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1 Introduction

In this paper, we shall study the effects of stringy corrections to gauge theory and gravity by
extracting effective field theory (EFT) actions involving such corrections to all orders alias
all-order EFTs. As these theories reproduce the string amplitudes with their characteristic
channel dualities, they are also sometimes referred to as highly symmetric EFTs. More
precisely, we shall focus our attention to all-order EFTs on worldvolumes of D-brane-anti-
D-brane (DD) systems in which all stringy modes have been integrated out save massless
gauge modes and tachyons. These models have a number of interesting applications ranging
from the study of tachyon condensation in string theory via open-closed string duality to
holography in non-BPS backgrounds and in high-energy limits.

String theory provides an ultraviolet completion of gravity by systematically adding
higher-derivative corrections to its low-energy approximation given by Einstein’s theory.
Its power relies on the fact that it intertwines two quantum theories in a nontrivial fashion
such that the stringy corrections to gravity can be organized into a double perturbative
expansion. Thus, viewing gravity as a quantum field theory with an S-matrix, its stringy
quantum corrections appear weighted by a string coupling constant gs, which one may thus
identify as ~, while at each order in gs, the S-matrix elements are computed using a first-
quantized string described by sigma model on a two-dimensional surface, alias worldsheet,
of fixed genus, with its own coupling constant, often denoted by α′. Physically speaking, α′

sets the unit of length for the spacetime background metric, which yields an identification
of the Planck length as a combination of positive powers of gs and α′, which is arguably
one of the most exciting results of string theory.

Another remarkable feature of the double perturbative expansion, is that it admits a
natural extension so as to include non-perturbative effects by means of geometric objects
permeating the spacetime background, known as Dirichlet-branes, or D-branes. These may
be thought of in two dual fashions as either defects in spacetime, serving as sources for
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stringy analogs of electric and magnetic fluxes, or defects on the worldsheet, serving as
sources for modified boundary conditions arising by means of two-dimensional analogs of
electric-magnetic duality rotations.

In this paper, we shall attempt to attain a deeper understanding of the α′-corrections
to gravity and obtain a more complete control of their all-order behavior by focusing on DD
systems. The basic motivation behind studying these systems is that the aforementioned
stringy dualities have so far been spelled out mainly in perturbative expansions around
supersymmetric string vacua, while supersymmetry is broken throughout the bulk of the
moduli space of string theory. To explore non-supersymmetric string backgrounds, DD sys-
tems are important tools as their underlying first-quantized descriptions remain tractable
and amenable to quantitative studies even in the absence of supersymmetry. The detailed
link between closed-string and open-string constructions originates from [1–9].

More broadly, in view of work on instabilities, and in particular on the importance
of non-BPS branes in the Swampland [10] and the related gravity conjecture1 [11], one
would like to gather additional insights into supersymmetry breaking on time-dependent
backgrounds [12–22]. For instance, if we use the Sakai-Sugimoto model of DD systems [23–
25] to analyse spontaneous supersymmetry breaking in various holographic models [26–28],
the model will be granted as a probe if and only if the number of flavours is much less than
the number of colours, Nf � Nc. Hence, we shall keep all tachyonic string states in both
worldsheet and EFT descriptions of the DD system.

In [29, 30], various authors have found tachyonic effective actions that also describe
the decays of non-BPS branes [31, 32]. Subsequently, in [21, 22], it was argued how to
embed non-BPS branes and massless states into the EFT, whereby tachyon condensation
for brane-anti-brane systems can be discussed in great detail [33].

In the case of a single D-brane and a single anti-D-brane separated by a distance below
the string length, two real tachyon modes emerge in the EFT. In [34], the dynamics of
this system was analyzed using EFT methods, taking into account string loop divergences.
As applications of tachyonic EFTs, we would like to highlight brane production [35–43]
and inflation in string theory, which later on became important ingredients the context of
KKLT [44–46]. Various thermodynamic aspects of this system at finite temperature have
been studied, whereby the system gets stabilised and can be related to black holes, leading
to applications in AdS/CFT correspondence in string and M-theory [47, 48]. Properties
of DD systems facilitate stability analyses in the context of KKLT and the Large Volume
Scenario of string compactifications [49, 50]. Including D-brane sources [51], one may
furthermore consider DD bound states within the context of K-theory [52].

