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1 Introduction

The T T̄ deformation of two-dimensional quantum field theories (QFTs) has recently at-
tracted attention in a diverse range of physics subfields, due to its universality and solv-
ability. Its universal nature stems from the fact that the double-trace operator defining
the deformation is made out of products of the stress tensor,

T T̄ ≡ TµνTµν − (Tµµ )2 . (1.1)

It is a nontrivial result that this operator is free of short-distance singularities, indepen-
dently of the details of the local QFT [1]. Even though the deforming operator is irrelevant
in the renormalization group sense, it triggers a flow which is solvable toward the UV. This
flow is usually parametrized by a coupling µ of dimensions of length squared:

∂ logZ
∂µ

=
∫
d2x 〈T T̄ 〉µ. (1.2)
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Note that 〈·〉µ denotes the expectation value computed in the theory at each point along the
flow. Its solvability depends on the fact that some important observables can be computed
exactly as functions of the T T̄ coupling µ [2–6]. An important feature of these flows is that
the resulting dynamics in the UV are strongly dependent on the sign of µ. For positive
coupling, the theory becomes non-local, displaying a minimal length and Hagedorn growth
for the high energy density of states. On the contrary, for negative coupling, the spectrum
develops complex energy levels at a given scale, and a suitable UV completion is still an
open question. See [7] for a pedagogical review.

This deformation has opened new avenues in the study of quantum gravity. For exam-
ple, one can derive the T T̄ flow by coupling the undeformed theory to topological gravity
in two dimensions [8–13]. In the context of AdS/CFT, it has an interpretation as im-
plementing Dirichlet boundary conditions at finite radius in the bulk [14, 15], leading to
explicit implementations of de Sitter holography [16, 17]. These interesting bottom-up
constructions so far apply exclusively to the gravitational sector, whereas the inclusion of
general bulk matter is not yet fully understood (see e.g. [18] for extensions in this direc-
tion). Furthermore, these holographic realizations are well-suited for negative values of the
coupling, where the complex energy levels naturally arise as a consequence of the presence
of a Dirichlet wall [14]. Recently, similar proposals implementing mixed boundary condi-
tions at spatial infinity and conformal boundary conditions have been shown to overcome
some of these abnormalities [19, 20].

It is therefore worth exploring these flows through the lens of more complete holo-
graphic realizations. String theory on AdS3 backgrounds supported by Neveu-Schwartz
(NS) flux is currently one of the best understood constructions in quantum gravity [21, 22].
There has been great progress toward a concrete top-down realization of holography in these
backgrounds [23–27]. On a similar note, a non-gravitational decoupling limit of String The-
ory in the presence of NS fluxes is suitably accounted for by Little String Theory (LST),
which was shown to accurately describe the low energy dynamics which take place in the
world volume of NS5-branes [28, 29]. Such exotic theories are generically non-local and
display Hagedorn growth at high energies [30].

These features inspired a novel realization of the T T̄ flow, referred to as “single-trace”
T T̄ . This new flow is implemented holographically by an exactly marginal current-current
deformation of the worldsheet sigma model of strings in AdS3 with NS fluxes [31–33]. Here,
the role of the dimensionful coupling µ is played by the squared string length α′. As its
name suggests (and in contrast to its double-trace counterpart), the trajectory triggered
by the single-trace T T̄ deformation involves strong backreaction on the background where
the strings live. We will briefly review some aspects of these constructions in section 2.
As before, the fate of the theory in the UV strongly depends on the sign of the defor-
mation parameter. For positive coupling, the resulting backgrounds interpolate smoothly
between AdS3 and a linear dilaton vacuum of LST, naturally implementing the Hagedorn
growth. On the contrary, the flow towards negative couplings may lead to severe viola-
tions of causality in the target spacetime, manifest in curvature and dilaton singularities,
usually accompanied by the development of closed timelike curves (CTCs). This species of
singularity will be the main focus of this article.
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In [34], the authors noted that such signature changes are generic to exotic “negative
branes” [35], and they demonstrated that the impact of the singularity on certain stringy
probes was benign. Fundamental strings pass through it without issue.1 Moreover, if the
vacuum is excited so as to contain an event horizon, then as the horizon is taken to reach the
singularity, they will begin to expand together due to backreaction. These constructions
correctly account for the main phenomenological signatures of the flow towards negative
coupling, featuring in particular a maximal energy state.

However, it is important to consider whether a string-theoretic resolution of the sin-
gularity exists which avoids the introduction of exotic objects. Such a resolution would
ideally excise the region with CTC’s, as has been shown to occur in similar settings via the
condensation of winding tachyons and light winding strings [37, 38]. A tantalizing possibil-
ity would amount to a string compactification, providing a UV-complete analogue of the
Dirichlet wall. The deformation derived in [16] (and generalized in [17]) is also available in
the single-trace case, and that might be the most natural setting for this question, since
de Sitter is compact. In this work, we will not address that question, but will find a new
trajectory leading to a (resolved) singularity of the same kind in the IR, which crosses over
to the other sign in the UV. This trajectory is non-singular and free of exotic objects.2

We must clarify what “resolve the singularity” means in this context. It is of broad
interest to understand whether string theory is a finite and UV-complete theory of quantum
gravity, with supergravity as its low-energy effective description. However, supergravity
backgrounds generically exhibit singularities, e.g. in the Ricci curvature and the string
coupling. These divergences present a challenge to the finiteness of the UV-complete theory,
and the onus is on us to demonstrate how stringy corrections prevent the formation of these
sicknesses. To this end, a program arose to classify the species of singularities which can
appear in supergravity backgrounds, and show how they are excised by stringy physics. So
far, a few major classes of singularities have been identified, each with their own resolution
mechanisms: orbifolds [39], conifolds [40, 41], flops [42, 43], and repulsons [44–46].

Herein, we propose a possible resolution which is related by S-duality to the mechanism
applied to resolve certain repulson singularities, the “enhançon.” Our guiding principle
will be to obtain a regular background, while maintaining the resemblance to single-trace
T T̄ -deformed backgrounds in the potentially singular region (and, incidentally, in the UV).
Given that, it is important to remark that our proposal is not an alternative nor a correction
to the singular flow described in [34], but it should correspond to a completely different
trajectory, involving other deformations as the energy scale increases. In principle, there
may be other valid answers to this question, as taking a singular supergravity background to
its UV completion will generically give a one-to-many correspondence. Nevertheless, some
of the degeneracy can be reduced by physical considerations. Here, we develop what we
believe to be the simplest picture amongst the generalizations which are readily available.

1However, they still encounter an analogous energy cutoff as they travel beyond the singularity [34, 36].
2Unfortunately, this method does not allow us to obtain exactly the same geometry as the original T T̄ -

deformed one, but possesses the same singular behavior. We hope the results of this paper will provide
some hints towards a direct resolution in such a case.
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Organization of the paper. This article is organized as follows. First, in section 2,
we review the single-trace version of the T T̄ flow. In section 3, we restrict to a three-
dimensional effective theory and rederive the singular geometries of interest, explaining
the equivalence to [47]. We identify their problematic features, and derive a regular so-
lution by cutting and gluing to a regular geometry. This simplified setup is intended as
preparation for section 4, where we embed the resolution into a ten-dimensional picture.
Working with the S-dual configuration, we show that, for a particular choice of 4-manifold
in the compactification, the physics behind the resolution is closely related to the enhançon
mechanism. This finding leads us to consider a resolution of the singularity by a shell of
fivebranes wrapped on a K3 manifold. In section 5, we discuss some implications and
possible interpretations for the dual QFT. We finish with some concluding remarks and
future directions in section 6.

2 A holographic realization of single-trace T T̄

We begin by briefly reviewing the single-trace T T̄ deformation developed in [31]. The
model starts from studying string theory with AdS3 backgrounds supported by NS fluxes,
which are determined by two integer charges Q1 and Q5. The worldsheet theory is known
to be described by an SL(2,R) Wess-Zumino-Witten (WZW) model with left and right
moving current algebras at level Q5 [21, 22, 48]. The AdS3 radius is R2

AdS =
√
Q5α

′. We
will work in the regime of Q1 > Q5 > 1 to ensure both small curvature and weak coupling.

States in the worldsheet theory are classified in terms of representations of the
SL(2,R)Q5 algebra [48]. In particular, excitations above the R vacuum belong to the
continuous series representations and have vanishing gap in the large Q5 regime. This
is the so-called long string sector. This sector is conjectured to be dual to a spacetime
symmetric product CFT [24–27] of the formMQ1/SQ1 , withM a compact CFT of central
charge cM = 6Q5. The total central charge then goes as c = 6Q1Q5. We will focus on the
regime of large Q1, for which the holographic realization described so far is amenable to
an analysis by perturbative methods in string theory.

A particularly interesting deformation is obtained in this context by the inclusion of a
marginal current-current operator in the worldsheet theory

∂Sws
∂λ

=
∫
d2z J−J̄−, (2.1)

with J− (J̄−) the holomorphic (antiholomorphic) current corresponding to the spacetime
Virasoro L−1 (L̄−1) and λ the dimensionless coupling measuring the strength of the de-
formation.3 The resulting sigma model is solvable in the sense that, by integrating out
certain auxiliary fields, a string theory background can be obtained for any value of the

3A family of exactly marginal deformations of the form (2.1) have been recasted as an O(d, d) transfor-
mation of the sigma model in [49]. This point of view has been recently explored in the context of solvable
irrelevant deformations in [50].
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deformation parameter. The resulting metric, dilaton, and 2-form flux read4

ds2

α′
= Q5dy

2 + a dγdγ̄ (2.2)

a = e2y

1 + λe2y (2.3)

e2Φ

v
= Q5
Q1

1
1 + λe2y (2.4)

B = 1
2

e2y

1 + λe2y dγ̄ ∧ dγ (2.5)

In the above parametrization, y ∈ (−∞,∞) plays the role of a spacetime radial direction,
with holomorphic (antiholomorphic) spacetime coordinates denoted by γ (γ̄). The dimen-
sionless parameter v denotes a 4-volume scale relating to the string theory compactification
from which this background can be obtained.

