u,5u〉, 〈a4, iu, iu+1, ju, ju+1〉iu,ju≥3,

〈a4, is, is+2, js, js+2〉is,js≥2, 〈a4, is+2, is, ju, ju+1〉is,≥4,ju≥3,

〈a4,4s,2s,3u,2u〉, 〈a4,4s,2s,2u,5u〉, 〈a4,4s,2s, iu, iu+1〉iu≥5

〈a4, is+2, is,∞u,∞s〉is≥2, 〈a4, iu, iu+1,∞u,∞s〉iu≥3

〈a4,2s,∞s,3u,∞u〉, 〈a4,4s,2u,3u,4u〉, 〈a4,4s,2u,4u,5u〉,
〈a4, is+2, is,2s,3u〉is≥4, 〈a4,2s,3u,2u,5u〉is≥4, 〈a4,2s,3u, iu, iu+i〉iu≥5,

(9.13)

being non-negative. Note that the boundary of the Minkowski sum consists of almost
all the boundaries of the individual cyclic polytope, label by a pair of consecutive
spins, as well as the tensor products of consecutive pair from both sides. At lower
spin region we have some irregular boundaries as well. The intersection of the above
with Xsym is illustrated in figure 16.

9.2 Graviton EFT

For gravity the analysis is a straight forward extension of the photon EFT: simply set h = 2
in the polynomial basis. From the discussion in section 4, we’ve seen that the tree-level four-
graviton amplitude does not introduce any t-channel massless obstructions, thus here we
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Figure 16. The intersection of the P4 polytope defined by the boundaries in eq. (9.13) with Xsym.

will be able to bound operators proportional to sn with n ≥ 2. Once again, we will consider
the intersection of the unitary polytope with the symmetry plane Xsym defined in eq. (9.8):

• k=0 : R4

MR4 = 〈12〉4[34]4a0,0, (9.14)

and we simply have a0,0 > 0.

• k=2 : D4R4

MD4R4 = 〈12〉4[34]4
(
a2,0s

2 + a2,1st+ a2,2t
2
)
. (9.15)

The facets are again given by that of the individual cyclic polytope in the s- and
u-channel. The bounds are then given by:

〈a2, iu+1, iu, 〉iu≥4, 〈a2, is, is+2〉is≥2, 〈a2, 4u, 1s〉 , (9.16)

being non-negative, with a2 = (a2,0, a2,1, a2,2). On Xsym we have

− 90
11 ≤

a2,1
a2,0

= a2,2
a2,0
≤ 6 . (9.17)

• k=4 : D8R4

MD8R4 = 〈12〉4[34]4(a4,0s
4 + a4,1s

3t+ a4,2s
2t2 + a4,3st

3 + a4,4t
4). (9.18)
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Figure 17. The intersection of the P4 polytope defined by the boundaries in eq. (9.19) with Xsym.

The facets are:

〈a4,4u,5u,6u,7u〉, 〈a4, iu, iu+1, ju, ju+1〉iu,ju≥5,

〈a4, is, is+2, js, js+2〉is,js≥2, 〈a4, is+2, is, iu, iu+1〉is≥4,iu≥5,

〈a4, is+2, is,∞u,∞s〉is≥4,

〈a4,4s,2s,6s,5u〉, 〈a4,4s,2s,5u,4u〉, 〈a4,4s,2s,4u,7u〉,
〈a4,4s,2s, iu, iu+1〉iu≥7, 〈a4,4s,2s,∞u,∞s〉,
〈a4,2s,5u,4u,7u〉, 〈a4,2s,5u, iu, iu+1〉iu≥7,

〈a4,2s,5u,∞u,∞s〉, 〈a4,2s,5u, is+2, is〉is≥4,

〈a4,4s,4u,5u,6u〉, 〈a4,4s,4u,6u,7u〉, 〈a4, iu, iu+1,∞u,∞s〉iu≥5
(9.19)

Once again, the facets maintain a cyclic structure at higher spins, while some irreg-
ularities occur at lower spin region. Its intersection with the symmetry plane Xsym
is displayed in figure 17.

In this section we have focused for simplicity on the scattering of a single species —
photons or gravitons — but it is easy to constrain photon-graviton couplings as well. The
amplitude M(1−12+23−24+1) is forward as t → 0 in both the s- and u- channels, and so
has a positive expansion. Thus considering the Gegenbauer constraints, the coefficients
must lie inside the unitarity polytopes; but we don’t have the extra crossing symmetry
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constraints enjoyed by pure photon/graviton scattering. While this is all we can say con-
sidering only photon-graviton scattering, as with our multi-species discussion for the scalar
case, there are clearly constraints relating the pure photon and pure graviton scattering
coefficients to those of photon-graviton scattering, considering the scattering of general
linear combinations of different species, which would be interesting to further explore.

10 Explicit EFTs in the EFT-hedron

So far we have been mostly discussing bounds on general EFTs, derived from the analyticity
and unitarity in the UV. In this section we will discuss in more detail how realistic EFTs
with explicit UV completions, satisfy these bounds.

10.1 s-channel EFT-hedron

Let’s begin with the s-channel constraints. We will use the tree-level massless open super-
string amplitude as an example eq. (2.4), which we display again here:

M(1+2−3+4−) = −〈24〉2[13]2 Γ[−s]Γ[−t]
Γ[1−s−t] = 〈24〉2[13]2

− 1
st

+
∑
k,q

ak,qs
k−qtq

 (10.1)

and the coupling constants, up to k = 4, are given as:
a0,0
a1,0 a1,1
a2,0 a2,1 a2,2
a3,0 a3,1 a3,2 a3,3
a4,0 a4,1 a4,2 a4,3 a4,4

 =


ζ(2)
ζ(3) ζ(3)
π4

90
π4

360
π4

90
ζ(5) 2ζ(5)−ζ(3)ζ(2) 2ζ(5)−ζ(3)ζ(2) ζ(5)
π6

945
π6−630ζ2(3)

1260
23π6

15120 − ζ
2(3) π6−630ζ2(3)

1260
π6

945

 .

(10.2)
The s-channel EFT-hedron defined in eq. (7.29) says that the Hankel matrix for Ak,I =
~ak · WI must be a totally positive matrix, where WI is the facets.

Let us first consider the facets WII , the unit vectors.The Hankel matrix for these
facets are

Wq
II

= δq0 :

 ζ2 ζ3
π4

90
ζ3

π4

90 ζ5
π4

90 ζ5
π6

945

 , Wq
II

= δq1 :
(
ζ3

π4

360
π4

360 2ζ5−ζ3ζ2

)
,

(
π4

360 2ζ5−ζ3ζ2

2ζ5−ζ3ζ2
π6−630ζ2

3
1260

)

Wq
II

= δq2 :
(

π4

90 2ζ5−ζ3ζ2

2ζ5−ζ3ζ2
23π6

15120−ζ
2
3

)
. (10.3)

It is straight forward to check that these matrices are positive semi-definite.
Next we consider facets of the cyclic polytope WIb . For this we utilize the Taylor

vectors for spinning polynomials of h = 1 listed in eq. (6.51), and denote each column as
~ν`. Recall that due to Yang’s theorem, ` starts at 2. Since the Taylor vectors forms a cyclic
polytope, the boundaries for the P1, P2, and P3 geometry are given by:

P1 : (2), P2 : (i, i+1), P3 : (2, i, i+1) . (10.4)
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When written in terms of dual vectors, they are given by contracting the d vectors with
the d+1 component Levi-Cevita tensor. Explicitly they are given as:

〈∗,2〉= det

(
1 ∗
0 ∗

)
, 〈∗, i, i+1〉= det


∗ 1 1
∗ ν`,1
ν`,0

ν`+1,1
ν`+1,0

∗ ν`,2
ν`,0

ν`+1,2
ν`+1,0

 , 〈2,∗, i, i+1〉= det


1 ∗ 1 1
0 ∗ ν`,1

ν`,0

ν`+1,1
ν`+1,0

0 ∗ ν`,2
ν`,0

ν`+1,2
ν`+1,0

0 ∗ ν`,3
ν`,0

ν`+1,3
ν`+1,0

 .
(10.5)

When taking the inner product with some vector X, then the ∗s denote the position
where components of X should be placed. For example for P1, the coupling constants are
organized as

~ak =
(

1
ak,1
ak,0

)
(10.6)

and identify WI as the boundary for P1 in eq. (10.5), we find (again with Ak ≡ ~ak · WI)

A1
A2
A3

 =


a1,1
a1,0
a2,1
a2,0
a3,1
a3,0

 (10.7)

Then from eq. (7.29), we see that being inside the s-channel EFT-hedron requires

K[ ~A] =
(
A1 A2
A2 A3

)
=
(

1 1
4

1
4 2− ζ(2)ζ(3)

ζ(5)

)
(10.8)

to be a totally positive matrix. Indeed one can straightforwardly verify that each compo-
nent and the determinant of the above matrix is positive. Next let’s consider the constraint
in P2. Choosing WI from eq. (10.5) to be 〈∗, 6, 7〉, we find,

A2
A3
A4

 =


7(45a2,0−20a2,1+6a2,2)

30a2,0
7(45a3,0−20a3,1+6a3,2)

30a3,0
7(45a4,0−20a4,1+6a4,2)

30a4,0

 =


161
15

7
90

(
51 + 7π2ζ(3)

ζ(5)

)
721
80 + 882ζ2(3)

π6

 . (10.9)

One again finds that the matrix
(
A2 A3
A3 A4

)
, is totally positive.

10.2 Full EFT-hedron

Now let’s consider the tree-level closed superstring amplitude in four-dimensions, with
M(1+22−23+24−2):

− 〈24〉4[13]4 Γ[−s]Γ[−t]Γ[−u]
Γ[1+s]Γ[1+t]Γ[1+u] = 〈24〉2[13]2

− 1
stu

+
∑
k,q

ak,qz
k−qtq

 , (10.10)
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whose low energy effective coupling constants are:
a0,0
a2,0 a2,2
a4,0 a4,2 a4,4
a6,0 a6,2 a6,4 a6,6

=


2ζ(3)
2ζ(5) 3

2ζ(5)
2ζ(7) 3ζ(7) 9

8ζ(7)
2ζ(9) 1

6(8ζ3(3)+31ζ(9)) 1
24(−16ζ3(3)+73ζ(9)) 1

96(8ζ3(3)+85ζ(9))

.
(10.11)

Since the UV states now appear in both s−u channels, the couplings should satisfy the
constraints of the full EFT-hedron.

Now let’s consider the simplest EFT-hedron constraint in P1, which was discussed
in detail in appendix F. The difference is that we will use spinning polynomials for our
facets. Furthermore, due to the helicity configuration, the s-channel and u-channel will
contribute independently and a Minkowski sum over polytopes will be taken. To simplify
the discussion, we will assume permutation invariance for the space of amplitudes that we
want to constrain here. The absence of a2,1, a4,1, · · · terms in the above is then just a direct
consequence of this, and other amplitudes in this space can be compared with the closed
superstring amplitude on equal footing. For each k, the polytope will be a Minkowski sum
of the polytopes from s- and u- channels. Let us denote the vertices contributed by spin-` as

(x˜̀,k,0, x˜̀,k,2), (10.12)

where ˜̀zips together information about spin and channel, for example like {(1,s),(2,u), · · ·}.
Projectively, (

1, x(k)
˜̀

)
=
(

1,
x˜̀,k,2
x˜̀,k,0

)
, for k = 2, 4, 6 , (10.13)

then we have

minx(2)
˜̀ = −23

20 , minx(4)
˜̀ = −11

2 , minx(6)
˜̀ = −165

16 , (10.14)

and hence we chooseW = (−w, 1), with w = −165
16 . Note that again we find that the bound-

ary of the Minkowski sum is given by that of maximal k. Now organizing the couplings as
1 a2,2
a2,0

1 a4,2
a4,0

1 a6,2
a6,0

 =

~a2
~a4
~a6

 , (10.15)

the constraint in eq. (8.38) then tells us that

(~a2 · W)(~a6 · W)− αmin(~a4 · W)2

= 177
16

(
619
48 + 2ζ3(3)

3ζ(9)

)
− αmin

(189
16

)2
> 0, (10.16)

where αmin is defined as the minimum of (x(6)
˜̀ −w)(x(2)

˜̀ −w)

x
(4)
˜̀ −w)2

. Direct evaluation shows this is

indeed true.
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10.3 Living near the boundary of unitary polytopes

Now that we’ve seen how explicit EFTs satisfy our EFT-hedron bounds, we would like to
see where do they actually reside. For example, consider the two dimensional region carved
out by Xcyc∩U5 in figure 8, where U5 is the s-channel unitary polytope. Now we consider
the following scalar EFTs, each with a distinct known UV completion:

• (a) The tree-level exchange of a massive Higgs in the linear Sigma model

− s

s−m2 −
t

t−m2

∣∣∣∣
m→∞

= · · ·+ 1
m10 (s5 + t5) + · · · (10.17)

• (b) The one-loop contribution of a massive scalar X coupled to a massless scalar φ via
X2φ. The one-loop integrand is simply the massive box, whose low energy expansion
is: ∣∣∣∣∣∣∣

m→∞

= · · ·+
(s5 + 1

5s
4t+ 1

10s
3t2 + 1

10s
2t3 + 1

5st
4 + t5)

1153152m14π2 + · · · (10.18)

• (c) The type-I stringy completion of bi-adjoint scalar theory:

−Γ[−α′s]Γ[−α′t]
Γ[1−α′s−α′t]

∣∣∣∣
α′→0

= · · ·+ α′5
[
ζ7s

5+
(
−π

4ζ3
90 −

π2ζ5
6 +3ζ7

)
s4t

+
(
−π

4ζ3
72 −

π2ζ5
3 +5ζ7

)
s3t2+(s↔ t)

]
+ · · · (10.19)

where we’ve listed the coefficients for k = 5. Plotting their position with in XCyc ∩U5,
we find:

StringBoxTree

0 2 4 6 8 10 12

0

5

10

15

20

25

30

x

y

Tree
String

Box

0.00 0.05 0.10 0.15 0.20

0.00

0.05

0.10

0.15

0.20

x

y

(10.20)

Note that they are sitting extremely close to the bottom tip of the allowed region! Let’s
consider another example for the graviton s−u polytope, parameterized for the MHV
configuration as:

〈24〉4[13]4
{massless poles}+

∑
k,q

zk−qtq

 . (10.21)
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Figure 18. The unitary polygon for (a8,0, a8,2, a8,4) of the graviton EFT. We see that the string
theory EFTs are clustered near the low spin boundaries of the polygon.