In the aforementioned context, where the dualities of the supersymmetric M-theory web
do not hold anymore, worldsheet Conformal Field Theory (CFT) methods are nonetheless
still available, and remarkably they suffice for constructing string corrections and new
couplings [53–63]. Proceeding with this program, all standard EFT methods of effective
actions for both non-BPS and BPS branes have been clarified with full details in [64].

1This conjecture confirms the presence of the light elementary electric and magnetic objects so that their
mass/charge ratio is smaller than the relevant ratio for macroscopic extremal black holes and hence allows
the decay of extremal black holes.
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More precisely, the string corrections to DBI, Chern-Simons, Wess-Zumino effective actions
are derived from scattering amplitudes, as, to the best of our knowledge, at least in the
context of non-BPS branes, this approach does not introduce any ambiguities into α′-
corrections, and one explores all-order coefficients of string corrections in the Type IIB and
IIA superstrings accordingly.

Finally, in the Conclusions we point to interesting similarities between the all-order
EFT Lagrangian for DD systems and the systems of matter fields coupled to topological
conformal higher spin gravities that have been proposed [65–67] as duals of bulk higher spin
gravity a la Vasiliev [68] in an attempt to refine the original holography proposal [69–72].
Motivated by this, within the context of the Frobenius-Chern-Simons (FCS) extension [73]
of Vasiliev’s higher spin gravity, we propose that the counterparts of DD systems are
contained as branches of fractional spin gravities [74].

The paper is structured as follows: we first concentrate on the DD system and explain
briefly the details on four- [75] and five-point functions. We then explore more hidden
symmetries in amplitudes of non-BPS branes. Having taken the selection rules [76], EFT
and other symmetries into account, we explore the expansion of the amplitudes and start
to exhibit all singularities of the type IIA and IIB string theories. This leads to the
construction of the all-order α′ higher-derivative corrections to two-tachyon and two-gauge
field couplings in the DD system as well.

This result shows that not only the structures of the higher derivative corrections but
also their coefficients are different from the ones of non-BPS branes, as we shall clarify in
detail in section five.

2 Highly symmetric D-brane-anti-D-brane EFT

The DpDp-brane system is constructed by (−1)FL-projecting the two branes which yields
an unstable configuration containing tachyonic states. The resulting EFT of tachyons and
massless gauge fields is formulated in terms of a superconnection of a noncommutative
geometry [77–79], viz.

iA :=
(
iA(1) βT ∗

βT iA(2)

)
,

where A(1) and A(2) are gauge fields associated to the Dp- and Dp-brane, respectively, and
T = 1√

2(T1 +iT2) is a complex tachyon with normalization β. The resulting supercurvature

F := dA− iA ∧A =
(
iF (1) − β2|T |2 β(DT )∗

βDT iF (2) − β2|T |2

)
, (2.1)

where F (i) := dA(i)−iA(i)∧A(i) = 1
2F

(i)
ab dx

a∧dxb and DT := dT−i(A(1)T−TA(2)) =DaTdx
a.

Using trivial Chan-Paton factors, such that F (i)
ab = ∂aA

(i)
b −∂bA

(i)
a and DaT = ∂aT−i(A(1)

a −
A

(2)
a )T , and following [80, 81], the kinetic terms of the EFT action can be assembled into

a DBI-like Lagrangian, viz.

SDBI = −
∫
dp+1σTrS

(
V (T )

√
− det(ηab + 2πα′Fab + 2πα′DaT DbT )

)
, (2.2)
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where V is the Tachyon potential,

Fab :=
(
F

(1)
ab 0
0 F

(2)
ab

)
, DaT :=

(
0 DaT

(DaT )∗ 0

)
, T =

(
0 T

T ∗ 0

)
, (2.3)

and TrS denotes the symmetrized trace over mat2. The EFT action also contains cou-
plings to the spacetime RR potentials packaged into C :=

∑
n(−i)

p−n+1
2 Cn which can be

assembled into a Wess-Zumino term

SWZ = µp

∫
Σ(p+1)

C ∧ STr e2πα′iF , (2.4)

where STr is the supertrace. Indeed, setting the tachyon modes to zero, the WZ term
reduces to the Chern-Simons-like term [82–84]2

SCS := SWZ|T=0 = µp

∫
Σ(p+1)

C ∧
(
e2πα′iF (1) − e2πα′iF (2))

, (2.5)

as expected by taking the naive sum of a separately supersymmetric D- and D-brane.