For positive λ, the above background interpolates between the Poincaré patch of AdS3
at y → −∞ and a linear dilaton vacuum of LST at y → +∞. The transition point between
these regimes is given by e2y ∼ 1/λ. Note that both regimes are weakly coupled as long as
Q1 is sufficiently large.

These two regimes have well-defined holographic duals. As explained above, the in-
frared AdS3 is dual to a symmetric product CFT in 2-dimensions. On the other hand,
the ultraviolet LST vacuum corresponds to the holographic dual of a given non-local, non-
gravitational theory (associated to the worldvolume of NS5-branes) which is known to
present Hagedorn growth at high energies [28, 30].

The background (2.2)–(2.5) therefore stands as a holographic realization of a nontrivial
renormalization group flow between an IR CFT and a non-local theory with Hagedorn
growth in the UV. This remarkable feature has since been connected to the flow driven by
the irrelevant T T̄ deformation [31]. Crucially, the flow which describes the interpolation is
not the usual notion of T T̄ flow as in (1.2), which is controlled by the double-trace operator
in (1.1). It is instead a single-trace variant, which applies a T T̄ deformation to eachM in
the symmetric product, and shares many properties with the traditional T T̄ flow. More
precisely, the spacetime theory along the flow is of the form

MQ1
T T̄

/
SQ1 (2.6)

whereMT T̄ denotes the deformation by the irrelevant double-trace T T̄ acting on a single
factor of the symmetric product.

Backgrounds of this sort can be obtained from compactification of type IIB string
theory vacua of the form AdS3 × N , with N some compact CFT whose central charge is
determined by criticality. Of particular interest are the cases which arise by adding Q1

4Models of this sort which interpolate between two decoupling regimes of F1 − NS5 (or alternatively
D1−D5) systems have been already identified with marginal current-current defromations some time ago,
cf. [51] and references therein. It is however in [31] where the deforming operator is connected to the
single-trace variant of T T̄ .

– 5 –
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fundamental strings to a linear dilaton geometry of the form R1,1 × S1 × S3 ×M4 corre-
sponding to the near-horizon region of Q5 NS5-branes wrapped on S1 ×M4. The strings
are stretched on S1, leading to a BPS configuration whose near-horizon limit corresponds
to AdS3 × S3 ×M4. HereM4 denotes a complex dimension 2 Calabi-Yau manifold which
can be taken to be either T 4 or K3.

In this context, there is a natural interpretation of the parameter λ in terms of the
squared string length α′ = `2s and the size R of the S1: λ = α′/R2. To derive this
relationship, one studies the perturbative spectrum of long string states, with energies E �
Q1/R. From the holographic perspective, the effective theory associated to a single string
corresponds to a single factor in (2.6) and, for states within the aforementioned perturbative
regime, each factor is effectively decoupled from the rest. Imposing the Virasoro constraints
for the untwisted sector of long strings associated with these states leads to [31, 47](

E + R

α′

)2
+
(
R

α′

)2
= 2R

α′
E0 +

(
n

R

)2
(2.7)

where E0 = h+ h̄− Q5
2 denotes the eigenvalue of the spacetime L0 + L̄0 in the undeformed

IR AdS3 and n measures the momentum along the S1. Solving (2.7) leads precisely to the
T T̄ spectrum of [2, 3] upon the following identification of the dimensionless parameter5

λ = α′

R2 (2.8)

The same relation is found when we study the spectrum of high energy states, E � Q1/R,
which lies in the non-perturbative regime of the theory and is thus described by black
holes [30, 34].

The extremal background associated to this F1-NS5 configuration, which preserves
eight of the supersymmetries of type IIB supergravity, can be written in the following form:

ds2 = f−1
1

(
−dt2 + dx2

)
+ f5

(
dr2 + r2dΩ2

3

)
+ V 1/2ds2

M4 (2.9)

e2Φ = gs
f5
f1

(2.10)

H3 = d

(
g2
sα
′Q1

vr2f1

)
∧ dx ∧ dt+ 2α′Q5ε3 (2.11)

where dΩ2
3 is the metric of the unit 3-sphere, ε3 its associated volume form, and V =

(2π)4α′2v denotes the asymptotic volume of the compact manifoldM4 (note that we have
not specified the particular manifold yet). The integers Q1 and Q5 measure the NS flux
(in units of string length `s =

√
α′), and the harmonic functions f1, f5 read

f1 = 1 + r2
1
r2 , f5 = 1 + r2

5
r2 (2.12)

r2
1 = g2

sα
′Q1
v

, r2
5 = α′Q5 (2.13)

5Note the standard dimensionful coupling µ associated to the T T̄ deformation of the dual CFT is
then ∼ α′.

– 6 –
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The connection between the above background and the 3-dimensional one presented
in (2.2)–(2.3) is achieved by performing the LST decoupling limit. This amounts to taking
gs → 0, thus effectively decoupling the gravitational modes from the branes, while focusing
on length scales of order gs

√
α′. Since this limit plays an important role in our results, let

us be precise about its implementation. We introduce the coordinate

u2 = r2

g2
sα
′ . (2.14)

After taking gs → 0, we find

ds2 = f−1
1

(
−dt2 + dx2

)
+Q5α

′
(
du2

u2 + dΩ2
3

)
+ V 1/2ds2

M4 (2.15)

e2Φ = Q5
u2f1

. (2.16)

Note in particular that the 3-sphere decouples from the rest of the geometry. Crucially,
the f1 harmonic function retains its form, now written in terms of the coordinate u. For
small enough u, we recover the AdS3 throat in the IR regime. Finally, after compactifying
on S3 ×M4 and defining

vu2

Q1
= λe2y , γ = x− t

R
, γ̄ = x+ t

R
(2.17)

with λ = α′

R2 , the resulting 3-dimensional background reproduces (2.2)–(2.5).
So far this construction makes sense for positive values of λ. Given the definition of

λ above, having negative λ would amount to considering imaginary length scales. Never-
theless, we can analytically continue the background to account for negative values of the
coupling. The extremal solution which results is of the same form as (2.9)–(2.11) but with
a different harmonic function f1, which now reads

f1 = −1 + r2
1
r2 . (2.18)

The physical meaning of such a solution is obscured by the presence of a naked singularity
occurring at r = r1, with CTCs in the exterior region r > r1. A possible interpretation
has been proposed in [34], where the singular behavior and signature change is associated
to the presence of negative (often called “ghost”) strings. Such objects come from a family
of unconventional negative tension objects in string theory [35]. A consistent treatment
of black hole configurations corresponding to negative black strings has been considered
in [34]. The high-energy spectrum obtained is consistent with the spectrum of a T T̄ -
deformed theory, with the sign of the coupling µ for which the theory has a UV cutoff.

It is natural to ask whether we can embed these geometries into more conventional,
non-singular backgrounds constructed out of standard string theory objects. Seeking such
an embedding will be the goal of the rest of this paper.

– 7 –
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3 Singularity resolution in three dimensions

As described in the previous section, backgrounds of the form (2.2)–(2.5) can be obtained
from compactifications of 10-dimensional type IIB string theory with Neveu-Schwartz
fluxes, whose action in string frame reads

S = 1
16πG(10)

N

∫
d10x
√
−ge−2Φ

(
R+ 4(∂Φ)2 − 1

12H
2
)

(3.1)

with G(10)
N the 10-dimensional Newton’s constant given by

G
(10)
N = 8π6g2

sα
′4. (3.2)

Note that we are absorbing the bare string coupling gs into the gravitational coupling.
We look for solutions of the formM3×S3×M4, withM3 some non-compact 3-manifold

andM4 a complex dimension 2 manifold which can be taken to be either T 4 or K3. The
ansatz for the string frame metric takes the following form

ds2 = e2Dgµνdx
µdxν + e2LdΩ2

3 + e2Ṽ ds2
M4 (3.3)

where gµν stands for the Einstein frame metric inM3 and we have parametrized the volumes
of the compact submanifolds as

Vol
(
S3
)

= 2π2α′3/2e3L , Vol (M4) = (2π)4α′2e4Ṽ . (3.4)

Note that, in terms of the v parameter introduced earlier, we have v = e4Ṽ . The 3-
dimensional dilaton field D is of the form

e2D = e2(2Φ−4Ṽ−3L) . (3.5)

We also include electric and magnetic fluxes arising from the fundamental strings and the
NS5-branes (respectively), which satisfy

1
4π2α′

∫
e−2φ ∗H = Q1 ,

1
4π2α′

∫
H = Q5 (3.6)

for some integers Q1, Q5. The above expressions should be taken as a definition for the
normalization of the integer fluxes. Their particular value will be allowed to jump once we
consider a composite version of these geometries.

The resulting effective action for the 3-dimensional Einstein frame metric and
moduli is6

S = 1
16πG(3)

N

∫
d3x
√
g
(
R− (∂D)2 − 3(∂L)2 − 4(∂Ṽ )2 − V

)
, (3.7)

where the bare 3-dimensional Newton’s constant reads

G
(3)
N = G

(10)
N

32π6α′7/2
. (3.8)

6Note the scalar fields are not canonically normalized.