In the most general case, we can have R3 operator which introduces a t-channel obstruction
for operators proportional to z2. Consider the coefficients (a8,0, a8,2, a8,4) such that the
geometry is P2. In principle the odd power coefficients will also be important for comparing
spectral densities contributed from each spin. Here we simply wish to visualize certain
coefficients in a convenient way. Two theory points that are nearby on this plot can still
have very different spectral densities.

We projectively plot the corresponding polygon in the coordinates (a8,2
a8,0

,
a8,4
a8,0

). The
result as well as the positions of the coefficient for Type-II, Heterotic and bosonic strings
are presented in figure 18. Labels for lower spin vertices are omitted for clarity. Once
again, we see that the three distinct string EFTs are cluttered close to the lowest spins of
the entire geometry.

In fact, this behaviour is ubiquitous as we survey other k, as well as the s−u channel
polytopes: all known EFTs sits close to the boundaries characterized by the low-spin
vertices. This implies that the residue or discontinuity induced by the UV completion is
generically dominated by low spins! For the linear sigma model, we only have a spin zero
exchange so this is trivial. Listing the Gegenbauer coefficients for the residue of the open
string to level n,

`\n 1 2 3 4 5
0 1 1

11880
1 1

14
1

924
2 1

84
25

39312
3 2

693
4 125

144144

, (10.22)
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we see that the leading scalar coefficient is dominant over the rest. For the box integral,
the spinning spectral function for the discontinuity is discussed in detail in appendix D,
see eq. (D.7). Plotting the spectral function for spin-0, 1, 2 as a function of s we find:

p`(s)

l=0

l=1

l=2
1 2 3 4 5

5

10

15

20

s

(10.23)

where s is normalized with respect to 4m2, and hence the plot begins only at the branch
point s = 1. Once again the scalar spectral function dominates the contribution from other
spins, and the ratio increases as we increase with s. Note that the positivity of the six-
dimensional a-anomaly for a free massive scalar was precisely due to such suppression [30].
The suppression of higher spin coefficients can be understood from the polynomial bound-
edness of the amplitude: as a spin-` exchange in the t-channel will bring a contribution
behaving as s` at large s, polynomial boundedness then implies that higher spin contribu-
tions must be suppressed. Indeed the suppression at large spins is precisely what led to
the Froissart bound as reviewed in appendix A. Thus in general, we expect physical EFTs
to lie near the low spin boundaries of the unitary polytope, although a more quantitative
understanding of the implications from such suppression is clearly desired, which we leave
to future work.

If EFTs naturally live near the low-spin boundaries of the unitary polytope, what is
the purpose of the rest? Note that for a given UV completion, there exits an entire family
of effective theories for which the EFTs discussed above are in the deep IR. Here, the scale
dependence under discussion is not from the running generated from the massless loops,
which will be the focus in the next section, but rather from the simple fact that different
part of the spectrum is visible depending on the energy. What this means in practice is that
at a given energy scale Λ, the couplings for our higher dimensional operators take the form:

M(s, t) = {massless/massive poles}+
∑
k,q

aΛ
k,qs

k−qtq , (10.24)

where the amplitude now contains massless as well as massive poles for all the massive
states below Λ. When the couplings are defined in such fashion, they naturally becomes
Λ dependent. Let us consider an explicit example. Imagine that we are studying type -II
string theory at some energy scale and we have discovered the first few massive states up
to level n. At this scale the amplitude at fixed t should take the form:

n∑
a=1

Ra(t)
( 1
s− a

+ 1
u− a

)
+
∑
k,q

a
(n)
k,qz

k−qtq, (10.25)
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161718
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→

Figure 19. Oh the l.h.s. we the purple dots indicate (xn, yn) for n = 0, · · · , 20, representing the
position of the type-II string EFT in side the unitary polytope for s ∼ n

α′ . We see that as we go
to large s, the EFT tends to the corner with higher spins. This implies that the UV and IR EFTs
populate different regions in the polytope, as illustrated on the right.

where Ra(t) = 1
(a!)2

∏a−1
i=1 (t + i)2 is the residue for the resonance s = a. The value of the

couplings for the higher dimensional operators can be extracted by Taylor expanding both
sides of:

∑
k,q

a
(n)
k,qz

k−qtq = Γ[−s]Γ[−t]Γ[−u]
Γ[1+s]Γ[1+u]Γ[+t] −

[
n∑
a=1

Ra(t)
( 1
s− a

+ 1
u− a

)]
(10.26)

Note that by construction, the couplings must reside inside our unitary polytope. Since the
massive poles that are “subtracted” from the full UV completion are precisely the dominat-
ing low spin states, we expect that the resulting couplings to float towards the upper region
of the polytope! We plotting the coefficients for (xn, yn) =

(
a

(n)
8,2

a
(n)
8,0 +a(n)

8,4 /103
,

a
(n)
8,4

a
(n)
8,0 +a(n)

8,4 /103

)
in

figure 19. We see that indeed as we raise the energy scale the corresponding EFT probes
deeper in the unitary polytope.

Thus in summary, the low spin regions of the unitary polytope correspond to the EFTs
in the deep IR, while the higher spin region corresponds to the EFTs in the UV. We leave
the detailed study of this UV-IR relation to future work.

11 Running into the EFT-hedron

Let us now turn to discussing the full amplitude including the massless loops that induce
the logarithmic running of the EFT couplings. For example, consider again the linear
sigma model, whose tree-amplitude is given in eq. (2.2). At one-loop the coefficients of the
s4 starts receiving loop-corrections from the s2 operators:

M IR(s, t) = ā2
m4
h

(s2+t2+u2) + ā4
m8
h

(s4+t4+u4)−
[
ā2

2
1

15(4π)2m8
h

(
41s2+u2+t2

)
s2 log s

s0

+ (s↔ t) + (s↔ u)
]

+O(p10) , (11.1)

where āis are to be understood as renormalized couplings at some scale s0. In this paper,
we will only consider one-loop effects for EFTs that have a well defined S-matrix. The
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derivative couplings ensures that expansion near the forward limit is well defined, since
the t-channel cut appears as tn log t, as can be seen in the above, and hence there is no
singularity at the branch point t = 0. The presence of the massless logs leads to two
pressing issues, 1. there is a massless cut coming all the way to the origin, and thus the low
energy couplings, analytically extracted from eq. (3.3), are no longer well defined. 2. the
fact that coupling runs also brings into question the fate of our previous positivity bounds
as the theory flows EFT flows to the IR.

Naively, one can simply introduce a mass regulator,8 which will allow us to push
the massless cut away from the origin of the complex s-plane. Since this corresponds to
introducing a massive state, all ingredients necessary to the derivation of previous positivity
bounds are intact and should hold whenever the EFT is valid. This means that running
in the IR will stay within the unitary polytope. However, it is easy to see from explicit
examples that this is not the case, the massless logs can take us outside of the EFT hedron!
This apparent contradiction originated from the fact that the mass deformed theory do not
reproduce the correct IR behaviour of the massless loops. It is instructive to see why our
intuition was wrong, which in turn, will guide us to defining “generalized EFT couplings”,
for which previous positivity constraints apply.

Running out of bounds. Let’s consider the EFT of a single massless scalar with the
following higher dimension operators turned on:

LInt = a2
Λ4 (∂φ)4 + a4

Λ8 (∂2φ)4 + a6
Λ12 (∂3φ)4 . (11.2)

The one-loop RG equation is then

µ2 ∂a4
∂µ2 = 0, µ2 ∂a4

∂µ2 = β1a
2
2, µ2 ∂a6

∂µ2 = β2a2a4 . (11.3)

With the solution, a2 = ā2, a4 = ā4 +β1ā
2
2 log s0

p2 and a6 = ā6 +β2ā2ā4 log s0
p2 . For simplicity

let’s consider the forward-limit Hankel matrix constraints, and set āis be the renormalized
couplings at some scale M2 where the constraints hold. For example we have āi > 0 and

ā2ā6 − ā2
4 > 0 . (11.4)

Now as we allow the couplings to run in the IR, the determinant of the Hankel matrix
becomes:

Det

(
ā2 ā4 + β1ā

2
2δ

ā4 + β1ā
2
2δ ā6 + β2ā2ā4δ

)
= (ā2ā6−ā2

4) + (β2 − 2β1)ā4ā
2
2δ +O(δ2) , (11.5)

where we have used a short-hand notation δ = log s0
p2 . If the running couplings were to stay

inside the EFT-hedron, we would have a sharp prediction for the one-loop beta functions,
namely (β2 − 2β1) > 0. Since for our current theory we only have bubble integrals at
one-loop, their coefficients can be directly captured from the two-particle cut, which we
derive in appendix G, yielding β1 = 14

5(4π)2 and β2 = 166
35(4π)2 . Immediately we see that

8This of course can only be consistently done for scalars and vectors, but not gravity.
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β2− 2β1 < 0 in contradiction to the expectation from the Hankel matrix bounds. In other
words, the low energy running drives the couplings outside of the EFT hedron!

Let us see why our intuition from the mass regulated picture failed to yield the correct
prediction. Consider the explicit low energy amplitude in the forward limit, which is all
that is necessary for eq. (11.4). We have:

M(s, 0) = 2 s
2

Λ4 ā2 + 2 s
4

Λ8

(
ā4 + β1ā

2
2 log M

2

s

)
+ 2 s6

Λ12

(
β2ā2ā4 log M

2

s

)
, (11.6)

where we’ve set µ2 = M2, representing the scale for which the Hankel constraint holds.
Now by deforming the massless loop propagators to be massive, the logs get deformed as:

log M
2

s
→ log M

2

m2 −i
√

1
z
−1 log(i

√
z+
√

1−z2)−1 = log M
2

m2 −
∑
n

(1)n−1

3
(

5
2

)
n−1

zn (11.7)

where z ≡ s
4m2 . Thus we see that at low energies, z � 1, the leading log correction

appearing at s4 is log M2

m2 , reproducing the same running as the massless log if we take
s,m2 �M2. However the z expansion in eq. (11.7) introduces correction to the coefficient
of s6, s8, · · · that dominates over their original logarithms since:

1
m2 �

1
Λ2 log M

2

m2 (11.8)

as m2 → 0. Put in another way, the small mass deformation is no longer “small” when one
considers subleading contributions. Note that due to these corrections, the Hankel matrix
constraint is trivially satisfied for the mass deformed amplitude. Indeed it is straightforward
to check that the Hankel matrix for an ≡ (1)n−1

3( 5
2 )
n−1

is total positive, and since the z expansion

in eq. (11.7) dominates the contributions for s6, s8, · · · couplings, they trivialize the Hankel
matrix constraint on the amplitude.