Comparison to disc amplitudes. Expanding the Lagrangian of (2.4), one derives

C ∧ STr iF = Cp−1 ∧ (F (1) − F (2)) (2.6)

C ∧ STr iF ∧ iF = Cp−3 ∧
{
F (1) ∧ F (1) − F (2) ∧ F (2)

}
+ Cp−1 ∧

{
−2β2|T |2(F (1) − F (2)) + 2iβ2DT ∧ (DT )∗

}
(2.7)

the resulting couplings can be matched to disc amplitudes computed using CFT meth-
ods [85]; for details, see for example [76]. To this end, the relevant open string vertex
operators for real tachyons and gauge photons carrying Chan-Paton factors λ are given by

V
(−1)
T (x1) = e−φ(x1)eα

′ik1·X(x1)λ⊗ σ2 , (2.8)

V
(0)
T (x2) = α′ik2·ψ(x2)eα′ik2·X(x2)λ⊗ σ1 , (2.9)

V
(−1)
A (x3) = ξ·ψ(x3)e−φ(x3) eα

′ik3·X(x3)λ⊗ σ3 , (2.10)

V
(0)
A (x4) = ξ2a

(
∂Xa(x4) + α′ik·ψ(x4)ψa(x4)

)
eα
′ik4·X(x4)λ⊗ I , (2.11)

where xi belong to the boundary of the disc and ki are worldvolume momenta obeying
k2

3 = k2
4 = 0 and k2

1 = k2
2 = −m2, where m2 = −1

2α′ is the tachyon mass-squared. The closed
string vertex operator for the RR particle is given by

V
(−1)

RR (z, z̄) = (P−H/ nMp)αβe−φ(z)/2Sα(z)ei
α′
2 p·X(z)e−φ(z̄)/2Sβ(z̄)ei

α′
2 p·D·X(z̄)⊗σ3 , (2.12)

2The nomenclature stems from the fact that SCS consists of couplings of the form
∫
Cn ∧ dA∧ · · · ∧ dA,

though since Cn comprises the pull-back 1
n!CM1...MndX

M1 ∧ · · · dXMn , one may also think of SCS as
packaging worldvolume Quillen-Chern classes of a superconnection with components (A,XM , . . .) whose
extension by T thus deforms SCS to SWZ.
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where (z, z̄) is a point inside the disc and p a massless spacetime momentum, and3

P− := 1
2(1− γ11) , (2.13)

H/ n := mn

n! Hµ1...µnγ
µ1 . . . γµn , (2.14)

with n even and mn = i in the Type IIA model, and n odd and mn = 1 in the Type IIB
model. Using the doubling trick, the disc amplitude is mapped by

X̃µ(z̄)→ Dµ
νX

ν(z̄) , ψ̃µ(z̄)→ Dµ
νψ

ν(z̄) , φ̃(z̄)→ φ(z̄) , S̃α(z̄)→Mα
βSβ(z̄) , (2.15)

where the matrices

D :=
(
−19−p 0

0 1p+1

)
, Mp := ±mp

(p+ 1)!γ
a0 . . . γap(γ11)pεa0...ap , (2.16)

to an amplitude computed on the entire complex plane for a single holomorphic sector with
two-point functions

〈Xµ(z)Xν(w)〉 = −α
′

2 η
µν log(z − w) , (2.17)

〈ψµ(z)ψν(w)〉 = −α
′

2 η
µν(z − w)−1 , (2.18)

〈φ(z)φ(w)〉 = − log(z − w) . (2.19)

Letting u := −α′

2 (k1+k2)2 and setting α′ = 2, the complete disc amplitude for the scattering
of two real tachyons and one RR particle on the DpD̄p-brane reads

AT
(−1)T (0)C

(−1)
n−1

disc = iµp
4 2π Γ(−2u)