– 8 –
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The effective potential V accounts for the effect of the fluxes, together with the contribution
from the positive curvature of the S3, and takes the form

V = −6e2D−2L + 2Q2
5e

2D−6L + 2Q2
1e

4D. (3.9)

Note that V is independent of Ṽ , so we will fix that modulus to an arbitrary constant.
The particular value of this constant will not be relevant in the following discussion, so
we will ignore it for now, but it will be reintroduced as a parameter when studying the
10-dimensional realization in section 4.

It can be readily checked that the following is a solution for the equations of motion
of the effective action (3.7) for any value of λ

ds2 = e−2D0
(
Q5dy

2 + a0dγdγ̄
)

e2D0 = 1
Q5Q2

1

( 1
1− λe2y

)2
(3.10)

a0 = e2y

1− λe2y , e2L0 = Q5.

Note that the above solution is no more than the λ→ −λ continuation of (2.2)–(2.4). More
precisely, it is the solution arising in the decoupling limit of the background (2.9), (2.10)
with the harmonic f1 given by (2.18).

However, the above solution develops a naked singularity at y = ys with

e2ys = 1
λ
, (3.11)

and the solution ceases to be valid there. We then need to look for an alternative geometry
which resolves this singular behavior. There are two additional conditions we want these
regular solutions to satisfy: (i) they must solve the same equations of motion in the bulk on
a finite region including the origin. That is, we want to keep the same values of Q1 and Q5
in the IR, as they determine the central charge of the dual (undeformed) CFT; (ii) along
the same line of reasoning, they must present a (resolved) naked singularity of the form
described above for y = ys, with ys given in (3.11). These two conditions ensure that the
new solutions will obey the same qualitative behavior as the T T̄ -deformed backgrounds at
least near the singularity in the IR region.

After imposing the above conditions, not much freedom remains. Below we will con-
sider a model that fulfills the above requirements and resolves the singular behavior. As
we will see, with the minimal ingredients involved in the method described below, we will
not be able to fully reproduce the singular single-trace T T̄ solution in the deep IR. We
will instead content ourselves that the geometry in the IR region displays the same sort of
singular behavior, as a consistent resolution of such pathologies is our main focus in this
work. Nevertheless, we do not rule out that mild generalizations of these constructions
may be useful in addressing this issue more directly on such a background.

The resolution is achieved by inserting non-trivial boundary conditions at an incision
radius yi < ys, so that for y < yi the “interior” geometry satisfies the constraints described

– 9 –
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above. Across the boundary at y = yi, the geometry is glued to what we call the “exterior”
geometry. It is a solution to modified equations of motion, with shifted Q1 and Q5. In
10 dimensions, the resulting non-singular family of solutions can be connected to a known
singularity resolution mechanism in string theory, the so-called “enhançon” mechanism, as
we will show in section 4.

3.1 Boundary conditions at fixed radius

To implement the boundary conditions, we insert extended 1- and 5-dimensional objects at
y = yi. These objects might be seen as e.g. fundamental strings, NS5-branes, or orientifold
planes. From the point of view of the 3-dimensional effective theory, such an interpretation
is not necessary.

We configure the boundary sources to be parallel to the original brane configurations
to which these geometries are associated. The 1- and 5-dimensional hypersurfaces at the
interface will be wrapped over S1 and S1 ×M4, respectively. Their tensions in Einstein
frame can be deduced by requiring that they match the string frame tension:

σs
√
gstrδ

(
ystr − ystr

i

)
= σE

√
gδ(y − yi), (3.12)

where σs and σE denote the effective tensions in the string and Einstein frames, respectively.
Note that the left hand side of (3.12) is written in terms of the string frame metric (gstr) and
radial coordinate ystr. The conversion between σs and σE results from the Weyl rescaling
which relates both frames.

For the class of objects considered here, the string frame tensions read σ
(1)
s = α1

and σ
(5)
s = α5e

−D−3L, where the upper index denotes the number of spatial dimensions
these objects wrap. Here α1 and α5 are numbers denoting the bare tensions, and will be
determined from the boundary conditions at the incision radius. The factor of e−D−3L in
σ

(5)
s accounts for the inverse powers of the effective 6-dimensional string coupling.

Putting everything together, we find

σ
(1)
E = σ(1)

s e2D, σ
(5)
E = σ(1)

s eD−3L, (3.13)

so the overall effective tension at y = yi reads

σeff = α1e
2D + α5e

D−3L. (3.14)

Assuming continuity of the metric and fields at y = yi, a nontrivial tension such as
the one in (3.14) leads to a jump discontinuity for the solution. This can easily be seen by
going to a frame in which the metric takes an FLRW-like form:

ds2 = dw2 + ã(w) dγdγ̄ (3.15)

1
ã

(
dã

dw

∣∣∣
w→w−i

− dã

dw

∣∣∣
w→w+

i

)
= σeff (3.16)

dD

dw

∣∣∣
w→w−i

− dD

dw

∣∣∣
w→w+

i

= −∂Dσeff (3.17)

dL

dw

∣∣∣
w→w−i

− dL

dw

∣∣∣
w→w+

i

= −1
3∂Lσeff (3.18)
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where wi denotes the position of the boundary in the frame (3.15) and w → w±i means we
approach the boundary from the exterior (+) and from the interior (−).

As advertised, we will now focus on a family of solutions to the bulk equations of motion
derived from the action (3.7) and to the boundary conditions (3.16)–(3.18) at y = yi, which
are free of singularities in the exterior region.

3.2 Gluing to a linear dilaton background

An exact solution of the boundary equations can be obtained by considering the situation
in which the exterior geometry corresponds to a linear dilaton background at large radial
positions. The transition between the interior and the exterior solutions is accomplished
by the insertion of a thin shell at y = yi with tension given by (3.14). It is important to
note that this ansatz implies a jump in the flux at y = yi. Therefore, the exterior bulk
equations of motion should come from a different potential.

We parametrize this jump in the flux with an integer δN5, foreshadowing the string-
theoretic origin of these boundary conditions, which we will discuss in the next section. In
terms of this parameter, the piecewise-defined potential reads

V =

−6e2D−2L + 2Q2
5e

2D−6L + 2Q2
1e

4D, y < yi

−6e2D−2L + 2(Q5 + δN5)2e2D−6L + 2(Q1 − δN5)2e4D, y > yi
. (3.19)

A continuous solution for the bulk equations of motion derived from the above potential
can be written in string frame in the following form

ds2 = e−2D
(
fdy2 + adγdγ̄

)
(3.20)

H3 =

d
(
g2
sα
′Q1

2vr2f1

)
∧ dγ̄ ∧ dγ y < yi

d
(
g2
sα
′(Q1−δN5)
2vr2f1

)
∧ dγ̄ ∧ dγ y > yi

(3.21)

e−2D =

Q
2
1Q5

(
e2y

(
λ− δN5

Q1
e−2yi

)
+ 1

)2 (
1 + δN5

Q5
e2(y−yi)

)
y < yi

Q2
1Q5

(
λe2y + 1− δN5

Q1

)2 (
1 + δN5

Q5

)
y > yi

(3.22)

a =


e2y

e2y
(
λ− δN5

Q1
e−2yi

)
+1

y < yi

e2y

λe2y+1− δN5
Q1

y > yi

(3.23)

f = e2L =

Q5 + δN5e
2(y−yi), y < yi

Q5 + δN5, y > yi
. (3.24)

Notice that these solutions are labeled by two parameters, namely the jump in flux δN5
and the gluing position yi.7 Here these parameters are free and may take any values that
do not lead to problematic features, such as a naked singularity. We will fix their values
at the end by matching to the background (3.10) in the IR.

7Note that f1 is as in (2.12), but with the charge in r2
1 shifted across the junction at y = yi.
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Accounting for the form of the ansatz on either side of the gluing surface, the equations
arising from the boundary conditions take the following form, where ã = e−2Da:

eD√
f

1
ã

(
dã

dy

∣∣∣
y→y−i

− dã

dy

∣∣∣
y→y+

i

)
− σeff

∣∣∣
y=yi

= 0 (3.25)

eD√
f

(
dD

dy

∣∣∣
y→y−i

− dD

dy

∣∣∣
y→y+

i

)
+ ∂Dσeff

∣∣∣
y=yi

= 0 (3.26)

eD√
f

(
dL

dy

∣∣∣
y→y−i

− dL

dy

∣∣∣
y→y+

i

)
+ 1

3∂Lσeff
∣∣∣
y=yi

= 0. (3.27)

The exact solution to these equations turns out to be as simple as one could have
hoped, with

α1 = −δN5 , α5 = δN5. (3.28)

Notice that neither δN5 nor yi are fixed by these equations. This is quite natural, as
the only condition for the solution to make sense is that the shell satisfy the analog of
Gauss’ law. Some constraints between these variables will arise when we also require the
background to feature a naked singularity in the interior geometry.

Looking at α1, it seems that introducing a negative tension object is unavoidable. This
is not necessarily important from the perspective of the effective theory, but certainly works
against any interpretation in terms of standard string theory objects (recall that there is no
gauged Z2 symmetry in our piecewise geometry, so orientifold planes are off the market).
In section 4, we will see that this pathology can be overcome for the case in which the
compact manifoldM4 is K3.