Generalized EFT couplings and its dispersive representation. The reasons we’ve
introduced the mass regulated theory is so that the massless cut is pushed off the origin,
where the couplings are analytically defined. However, we’ve just seen that by doing so the
EFT no longer captures the correct IR physics beyond leading order. Instead of moving
the branch point, lets move the pole itself. For example, consider the following contour
integral of the amplitude at fixed t� m2:

1
2πi

∮
ds s

(s2 + µ4)n+1M(s, t) (11.9)

where the contour encircles the poles at s = ±iµ2, and we will take µ2 � 1. Using this
contour we can define the following generalized couplings in the forward limit

aµ
2

2n,0 ≡
1

2πi

∮
C0

ds s

(s2 + µ4)n+1M(s, 0) , (11.10)

where the superscript µ2 on gµ2 indicates it’s the position for which the pole has been moved
off the origin. Note that we’ve naturally introduced scale dependence into the definition of
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m2

s

− t

s

2
i

2
i−

t

(I) (II)

Figure 20. In the presence of massless cuts, we can either (I) introduce a small mass regulator and
push the cut slightly away from the origin, or (II) we analytically define our generalized couplings
by moving the contour at origin onto to the complex plane to s = ±iµ in a way that the integration
measure is positive definite. After deformation the contour picks up the discontinuity on the real
s-axes, which for |t| < |s|, is controlled by unitarity. We can analytically continue to |s| < |t| for
theories with well behaved soft limits.

the coupling. Now in the forward limit,M(s, 0) is finite since the t-channel cut is suppressed
by pre-factors proportional to powers of t, guaranteed by the derivative coupling. Again
deform the contour C0 to C∞, this relates the generalized couplings to the discontinuity of
the amplitude on the s-axes as illustrated in figure 20. In other words, we have

aµ
2

2n,0 = − 1
2πi

∫ ∞
−∞

ds s

(s2 + µ4)n+1 ImM(s, 0) . (11.11)

Once again, let’s demonstrate the validity of eq. (11.11) using our linear sigma model
amplitude in eq. (11.1). Since the amplitude behaves as s4 log s as s→∞, we should expect
eq. (11.10) and eq. (11.11) to agree for aµ

2

6,0. Using eq. (11.10) the generalized couplings
evaluate to:

aµ
2

4,0 = ā4
m8
h

− 7a2
2

160π2m8
h

(
3 + 2 log µ

4

s2
0

)
, aµ

2

6,0 = 7ā2
2

240π2m8
hµ

4 . (11.12)

As expected, the aµ
2

4,0 is given by the combination of tree coefficient ā4 and the one-loop
log proportional to ā2

2. Moreover, even though we only consider the amplitude up to s4

terms, all generalized couplings aµ
2

2n,0 are nonzero due to the log. Now for eq. (11.11) the
imaginary part of the four-point amplitude arising from the s- cut is given by:

Ims=[0,∞]M(s, t) =

= ā2
2

(4π)3m8
h

∫
dφ′d cos θ′ (s2 + t2 + u2)L(s2 + t2 + u2)R = − ā2

2
m8
h

s4

60(4π)2 (167 + cos 2θ) ,

(11.13)
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where θ is the scattering angle. Taking the forward limit one finds Ims=[0,∞]M(s, 0) =
−7ā2

2
m8
h

s4

40π2 , reproducing the coefficient of the s-channel logarithm in eq. (11.1). Using
Ims=[0,∞]M(s, 0) = −Ims=[−∞,0]M(s, 0), one recovers,

1
2πi

(
−
∫ 0

−∞
+
∫ ∞

0

)
ds s

(s2 + µ4)4 iπ
7ā2

2
40π2m8

h

s4 = 7ā2
2

240π2µ4m8
h

. (11.14)

In agreement with eq. (11.12).
Now deforming the contour one again picks up the discontinuity on the real axes as

shown in figure 20 (II). Now the question is whether the discontinuity is given by physical
thresholds. For t < 0, the region |t| ≤ |s| corresponds to the physical kinematics and thus
it’s discontinuity is determined from unitarity. Due to the derivative couplings, there are
no new singularities at t = 0, and we can analytically continue to positive t. Thus the
entire s-channel discontinuity can be obtained by analytically continuation of that in the
physical regime, i.e. it is expressible as a positive sum of the Gegenbauer polynomials in
(D−1)-spatial dimensions:

Diss>0[M(s, t)] =
∑

`=0,2,4
p`(s)P`(θ) . (11.15)

Let’s demonstrate the above in an non-trivial example. The one-loop correction to the
scalar theory introduced earlier this section have one-loop logarithm proportional to ā2

2,
ā2ā4, and ā2

4. The first two was computed previously while the latter is given by

ā2
4s

8

M1620160(4π)2 (39843+988 cos 2θ+ cos 4θ) . (11.16)

Summing all three contributions we’ve obtain the discontinuity on the positive real axes
given by the following spinning spectral functions

p0(s)=s4(25ā2 + 21ā4s
2)2

225(4π)2 , p2(s)=s4(7ā2 + 12ā4s
2)2

2205(4π)2 , p4(s)= ā2
4s

8

11025(4π)2 , (11.17)

and indeed they are positive definite.
In conclusion, the generalized coupling constants defined through the contour integral

in eq. (11.9), again subject to appropriate boundary behaviour, will satisfy the same ana-
lytic constraint as that before. In the following we will demonstrate with explicit examples
that the Hankel matrix constraint is satisfied.

The Hankel matrix constraints. Let’s again take the forward limit four-point ampli-
tude for eq. (11.2)

M4(s, 0) = 2 ā2s
2

Λ4 +2
(
ā4 + β1ā

2
2 log M

2

s

)
s4

Λ8 +2
(
ā6 + β1ā2ā4 log M

2

s

)
s6

Λ12 (11.18)
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The generalized couplings are then given by

aµ
2

2,0 = 1
Λ4

[
ā2+z4

(
β1ā

2
2

(1
2−2 log y

)
− 2ā4

)
+O

(
z8
)]
,

aµ
2

4,0 = 1
Λ8

[
ā4−β1ā

2
2

(3
4− log y

)
+z4

(
β2ā2ā4

(5
4 − 3 log y

)
− 3ā6

)
+O

(
z8
)]
,

aµ
2

6,0 = 1
Λ8µ4

[
β1ā

2
2

6 +z4
(
ā6−β2ā2ā4

(11
12− log y

))
+O

(
z8
)]

(11.19)

where z = µ2

Λ2 and y = M2

µ2 . First of all, we see that the leading contributions for aµ
2

2,0 are
given by the tree-level coupling ā2, where as for aµ

2

4,0 the tree-level coupling ā4 mixes with
logarithmic contributions β1ā

2
2 log y at leading order. However, beyond aµ

2

4,0 the original
tree-couplings become subdominant to terms that were generated from the logarithms in
aµ

2

4,0. Indeed for aµ
2

6,0 the tree-level piece ā6 is subleading to a term proportional to β1ā
2
2,

which came from the leading logarithm in aµ
2

4,0. The dominance of terms induced by the
leading log for all aµ

2

2n,0 with n > 2, is reminiscent of the leading 1
m corrections flooding the

higher-derivative couplings for the mass regulated case discussed previously. As we will
see, these effects ensures the positivity constraints on the generalized couplings which we
now derive.

Now let us consider the dispersive representation:

aµ
2

2n,0 = −
∫ ∞
−∞

ds s

(s2 + µ4)n+1 Im M(s, 0) . (11.20)

As discussed above, even in the presence of massless cut, the discontinuity is still given by
a positive sum of Gegenbauer polynomials. The only modification is that the s-channel cut
now starts at s = 0. Incorporating the u-channel cut, we then have a branch cut covering
the entire real axes leading to

aµ
2

2n,0 =
[
−
∫ 0

−∞
+
∫ ∞

0

]
ds s

(s2 + µ4)n+1

∑
`

p`(s)G
D−4

2
` (1)

=
∑
`

∫ ∞
0

dx

(x+ µ4)n+1 p`(x)G
D−4

2
` (1) . (11.21)

In other words, it is given by a continuous sum of points on the moment curve:

aµ
2

2,0
aµ

2

4,0
aµ

2

6,0
...

aµ
2

2n,0


=
∑
i

ci



1
yi
y2
i
...

yn−1
i


, ci > 0, yi >

1
µ4 ∀i . (11.22)

Note that the moment curve is shifted by 1
µ4 , and thus the coefficients will obviously satisfy

the original Hankel matrix constraint.
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Let us show this in detail for the generalized couplings in eq. (11.19). First of all in
the limit µ2 � Λ2, the positivity of aµ

2

2,0, a
µ2

4,0, a
µ2

6,0 and aµ
2

2,0a
µ2

6,0−(aµ
2

4,0)2 is ensured by the
positivity of the tree-level coupling and that of the βis. An interesting scenario occur when
we deform the position of the pole all the way to the renormalization scale µ2 = M2, while
assuming M2 � Λ2. The positivity of aµ

2

4,0 then requires that

ā4−β1ā
2
2
3
4 > 0 (11.23)

where again β1 = 14
5(4π)2 ∼ 0.002. It is easy to see that this imposes further constraint

on the couplings beyond that of the tree-level Hankel constraints, i.e. the positivity of
ā2, ā4, ā6, and ā2ā6 − ā2

4.
It is interesting to understand why this new constraint arises. First, note that the

effective action considered in the beginning of this section, eq. (11.2), is not the most
generic for single scalar theory: it lacks the marginal φ4 interaction. In general, the lack of
φ4 interaction is associated spontaneous symmetry breaking in the UV, where the resulting
EFT respects a shift symmetry. Now due to boundary contributions, for tree-level couplings
we are not privy to the information of the constant piece of the amplitude, or k = 0, which
translate to the presence/absence of φ4 interaction. However, at loop-level, its presence will
affect the pattern of IR running for the couplings. For example, the presence of φ4 would
induce logarithmic running already for the s2 operator, which leads to the modification of
aµ

2

4,0 to:

aµ
2

4,0 = 1
Λ4µ4

[
ā0ā2β0

4 +z4
(
ā4−β1ā

2
2

(3
4− log y

))
+O(z8)

]
, (11.24)

instead of eq. (11.19). Here ā0 is the tree-level coupling for φ4 and β0 is the beta function for
s2 operator. We see that the running at s2 now induces corrections for aµ

2

4,0 that dominates
the original contributions! Now the positivity of aµ

2

4,0 simply implies ā0β0 > 0, even if we
take µ close to the renormalization scale.

Said in another way, the constraint in eq. (11.23) is a reflection of ā0 = 0! Let’s consider
an explicit UV completion that realizes such low energy behaviour: the linear sigma model.
As discussed previously, the shift symmetry of the EFT ensures that there are no constant
piece for the quartic interaction. In IR tree-level couplings can be identified as ā2 = ā4 = λ,
where λ is the quartic coupling constant of the complex scalar in the UV. Thus we see
that in the perturbative regime, where the map between the IR and UV couplings are
applicable, eq. (11.23) is trivially satisfied.

Thus we see that when massless loops are included, the positivity bounds allows us to
probe details of the EFT previously hidden behind the “Froissart horizon”!

A peek beyond the forward limit. We now consider the extension away from the
forward limit, which correspond to taking a Taylor expansion around t = 0. Again due to
the t-channel log coming in the form tn log t, the amplitude is finite in the forward limit.
Due to the t-channel branch cut, once again we deform the t contour away from the origin
to t = ε:

aµ
2

k,q ≡
( 1

2πi

)2 ∮ dt

(t− ε)q+1

∮
ds s

1+(−)k
2

(s2 + µ4)b
k−q

2 c+1
M(s, t) , (11.25)

– 77 –



J
H
E
P
0
5
(
2
0
2
1
)
2
5
9

where ε > 0. We will be considering the limit where t is much smaller than any massive
threshold. Note that since ε > 0, we are actually analytically continuing t away from the
physical regime t < 0. For theories such as those of interacting goldstones, where the
massless amplitudes are soft enough, free of soft/collinear singularities, so that massless
amplitudes are well-defined, it is reasonable to expect that discontinuities of the amplitude
in the s-channel are actually analytic in t. Taking this as a working assumption gives us
the dispersive representation. We have:

aµ
2,ε
k,q = 1

2πi

∮
dt

(t− ε)q+1

∑
`

∫ ∞
0

ds s
1+(−)k

2

(s2 + µ4)b
k−q

2 c+1
p`(s)G`

(
1 + 2 t

s

)
. (11.26)

Evaluating the t-integral on the pole then gives the Taylor expansion of the Gegenbauer
polynomials G`(x) at x = 1 + ε. Now importantly, since we’ve set ε > 0, the resulting
convex hull is inside the Gegenbauer polytope! To see this, recall that under the rescaling
x→ ax with a > 1, Gegenbauer polynomials rescales to a positive function, i.e.:

G`((1+ε)x) =
∑̀
`′=0

c`′G`′(x), c`′ > 0 . (11.27)

It then follows that the vector ~G`(1+ε) is a positive sum of ~G`(1), and thus the convex hull
of ~G`(1 + ε) must be inside Gegenbauer polytope! In fact, from eq. (6.32), we see that the
convex hull of ~G`(1 + ε) is another cyclic polytope. Thus as we increase in ε, the couplings
must live in a cyclic polytope that is contained in the previous ones. In this precise sense,
by increasing ε generalized couplings moves deeper inside the original geometry!

12 Outlook

We have seen that the constraints on vacuum stability, causality and unitarity place enor-
mously powerful constraints on low-energy effective field theories. There are a large number
of obvious open avenues for future work. Most immediately, there is the question of fully
understanding the geometry and boundary structure of the EFT-hedron for four-particle
scattering; this mathematical problem has been fully solved for the toy example of the
s-channel only EFT-hedron where it is already rather non-trivial. We have also bounded
the full EFT-hedron for the most general cases of interest, but have still not determined
the exact facet structure of the EFT-hedron in complete generality. It would also be inter-
esting to extend the dispersive analysis beyond 2→ 2 scattering. Indeed, if we consider a
simple theory with Lagrangian P (X = (∂φ)2), we know that subluminality for small fluc-
tuations around background with 〈∂φ〉 6= 0 demands P ′′(X) > 0 for all X, which enforces
positivity conditions on higher-point scattering amplitudes. Another obvious avenue is to
systematically explore constraints on scattering for multiple species with general helicities.