Γ(1/2− u)2Tr (P−H/ nMpγ
a)k2a , (2.20)

where µp is RR charge and γ11 is chosen such that Hn = ∗H10−n for p > 3 and n ≥ 5.
In the limit u = −papa → 0, the u-channel massless gauge field pole is reproduced in

the EFT as

ATTCp−1
EFT |u−ch = V a(Cp−1, A

(1))Gab(A)V b(A(1), T1, T2)

+ V a(Cp−1, A
(2))Gab(A)V b(A(2), T1, T2) , (2.21)

where Gab(A) is the gauge field propagator, and Va(Cp−1, A
(i)) and Va(A(i), T1, T2) are

vertices read off, respectively, from the Chern-Simons coupling

iµp(2πα′)
∫

Σp+1
εa0...apTr (Ca0...ap−2∂ap−1(A(1)

ap −A
(2)
ap )) , (2.22)

and the DBI-term. Consequently, by matching the full EFT-amplitude to the disc ampli-
tude, the required contact terms are contained in

iµp(2πα′)2
∫

Σp+1
Cp−1 ∧ Tr

 ∞∑
m=−1

cm(α′(DaDa))m+1DT1 ∧DT2

 , (2.23)

3We raise and lower spinor indices using a charge conjugation matrix Cαβ and the conventions Sα =
CαβSβ and Sα = Sβ(C−1)βα.
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which thus provide the desired EFT couplings of two real tachyons and one RR potential
to all orders in α′.

In what follows, we shall include one gauge photon into the amplitude and exhibit the
resulting all-order bosonic four-field corrections to the DpD̄p-brane EFT.

3 From S-matrix to all-order EFT couplings

In this section, we contextualize our analysis by reviewing the five point function, which
also serves as a warm up for the computations of the new six point functions in the following
section.

At tree level, the string scattering S-matrix element on a DpD̄p-brane of two real
tachyons with momenta k2 and k3, a gauge photon with momentum k1, and an RR particle
with spacetime momentum p is given by the disc amplitude [86, 87]

AA
(−1)T (0)T (0)C

(−1)
n−1

disc = iµp
2
√
π

∫
dzdz̄ k2bk3cξa(z − z̄)−2(t+s+u)−1|z|2t+2s−1|1− z|2u+2t−1/2

×
{

(Γcba)αβ − 2ηab−x+ |z|2

z − z̄
(Γc)αβ − 2ηac x

z − z̄
(Γb)αβ

+ 2ηbcx− 1
z − z̄

(Γa)αβ
}

(P−H/ nMp)αβ , (3.1)

where we have gauge fixed (x1, x2, x3, z, z̄) = (0, 1,∞, z, z̄), and introduced the Mandelstam
variables

s := −α
′

2 (k1 + k3)2, t := −α
′

2 (k1 + k2)2, u := −α
′

2 (k2 + k3)2 . (3.2)

Note that for five point functions the integration over the position of the RR potential
vertex operator involves the prototype integral∫ ∫

d2z|1− z|a|z|b(z − z̄)c(z + z̄)d . (3.3)

These integrals were computed for d = 0, 1 in [88] and for d = 2 in [89] where the tricks are
explained in [89]. Including a normalization iµp/2

√
2π, the final form of the amplitude is

AT
(0)T (0)A(−1)C

(−1)
n−1

disc = iµp

2
√

2π

(
Tr((P−H/nMp)(k3·γ)(k2·γ)(ξ·γ))I+Tr((P−H/nMp)γa)J

×
[
k2a(t+1/4)(2ξ·k3)+k3a(s+1/4)(2ξ·k2)−ξa(s+1/4)(t+1/4)

])
,

where

I := 2−2(t+s+u)−1/2π
Γ(−u)Γ(−s+ 1/4)Γ(−t+ 1/4)Γ(−t− s− u)

Γ(−u− t+ 1/4)Γ(−t− s+ 1/2)Γ(−s− u+ 1/4) , (3.4)

J := 2−2(t+s+u)−3/2π
Γ(−u+ 1/2)Γ(−s− 1/4)Γ(−t− 1/4)Γ(−t− s− u− 1/2

Γ(−u− t+ 1/4)Γ(−t− s+ 1/2)Γ(−s− u+ 1/4) . (3.5)

– 6 –



J
H
E
P
0
5
(
2
0
2
1
)
2
4
5

Given the on-shell condition,

s+ t+ u = −papa −
1
2 . (3.6)

The EFT formalism, which provide the guide of generating massless singularities, implies
that ki.kj → 0, which yields the following expansion for CTTA amplitude:

u→ 0 , s, t→ −1/4 . (3.7)

In [86, 87], some tachyonic and massless singularities of the S-matrix are spelled out.
For p = n + 2, the amplitude has infinitely many massless poles, and for p = n there are
infinitely many tachyon and massless poles. It does have an infinite number of gauge field
poles in (s+ t+ u+ 1/2)− channel poles as well.