In close relation to this observation, let us show here a curious aspect about the overall
effective tension (3.14) once evaluated in the solution (3.28). In particular, it is easy to
check that the membranes become tensionless at a finite radius:

σeff = 0 for e2yi = 2δN5 +Q5 −Q1
λQ1

. (3.29)

This remarkable fact will take on a deeper meaning in the ten-dimensional story.
Finally, let us demand that the above geometries display both curvature and dilaton

singularities at y = ys, with ys given in (3.11). In order to do this, it is enough to match
the double zero in the denominator of the string frame dilaton (or equivalently the warping
factor), that is

λ− δN5e
−2yi = −λ, (3.30)

thus obtaining the following relation between our free parameters

δN5 = 2λQ1e
2yi . (3.31)

Implicitly, there is a further constraint which arises from imposing regularity, i.e. e2yi <

e2ys . Making use of (3.11), this simply implies δN5 < 2Q1. It is instructive to check that
this upper bound on δN5 is enough to obtain an everywhere regular solution. We should
focus on the potentially dangerous case of Q1 < δN5 < 2Q1, which might induce a naked
singularity in the exterior geometry, since λQ5e

2y + Q1 − δN5 vanishes for e2y = e2yexts .
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It is simple to check that as long as δN5 < 2Q1, and assuming (3.31), then it is always
true that e2yexts < e2yi < e2yint

s (with yint
s given in (3.11)), thus avoiding any potential

singularity. Embedding this background into a 10-dimensional construction will lead to
stronger constraints on δN5, as detailed in section 4.

Let us conclude by stating the background achieved after imposing (3.31):

e−2D =

Q
2
1Q5

(
1− λe2y)2 (1 + e2(y−yIR)

)
y < yi

Q2
1Q5

(
λe2y + 1− δN5

Q1

)2 (
1 + δN5

Q5

)
y > yi

(3.32)

a =


e2y

1−λe2y y < yi
e2y

λe2y+1− δN5
Q1

y > yi
(3.33)

f = e2L =

Q5(1 + e2(y−yIR)), y < yi

Q5 + δN5, y > yi
(3.34)

where δN5 is given by (3.31) and we have defined

e2yIR = Q5
2λQ1

. (3.35)

The above scale would determine the region at which the interior solution reproduces (3.10),
that is where the S3 radial modulus may be well-approximated by a constant. However, it
is clear that yIR � ys because we require Q1 � Q5 in order to have a controlled (weakly
coupled) description away from the singular region. We would need to consider variants of
this construction and introduce additional parameters to achieve the desired hierarchy of
scales. We hope to address this point in the near future.

Interestingly, the above system approaches a linear dilaton background of LST for large
values of the radial coordinate. Thus for different radial slices, it appears to realize a non-
trivial flow in the holographic dual which is driven by irrelevant deformations. Even if the
flow initially resembles a T T̄ -deformed theory with the singular sign of the coupling, the
pathologies of that flow are avoided by turning on a different set of irrelevant operators,
which become dominant at intermediate energies. Finally, further up in the UV, the
flow approaches the well-known trajectory triggered by T T̄ with the opposite sign of the
coupling, landing on a non-local field theory with Hagedorn growth.

4 Singularity resolution in ten dimensions

As advertised, the solution derived above which interpolates between a singular geometry
(similar to the ones arising in the singular single-trace T T̄ -deformed backgrounds) and a
linear dilaton background can be uplifted to 10-dimensional type IIB string theory. In
this section we will demonstrate that, in this context, the singular behavior is naturally
resolved by taking certain stringy effects into consideration.
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Let us first characterize the singularity itself by recalling the form of the 10-dimensional
metric and dilaton corresponding to the extremal vacuum of the F1-NS5 system

ds2 = f−1
1

(
−dt2 + dx2

)
+ f5

(
dr2 + r2dΩ2

3

)
+ V 1/2ds2

M4 (4.1)

e2Φ = gs
f5
f1
, f1 = −1 + r2

1
r2 , f5 = 1 + r2

5
r2 (4.2)

with

r2
1 = g2

sα
′Q1
v

, r2
5 = α′Q5. (4.3)

Recall that v is associated to the asymptotic volume of the Calabi-Yau M4 as V =
(2π)4α′2v.

As it stands, the above background is well defined only for r < r1, as it features
a naked singularity at r = r1. The dilaton, and hence the effective string coupling, also
diverges there. For r > r1, CTC’s develop, thus spoiling the causal structure of the exterior
region. The actual singularity taking place at r = r1 is of repulson type, which means that
pointlike probe particles are repelled by it. We present the details of this identification in
appendix A. The divergence of the string coupling near the singularity also means that one
cannot reasonably trust (4.1), (4.2) in that region. However, the S-dual system is weakly
coupled in that regime, and is thus more convenient to work with. In addition, we will find
that the S-dual system provides a crucial handle which we can use to resolve the singularity.

4.1 S-dual configuration and the enhançon mechanism

Under S-duality,8 (4.1) and (4.2) are mapped to the following background

ds2 =Z
−1/2
1 Z

−1/2
5

(
−dt2+dx2

)
+Z1/2

1 Z
1/2
5

(
dr2+r2dΩ2

3

)
+Z1/2

1 Z
−1/2
5 V 1/2ds2

M4 (4.4)

e2Φ̃ = gs
Z1
Z5

, Z1 =−1+ r̃2
1
r2 , Z5 = 1+ r̃2

5
r2 (4.5)

with

r̃2
1 = gsα

′Q1
v

, r̃2
5 = gsα

′Q5. (4.6)

This clearly still has a naked singularity, occurring at r = r̃1. Remarkably, string theory has
been shown to resolve such singularities on similar backgrounds, by means of the enhançon
mechanism [52, 53]. Quite importantly, this method hinges on the compact manifold M4
being K3, so we will consider this case in the rest of the analysis. Even though the physical
setup differs from the one studied in the context of the enhançon, many of its features bear
a strong resemblance to the resolution we will propose for the background (4.4)–(4.5). We
will therefore review some key points about the original mechanism before discussing how
it applies here.

8In the conventions adopted in this paper, S-duality maps Φ→ Φ̃ = −Φ while leaving the Einstein frame
metric invariant. Accordingly, we also take gs → 1/gs, α′ → gsα

′ and v → v/g2
s .
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4.1.1 Brief review of the enhançon mechanism

The enhançon mechanism was originally proposed in [52] as a stringy resolution of repulson-
type singularities in certain type II backgrounds associated to D(p+ 4)-branes wrapping a
K3 manifold. It was principally motivated by the holographic realization of the Coulomb
branch of N = 2 Super-Yang-Mills theory and the Seiberg-Witten description of its mod-
uli space [54–57]. For p = 1, it was subsequently extended to include arbitrary D1-brane
fluxes [53, 58]. Non-extremal solutions were also studied in this context [59–61]. In par-
ticular, the physics of the enhançon was found to be vital for the second law of black hole
thermodynamics to hold [62].

We will herein focus on the extremal background associated to N5 D5-branes wrapped
on S1 × K3 together with N1 D1-branes wrapping the S1 and homogeneously smeared
over the K3. When D5-branes wrap a K3 manifold, they acquire an induced negative
D1 charge and tension [63–67] (see also appendix B). This induced charge is crucial, as
it brings about singularities. In our context, this phenomenon will also provide a way to
justify the presence of the negative tension objects found in section 3.

For concreteness, let us consider the case in which N5 > N1, resulting in an overall
negative D1 charge, so having

ds2 = Z̄
−1/2
1 Z̄

−1/2
5

(
−dt2+dx2

)
+Z̄1/2

1 Z̄
1/2
5

(
dr2+r2dΩ2

3

)
+Z̄1/2

1 Z̄
−1/2
5 V 1/2ds2

M4 (4.7)

e2Φ̄ = gs
Z̄1

Z̄5
, Z̄1 = 1− r̄

2
1
r2 , Z̄5 = 1+ r̄2

5
r2 (4.8)

with
r̄2

1 = gsα
′Q̄1
v

, r̄2
5 = gsα

′Q̄5 (4.9)

and Q̄1 = N5−N1, Q̄5 = N5. Again, V = (2π)4α′2v denotes the asymptotic volume of the
K3 and, moreover, we will take v > 1.

The repulson singularity occurs at r = r̄1, and for r < r1 the geometry becomes ill-
defined. Note that this behaviour is similar to that of the background (4.4)–(4.5), but
instead with the exterior geometry (r > r̄1) as the physically meaningful region. In this
picture, however, the singularity is viewed as an artifact of ignoring an enhanced symmetry
when the running K3 volume (in string frame) reaches the stringy scale V ∗ = (2π)4α′2.
More precisely,

V (r) = V
Z̄1

Z̄5
= V ∗ for r = r̄e, (4.10)

where r̄e is the so-called “enhançon radius,” which takes the form

r̄2
e

gsα′
= Q̄5 + Q̄1

v − 1 = 2N5 −N1
v − 1 . (4.11)

Note that the existence of the enhançon radius is not necessarily tied to the presence of
a singularity, as we could impose N5 < N1 < 2N5, which has r̄2

e > 0. However, we will
focus on the case in which its appearance is tied to the resolution of repulson singularities
— that is, N5 > N1. Furthermore, note that in this case the enhançon radius always sits
outside of the singularity, i.e. r̄e > r̄1.
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At the enhançon radius, fivebrane probes become tensionless and diverge in size, form-
ing a shell which introduces new boundary conditions and excises the singular region r < r̄e.
This can be seen by studying the dynamics of probe branes in the background (4.7)–(4.8).
For a supersymmetric D5-brane probe wrapping the K3, the probe tension is

Teff = T1

(
T5
T1
V Z̄1 − Z̄5

)
= T1(vZ̄1 − Z̄5), (4.12)

where gsT1 = (2π)−1α′−1 and gsT5 = (2π)−5α′−3 denote the bare tensions of D1- and
D5-branes respectively. (4.12) vanishes precisely when the condition (4.10) is met, i.e. at
the enhançon radius. As one pushes the probe closer towards the singularity, the tension
becomes negative. Furthermore, there is no way to move the probe to r < r̄e without
breaking supersymmetry. On the other hand, a D1-brane probe is insensitive to any of
these effects and is able to move freely towards the origin. Similar considerations also apply
for composite objects made out of bound states between D1- and D5-branes, as long each
fivebrane is dressed with at least one D1 [58].