It is also important to note that, while the EFT-hedron places powerful constraints
on the effective field theory expansion, sensible effective field theories do not appear to
populate the entire region allowed by the EFT-hedron, but cluster close to its boundaries.
The reason is likely that the physical constraints we have imposed, while clearly necessary,
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are still not enough to capture consistency with fully healthy UV theories. In particular,
our dispersive representation at fixed t, does not make it easy to impose the softness of
high-energy, fixed-angle amplitudes where both s, t are large with t/s fixed. It would be
fascinating to find a way to incorporate this extra information about UV softness into
the constraints, along the lines of the celestial sphere amplitude [31], which should further
reduce the size of the allowed regions for EFT coefficients.

The unexpected power of stability, causality and unitarity in constraining effective field
theory raises the specter of a much greater prize, which was in the fact that question that
initially motivated this work. Can the same principles be used to strongly constrain, and
perhaps with additional conditions actually uniquely determine, consistent UV complete
scattering amplitudes? To sharpen this question, we can begin by thinking about UV
completions of gravity amplitudes at “tree-level”, assuming the amplitude only has poles.
Unlike theories of scalar scattering, which can be UV completed in a myriad of ways such as
e.g. glueball scattering in large N-gauge theories, the only consistent tree-gravity scattering
amplitudes we know of come from string theory, so it is more likely this question has a
unique answer. The four particle tree graviton scattering amplitudes in string theory are
essentially unique, independent of any details of compactification and fixed by the nature
of the worldsheet supersymmetry. Indeed the amplitudes differ only by the massless three
particles amplitudes in the low-energy theory, with type II theories having only the usual
three-graviton vertex, and the heterotic theory also including the R2φ coupling to the
dilaton. So it is plausible to conjecture that amplitudes with, say, only the usual three-
graviton amplitude at low-energies, have a unique tree-level UV completion given by the
Virasoro-Shapiro amplitude.

As an easy first step in this direction, it is easy to see that tree-level UV completions of
gravity must contain an infinite tower of massive particles of arbitrarily high spin. In fact
gravity is not particularly special in this regard. Consider any theory with fundamental
cubic interactions, so that four-particle amplitudes already have 1

s,t,u poles at tree-level.
Suppose we wish to improve the high-energy behavior of the amplitudes relative to what
is seen in the low-energy theory, so e.g. for gravity/Yang-Mills/ φ3 theory, we would like
the high-energy limit to drop more quickly that s2/s/s−1 respectively. It is then easy to
see that this is impossible unless the UV theory has an infinite tower of particles with
arbitrarily large spin.

Let us briefly sketch the reason for this. It is instructive to contrast the situation
with that of simple UV completions for theories whose four-particle interaction begin with
contact interactions at low-energies. Consider for instance goldstone scattering in the non-
linear sigma model, where the low-energy four-particle amplitude begins as A = − 1

f2 (s+t).
It is trivial to UV complete this simply by softening s → s

(1−s/M2) , t →
t

(1−t/M2) . This is
consistent with the causality bounds at large s and fixed t, and keeps the fixed-angle ampli-
tude small so long as M2 � f2. And crucially, thanks to the overall negative sign in front
of the amplitude, the residues on the massive poles are positive and are interpreted as the
production of a scalar particle with positive probability. This is of course nothing but the
linear sigma model UV completion of the non-linear sigma model, with the new massive par-
ticle identified as the Higgs. Note that had the overall sign of the amplitude been reversed,
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we would not be able to do this, as the residue on the massive pole would be negative.
Now, consider instead the amplitude A = g2(1

s + 1
t + 1

u) for φ3 theory at tree-level,
and let us try to add massive poles to make the amplitude decrease faster than 1/s at
high-energies. It is easy to see that the same strategy used in the goldstone example can’t
work. For instance if we again attempt to soften 1

s →
1

s(1−s/M2) , the residue on the massive
pole will have the opposite sign as that of the (correct, positive) residue on the massless
pole at s = 0! This will happen for any amplitude that is a rational function (finite number
of massive poles) in the Mandelstam variables. If the amplitude is softened in the physical
region, it is softened everywhere in the s-plane; so given that the amplitude vanished faster
than 1/s at infinity, the sum of all the residues must be zero. But that means that some
of the massive residues must be negative, to cancel the positive residue at s = 0. This can
only be avoided if there are infinitely many poles, that allows the function to die in the
physical region but blow up elsewhere in the s-plane, as familiar in string theory. A small
elaboration of this argument also shows the necessity of an infinite tower of spins, and the
same arguments apply to gravity and Yang-Mills amplitudes as well.

It is amusing that theories that only have a life in the UV — such as the weak inter-
actions and the non-linear sigma model, whose low-energy amplitudes are tiny, are “easy”
to UV complete with finitely many massive states. It is theories with IR poles, associated
with long-range interactions, that are forced to have much more non-trivial UV comple-
tions. This is why the most ancient interaction described by physics — gravity — continues
to be the most challenging to UV complete, while the weak interactions were discovered
and UV completed within about half a century!

One can also easily “discover” the stringy completion of gravity amplitudes, from
the bottom-up, as the simplest possible UV completion with an infinite tower of poles
satisfying extremely basic consistency conditions, even before imposing the restrictions of
causality and unitarity. The tree-level 4-graviton amplitude is A+−+− = GN 〈13〉4[24]4 ×

1
stu . We know that any tree-level UV completion must have an infinite tower of poles,
in the s, t, u channels. Thus, the most general Ansatz for the amplitude would replace

1
stu →

N(s,t,u)
stu
∏
i
(s−m2

i )(t−m
2
i )(u−m

2
i )
. Note that this expression has the property that on the s−

channel pole at s = m2
j , the residue has poles at t = m2

i and u = m2
i → t = −(m2

i + m2
j ).

These poles must be absent in the physical amplitude, thus the numerator must have
zeroes, when s = m2

j , at these values of t. It is then natural to make the simple assumption
that these are the only zeroes of the numerator. That tells us that if we write N(s, t, u) =∏
j(s+ri)(t+ri)(u+ri), that the set of all the roots {ri} must contain all of {m2

i ,m
2
i +m2

j}.
And this in turn is most trivially accomplished if m2

j = M2
s j are just all the integers in the

units of a fundamental mass scale Ms!
By this simple reasoning, we are led to the infinite product formula for the Virasoro-

Shapiro amplitude, putting α′ = M−2
s :

A = GN 〈13〉4[24]4
∏∞
j=1(α′s+ j)(α′t+ j)(α′u+ j)∏∞
i=0(α′s− i)(α′t− i)(α′u− i)

= GN 〈13〉4[24]4 Γ(−α′s)Γ(−α′t)Γ(−α′u)
Γ(1 + α′s)Γ(1 + α′t)Γ(1 + α′u) . (12.1)
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Of course this is not at all a “derivation” of the string amplitude, but it nonetheless
striking to see how easily the amplitude emerges as the simplest possible way of writing an
expression with infinitely many poles that passes even the most basic consistency checks.

In fact, it is fascinating that directly checking the consistency known string tree am-
plitudes is high non-trivial. Causality in the form of the correct Regge behavior is readily
verified, but unitarity, in the form of the positivity of the Gegenbauer expansion of the
amplitude residues on massive poles, turns into a simple but highly non-trivial statement.
For concreteness consider the scattering of colored massless scalars in the type I open
superstring theory, where the amplitude is

A = s2 Γ(−s)Γ(−t)
Γ(1− s− t) (12.2)

The residues on the massive poles at s = n is a polynomial Rn(x = cosθ), where t =
−n

2 (1− x), given by

Pn(x) =
n−1∏
i=1

(
x− (n− 2i)

n

)
(12.3)

Already at n = 3, we learn something striking: P3(x) = (x− 1
3)(x+ 1

3) = x2− 1
9 , which we

would like to express as a sum over Gegenbauer polynomial. The spin 2 Gegenbauer in d
spatial dimension is proportional to x2 − 1

d , thus by writing (x2 − 1
9) = (x2 − 1

d) + ( 1
d −

1
9),

we see a massive spin 2 state with positive norm, but also a spin 0 state with norm (1
d −

1
9),

which is ≥ 0 for d ≤ 9, but is negative, violating unitarity, for d > 9. Thus the critical
spacetime dimension D = d+ 1 = 10 is hiding in plain sight in the four-particle amplitude,
purely from asking for unitarity at on this pole at s = 3. But of course for unitarity, we
must have that

Pn(x) =
∑
s

pn,sG
(d)
s (x), with pn,s ≥ 0 for d ≤ 9 (12.4)

This extremely simple statement turns out to be very difficult to prove directly, indeed are
not aware of any direct proof of this fact in the literature! Of course it does follow, more
indirectly, from the still rather magical proof of the no-ghost theorem in string theory.

The miraculous way in with which string amplitudes manage to be consistent make
it seem even more plausible that these amplitudes emerge as the unique answer to the
question of finding consistent four particle massless graviton amplitudes with only poles.
But some further constraints other than causality, unitarity and good high-energy behavior
of just massless graviton scattering, must be imposed to do this, as we have found candidate
four-particle amplitudes satisfying all these rules that deform away from the known string
amplitudes. Consider again the Virasoro-Shapiro amplitude for graviton scattering. The
residue on the pole at s = n is the square of the open-string residue Pn(x)2, and so the
positivity of its Gegenbauer expansion follows directly from the positivity of Pn(x) for the
open string. But now consider a deformation by a parameter ε of the form

Γ(−α′s)Γ(−α′t)Γ(−α′u)
Γ(1+α′s)Γ(1+α′t)Γ(1+α′u) →

Γ(−α′s)Γ(−α′t)Γ(−α′u)
Γ(1+α′s)Γ(1+α′t)Γ(1+α′u) + ε

Γ(1−α′s)Γ(1−α′t)Γ(1−α′u)
Γ(2+α′s)Γ(2+α′t)Γ(2+α′u) (12.5)
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This deformed amplitude has the same Regge behavior as the usual string amplitude, and
the same exponential softness for high-energy fixed-angle scattering. The residue at s = n

is given by

1+n(1−ε)
n+1

(
nn−1

2n−1n!

)2 (
Pn(x)2 + 4ε(n−1)

n(1+(1−ε)n)Pn(x)PBn−4(x)
)
, (12.6)

where PBn (x) ≡ ∏n+1
i=1

(
x− n+2−2i

n+4

)
is the residue of the Veneziano amplitude. It is straight-

forward to see that so long as 0 < ε < 1, the positivity of Pn(x) continues to imply the
positivity of the Gegenbauer expansion on the massive poles. Thus this deformed expres-
sion satisfies all the constraints we have been imposing on four-particle scattering. It seems
very unlikely, however, that this corresponds to amplitudes in some consistent deformation
of string theory: the spectrum is exactly the same as the usual (free!) string, and there is
no obvious room for an extra parameter ε in the quantization of the string.

Thus any claim about consistent UV completion must go beyond merely the consistency
of massless scattering at four particles, and include consistent expressions for higher-point
massless scattering and/or, relatedly, consistent amplitudes for the new massive resonances
introduced in the UV completion. This is very reasonable and is after all precisely what
happened in the story of the weak interactions, where the four-fermi interaction was UV
completed by W particles, which in turn had bad high-energy growth for the scattering of
their longitudinal modes that had to be further cured by the Higgs. It is also interesting to
note that imposing just a frisson of extra string properties on the four-particle amplitude —
such as the monodromy relations relating different color channels [32, 33] — when combined
with the EFT-hedron constraints, do appear to uniquely fix string amplitudes. These
observations all suggest a number of fascinating open avenues for further exploration at
the intersection of unitarity, causality, analyticity, string theory and the UV/IR connection.
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A Causality constraints on amplitudes

A.1 Time delay and positivity bounds

It is well-known that causality puts interesting positivity bounds on the amplitude in the
low energy effective field theories. Perhaps the simplest example is the case of a single
derivatively coupled scalar with lagrangian

L = 1
2(∂φ)2 + c

M4 (∂φ)4 + · · · . (A.1)
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The claim is causality demands c > 0 [3]. This is slightly surprising at first sight: c reflects
unknown physics in the UV, ordinarily we can only probe higher-dimension operators if
they violate a symmetry of the low-energy theory, but that is not the case here. And
indeed, there is nothing obviously wrong with this as an Euclidean EFT. However in
the physical Lorentzian world, there is something “right-on-the-edge” in the 2-derivative
theory: φ excitations propagate exactly on the light-cone. It can happen that in simple
backgrounds the coefficient for the higher-dimensional operators push propagation outside
the light-cone. We can consider for instance the spatially translationally invariant back-
ground φ = φ0 + ϕ where φ̇0 6= 0. We can make (φ̇0/M

2) as tiny as we like such that
the background is trustworthy within the EFT. The background breaks Lorentz invariance
and small fluctuations propagate with speed v = (1− cφ̇2

0
M4 ), so we must have c > 0 to avoid

superluminality.
Note that despite being associated with a higher-dimensional operator, the effect of

the superluminality is not “small. Indeed if we turn on φ̇0 6= 0 inside some bubble of radius
R, and throw in a ϕ excitation, we get a time advance/delay of ϕ propagation that is
δt = δvR = cφ̇2

0
M4R, which can be made arbitrarily large by increasing R.

Rt c 2

M 4

.