As for the infinite collection of massless gauge poles for p = n + 2, the corresponding
string amplitude is

AAT1T2C = ± 8iµp√
2π(p− 2)!

εa0···apHa0···ap−3k3ap−2k2ap−1ξapI , (3.8)

which are produced by the following sub amplitude in an EFT

AEFT = Va(Cp−3, A
(1), A(1))Gab(A(1))Vb(A(1), T1, T2) , (3.9)

where the expansion of I around (3.7) is

I = π
√

2π

−1
u

∞∑
n=−1

bn(s′ + t′)n+1 +
∞∑

p,n,m=0
cp,n,mu

p (s′t′)n (s′ + t′)m
 , (3.10)

where s′ = s + 1/4, t′ = t + 1/4; the algebraic structure of the coefficients is represented
well by the first few ones, which are

c0,0,2 = 2
3π

2 ln(2) , c0,1,0 = −14ζ(3) , c0,0,3 = 8ζ(3) ln(2) . (3.11)

Since the gauge field propagator has no correction, nor the couplings of two tachyons
and a gauge field, it is necessary to add higher-derivative couplings between the RR po-
tential two gauge fields, which can thus be determined to all orders, with the result

µp(2πα′)2
∞∑

n=−1
bn(α′)n+1Cp−3 ∧Da1 . . . DanF ∧Da1 . . . DanF . (3.12)

The infinite set massless poles can then be derived using the following data:

Gab(A(1)) = iδab
(2πα′)2Tp (u) , (3.13)

Vb(A(1),T1,T2) =Tp(2πα′)(k2−k3)b (3.14)

Va(Cp−3,A
(1),A(1)) = µp(2πα′)2

(p−2)! εa0···ap−1aH
a0···ap−3k

ap−2
1 ξap−1

∞∑
n=−1

bn(α′k1 ·k)n+1 , (3.15)
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where k is the momentum of the off-shell gauge field. Indeed, it follows that all string poles
are reproduced in the EFT, and the final form of the EFT amplitude (3.9) is

AEFT = µp(2πα′)
2i

(p− 2)!uεa0···ap−1aH
a0···ap−3k

ap−2
2 k

ap−1
3 ξa

∞∑
n=−1

bn

(
α′

2

)n+1
(s′ + t′)n+1 .

(3.16)
On the other hand for p = n, one explores the following string amplitude:

AAT1T1C = ± 8iµp√
2πp!

εa0···ap−1aHa0···ap−1J

{
k2at

′(2ξ.k3) + k3as
′(2ξ.k2)− ξas′t′

}
. (3.17)

Its first simple gauge field pole is reproduced by the following EFT amplitude:

AEFT = Va(Cp−1, A)Gab(A)Vb(A, T1, T1, A
(1)) , (3.18)

where the vertices and gauge field propagators, which can be read off from the DBI action
and CS term, are given by

Gab(A) = iδab
(2πα′)2Tp (u+ t′ + s′) , (3.19)

Va(Cp−1, A
(1)) = iµp(2πα′)

1
p!εa0···ap−1aH

a0···ap−1 , (3.20)

Va(Cp−1, A
(2)) = −iµp(2πα′)

1
p!εa0···ap−1aH

a0···ap−1 , (3.21)

Vb(A1, T1, T1, A
1) = −2iTp(2πα′)ξb , (3.22)

Vb(A(2), T1, T1, A
(1)) = 2iTp(2πα′)ξb . (3.23)

On the other hand, tachyonic singularities are also produced by the following sub-
amplitude:

A = V (Cp−1, T1, T2)G(T2)V (T2, T1, A
(1)) , (3.24)

where we recall that the vertex of two tachyons and one gauge field has no correction as
the kinetic term of tachyon is fixed and the propagator receives no correction either; hence