In the geometry of [52], the authors argue that the delocalization of branes at r̄e signals
a natural set of boundary conditions to impose. To excise the singular interior region r < r̄e,
they replace it with a flat Minkowski spacetime, and posit that the fivebranes which source
the geometry form a shell at r = r̄e. The same sewing procedure can be performed by
replacing the interior with a (non-singular) extremal geometry, where only a fraction of the
sources delocalize over a shell at r̄e [53]. The latter case is important, because we would
like to resolve the singularity in (4.4)–(4.5) using a variant of the enhançon mechanism for
the interior region, but our geometries of interest are not flat.

As an illustration, here we consider a realization of the above mechanism, giving rise
to a stitched solution which is well-behaved. We place all of the D1-brane sources at the
origin, and we trade them for flux, whereas only some of the D5-branes, namely N5− δN5,
are placed at the origin. The remaining δN5 fivebranes sit at an incision radius ri, and they
source flux only for the exterior region (r > ri). The metric takes the form (4.7)–(4.8),
with the harmonic functions now given by

Z̄1 =

 1− r̄2
1+−r̄

2
1−

r2
i
− r̄2

1+
r2 , r < ri

1− r̄2
1+
r2 , r > ri

r̄2
1− = r̄2

1+ −
gsα′δN5

v

r̄2
1+ = gsα′Q̄1

v

(4.13)

Z̄5 =

 1 + r̄2
1+−r̄

2
5−

r2
i

+ r̄2
5−
r2 , r < ri

1 + r̄2
5+
r2 , r > ri

r̄2
5− = r̄2

5+ −
gsα′δN5

v

r̄2
5+ = gsα′Q̄5

v

. (4.14)

As long as Q̄1 − δN5 = N5 −N1 − δN5 < 0, the above geometry is regular for any incision
radius ri > r̄1+. This picture passes a number of tests. In particular, the metric on moduli
space as derived from the potential of a probe brane in the geometry can be placed in clear
correspondence with the related Coulomb branch metric in large-N SU(N) Seiberg-Witten
theory [52, 55].

The surface stress tensor associated to the junction at r = ri can be obtained from
the Israel junction conditions [68]. We absorb the 8πG prefactor into the definition of the
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surface stress tensor SAB, as it does not play any role in the following. We have:

SAB = γAB −GABγCC , {A,B} ∈
{
t, x, S3,K3

}
(4.15)

where
γAB = K+

AB +K−AB, (4.16)

and
K±AB = ∓ 1

2
√
Grr

∂rGAB, (4.17)

where K+
AB (K−AB) is the extrinsic curvature computed by approaching the shell from the

exterior (interior) geometry, and GAB is the metric in the Einstein frame. For the case at
hand, the surface stress tensor reads

Sµν = 1
2
√
Grr

(
∆Z̄ ′1
Z̄1

+ ∆Z̄ ′5
Z̄5

)
Gµν , {µ, ν} ∈ {t, x} (4.18)

Sij = 0 , {i, j} ∈ S3 (4.19)

Sab = 1
2
√
Grr

(
∆Z̄ ′5
Z̄5

)
Gab , {a, b} ∈ K3 (4.20)

where we have defined ∆f ′ = f ′
∣∣∣
r→r+

i

− f ′
∣∣∣
r→r−i

. Note the tension on the S3 vanishes, as

one expects for a BPS configuration. Furthermore, the surface stress tensor is proportional
to the probe brane tension (4.12):

Sµν ∼ −δN5
(
vZ̄1 (ri)− Z̄5(ri)

)
Gµν = −δN5TeffGµν . (4.21)

This is consistent with the claim that the shell is formed by δN5 D5-branes. From the above
expression we also conclude that the surface tension vanishes precisely at the enhançon
radius. Furthermore, the effective tension satisfies the Weak Energy Condition (WEC)
only for ri ≥ r̄e. Many of these considerations will play an important role in the analysis
to follow.

4.1.2 Glued solution and singularity resolution

Having introduced the physics of the enhançon, we are ready to resolve the singular behav-
iors of the S-dual background in (4.4)–(4.5). Recall that the singularity occurs at r = r̃1,
where the function Z1 vanishes. Let us recall the main differences between this setup and
the one reviewed in previous subsection. For the geometry (4.4)–(4.5), the IR region —
the interior — is the well-defined region. We will search for a regular solution by stitching
to a different background in the exterior, while requiring the interior region to reproduce
the main features of (4.4)–(4.5) (in particular, the fluxes have to be given by the integers
Q1, Q5). The difference between the interior and exterior fluxes will be parametrized by a
single integer δN5 and the incision will be made at a given radial position ri.
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In analogy with the construction described previously, the solution takes the
form (4.4)–(4.5) with the following piecewise-defined harmonic functions

Z1 =

1− r̃2
1−+r̃2

1+
r2
i

+ r̃2
1−
r2 , r < ri

1 + r̃2
1+
r2 , r > ri

(4.22)

Z5 =

1 + r̃2
5+−r̃

2
5−

r2
i

+ r̃2
5−
r2 , r < ri

1 + r̃2
5+
r2 , r > ri

(4.23)

with

r̃2
1− = gsα

′Q1
v

, r̃2
1+ = r̃2

1− −
gsα
′δN5
v

(4.24)

r̃2
5− = gsα

′Q5 , r̃2
5+ = r̃2

5− + gsα
′δN5. (4.25)

By construction, the metric is continuous at r = ri. We now proceed to characterize the
properties of the solution. Note that at this point the interior region does not look like
the one we wanted to resolve. Below, we will impose some additional constraints on the
parameters, namely δN5 and ri, in order to remedy this.

Let us first find the general conditions under which the above solution is regular ev-
erywhere. It turns out that in order for Z1 to not vanish at any radial position, we need
the following relation to be hold:

r2
i

gsα′
>
δN5 −Q1

v
. (4.26)

Note in particular that, in case of having δN5 < Q1, the above inequality holds for any
choice of ri.

On the other hand, the exterior geometry has an enhançon radius, at which the running
volume of the K3 becomes of order the string scale, i.e. V (r) = V ∗:

r̃2
e = gsα

′Q5 −Q1 + 2δN5
v − 1 . (4.27)

As a further check that the above scale behaves as an enhançon radius, we can compute
the effective tension associated to a BPS D5-brane probe wrapped on S1×K3. The details
of this calculation can be found in appendix B, but the main result again looks like:

Teff = T1 (vZ1 − Z5) , (4.28)

so the effective tension again vanishes for r = r̃e. Requiring a positive probe brane tension
also induces a constraint on the incision radius ri: in order to have well-defined probes on
the geometry we should ask ri ≥ r̃e. This condition is further supported by computing
the surface stress tensor defined in (4.15). In particular, it vanishes along the S3, due
to the cancellation of inter-brane forces via supersymmetry. Moreover, along the {t, x}
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directions, the tension computed from the surface stress tensor matches that of a shell of
δN5 D5 branes:

Sµν ∼ −δN5(vZ1 − Z5)Gµν = −δN5TeffGµν (4.29)

In order for these solutions to satisfy the WEC, we need ri ≥ r̃e.
We now proceed to impose one further condition on the background defined by the

harmonic functions (4.22) and (4.23), namely, for the interior solution, we want them
to match the singularity structure of the harmonic function in (4.4), (4.5). This can be
achieved by imposing:

1−
r̃2

1− − r̃2
1+

r2
i

= −1 ⇒ δN5 = 2vr2
i

gsα′
. (4.30)

Plugging the above relation into (4.27) and imposing the WEC, we arrive at the following
constraint:

r2
i ≤ r2

max = gsα
′Q1 −Q5

3v + 1 . (4.31)

Note in particular that this procedure is only possible for Q1 > Q5. This is not a re-
strictive condition for our purposes; we are implicitly working in this regime, so that the
corresponding F1-NS5 system will be weakly coupled in the IR.

The moral of this story is the following: even though the WEC only demands ri ≥ re,
it turns out that when we require the interior geometry to emulate (4.4), the shell cannot be
placed arbitrarily far away from the origin. The constraint arises from (4.5). Importantly,
the enhançon radius coincides with the incision only when the bound (4.31) is saturated,
i.e. ri = rmax, so that

re
∣∣∣
ri=rmax

= ri (4.32)

This is illustrated in figure 1. Note in particular that for ri > rmax the enhançon
lies at larger radius than the junction, and the surface tension (4.29) at the interface
becomes negative.

So far we have shown that as long as ri ≤ rmax, we have ri ≥ re, and probe branes
are well-behaved at any radial position. Moreover, the tension (4.28) decreases when
approaching the junction from either side, reaching a minimum at r = ri (see figure 1).
Although nothing dramatic occurs to the probes when they reach the junction if ri 6= re,
it is energetically favorable for them to stay there.