R

time delay

c >0

time advance

c <0

t

x

This highlights the fundamental fact that the usual Wilsonian intuition about the de-
coupling of “short-distance” from “long-distance” physics is fundamentally Euclidean. In
Euclidean signature, to probe a distance (x−y)2 ∼ 1

Λ2
UV

, one needs probes with wave-
length near the UV scale ΛUV. By contrast in Minkowski space, ultra-small spacetimes
(x−y)2 ∼ 1

Λ2
UV

can be probed by very long-distance experiments since (x, y) can be sepa-
rated by huge distances and time but be close to the light-cone, with advances/delays that
can be made parametrically large.

As is also well-known, these positivity constraints can also be derived from unitarity
plus dispersion relations, reflecting the historic origin of analytic properties of Green’s func-
tions and amplitudes in the investigation of causal propagation! We will recap this story,
but instead of jumping from the classical picture of ϕ propagation around a background
to dispersion relations for the forward 2→ 2 scattering amplitude, we will connect the two
pictures directly, by repeating the above analysis, preformed in the language of classical
field theory, in terms of particle propagation plus scattering. As we will see this will in fact
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give us more than simply the positivity of the (∂φ)4 coefficient; we will see that

∂

∂s

M(s)
s

> 0 , (A.2)

where M(s) is the four particle ϕ scattering amplitude in the forward limit as t→ 0.
As is ubiquitous in the quantum particle-classical field theory connection for bosons,

we recover the classical field picture of time advance/delay for small fluctuations about
the background, by considering the scattering of a single hard ϕ quanta, against a bose
condensate of a large number N of soft φ0 quanta, representing the blob. We begin by
recalling familiar undergraduate basics on wave-packets and the connection between am-
plitude phase shifts and time delays. First free propagation, where we have one particle
states with momentum ~p. From these we can build good approximation to particles moving
with constant momentum trajectories. We can define the state |~x∗, ~p∗; t∗〉 as

|~x∗, ~p∗; t∗〉 =
∫
ddp ei(~p·~x∗−E(~p)t∗)Ψ∆p(~p− ~p∗) (A.3)

where Ψ∆p(~p − ~p∗) is sharply localized around ~p = ~p∗, for example Ψ∆p(~p − ~p∗) ∝
e−(~p−~p∗)2/(∆p)2 . With this definition, we can compute |〈~x2, ~p, t2|~x1, ~p, t1〉|2 via stationary
phase approximation, giving

|〈~x2, ~p, t2|~x1, ~p, t1〉|2 = e−∆p2((~x1−~x2)−~V (~p)(t1−t2))2
(A.4)

where ~V (~p) = ∂E(~p)
∂~p ; this peaked on the classical constant velocity trajectory ∆~x = ~V∆t

with the unavoidable quantum-mechanical uncertainty of order 1
∆p .

Now let’s instead imagine that we are propagating through our blob above. Now in
computing the same overlap, we will need the S-matrix element for ϕ scattering off the blob,

〈B, ~p|S|B, ~p〉 = eiδ(E(~p)). (A.5)

Note that the momentum uncertainty/transfer associated with the blob is k ∼ 1
R , which

we assume to be much smaller than |~p|, so the outgoing momentum is the same as the
incoming one. We also assume no other particles were produced, so that this amplitude is
just a phase eiδ(E(~p)). Repeating the stationary phase analysis, we now find that

|〈~x2, ~p, t2|~x1, ~p, t1〉|2 = e−∆p2
(
∆x−~V (~p)(∆t+ ∂δ(E)

∂E
)
)2

. (A.6)

Thus, the presence of the blob has given us a time delay/advance given by ∆blobt = ∂δ(E)
∂E .

In order for this to be detectable above the quantum uncertainty ∆quantumt ∼ 1
∆p ∼

1
E ,

clearly we must have that the phase δ(E)� 1 is parametrically large.
Thus to find a situation where the delay/advance is reliably calculable, we must find a

setting where δ(E)� 1 is reliably calculable. Now when we consider few particle scattering
in any situation with a weak coupling, where amplitudes are reliably calculable, essentially
by definition the phase above will be perturbatively small. However, δ(E) � 1 is exactly
what happens when we scatter ϕ off the condensate “blob”, which we can think of as a large
number N of ϕ quanta with k ∼ 1

R . Note that the relation between N and the classical
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background field (∂φ0) is given e.g. by matching the energy of the blob in the two pictures,
as N ∼ (∂φ0)/k4. Now let’s considerM = 〈B,E|S|B,E〉 computed in perturbation theory.
We can take momentum of order k for the background. At lowest order, we have

M = 1 +
E E

k k

+ · · · = 1 + iA(s=kE) + · · · .

Again so long as we have weak coupling, A(s = kE) is small. But since k is so small,
the corrections from multi-particle scattering are significantly enhanced by the s-channel
propagator 1

s ∼
1
kE . Thus the full amplitude is then the sum over all disconnected graphs,

scattering of 0, 2, 4, · · · ,m soft particles

M = 1+ + + +· · ·

iAf (s) +
[
iAf (s)

] 1
kE

[
iAf (s)

]
+
[
iAf (s)

] 1
kE

[
iAf (s)

] 1
kE

[
iAf (s)

]
(A.7)

where, since we imagine k ∼ 1
R is tiny, Af (s) is the forward-limit amplitude. Note these are

amplitudes with the conventional relativistic normalization of states: M = 〈B,E|S|B,E〉
is dimensionless and the units are made up for with powers of k. At large m number of
scattering, we have

M =
∑
m

(
iAf (s)k
E

)m(
N

m

)
=
(

1 + iAf (s)k
E

)N
. (A.8)

Using N ∼ (∂φ0)2/k4 we have

M = exp
[
i
Af (s)
Ek

(∂φ0)2

k2

]
, (A.9)

and thus we can identify

δ(E) =
(
A(s)
s

) (∂φ0)2

k2 . (A.10)

So the time delay is
∆t = ∂

∂E
δ(E) = ∂

∂s

(
A(s)
s

)
(∂φ0)2R . (A.11)

From here, we can reproduce the previous result for the c(∂ϕ)4 theory: there A(s) = cs2

M4 ,
so ∆t = c

M4 (∂φ0)2R.
As another quick check, suppose we had turned on a λϕ4 interaction. Then A(s) ∼ −λ,

and ∆t = λ
s2

(ϕ0)2

R2 R ∼ λ (ϕ0)2

E2 R. This is again as we’d expect: inside the blob the ϕ

particle picks up a mass m2
0 ∼ λϕ2

0. So if the velocity (for E � m0) is reduced to
(1 − m2

0
E2 ) = (1 − λ

ϕ2
0

E2 ), this leads to a time delay of ∆ = λ
ϕ2

0
E2R. Note however that if

λ < 0 this does not mean we have superluminal propagation; and indeed it is possible to
have consistent theories with λ < 0, with vacuum instability on exponentially long time
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scales ∝ exp(b/|λ|) as in the Higgs instability in the Standard Model. If λ < 0, turning on
ϕ0 destabilizes the vacuum inside the bubble, and so the perturbative assumption of this
computation is violated. Strictly speaking then, our arguments says that ∂

∂s

(
A(s)
s

)
> 0 so

long as A(s = 0) ≤ 0 (which allows of course for A(s = 0) as for goldstones).
Thus from consideration of scattering off the blob, we conclude that ∂

∂s

(
A(s)
s

)
> 0, a

stronger statement than merely the positivity of the coefficient of (s2) in the low energy
expansion of A(s).

We now switch gears to discuss the dispersive representation of the (forward) scattering
amplitude, and show how analyticity and unitarity allow us to conclude that ∂

∂s

(
A(s)
s

)
> 0

when A(s = 0) ≤ 0. The non-trivial statement that makes this is possible is the Frois-
sart bound, which we will shortly review, following from assumptions of analyticity and
a reasonable polynomial boundedness of the forward amplitude. The bound tells us that
Af (s) < s log2 s at large s, and so Cauchy’s theorem allows us to express for a single scalar
ϕ (with s−u symmetry)

A(s) = A0+
∫
dM2ρ(M2)

[ 1
M2−s

+ 1
M2+s−

2
M2

]
(A.12)

where we’ve separated out the constant piece A0 = A(s = 0), since these are not captured
by contour integration, and the expression in the brackets vanishes at s = 0. Of course
unitarity tells us that ρ(M2) ≥ 0. Now we simply note that

∂

∂s

1
s

[ 1
M2−s

+ 1
M2+s−

2
M2

]
= 2(M4 + s2)
M2(M4 − s2)2 > 0 , (A.13)

and thus if A0 <≤ 0 so that ∂
∂s

A0
s > 0, we have that ∂

∂s

(
A(s)
s

)
> 0 as desired. This

shows quite vividly how unitarity and analyticity in the UV guarantee a rather non-trivial
condition needed for IR causality.

We have seen that reliable causality constraints on scattering amplitudes can arise
if we can find a background in which small, perturbative amplitude phase-shifts can be
calculably exponentiated to large phases, that allow us to look for the presence of a time
advance or delay in the scattering process. We have discussed one such background — the
“soft blob” of a scalar condensate, through which we shoot a hard probe. Another limit of
this kind arises when we have gravitational long-range forces, and consider the scattering
in the Eikonal limit, or equivalently, shooting a probe particle through a gravitational
shock wave [20]. In the impact parameter representation, where the impact parameter
~b is fourier-conjugate to the momentum transfer ~q with t = −~q2, the amplitude again
exponentiates to a phase δ(s,~b) at small ~b. If further we assume the UV theory has a weak
coupling and so a scale of new physics beneath the Planck scale, as in string theory, at
fixed t, the leading weak coupling amplitude at large s scales as a(s)/t, which maps to an
Eikonal phase δ(s,~b) = a(s)

s log b. The center of mass energy s = EprobeEshock; causality
and unitarity demand that |eiδ(Eprobe)| < 1 everywhere in the upper-half Eprobe plane, and
this tells us that δ(Eprobe) itself must be bounded by E1

probe at large Eprobe. This in turn
tells us that the fixed t amplitude is bounded by s2 at large s. This is easily seen to be
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satisfied for gravity amplitudes in string theory, which has a Regge behavior at fixed t,
large s given by s2+α′t/t, giving a power smaller than s2 for physical t < 0.

It is amusing that, while the “small-phase exponentiating backgrounds” are different in
these two examples, the final practical constraint on the high-energy behavior of amplitudes
is the same. The usual Froissart bound (whose derivation we will review in a moment)
tells us that the amplitude at fixed t can grow only logarithmically faster than s, while the
shockwave arguments applicable for weakly coupled in the UV gravitational theories tells
us that the amplitude can’t grow as fast as s2. In both cases, we learn that the amplitude
is bounded by s2 at fixed t.

A.2 Froissart bound

Let’s recall first the intuition behind the Froissart bound, going back to an argument
by Heisenberg [34]. Consider particles scattering at center of mass energy E, involving
exchange of a particle with mass m. We can imagine the interaction strength grows as
gEn, but in position space we also expect the amplitude to behave as e−mR:

E

E

R

e
mR−

Thus the relevant contributions are given by

(gEn)e−mR ∼ 1 → R ≤ n logE
m

, (A.14)

so the total cross section should be bounded by

σ ∼ R2 ≤ n2 log2E

m2 . (A.15)

Now since σ(s) = Im[M(s,t→0)]
s , this also tells us that

Im[M(s, t→ 0)] ≤ cs log2 s

m2 , (A.16)

for some constant c at large s. Note that locality, seen in the finite range of the effective
interaction was crucial to this argument.

We’d like to see how to understand this intuitive result directly from properties of the
amplitude. Very naively, one might think that an upper bound on the amplitude would
come from unitarity, but this is not enough; as we’ve seen locality is also crucial, and thus
some “good” analytic properties of the amplitude must also be needed. To begin with, let’s
write the partial wave expansion of the amplitude

M(s, cos θ) =
∑
`

(2`+1) a` P`(cos θ) → M(s, t) =
∑
`

(2`+1) a` P`(1+2t/s) . (A.17)
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Unitarity tells us that |1+ia`|2 ≤ 1 so 0 ≤ |a`|2 ≤ 2Im a` ≤ 1. Note the extremely naive
intuition that “unitarity means A(s) can’t get too big” is wrong, since unitarity only tells
us each a` individually can’t get too big. Indeed if we keep all a`’s to be O(1) up to some
` ∼ `max, we’d have that

M(s, 0) =
∑

`≤`max

(2`+1) a` ∼ `2max . (A.18)

Going again to the Heisenberg picture, at the distance Rmax ∼ logE
m , the angular momentum

is `max ∼ ERmax ∼ E logE
m , so M ≤ `2max ∼ s

log2 s
m2 would agree with our Froissart intuition.