V (T2, T1, A
(1)) = Tp(2πα′)(k3 − k)·ξ , (3.25)

G(T2) = i

(2πα′)Tp(s+ 1/4) , (3.26)

V (Cp−1, T1, T2) = (2πα′)2µp

∞∑
n=0

bn
1
p!ε

a0···ap−1aHa0···ap−1(α′k1.k)n+1k2a , (3.27)

where k2a is the momentum of the off shell tachyon.
In order to derive all infinite massless poles, we need to obtain all-order α′ corrections

of two tachyons and two gauge fields in the worldvolume of brane-anti brane system and
to do so we start to properly address a six point function including an RR, two tachyons
and two gauge fields in the next section.
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4 EFT couplings from six point functions

Having warmed up with the five point function, we now proceed by first computing the
S-matrix element for a closed-string RR state and two gauge fields and two tachyons on
the worldvolume of the DD system. We then factorize it in a specific limit over gauge field
poles that match to all orders in α′ with corresponding higher-derivative couplings of the
EFT of the DD system.

We start with the disk correlation functions

(Icba1 )αβ = 〈: Sα(z) : Sβ(z̄) : ψa(x2) : ψb(x3) : ψc(x4) :〉 , (4.1)

(Icbaed2 )αβ = 〈: Sα(z) : Sβ(z̄) : ψd(x1)ψe(x1) : ψa(x2) : ψb(x3) : ψc(x4) :〉 , (4.2)

with the result

(Icba1 )αβ =
{

(Γcba)αβ − α′ηab(Γc)αβ
<(x25x36)
x23x56

+ α′ηac(Γb)αβ
<(x25x46)
x24x56

− α′ηbc(Γa)αβ
<(x35x46)
x34x56

}
2−

3
2 x

1
4
56 (x25x26x35x36x45x46)−

1
2 , (4.3)

where x5 ≡ z = x+ iy , x6 ≡ z̄ and xij = xi − xj , and

(Icbaed2 )αβ = 2−
5
2 x

5
4
56 (x25x26x35x36x45x46)−

1
2 (x15x16)−1

×
{

(Γcbaed)αβ

− 1
2 α
′ l1
<(x15x26)
x12x56

− 1
2 α
′ l2
<(x15x36)
x13x56

+ 1
2 α
′ l3
<(x15x46)
x14x56

− 1
2 α
′ l4
<(x25x36)
x23x56

+ 1
2 α
′ l5
<(x25x46)
x24x56

− 1
2 α
′ l6
<(x35x46)
x34x56

− 1
4 (α′)2 l7

(<(x15x26)
x12x56

)(<(x35x46)
x34x56

)
+ 1

4 (α′)2 l8

(<(x15x36)
x13x56

)(<(x25x46)
x24x56

)
− 1

4 (α′)2 l9

(<(x15x46)
x14x56

)(<(x25x36)
x23x56

)
+ 1

4 (α′)2 l10

(<(x15x26)
x12x56

)(<(x15x36)
x13x56

)
+ 1

4 (α′)2 l11

(<(x15x26)
x12x56

)(<(x15x46)
x14x56

)

+ 1
4 (α′)2 l12

(<(x15x26)
x12x56

)(<(x35x46)
x34x56

)}
, (4.4)
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where indices have been suppressed and we have defined the following tensor-bispinors:

l1 = −2ηadΓcbe + 2ηeaΓcbd , l2 = 2ηdbΓcae − 2ηebΓcad , (4.5)

l3 = 2ηdcΓbae − 2ηecΓbad , l4 = 2ηabΓced , (4.6)

l5 = 2ηacΓbed , l6 = 2 ηbcΓaed , (4.7)

l7 = 4ηadηbcΓe − 4ηeaηbcΓd , (4.8)

l8 = 4 ηdbηacΓe − 4 ηebηacΓd , (4.9)

l9 = 4ηdcηabΓe − 4ηecηabΓd , (4.10)

l10 = 4ηdaηebΓc + 4ηeaηdbΓc , (4.11)

l11 = 4ηdaηecΓb − 4ηeaηdcΓb , (4.12)

l12 = −4ηdaηbcΓd + 4ηeaηbcΓd . (4.13)