Among the possible ri ≥ rmax, it is natural to choose ri = rmax, because that choice
maximizes the region covered by the interior geometry. There is also a dynamical reason to
take ri = rmax = re, as only in this case do the branes at the junction become tensionless.
Thus the configuration achieved for ri = rmax = re will have the least energy, and the
branes at the junction will be uniformly distributed over the transverse S3.

4.2 The F 1-NS5 configuration

Our long detour to the S-dual picture has led us to a regularized geometry given in terms
of the piecewise-defined harmonic functions (4.22), (4.23). We can now S-dualize back and
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r0

Teff

Figure 1. Effective tension as a function of the radius. The kink occurs at the corresponding
junction position. Green, top: ri < rmax (re > ri). Orange, middle: ri = rmax (re = ri). Blue,
bottom: ri > rmax (ri < re).

study the implications for our original singular background (4.1), (4.2). After the S-duality
transformation, we obtain

ds2 = f−1
1

(
−dt2 + dx2

)
+ f5

(
dr2 + r2dΩ2

3

)
+ V 1/2ds2

M4 (4.33)

e2Φ = gs
f5
f1

(4.34)

with the harmonic functions given by

f1 =

1− r2
1−+r2

1+
r2
i

+ r2
1−
r2 , r < ri

1 + r2
1+
r2 , r > ri

(4.35)

f5 =

1 + r2
5+−r

2
5−

r2
i

+ r2
5−
r2 , r < ri

1 + r2
5+
r2 , r > ri

(4.36)

and with

r2
1− = g2

sα
′Q1
v

, r2
1+ = r2

1− −
g2
sα
′δN5
v

(4.37)

r2
5− = α′Q5 , r2

5+ = r2
5− + α′δN5. (4.38)

The relation (4.30), maximal incision (4.31) and the enhançon radius (4.27) are modified
here by the appropriate powers of gs.

To check that the above solution corresponds to our glued solution in the effective
3-dimensional theory, we perform the LST decoupling limit by taking gs → 0 after the
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change of variables r2 = g2
sα
′u2 (together with the redefinition r2

i = g2
sα
′u2
i ). We find:

f1 =

1− δN5
vu2
i

+ Q1
vu2 , u < ui

1 + Q1−δN5
vu2 , u > ui

(4.39)

g2
sf5 =


δN5
u2
i

+ Q5
u2 , u < ui

Q5
u2 , u > ui

. (4.40)

Let us pause here to comment on the region in which this background is weakly coupled,
or equivalently, where an analysis via perturbative string theory is valid. Evaluating the
dilaton field of the above, it can be easily seen that for Q1 > Q5 the effective string
coupling is small all the way up from the deep IR (u → 0) to u ∼ ui. Near the junction,
the coupling diverges and the picture becomes untrustworthy. It is thus in the S-dual
system that the string coupling becomes weak in that region, and the junction acquires a
natural interpretation as a shell of D5-branes. In the exterior geometry of the NS case, a
perturbative description is valid for sufficiently large values of u, as the system approaches
a linear dilaton background.

Moving from this 10-dimensional picture down to the effective 3-dimensional theory
amounts to following the steps listed in section 2. After changing coordinates from u to y
with vu2 = Q1λe

2y, and redefining vu2
i = Q1λe

2yi , we arrive at the solution described in
section 3. Finally, the relation (3.31) is no more than the matching condition (4.30) after
the S-duality transformation and the subsequent change of coordinates described above.

With this 10-dimensional perspective, we see that the ability to find a 3-dimensional
regular solution with a jump in flux parametrized by a single integer δN5 is a manifestation
of the fact that wrapping D5-branes on K3 generates an effective negative D1 tension and
charge [63–67]. Furthermore, the curious effect found in (3.29) can now be understood as a
consequence of the presence of an enhançon scale in 10-dimensions. Thus, at least for the
case where the compact manifold wrapped by the fivebranes is a K3, the singular behavior
inherent to single-trace T T̄ -deformed backgrounds with negative λ can be regularized by
means of standard objects in type IIB string theory. The system maintains a strong
resemblance to the well-understood physics of the enhançon mechanism.

Let us emphasize here that in this work we have achieved a particular UV completion,
and other possibilities are by no means excluded. For instance, many of our considerations
do not apply for the case when the Calabi-Yau 4-fold is a T 4, where a resolution might re-
quire involving unconventional string theory objects. We briefly comment on this situation
in the next subsection.

4.3 T 4 and negative branes

Before moving forward, we relate our setup to an exotic UV completion which has been
suggested in the recent literature [34]. We will perform a nontrivial analytic continuation
of this system to reveal the singular geometries obtained above. We herein take δN5 = 0
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so that there is no change in the behavior of f5 at the junction, and we furthermore define:

−1 ≡ 1 +
r2

1+ − r2
1−

r2
i

= 1 + V ∗

V
gsα
′ δN1
r2
i

. (4.41)

For purposes of demonstration, fix ri in this expression. Then, taking λ→ −λ (which gives
the constant −1 in f1) is equivalent to analytically continuing δN1 to a negative value.
Such a procedure is subtle, because the analytic continuation in λ can be achieved by a
marginal current-current deformation of the string worldsheet, which should not change the
supersymmetries preserved by the background [69].9 Thus the analytic continuation in δN1
must be performed whilst fixing supersymmetries, i.e. the branes at the junction cannot
possibly be anti-branes. Instead, they are objects with negative tension and negative charge
which are BPS with the D-branes in the geometry.

This picture is analogous to the procedure used to derive the original enhançon geom-
etry [52], where the authors extend the exterior geometry to all r and analytically continue
Q1+ to −Q5+. They fix the same unbroken supersymmetries as in the Q1+ > 0 case. In
that context, it was by switching from a T 4 to a K3 compactification that the authors
were able to avoid introducing an object with negative effective tension and recover the
shell of branes. Due to the negative induced D1-brane charge that D5-branes carry when
wrapped on K3 [64–66, 71], these geometries can be generated from wrapped D5-branes
alone. However, it is perfectly valid to insist on keeping the T 4.

To understand this geometry fully, we must rely on the negative-tension objects which
are prescribed to us by the string theory literature. An option which was well-studied
in [34] made use of so-called “negative branes,” which have SU(0|M) gauge symmetry
groups, i.e. their Chan-Paton factors are Grassmann numbers [35]. This option is certainly
available for either choice of compactification manifold, but such objects tend to introduce
exotic physics, such as signature changes and closed timelike curves. Notably, this option
was also available in the original enhançon backgrounds. In that context, however, the
restriction to the more standard taxonomy of extended objects in string theory uncovered
elegant physics, and we therefore chose to restrict ourselves to these in this work.

There is one negative-tension, negative-charge candidate available to us in this scenario:
orientifold planes, or O1−-planes. These objects have no motion collective coordinates.
They are nondynamical, because they introduce boundary conditions on the spacetime
and fluxes which can be viewed (in a simplified sense) as a Z2 quotient of two copies of the
system mirrored across the fixed plane. Orientifolds have been considered as an extension
of the original enhançon results, in [72]. We have restricted the scope of this initial work
to a resolution via branes, but we find the prospect of a compactification via O-planes
tantalizing, and we hope to address it in subsequent work.

9Specifically, a TsT deformation of the F1-NS5 system can be used to parametrize the JJ̄ deforma-
tion [70]. This makes the analytic continuation manifest: f5 is left unchanged, whereas f1 → f1 +2g−1

s λTsT .
In that picture, λTsT 7→ −λTsT is equivalent to δN1 7→ −δN1.
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5 Comments on the spectrum of excited states

In this last section, we briefly expand on some ideas which may provide a more complete
insight about the nature of the regular backgrounds studied so far.

In particular, the glued geometry constructed in sections 3 and 4 corresponds to the
deformation of the RR vacuum state, displaying a naked singularity (which is resolved by
this procedure) just like the backgrounds obtained by single-trace T T̄ deformation, but also
featuring a running S3 volume modulus. Let us briefly recall the story concerning the long
string spectrum for the conventional (undeformed) AdS3 case and its T T̄ deformation. The
spectrum of low energy excitations above the undeformed (AdS3) vacuum can be obtained
by studying the dynamics of long strings on top of it. The latter amounts to considering
the (spectrally flowed) continuous representations of SL(2,R) [48]. The excitations of the
untwisted sector can be thought of as corresponding to the dynamics of a single block
in the dual orbifold CFT. The spectrum of such long string states has been computed
exactly in the single-trace T T̄ -deformed vacuum using standard techniques in [70]. This is
possible because the deformed worldsheet sigma model remains solvable for any value of the
deformation parameter. Unfortunately, in our setting, the backgrounds presented herein do
not correspond to the conventional single-trace T T̄ deformation. Rather, they correspond
to a more complicated trajectory in the space of QFT’s, which is still unknown to us.
The absence of singularities in our backgrounds is a strong indication of the avoidance of
complex energy levels above a certain cutoff scale.

In the extreme UV regime, however, we might consider very massive states which,
as usual, are not described by perturbative dynamics, but by black holes. Obtaining
consistent black hole states for these sort of glued constructions is a challenging task in
the context of the enhançon mechanism, and was studied in [53, 59–61]. This difficulty
can in principle be attributed to a number of ambiguities which arise when determining
the actual geometry associated to these states. One of the most severe ambiguities resides
in the presence of two horizons, respectively for the interior and exterior geometries. In
principle, there is no further insight from the supergravity equations which allows us to
fix a particular relation between these parameters, which is an obstruction to determining
their thermodynamics. Quite importantly, a branch of these solutions has been shown to
violate the Weak Energy Condition in a broad regime of parameter space, being therefore
characterized as unphysical [60, 61].