So unitarity is not enough, we need an extra argument to tell us that the partial waves
above `max(E) ∼ E logE are shut off. Let’s imagine working at fixed t smaller than any
of the thresholds. Importantly we assume that the amplitude at fixed s is analytic in t: in
other words, we can continue from small negative t (i.e. the physical region) to small positive
t smoothly. We will also have at fixed but small t, the amplitude is polynomial bounded
at large s, M < sN . We’ve already seen heuristic reasons for this from causality, though
those are only applicable for physical (negative) t. It is our assumption of analyticity in
t for small enough t that allows us to continue the bound to positive t, which is crucial
for the following argument. Now the Legendre polynomials P`(x) are wildly oscillating for
large ` when |x| = cos θ < 1, but for x > 1 they instead are exponentially growing:

P`

(
1+2t

s

)
∼ 1√

`
e2`
√

2t
s (A.19)

for t/s > 0. Now consider ImM(s, t) = ∑
`(2`+1)Ima` P`(1 + 2t

s ). If we want this to be
bounded by sN at large s, Ima` have to sharply die above some `max(s), estimated as

e2`max(s)
√

2t
s < sN → `max(s) ∼ N

√
s

2t log s . (A.20)

Note this is in agreement with what we expect from the Heisenberg picture; taking t ∼
1/R2, we have `max ∼ NRE logE as expected. From here, we recover the Froissart bound.

Note we can also say slightly more, not just about the imaginary part of the amplitude,
but the amplitude itself. We’ve already seen that Ima` → 0 for ` > `max(s). But since by
unitarity we have |a`|2 < 2Im a`, this means that Rea` → 0. Thus we learn that for small
enough |t|

M(s, t) ≤ s log2 s (A.21)

for large s. This is interesting: we began only by assuming M(s, t) < sN for some power
N ; but analyticity in t for small t, and unitarity, then forces upon us the much stronger
statement that M(s, t) < s log2 s.

B Dispersive representation of loop amplitudes

In this section, we will show that by integrating out massive states in loops, so long as
t� m2, the four point amplitude admits the following dispersive representation:

M(s, t)|t�m2 = MSub +
∫ ∞
M2
s

dM2 ρs(M2)
s−M2 +

∫ ∞
M2
u

dM2 ρu(M2)
u−M2 (B.1)
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where MSub is the subtraction terms reproducing with boundary behaviour of M(s, t) as
s → ∞, and M2

s ,M
2
u are the leading thresholds in the s and u- channel. In other words,

near the forward limit, the analytic behaviour of the amplitude takes the form

Note that we can say that the loop integral can be represented as a (continuous) sum of
tree-exchanges. We will see in generality, that his representation follows directly from the
Schwinger parameter representation.

We will illustrate the ideas of the general proof by working through the example of the
1-loop box in D = 4. But just as an initial warm up, we can consider the bubble in D = 2

1

2

,

where the parametric representation is

I(s) =
∫
dα1dα2
GL(1)

1
(−s)α1α2 +m2(α1 + α2)2 . (B.2)

The important point is that this is manifestly a (continuous) sum over simple poles in s —
that is the dispersive representation! More formally, we can write:

I(s) =
∫
dM2 ρ(M2)

−s+M2 (B.3)

where

ρ(M2) =
∫
dα1dα2
GL(1)

1
α1α2

δ

(
M2 − m2(α1 + α2)2

α1α2

)

=
∫
dα1
α1

δ

(
M2 − m2(α1 + 1)2

α1

)
. (B.4)

Since the αis are integrated over R+, min (1+α1)2

α1
= 4, and thus ρ(M2) = 0 when M2 <

4m2. For M2 > 4m2 the integral is localized by the delta function and one has:

ρ(M2) = 2√
M2(M2 − 4m2)

Θ(M2 − 4m2) . (B.5)

This manifests the position of the branch point at s = 4m2.
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We now turn to the D = 4

1

2 4

3

1

2 3

4 .

We will see that
I(s, t) =

∫ ∞
4m2

dM2 ρ(M2, t)
−s+M2 (B.6)

where ρ(M2, t) is analytic in t around t = 0, with a cut at large positive t ∼ m2, but
finite for t < 0. Note that importantly the starting point of the integral is at 4m2 which
is independent of t. If this had then say 4m2 − t, then we would not have an analytic
expression in t. Now let’s look at the box integral in Schwinger parameter space:

I(s, t) =
∫
dα1 · · · dα4

GL(1)
1

((−s)α1α3 + (−t)α2α4 +m2(α1 + α2 + α3 + α4)2︸ ︷︷ ︸
∆

)2 (B.7)

We begin in the Euclidean regime where −s,−t > 0, the denominator ∆ is positive and
the integral is perfectly analytic. In fact, even if (−s) and (−t) are negative, as long as
they are small with respect to m2 we are fine, since ∆ can be rewritten as

∆ = (4m2−s)α1α3+(4m2−t)α2α4+m2
(
(α1 − α3)2 + (α2 − α4)2 + 2(α1 + α3)(α2 + α4)

)
.

(B.8)
Now let’s keep t fixed and small but increase s. Clearly ∆ > 0 for any s < 4m2. But note
that for any positive ε, we can make ∆ < 0 at s = 4m2 + ε. Naively one might worry
about (−t) being positive, but simply by considering the limit (α1, α3)→∞ while (α2, α4)
held fixed, we can make ∆ < 0 for any value of positive ε. So, we see that we hit a branch
point singularity at s = 4m2 independent to the value of t.

Now let’s first get the dispersive representation starting in the forward limit t → 0.
Fixing the GL(1) symmetry by setting α1 = 1, we have

I(s, t=0) =
∫
dα2dα3dα4

1
((−s)α3 +m2(1 + α2 + α3 + α4)2︸ ︷︷ ︸

∆

)2

=
∫
dM2 ρ̃(M2)

(M2 − s)2 (B.9)

where
ρ̃(M2) =

∫
dα2dα3dα4

1
α2

3
δ

(
M2 − m2(1 + α2 + α3 + α4)2

α3

)
. (B.10)

Note that since the minimum of (1 + α2 + α3 + α4)2/α3 is at 4, ρ̃(M2) will vanish when
M < 4m2 so we have I(s, t=0) =

∫∞
4m2 dM2 ρ̃(M2)

(M2−s)2 . Integrating by parts, we have

I(s, t=0) = −
∫ ∞

4m2
dM2 ∂

∂M2
ρ̃(M2)

(M2 − s) +
∫ ∞

4m2
dM2 1

(M2 − s)
∂

∂M2 ρ̃(M2) (B.11)
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The boundary term at M2 = ∞ vanishes. Importantly, for M2 = 4m2, ρ̃(4m2) itself also
vanishes. This can be explicitly confirmed, but it must be: if ρ̃(M2 → 4m2) = const., then
the integral near ∫

4m2
dM2 1

(M2 − s)2 ∼
1

4m2 − s
(B.12)

gives a pole in s = 4m2, while we can see easily that one can at most get a branch cut
there. Let us explicitly compute ρ̃(M2):

ρ̃(M2) =
∫
dα2dα3dα4

1
m2α3

δ
(
(α3 − α+)(α3 − α−)

)
(B.13)

where α± = −(1+α2+α4)+x
2 (1 ±

√
1− 4

x(1+α2+α4)) and x = M2

m2 . We use the delta
functions to localize α3, while the integration over α2 and α4 is bounded by 1+α2 +α4 ≤ x

4
to ensure that α± stays real. In the end we find:

ρ̃(M2) =
log

(
1 +

√
1− 4

x

)
− log

(
1−

√
1− 4

x

)
− 2

√
1− 4

x

m2 , (B.14)

which indeed vanishes when M2 = 4m2. Substituting the result back into eq. (B.11),
we find

I(s, t=0) =
∫ ∞

4m2
dM2 ρ(M2)

(M2 − s) ρ(M2) =

√
1− 4

x

M2m2 . (B.15)

We can proceed in the same way to compute the t-expansion. We simply Taylor expand
eq. (B.7) where we have:

∑
q

(−t)q
∫
dM2 ρ̃(q)(M2)

(M2 − s)q+2 , ρ̃(q)(M2)=
∫
dα2dα3dα4

(α2α4)q

α2+q
3

δ

(
M2−m

2(1+α2+α3+α4)2

α3

)
.

(B.16)
Again the α3 integral localizes and we are restricted to α2 + α4 <

M2

4m2 − 1. Note that this
shows that due to the (α2α4)q factor, ρ̃(q)(M2) and all q of its derivatives with respect to
M2 vanishes at M2 → 4m2. Thus we can write the coefficient of (−t)q as∫ ∞

4m2
dM2 ρ(q)(M2)

(M2 − s) , ρ(q)(M2) = ∂q+1

∂(M2)q+1 ρ̃
(q)(M2) (B.17)

This leads to the dispersive representation for the box integral around t = 0:

I(s, t) =
∫ ∞

4m2
dM2

∑
q(−t)qρ(q)(M2)

(M2 − s) . (B.18)

As an example we can explicitly compute ρ(1)(M2). Starting with:

ρ̃(1)(M2) =
3(M2+6m2)

(
log

(
1+
√

1− 4
x

)
− log

(
1−
√

1− 4
x

))
−(11M2+16m2)

√
1− 4

x

18m4 ,

(B.19)
we find:

ρ(1)(M2) = ∂2

∂(M2)2 ρ̃
(1)(M2) =

(1− 4
x)
√

1− 4
x

6M2m4 . (B.20)

– 91 –



J
H
E
P
0
5
(
2
0
2
1
)
2
5
9

Finally, we note that due to the increase in M2 derivatives, ρ(q)(M2) are increasingly
suppressed for larger q as M2 → ∞. We will come back to this point when we study the
partial wave expansion of the numerator in eq. (B.18).

Having seen all the relevant ideas in the 1-loop examples, let’s now consider the general
story. Consider any integral associated with a graph G, as far as the analytic structure
is concerned we can just take scalar graphs with numerator = 1. The integral in general
takes the form

I = Γ (E−LD/2)
∫

dEα

GL(1)
1
UD/2

(U
F

)E−LD/2
, (B.21)

where U , F are the Symanzik polynomials given as

U =
∑

T ∈spanning
tree

∏
i/∈T

αi

 , F = F0 +
(∑

i

m2
iαi

)
U

F0 =
∑

T2 ∈spanning
2−tree

∏
i/∈T2

αi

∑
j∈L

pj

2

(B.22)

In particular all the dependence on the external Mandelstams is in the F -polynomial.
Specializing to four-points, we have that

F = (−s)F0
s+(−t)F0

t +(−u)F0
u +

(∑
i

m2
iαi

)
U (B.23)

Note that every 2-tree that contributes to F0 must appear in U , so every monomial in F0

also occurs in (∑im
2
iαi)U ; this makes it manifest that F > 0, so long as (−s), (−t), (−u)

are small enough.
Now we’d like to show that, at fixed t, we have some branch point singularity at

s → M2
s (independent of t), and u → M2

u (again independent of t). Of course at general
loops, there can be many “thresholds”, but one of them will occur at smallest s; for example

1

2 3

4

1

2

3

4

5

6

7

8

9

10

we can have thresholds at s = (m2 + m5)2 or (m6 + m7 + m8)2. We can systematically
identify these as follows. Pick any monomial m(s) in F0

s , since these monomials do not
appear in F0

t or F0
u , they will dominate if we scale those αs → ∞. So for each monomial

we will have some threshold M2
m(s) . The minimum of those over all monomials m(s) is some

m∗(s), and the branch point is at M2
s ≡ M2

m∗(s) . Similarly for M2
u . Furthermore, for any

ε > 0, by scaling all of the αs in m∗(s) to infinity, we see that we can always make F < 0
for s = M2

s + ε, so the branch point sits at s = M2
s independent of t, and similarly for M2

u .
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Now in general the four-point loop integral takes the form

I(s, t) =
∫

dEα

GL(1)
1
Ua

1(
(−s)F0

s+(−t)F0
t +(−u)F0

u + (∑im
2
iαi)U

)b
=
∫

dEα

GL(1)
1
Ua

1[
(−s)(F0

s−F0
u)+(−t)(F0

t −F0
u)+(∑im

2
iαi)U

)b
=
∫
dM2

∑
q(−t)qρ̃(q)(M2)

(M2 − s)b (B.24)

where
ρ̃(q)(M2) =

∫
dEα

GL(1)
1
Ua

(F0
t −F0

u)q
(F0

s−F0
u)b+q δ

(
M2 − (∑im

2
iαi)U

(F0
s−F0

u)

)
. (B.25)

Now, the point is again that the δ function constraint forces either that for M2 > 0,
M2 > M2

s , or for M2 < 0, that M2 < −M2
u − t, so that we can write

I(s, t) =
∫ ∞
M2
s

dM2
∑
q(−t)qρ̃

(q)
s (M2)

(M2 − s)b +
∫ ∞
M2
u

dM2
∑
q(−t)qρ̃

(q)
u (M2)

(M2 − u)b . (B.26)

By the same integration by parts idea, we arrive at our final form:

I(s, t) =
∫ ∞
M2
s

dM2 ρs(M2, t)
(M2 − s) +

∫ ∞
M2
u

dM2 ρu(M2, t)
(M2 − u) . (B.27)

C Partial wave expansion of unitarity cuts

As stressed in the main text, near the forward limit the singularities of the four-point
amplitude are associated with threshold productions. We would like to demonstrate that
contributions from these singularities, which are the imaginary part of the amplitude on
the real s-axes, is given by a positive expansion on the Gegenbauer polynomial. We be-
gin by considering scalar scattering in the C.O.M frame, with the spatial momenta of the
incoming and out going particles given by p̂in = p1−p2 and p̂out = p3 − p4 respectively,
which span a D−1-dimensional space. As the singularites are associated with threshold
production, in the C.O.M frame these are all single or multi-particle states forming irre-
ducible representations under SO(D−1). To this end, let us first build up general irreps of
SO(n+1), latter identifying n = D−2.

For a system with rotational SO(n+1) symmetry, it is useful to consider operators
as matrix elements on the Hilbert space of states that form irreducible representations of
SO(n+1). To this end, we introduce n+1-dimensional unit vectors x, i.e. points on an
n-sphere. The states in the Hilbert space will be functions of these vectors, in particular
we have states |x〉 equipped with the inner product 〈x|y〉 = δ(x, y). To integrate these
functions, we introduce the SO(n+1) invariant measure 〈xdnx〉 ≡ 1

Ωn ε(xdx · · · dx), where
it is normalized with the solid angle Ωn.

Now we will like to construct states that transforms as irreps under SO(n+1), i.e.
they transform linearly. To draw an analogy, consider the state labeled by coordinate
X, |X〉. Under translations Ta, it transforms non-linearly, Ta|X〉 = |X + a〉. For linear
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representations, we know we can define the Fourier transformed state |k〉 which transforms
under translation as:

|k〉 =
∫
dXeikX |X〉 → Ta|k〉 = e−ika|k〉 . (C.1)

We would like a similar representation for SO(n+1). Now clearly the state

| 〉 =
∫
〈xdnx〉 |x〉 (C.2)

is invariant as |x〉 → |Rx〉, where R is a SO(n+1) rotation, while

|i〉 =
∫
〈xdnx〉 xi|x〉 (C.3)

transforms as a vector. For |ij〉 we cannot simply use
∫
〈xdnx〉 xixj |x〉 since it is not

reducible and contains a trace piece. This tells us that we should use |ij〉 =
∫
〈xdnx〉

(
xixj−

δij

n+1

)
|x〉. Going onward it is clear that this is the same task we’ve encountered previously in

deriving the Gegenbauer polynomial from tree-exchanges. Borrowing from that experience,
we see that the irreducible states can be simply generated by expanding:∫ 〈xdnx〉

|x− y|n−1 |x〉 =
∑
`

yi1 · · · yi` |i1 · · · i`〉 . (C.4)

The states |i1 · · · i`〉 are now irreps: symmetric traceless tensors of SO(n+1). Note that the
Gegenbauer polynomials in this language is simply

G
n−1

2
` (cos θ) = An,`yi1 · · · yi`〈x|i1 · · · i`〉, cos θ = y · x (C.5)

where An,` := 2` Γ(`+n−1
2 )

Γ(n−1
2 )`! . The orthogonality property of Gegenbauer polynomials is then

simply:

∫
〈zdnz〉

G
n−1

2
` (y · z)
An,`

G
n−1

2
`′ (w · z)
An,`′

=
∫
〈zdnz〉 yi1 · · · yi`〈i1 · · · i`|z〉〈z|j1 · · · j`′〉w

j1 · · ·wj`′

= Bn,`δ`,`′
G
n−1

2
` (y · w)
An,`

, (C.6)

where we’ve used that the states |i1 · · · i`〉 and |j1 · · · j`′〉 are orthogonal to each other if
` 6= `′ since they have different quantum numbers, and here Bn,` = 2−`Γ(n+`−1)Γ(n+1

2 )
Γ(n−1)Γ(`+n+1

2 ) . If
we let y = w and replace 〈zdnz〉 by

Ωn−1
Ωn

sinn−2 θd cos θ , (C.7)

we get the usual normalization factor for Gegenbauer polynomials:∫
G`(cos θ)G`′(cos θ) sinn−2 θd cos θ = Nn,`δ`,`′ (C.8)
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with
Nn,` = Ωn

Ωn−1
An,`Bn,` = π22−nΓ[`+n−1]

`!
(
`+n−1

2

)
Γ2
[
n−1

2

] . (C.9)

The orthogonality relation also implies that:

〈x|i1 · · · i`〉〈i1 · · · i`|y〉 = B−1
n,`

∫
〈zdnz〉

(
〈x|i1 · · · i`〉zi1 · · · zi`

) (
zj1 · · · zj`〈j1 · · · j`|y〉

)
= B−1

n,`

∫
〈zdnz〉xi1 · · ·xi`〈i1 · · · i`|z〉〈z|j1 · · · j`〉yj1 · · · yj`

= A−1
n,`G

n−1
2

` (x · y) , (C.10)

where the first equality holds since the SO(n+1) invariant integration of zi1 · · · zj` yields
a polynomial of products of Kronecker deltas, and when acting on the irreps, only i, j

contractions yield contributions as any trace pieces vanish.
Finally, these irreducible states also provides a basis for operators. A general operator

can be expanded as:
O =

∑
Oi1···i`;j1···j`′ |i1 · · · i`〉〈j1 · · · j`′ | . (C.11)

However, for SO(n+1) invariant ones, the operator Oi1···i`;j1···j`′ can only be comprised of
Kronecker deltas and since δiaib contracted with the states |i1 · · · i`〉 vanishes, it can only
be polynomials of δiajb . This tells us that ` = `′, i.e. it is diagonal in spin space. In the last
equality we’ve used eq. (C.6). Thus we conclude that SO(n+1) invariant operators can be
written as

〈y|OInv|x〉 =
∑
`

Nn,`p`G
n−1

2
` (x · y) , (C.12)

i.e. it is expandable on the Gegenbauer polynomials.
Now let’s consider S, the s-matrix of the full theory. Restricting ourselves to the 2→ 2

elastic scattering, we can define the “little” matrix s

〈p̂out|s|p̂in〉 =out 〈p3, p4|S|p1, p2〉in . (C.13)

In other words s is only defined only on the 2→ 2 states. The full s-matrix satisfy S†S = I,
while the small s-matrix satisfy

s†s ≤ I , (C.14)

as an operator statement, i.e. for any state |ψ〉, we have 〈ψ|s†s|ψ〉 ≤ 〈ψ|ψ〉. Now since s is
rotationally invariant, we can write

s =
∑
`

s` |i1i2 · · · i`〉〈i1i2 · · · i`| , (C.15)

then s†s ≤ 1 implies |s`| ≤ 1. If we write s = 1+it, then this implies |1+it`| ≤ 1. Note that

t =
∑
`

t` |i1i2 · · · i`〉〈i1i2 · · · i`| → 〈p̂out|t|p̂in〉 = Nn,`
∑
`

t`G
n−1

2
` (p̂out · p̂in) (C.16)

where 〈p̂out|t|p̂in〉 is the four-point amplitude of interest. Since |1 + it`| ≤ 1,

1 + i(t` − t∗` ) + |t`|2 ≤ 1 → i(t∗` − t`) ≥ |t`|2 . (C.17)
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Figure 21. The region allowed for s` and t` by unitarity. At weak coupling this constraint is only
reflected in Re[s`] ≤ 1 and Im[t`] ≥ 0.

More explicitly we have 1 + it` = η`e
iδ` with η` ≤ 1. Note that in a weakly coupled theory,

eq. (C.17) just tells us that i(t` − t∗` ) ≥ 0, i.e. the imaginary part is positive. The full
non-linear constraint is only present at strong coupling see figure 21. Since the imaginary
part is positive, we have

Im[〈p̂out|t|p̂out〉] = Nn,`
∑
`

Im[t`]G
n−1

2
` (p̂out · p̂in) (C.18)

i.e. the imaginary part of the amplitude is positively expandable on the Gegenbauer
polynomials.

D The spinning-spectral function for massive box

From appendix B we’ve seen that near the forward limit, the four-point amplitude admits
a Källén-Lehman representation, where the “spectral function” depends on t, i.e. ρ(M2, t).
Since the spectral function is a polynomial in t near the forward limit, it has a partial
wave expansion. Now from appendix C, we’ve seen that the discontinuity for A,B → A,B

type scattering should be positively expandable on the Gegenbauer polynomials. Since the
discontinuity in the dispersive representation is the spectral functions, we conclude that
the “spinning spectral function” should be a positive function. Here we will use the massive
box to demonstrate this fact.

Let us consider an explicit example, the discontinuity for the box-integral with massive
internal propagators in four-dimensions. The integrand in the phase space integral is simply
given by the product of two tree-propagators:

1

2 3

4

I

I’

= 1
2(p1 · pI)

1
2(p4 · pI)

= 4
s2

1
1−

√
1− 4m2

s p̂1 · p̂I

1
1−

√
1− 4m2

s p̂4 · p̂I
,

(D.1)
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where we are again considering the kinematics in center of mass frame. The discontinuity
is now given as:

〈p̂in|T †T |p̂out〉 =
∫ ∞

4m2
ds

4Js
s2

∫
〈p̂Id2p̂I〉F ∗(p̂1 · p̂I)F (p̂4 · p̂I) (D.2)

where F (x) =
(

1−
√

1− 4m2

s x

)−1
, and Js is the dimensionless Jacobian factor stemming

from the phase space integral:∫
dD`δ

(
`2 −m2

)
δ
(
(`− p12)2 −m2

)
= (s− 4m2)D−3

2
√
s

∫
dΩD−2 , (D.3)

which for D = 4 is simply Js =
√

1−4m2

s .
Let us write F (x) as an expansion on the Gegenbauer polynomial with coefficient f`,

F (x) = ∑
` f`(s)G

1
2
` (x). Then the two-dimensional angular integral simply reduces the

corresponding product of G
1
2
` (x)s in eq. (D.2) to ∑` |f`(s)|2 2

2`+1G
1
2
` (p̂1 · p̂4), where θ is

precisely the scattering angle. Thus we conclude that the discontinuity is simply

〈p̂in|T †T |p̂out〉 =
∫ ∞

4m2
ds

4Js
s2

∑
`

p`(s)
2

2`+ 1G
1
2
` (cos θ), (D.4)

where p`(s) ≡ |f`(s)|2 is the positive definite “spinning” spectral function. Let us compute
the f`(s)s explicitly.

Using the generating function and the orthogonality of the Gegenbauer polynomials,
we can write down the following generating function for f`(s),∫ 1

−1
dx

1
(1− ax)

1
(1− 2rx+ r2) 1

2
=
∑
`

r`
2

2`+ 1f`(s) , (D.5)

where a =
√

1− 4m2

s . A straight forward integration yields for the l.h.s.:

1
ab

log
[(1− r + b)

(1− r − b)
(1 + r − b)
(1 + r + b)

]
, b =

√
1 + r2 − 2r

a
(D.6)

As the generating function is non-polynomial in r, we have an infinite tower of spin in the
expansion. The coefficient for the first few spins are:

f0 = 1
2

log δ
a

, f1 = 3
2

(−2a+ log δ)
a2 , f2 = 5

2
(−6a+ 3 log δ − a2 log δ)

2a3 , (D.7)

where δ = 1+a
1−a . Since a takes value between 0 and 1, one can straightforwardly see that

the coefficient decreases for increasing spin.
Let us verify that eq. (D.4), combined with (D.5) and (D.6), indeed reproduces the

correct discontinuity of eq. (2.10)

I4[s, t]− I4[s, t]|βu→−βu . (D.8)

To compare, we first note that the coefficients f`(s) is suppressed for higher spin, see.
figure 22. Thus we should find a good approximation by truncating at ` = 10. Indeed
summing eq. (D.4) up to spin-10 the result matches with that of eq. (D.8) as shown in
figure 23, thus confirming eq. (D.4).
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f`(s)

2 4 6 8 10

2

4

6

8

`

Figure 22. We plot the coefficients f`(s) for s = 14. We see that the coefficients are suppressed
for higher spins.

2 4 6 8 10
s

2

4

6

8

Dis

Figure 23. We compare our Gegenbauer sum expression in eq. (D.4), truncating at ` = 10, with
the explicit discontinuity in eq. (D.8). We’ve normalized s

4m2 → s, so that the discontinuity begins
at s = 1 to ∞. We’ve compared the result of eq. (D.4), in red dots, to eq. (D.8) which is the
colored curve. The brown curve is for cos θ = 1

2 , and the blue curve for cos θ = 1/6. Both exhibit
perfect matching.

E Positivities of the Gegenbauer matrix

The results on the total positivity of Gegenbauer polynomials follow from general theorems
connecting total positivity to orthogonal polynomials with positive measure discovered in
the 1960s [23]. Here, we will give elementary and explicit computations that show the
positivity properties explicitly for the Gegnebauer polynomial case of immediate interest
to us. For the simplest case of d = 2, where we just have Fourier expansion in cos(θ), we will
give an especially simple argument for positivity going back essentially to Chebyshev. We
will then give a simple explicit computation of the determinants associated with the Taylor
expansion of Gegenbauer polynomials, where they can explicitly be seen to be positive

E.1 Total positivity of Chebyshev matrix

Let us consider a general strategy in proving the positivity of the determinant of matrices
constructed from specific functions V`(y). In particular, the columns of the matrix is
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given by evaluating the function at n distinct ordered points y1 < y2 < · · · < yn, i.e.
V` = (V`(y1), V`(y2), · · · , V`(yn)). Our task is to prove that for a collection of n such
vectors,

Det(V`1 ,V`2 , · · · ,V`n) = Det


V`1(y1) V`2(y1) · · · V`n(y1)
V`1(y2) V`2(y2) · · · V`n(y2)

...
... · · ·

...
V`1(yn) V`2(yn) · · · V`n(yn)

 > 0 . (E.1)

The general strategy, as also discussed in [6], is to show that the above can never be zero
for any choice of distinct yis. In other words, the sign of the determinant is fixed. Then the
vanishing of the determinant implies that the column vectors are now linearly dependent, or

n∑
i=1

ciV`i(yj) = 0 , (E.2)

for j = 1, 2 · · · , n. Said in another way, the function ∑n
i=1 ciV`i(y) have n roots on the real

axes. Thus proving the definite sign of eq. (E.1) amounts to proving that eq. (E.2) cannot
have n real solutions.