Thus a generic treatment of black hole solutions over these backgrounds is beyond
the scope of this work. It might be argued that the knowledge of the dynamics of the
holographic IR CFT may provide some insight to overcome these issues, and that would
be an interesting idea to pursue in future work. For now, we will instead focus on the
particular cases which are free of such ambiguities: namely heavy states lying in the upper
region of the mass spectrum. More concretely, solutions featuring a large horizon radius are
simple in the sense that any subtlety related to the interior geometry or the details of the
junction can be disregarded once the interior region lies completely within the horizon. The
thermodynamics associated to these configurations therefore only care about the exterior
geometry. The validity of these solutions is guaranteed as long as they do not develop an
enhançon radius outside the horizon, as we will comment below.
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For concreteness, we will consider non-rotating charged black hole solutions. The
charges correspond to the ones present on the exterior region, namely Qext1 = Q1 − δN5 ≡
Q̃1, Qext5 = Q5 + δN5 ≡ Q̃5. The string frame metric reads

ds2 = h−1
1

(
−Kdt2 + dx2

)
+ h5

(
K−1dr2 + r2dΩ2

3

)
+ V 1/2ds2

K3 (5.1)

where
h1 = 1 + r̂2

1
r2 , h5 = 1 + r̂2

5
r2 , K = 1− r2

0
r2 (5.2)

with r̂1 and r̂5 given by

r̂2
1 = r2

0 sinh2 α1 , r̂2
5 = r2

0 sinh2 α5

sinh 2α1 = 2g2
sα
′Q̃1

vr2
0

, sinh 2α5 = 2α′Q̃5
r2

0
. (5.3)

The dilaton and 3-form fluxes depend on the harmonic functions in the same way as for
the extremal solutions, so we do not write them here.

The thermodynamics associated to these configurations has recently been studied
in [34], as they are associated to very massive states in positive coupling single trace T T̄ .
As our geometries have the same asymptotic behaviour in the UV region, the conclusions
of [34] carry over to those same high-energy states here. As the relevant computations have
been already performed in [34], we limit ourselves to report the relevant results here. To
keep our discussion self-contained, we show some details of the calculation in appendix C.

We will work in the decoupling limit, for which α5 → ∞ while α1 is kept fixed. The
entropy as a function of the dimensionless energy above extremality E (see appendix C) is
accounted by the area of the compact horizon at r = r0 and reads

S = 2π
√
Q̃5

√
2Q̃1E + λE (5.4)

hence making manifest that the dynamics of high energy states interpolates between the
usual Cardy regime and the Hagedorn growth, with the entropy reaching its maximum at
the critical energy

Ec = Q̃1
λ
. (5.5)

For energies above this scale, the effective temperature becomes negative and the theory
becomes highly non-local. We emphasize that none of the results stated above are new.
We reproduce them here to illustrate the dynamics associated to high energy states in our
setup, and to connect the resolved geometries presented herein to previous work.

It is instructive to compute the minimal energy for which these considerations are
valid. This amounts to computing the particular value of E for which the horizon r0 meets
an enhançon radius. To find the enhançon radius in this context, we have to go again to the
S-dual geometry. Notice that the probe brane analysis is no longer insightful, as there is a
nontrivial potential for the brane motion, due to the absence of supersymmetry. However,
one can still define the enhançon as the radial position at which the K3 becomes of the
string scale, so obtaining

r̂2
e = r̂2

5 − vr̂2
1

v − 1 (5.6)
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where, in an abuse of notation, we are denoting by r̂1, r̂5 to the corresponding S-dual
quantities. By S-dualizing back, we get

r̂2
e = 1

v − g2
s

(
g2
s r̂

2
5 − vr̂2

1

)
(5.7)

and, taking the decoupling limit and expressing all quantities in terms of the energy above
extremality, we finally obtain

r̂2
e

r2
0

=
Q̃5
(
Q̃1 + λE

)
− Q̃2

1

λE(2Q̃1 + λE)
. (5.8)

From this, we derive the minimal energy condition as:

r̂2
e

r2
0
< 1 ⇒ E > Emin (5.9)

with
Emin = Q̃5 − Q̃1

λ
= Q5 −Q1 + 2δN5

λ
(5.10)

The above quantity hence represents the minimal energy for which the large horizon anal-
ysis presented so far holds. To understand what happens at scales below (5.10), one needs
a consistent glued black hole solution, featuring interior and exterior horizons and merging
at a given radial position. As explained previously, those solutions are subtle, so we leave
a more thorough analysis of this region of the spectrum to future work.

6 Discussion

In this work, we constructed a family of regular solutions of type IIB supergravity with
Neveu-Schwartz flux which resolve naked singularities of the kind observed in single-trace
T T̄ -deformed backgrounds. The resolution procedure has some direct connections with
the enhançon mechanism, previously considered in the literature to resolve repulson-type
singularities [52, 53]. Quite importantly, the solutions considered here do not correspond
holographically to the same flow in the space of QFT’s. It will be very interesting to
achieve a solution which has a non-trivial overlap with the original singular T T̄ geometry
in the deep IR (besides sharing the same singular structure) by some modification of this
procedure, comprising e.g. of more complicated incisions. In this paper, we chose to stick
to the simplest picture, which has the advantage of preserving the maximal amount of
supersymmetry. We hope to address this point in forthcoming work.

In particular, the avoidance of curvature and dilaton singularities, as well as the absence
of closed timelike curves, signal that this flow can be traced all the way to the UV region
without developing complex energy levels. In the UV, the theory becomes non-local and
develops Hagedorn scaling in the density of states. This is clear if one observes that the
supergravity background reduces to a linear dilaton vacuum of Little String Theory in the
asymptotic region.

It is important to comment on the indirect nature of the mechanism we have proposed.
In particular, because the effective string coupling in the NS-NS case grows strong near
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the singularity, a trustworthy description is only achieved by S-dualizing to a background
featuring R-R fluxes. It is in this S-dual system that the physics of D-branes wrapped on K3
allows for a resolution via the enhançon construction. This is the only consistent mechanism
we have identified in which the singularity is resolved by standard dynamics in string
theory; that is, without appealing to any exotic soliton to account for negative tensions.
Let us nevertheless emphasize that a more direct resolution concerning the dynamics of
fundamental strings and NS5-branes would be very interesting to achieve. The highly non-
trivial action functional of NS5-brane probes makes this task computationally challenging.

Another exciting and in principle affordable possibility is to find a consistent truncation
of the radial direction within a warped compactification [73, 74]. Achieving this may
establish a non-trivial connection between single-trace T T̄ and the finite cut-off holographic
realization of double-trace T T̄ [14]. Accordingly, it may also be more natural to construct
a “single-trace” analogy of the “T T̄ + Λ2” flows recently introduced in [16], interpolating
between globally AdS and dS spacetimes, given that dS is already compact in the spatial
directions. We hope to address this point in the near future.

Finally, within the context of the combined flows studied in this paper, there are
two important gaps to be filled. One is to perform a more systematic study of black hole
solutions joined at a finite radial position, in order to describe the dynamics of intermediate
energy states. The other is to obtain these geometries from the worldsheet perspective —
that is, to find a particular (and hopefully solvable) deformation of the string sigma model
featuring these geometries as solutions of the field equations.10
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A Derivation of repulson behavior

Technically, for the enhançon mechanism to activate, we only need the running K3 volume
to reach V ∗ = (4π2α′)2 at some locus in the string frame geometry. As far as the ini-
tial enhançon results [52] are concerned, this behavior defines a repulson-type singularity.

10Studying the possible deformations in terms of a gauged sigma model, as recently shown in [75], may
be useful to achieve this task.
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However, such a characterization raises concern for the interpretation of the singularity
in the NS-NS sector, where the running K3 volume is constant. Here, we will confirm
the repulson-type behavior by studying the original definition, which depends only on
characteristics of the Einstein frame metric and is therefore unaffected by an S-duality
transformation. The first works on repulsons [44–46] characterized their backgrounds of
interest by studying the classical behavior of matter moving toward the singularity from
the well-behaved region. As described in detail in [45], the effective gravitational potential
grows positive and becomes infinite as a massive test particle approaches the singularity.
The particle is inevitably repelled, hence the name “repulson.” These analyses (cf. section 5
of [45]) closely followed a textbook derivation from section 98 of [76]. We will go through
it here, both for the geometry in the original enhançon results, as well as for our system
of interest.

In Einstein frame, the generic D1-D5 background (equivalently, F1-NS5 background)
is rotationally invariant and has a timelike Killing vector, so the energy E and momenta
Pi of the particle will be conserved. For simplicity, we will neglect momenta along K3 and
S3, and instead allow only for angular momentum L around x. The equation of state for
the system is

S = −Et+ Lx+ Sr(r) , gµν
∂S

∂xµ
∂S

∂xν
= m2. (A.1)

This presents a differential equation for Sr, which we can solve with

Sr(r) = ±
∫ r

r0
dr′
√
− grr
gttgxx

(E2gxx +m2gttgxx + L2gtt). (A.2)

Plugging this into S, we can now impose the Hamilton-Jacobi equation ∂S
∂E = 0. This gives

us a relation between r and t:

t =
∫ r

r0
dr′

Er′√
−gtt

(
E2grr +m2gttgrr + L2 gtt

gxx
grr
) , (A.3)

where the sign is fixed in this case by specifying that the particle starts from some radius
r0 far away from the singularity and falls in toward it. This is equivalent to (46) in [45],
where in that case grr

gxx
= 1

r2 and they take gtt = gxx (i.e. they drop the sign difference).
The simple way to view the repulson behavior in this expression is to note for what values
of r the denominator is pure complex. Generically, this will occur at some radius before
the particle hits the singularity, irrespective of energy or angular momentum. Rather than
a point of no return (an event horizon), there is a point of no advance, which the authors
of [45] referred to as “antigravity.”