Before considering Chebyshev polynomials, let’s first begin with V`(y) = e`y. Choose
a sets of n `is conveniently labelled with `1 < `2 < · · · < `n, the goal is to show that

fn(y) =
n∑
i=1

cie
`iy (E.3)

cannot have n real roots for any ci. We will prove this by induction. First for n=1, indeed
f1(y) = e`1y does not have a root. Next, lets assume that there are at most n−2 roots for
fn−1(y), but fn(y) has n roots. We will show that this leads to a contradiction. If fn(y)
has n roots, then multiplied by e−`1y will not change that. That is,

e−`1yfn(y) = c1 + c2e
(`2−`1)y + · · · ,+cne(`n−`1)y (E.4)

will also have n roots. Now the derivative of a function with n roots on the real axes must
have at least n−1 real roots. Taking the derivative we find,(

e−`1yfn(y)
)′

= c2(`2 − `1)e(`2−`1)y + · · · ,+cn(`n − `1)e(`n−`1)y . (E.5)

But this is nothing but fn−1 with another set of ordered `i, which now has n−1 real roots,
a contradiction to our initial assumption! Thus we conclude that fn(y) cannot have n-roots
and the determinant in eq. (E.1) can never be zero. Note that if one replaces y = log x,
then the functions we are considering are simply moments x`. As we assume that y is real,
we have x > 0 and thus the positivity of eq. (E.1) also leads to the total positivity of the
Vandermonde matrix for half moment curves.

We are interested in the Chebyshev polynomials cos `y. Since we will be interested
in cases where cos y > 1, y is purely imaginary and the Chebyshev polynomial becomes
cosh `y with y being real. Now we want to show that

n∑
i=1

ci cosh `iy = 0 (E.6)
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cannot have 2n real roots (or n positive roots since its a even function). But we’ve al-
ready shown that any linear combination of 2n distinct e`y cannot have 2n roots, thus a
contradiction! Thus this proves that

Det


cosh `1y1 cosh `2y1 · · · cosh `ny1
cosh `1y2 cosh `2y2 · · · cosh `ny2

...
... · · ·

...
cosh `1yn cosh `2yn · · · cosh `nyn

 6= 0, (E.7)

i.e. it has a definite sign. Finally since all that we assumed for our Chebyshev matrix is
that the spin is ordered, the minors of a given matrix obviously satisfies the same criteria,
and hence we conclude that the Chebyshev matrix is a totally positive matrix.

E.2 Positivity of the Taylor scheme Gegenbauer matrix

Here we analytically prove that the determinant of the Gegenbauer matrix in the derivative
scheme. Starting with the Taylor coefficients defined in eq. (6.35), first we reorganize the
analytic expression as:

vD
`,q = 1

q!(`− q)!
(∆)`+q∏q

a=1(∆ + 2a− 1) = (∆)`
(q!)(`!)

1∏q
a=1(∆ + 2a− 1) [(`)−q(`+ ∆)q] , (E.8)

where ∆ = D−3, (a)−q = a(a−1) · · · (a−q+1) and (a)0 = 1. Now consider the determinant
of n+1 Taylor vectors. Due to our rearrangement, the determinant can be written in a
factorized form:

Det


vD
`1,0 v

D
`2,0 · · ·

vD
`1,1 v

D
`2,1 · · ·...
... · · ·

 =
(
n+1∏
i=1

(∆)`i
`i!

1∏i−1
a=1(∆ + 2a− 1)a!

)

×Det

(`1)0(`1 + ∆)0 (`1)−1(`1 + ∆)1 . . .

(`2)0(`2 + ∆)0 (`2)−1(`2 + ∆)1 . . .

. . . . . . . . .

 . (E.9)

Now we know that the remaining determinant must have the factor ∏i<j(`j − `i) since the
result vanishes if `i = `j . Furthermore, using

(−a)b = (−a)(−a+ 1) . . . (−a+ b− 1) = (−1)b(a)−b , (E.10)

we can see that the remaining determinant is invariant under ` → −`−∆. This together
with power counting leads to

Det

(`1)0(`1 + ∆)0 (`1)−1(`1 + ∆)1 . . .

(`2)0(`2 + ∆)0 (`2)−1(`2 + ∆)1 . . .

. . . . . . . . .

 =
∏
i<j

(`j − `i)(∆ + `j + `i). (E.11)

Thus we find that(∏
i

vD
`i,σi

)
εσ1σ2···=

(
n+1∏
i=1

(∆)`i
`i!

1∏i−1
a=1(∆+2a−1)a!

)∏
i<j

(`j−`i)(∆+`j+`i). (E.12)

As one can see, the result is positive so long as `1 < `2 < · · · < `n+1!
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F The true boundary of the P1 EFT-hedron

The EFT-hedron constraint relies on two aspects, the wall ~WI and the resulting deformation
parameters {αi}. Let us consider dotting ~a in to some wall W = (−w, 1), then the r.h.s.
of eq. (8.39) then tells us that:

~a2 · W
~a4 · W
~a6 · W

 =

 a2(β2 − w)
a4(β4 − w)
a6(β6 − w)

 =
∑
a

pa


(u(2)
`a
− w)

(u(4)
`a
− w)ya

(u(6)
`a
− w)y2

a

 (F.1)

where we absorbed factors of xa into pa, and ya = x2
a. We see that the inner product lives

in the hull of multiple deformed curves. To ensure that the hull is non-trivial, we would
like to ensure all entires of the deformed moment curves to be non-negative. In other words
we want W to satisfy (

u
(k)
` − w

)
> 0, ∀`. (F.2)

As the minimum of u(k)
` listed in eq. (8.40) is −21

4 , we write w = −21
4 −∆w with ∆w ≥ 0.

Since we have a collection of deformed curves, the constraint for ~ak · W should be derived
from a curve that encapsulate all the other curves, i.e. the master moment curve. In other
words, we want to find (1, x, αx2) such that its convex hull contains all the individual
moment curves, or, (

u
(2)
` − w

) (
u

(6)
` − w

)
α

−
(
u

(4)
` − w

)2
≥ 0, ∀` (F.3)

This tells us that there is an upper bound for α, corresponding to the minimum of
(u(6)
`
−w)(u(2)

`
−w)

(u(4)
`
−w)2

, which we denote as αmin[∆w], reflecting the fact that it is a function
of ∆w. Explicitly plotting αmin[∆w] we find:

5 10 15 20
Dw

0.2

0.4

0.6

0.8

Αmin

We see that αmin rises approximately linear with ∆w up to around ∆w ∼ 5, after which
αmin ∼ 1 for all `.

Equipped with αmin[∆w] we can now write down the non-linear constraint for ~ak · W :

(~a2 · W)(~a6 · W)− αmin[∆w](~a4 · W)2 > 0 (F.4)
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It is important to see if above gives constraints that go beyond those in eq. (8.41). To this
end we write β2 = −3

4 + β̂2, β4 = −3
2 + β̂4 and β6 = −21

4 + β̂6, so that the original polytope
bound is simply that β̂i ≥ 0. In terms of these new parameters, eq. (F.4) becomes,(

β̂6 + ∆w
)(

β̂2 + 9
2 + ∆w

)
− αmin[∆w] a

2
4

a2a6

(
β̂4 + 15

4 + ∆w
)2
≥ 0 . (F.5)

If the above leads to any constraint for β̂i beyond that it is non-negative, or ε ≡ a2
4

a2a6
< 1

then we have found new constraints beyond eq. (8.41). For example, for ∆w = 0, αmin[0] =
0 and eq. (F.5) does not implement anything new.

However, for non-zero αmin[∆w] we will always obtain new constraints! For example,
since β̂4 ≥ 0, eq. (F.5) implies(

β̂6 + ∆w
) (
β̂2 + 9

2 + ∆w
)

αmin[∆w]ε ≥
(15

4 + ∆w
)2

, (F.6)

and we see that (β̂2, β̂6) is bounded from below. Let’s set β̂2, β̂6 = 0, and consider

j(∆w) =
∆w

(
9
2 + ∆w

)
αmin[∆w]ε −

(15
4 + ∆w

)2
. (F.7)

We have non-trivial lower bounds for (β̂2, β̂6) if j(∆w) < 0. Plotting j(∆w) for fixed ε

with respect to ∆w we find

ε = 0.4 :

0.2 0.4 0.6 0.8 1.0
Dw

5

6

7

8

9

10

jHDwL

ε = 0.55 :

0.2 0.4 0.6 0.8 1.0
Dw

-0.5

0.5

1.0

jHDwL

ε = 0.85 :
2 4 6 8 10 12 14

Dw

-10

-5

5

10

15

jHDwL

We see that if ε is above a critical value εc = 0.54, there are ranges of ∆w where the
constraint is non-trivial. Thus we either have a non-trivial lower bound for (β̂2, β̂6), or
that we have an upper bound for ε < εc. Note that these non-trivial bounds are derived
from walls that are not the walls of the original polytopes.

From eq. (F.5) one can also derive an upper bound for β̂4:√√√√(β̂6 + ∆w
) (
β̂2 + 9

2 + ∆w
)

αmin[∆w]ε − 15
4 −∆w ≥ β̂4 . (F.8)
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Obviously, the bound is most stringent when β̂6 = β̂2 = 0. Thus we consider

jβ4(∆w) =

√√√√∆w
(

9
2 + ∆w

)
αmin[∆w]ε − 15

4 −∆w . (F.9)

We plot the above function with respect to ∆w and look for the upper bound for β̂4 as the
minimum of jβ4(∆w). The result depends on ε:

ε = 0.4 :

0.2 0.4 0.6 0.8 1.0 1.2 1.4
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, ε = 0.5 :
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ε = 0.6 :
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0.2

jΒ4
HDwL

For the first two graphs we consider ε < εc, where no lower bounds on (β̂6, β̂2) were imposed
from eq. (F.6), we see that there is always an upper bound for β̂4. For ε > εc, we have
a region of walls, ∆w < 15, where there’s no new bounds on β̂4, however for these cases,
there are lower bounds on β̂6, β̂2.

In summary, we find that using walls that are “outside” the walls of Conv[~u`,k], imposes
further constraint through eq. (F.5) either as a upper bound on β̂4, or lower bound on
(β̂2, β̂6), depending on whether ε is above or below εc. Thus eq. (F.6) and eq. (F.8)
characterizes the P1 EFT-hedron.

G Beta function for eq. (11.2)

Here we present the details for the computation of the beta functions from two-particle
cuts in eq. (11.2).

We compute the two-particle cut by taking the product of the two tree-amplitudes
parameterized in the center of mass frame as illustrated in figure 24: (θ′, φ′) is the angular
dependence of the phase space for the cut propagators, and θ is the scattering angle for
the external momenta. For example, for the ā2

2 coupling the bubble coefficient is given by:

= − ā2
2

Λ8(4π)

∫
dφ′d cos θ′ (s2 + u2 + t2)L(s2 + u2 + t2)R

= − ā
2
2

Λ8 s
4
∫
dφ′d cos θ′ F2,LF2,R = ā2

2
Λ8

s4

60(167 + cos 2θ) (G.1)
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Figure 24. We represent the internal loop momentum in the center of mass frame. The angle
between the loop momentum and ~p1 = −~p2 is θ′, while the angle between the plane spanned by
(~p1, ~̀1) and the plane (~p1, ~p2) is φ′. θ is then the usual scattering angle.

where we’ve defined the short hand notation:

Fn,L =
(

1+
(1+ cos θ′

2

)n
+
(1− cos θ′

2

)n)

Fn,R =
(

1+
(1+ cos θ′ cos θ+ sin θ′ cosφ′ sin θ

2

)n
+
(1− cos θ′ cos θ− sin θ′ cosφ′ sin θ

2

)n)
.

(G.2)

Changing back to Mandelstam variables we find the coefficient for the ā2
2

15 (41s2+t2+u2)s2 for
the s-channel coefficient. Summing over the three channels we obtain − 14ā2

2
5Λ8(4π)2 (s4+t4+u4)

log p2

µ2 and hence β1 = 14
5(4π)2 . Similarly for s6 we have:

= − ā2ā4s
6

Λ12(4π)

∫
dφ′d cos θ′ F2,LF4,R + F4,LF2,R

= 2ā2ā4
Λ1235s

6(82 + cos 2θ) = 2ā2ā4
35Λ12 s

4(83s2 + 8st+ 8t2) . (G.3)

Again summing over all three channels we obtain − 2ā2ā4
35Λ12(4π)2

(
83(s6+t6+u6)−24(stu)2)

log p2

µ2 , and β2 = 166
35(4π)2 .
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