In 10 dimensions, the Einstein frame metric has

grr = f
1/4
1 f

3/4
5 , gxx = −gtt = f

−3/4
1 f

−1/4
5 , (A.4)

and the integrand takes the form

Ef
5/8
1 f

7/8
5√

(E2 − L2)f1/4
1 f

3/4
5 −m2

√
f5
f1

. (A.5)
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As we move toward the singularity, f1 shrinks to 0 whereas f5 does not. For m 6= 0 the
argument to the square root in the denominator eventually becomes negative, irrespective
of the energy E. Thus the repulson behavior is visible both for the original enhançon
geometry with fi = Z̄i in (4.8) as well as the deformed geometry with fi in (4.2). The
exact radii where the integrands become complex are attainable for both systems, although
they have complicated and unenlightening forms.

The massless case requires special treatment. We write the proper velocity U as

Uµ =

EL
Ur

 . (A.6)

Enforcing gµνU
µUν = 0 allows us to solve for Ur in terms of E,L and r. The proper

velocity and acceleration, with affine parameter ξ, is

U r = ∂r

∂ξ
= ±

√
E2 − L2

(
f1
f5

)1/4
(A.7)

∂ξU
r = ∓

(
E2 − L2

) r2
1 + r2

5

2r3f
1/2
1 f

3/2
5

(A.8)

It is clear that the maximum value of r(ξ) is the radius where f1 vanishes, and that the
singularity repels the geodesics with diverging strength as they approach the singularity.

A subtlety in the dimensional reduction. There is a slight subtlety in the definition
of repulson used above, as the Weyl factor used to derive the Einstein frame metric depends
on the number of dimensions we choose to compactify. To illustrate this nuance, let us
consider the system in only the t, r, x coordinates and compactify the S3 ×M4. Then:

grr = f
−3/4
1 f

5/4
5 , gxx = −gtt = f

−5/4
1 f

3/4
5 , (A.9)

and one finds that the integrand in (A.3) instead becomes

E(f1f5)7/8√
(E2 − L2)(f1f5)5/4 −m2f2

5

(A.10)

Massive particles will still not be able to reach the singularity in finite time. However, we
argue that the most sensible definition of repulson behavior is the one which makes use of
the 10-dimensional geometry, i.e. without any compactification. This convention minimizes
ambiguity, although it is different from the one in [45].

B Probe brane computation

We are interested in a D5-brane probe on a background of the form

ds2 =Z
−1/2
1 Z

−1/2
5

(
−dt2+dx2

)
+Z1/2

1 Z
1/2
5

(
dr2+r2dΩ2

3

)
+Z1/2

1 Z
−1/2
5 V 1/2ds2

M4 (B.1)

e2Φ̃ = gs
Z1
Z5

, C2 =Z−1
1 dt∧dx, C6 =Z−1

5 dt∧dx∧V εK3 (B.2)

where εK3 is the volume form on the unit K3.
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The probe will be wrapped over the K3 and extended on the non-compact t and x

directions. By fixing the static gauge, we identify the world volume coordinates

{ζa} = {t, x,K3} (B.3)

Moreover, we will only consider time dependence in the transverse directions.
For the induced metric on the world volume we obtain

gtt = −Z−1/2
1 Z

−1/2
5 + Z

1/2
1 Z

1/2
5 v2

T (B.4)

gxx = Z
−1/2
1 Z

−1/2
5 (B.5)

gij = V 1/2Z
1/2
1 Z

−1/2
5 gK3

ij , {i, j ∈ K3} (B.6)

where we have defined the transverse velocity v2
T = ṙ2 + r2(θ̇2 + sin2 θϕ̇2

1 + sin2 θ sin2 ϕ1ϕ̇
2
2)

and the angles {θ, ϕ1, ϕ2} are coordinates on the 3-sphere. Therefore, in a slow-moving
approximation, we have

√
−detg= V

Z5

√
Z1
Z5

√
1−Z1Z5v2

T

√
detgK3≈ V

Z5

√
Z1
Z5

√
detgK3

(
1−Z1Z5v

2
T

2

)
. (B.7)

With the above expression in hand, we can evaluate the DBI action (note that we are
setting the internal U(1) gauge field to zero):11

SDBI = −T5

∫
d6ζ e−Φ√− det g ≈ −T5

∫
dt

V

Z5

(
1− Z1Z5v

2

2

)
. (B.8)

Now we proceed to evaluate the WZW coupling of the D5-brane to the 6-form flux. The
latter has no transverse components, so the pullback is trivial, giving

SWZW = T5

∫
d6ζ C6 = T5

∫
dt

V

Z5
. (B.9)

However, here certain stringy effects must be taken into account. As explained in [63] (and
reviewed in first section of [67]), by anomaly inflow there is an additional WZW coupling
when wrapping a D5-brane on K3. This additional contribution is proportional to α′2 and
roughly takes the form

δSWZW ∼ T5α
′2
∫
WV

C2 ∧ p1(K3), (B.10)

where p1 denotes the first Pontryagin class of K3. Given that C2 does not have any
component on K3, and since p1 is quantized to a negative integer, it turns out that

δSWZW = −T1

∫
dtZ−1

1 . (B.11)

Note the absence of a factor of V , given that p1 is a topological invariant and, as such, is
independent of the overall volume of K3. Here we have used that T1/T5 = (2π)4α′2.

11Recall that, according to the conventions followed in this paper, the bare tensions for the probe D1-
and D5-branes are gsT1 = (2π)−1α′−1 and gsT5 = (2π)−5α′−3 respectively.
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Since the configuration is still BPS, the tension has to acquire a compensating term
of the same form. By the above reasoning, this new term does not have any factor of V
either. Thus the relevant induced metric is the one corresponding to the subspace spanned
by t, x, giving

δSDBI = T1

∫
d2ζe−Φ

√
− det g(t,x) ≈ T1

∫
dt

1
Z1

(
1− Z1Z5v

2
T

2

)
. (B.12)

Putting all together we get

Lprobe ≈
(
−T5V Z

−1
5 + T1Z

−1
1

)(
1− Z1Z5v

2
T

2

)
+ T5V Z

−1
5 − T1Z̃

−1
1 (B.13)

= 1
2 (T5V Z1 − T1Z5) v2

T , (B.14)

hence the effective tension reads

Teff = T1

(
T5
T1
V Z1 − Z5

)
, (B.15)

as quoted in the main text.

C Computation of the black hole entropy

To keep the presentation self-contained, we review the basics of the computation done
in [34] which leads to the entropy (5.4). As explained in section 5, for sufficiently large
mass, the relevant black hole solutions do not feature an enhançon occurring outside the
horizon, hence only the exterior geometry matters for describing their thermodynamics.

It is natural to dimensionally reduce to five dimensions,12 where the Einstein frame
metric reads

ds2 = − (h1h5)−2/3Kdt2 + (h1h5)1/3 (K−1dr2 + r2dΩ3), (C.1)

with the harmonic functions f1, f5 and emblackening factor K given in (5.2), (5.3).
The energy associated to these configurations is accounted for by the ADM mass. The

latter can be read off from the asymptotic structure of the metric:

gtt = −1 + 8G5d
N

3π
M

r2 +O
(
r−4

)
, (C.2)

which in this case yields

M = 3π
8G5d

N

2
3

(
r̂2

1 + r̂2
5 + 3

2r
2
0

)
= vRr2

0
2g2
sα
′2 (cosh 2α1 + cosh 2α5 + 1) , (C.3)

and we have used the five-dimensional Newton’s constant of the form

G5d
N = G

(10)
N

V (2πR) = πg2
sα
′2

4vR . (C.4)

12Of course, the same result can be obtained by reducing to three dimensions by following the steps
depicted in section 3.
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The extremal mass is readily obtained by taking r0 → 0, giving

M ext = vR

g2
sα
′

(
g2
s

v
Q̃1 + Q̃5

)
. (C.5)

The energy above extremality then reads

E = M −M ext vRr̃
2
0

2g2
sα
′2

(
e−2α1 + e−2α5 + 1

)
. (C.6)

As explained in the main text, we take the decoupling limit, by which α5 →∞ while α1 is
kept fixed. In this limit, the dimensionless energy reads as follows

E ≡ RE = vR2r2
0

2g2
sα
′2

(
e−2α+

1 + 1
)

= Q̃1

λ sinh 2α+
1

(
e−2α+

1 + 1
)
. (C.7)

Note we have rewritten the horizon radius in terms of α1 by means of (5.3) and also
introduced the deformation parameter λ = α′/R.

Finally, the entropy associated to the solution is obtained by computing the area
spanned by the S3 at the horizon r = r0. From (C.1) one easily obtains

S = Area
(
S3)

4G5d
N

= 2πvRr3
0

g2
sα
′2 coshα1 coshα5 ≈

2πvR
√
Q̃5r

2
0

g2
sα
′3/2 coshα1 (C.8)

where, in going to the second equality, we have taken the decoupling limit. Finally, inverting
the relation (C.7) and plugging it into the above expression, one gets the equation of
state (5.4) for the entropy in terms of the energy above extremality.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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