The desired S-matrix element can then be computed, with the result

AC
(−1)A(0)A(−1)T (0)T (0)

= 2iTr (λ1λ2λ3λ4)(P−H/ nMp)αβ ξ1e ξ2a

×
∫
dx1dx2dx3dx4dx5dx6 I x

− 1
4

56 (x25x26)−
1
2

×
(
i(α′)2 k3bk4c

[
pe
(

x25
x15x12

+ x26
x16x12

)
+ 2ke3

x23
x13x12

+ 2ke4
x24

x14x12

]
Icba1

− i (α′)3k1ek3bk4c I
cbaed
2

)
, (4.14)

where

I = |x12|−2t|x13|−2s− 1
2 |x14|−2v− 1

2 |x23|−2u− 1
2 |x24|−2r− 1

2 |x34|−2w−1|x15x16|t+s+v+ 1
2

× |x25x26|t+u+r+ 1
2 |x35x36|s+u+w+ 1

2 |x45x46|v+r+w+ 1
2 |x56|−2(s+t+u+v+r+w)−2 , (4.15)

in terms of the six independent Mandelstam variables

s = −
(1

4 + 2k1 · k3

)
, t = −2k1 · k2 , v = −

(1
4 + 2k1 · k4

)
, (4.16)

u = −
(1

4 + 2k2 · k3

)
, r = −

(1
4 + 2k2 · k4

)
, w = −

(1
2 + 2k3 · k4

)
. (4.17)

Since the amplitude has been written so that it respects SL(2,R) invariance manifestly, we
can fix the positions of three open-string vertex operator; we choose

x1 = 0 , 0 ≤ x2 ≤ 1 , x3 = 1 , x4 =∞ , (4.18)
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which brings the final amplitude to the form

− 8k3bk4cξ1eξ2a2−
1
2 (P−H/ nMp)αβ

∫ 1

0
dx2x

−2t
2 (1− x2)−2u− 1

2

×
∫
d2z|1− z|2s+2u+2w |z|2t+2s+2v−1(z − z̄)−2(t+s+u+v+r+w)−2|x2 − z|2t+2u+2r−1

×
{(

pex−1
2
x2(z + z̄)− 2|z|2

|z|2
+ 2ke3(x2 − 1)− 2ke4

)
(4.19)

×
(

(z − z̄)(Γcba)αβ + 2ηab (Γc)αβ
x2 − xx2 − x+ |z|2

(1− x2)

+ 2ηac(Γb)αβ(x− x2) + 2 ηbc (Γa)αβ(1− x)
)

− 2k1d

[
(z − z̄)(Γcbaed)αβ + l1

−xx2 + |z|2

x2
+ l2

(
−x+ |z|2

)
+ l3 x

+ l4
x2 − xx2 − x+ |z|2

(1− x2) + l5 (x− x2) + l6 (1− x)

+ (z − z̄)−1
(
l7 (−1 + x) −xx2 + |z|2

x2
+ l8

(
−x+ |z|2

)
(x2 − x)

+ l9x
x2 − xx2 − x+ |z|2

(1− x2)

)
+ l10x

−x+ |z|2

(−1 + x2)

+ l11x
x− |z|2

(x2) + l12(−x+ |z|2 + x2 − x|z|2)
]}

Tr (λ1λ2λ3λ4) . (4.20)

The total amplitude can be expressed in terms of the integrals

Axz(a, b, c, d | α, β | ε) ≡
∫
d2z

∫ 1

0
dx |1− z|a|z|b(z − z̄)c(z + z̄)d

× (1− x)αxβ |x− z|ε, (4.21)

whose properties were described in detail in [90]. As explained in [90], one can work with
the soft limit of the six point function as 4k2 · p → 1 which gives an analytic expression
for the amplitude, and some of the integrals can be found in appendix B of [88]. They are
subject to the on-shell condition

s+ t+ u+ v + r + w = − papa − 1 . (4.22)

In what follows, we shall determine quartic couplings in the EFT action by subtracting
EFT exchange graphs with massless poles from the TTAAC disc amplitude in the limit
where ki·kj → 0 for i 6= j. To investigate the structure of poles, we consider the correct
limit of the Mandelstam variables to set up the low-energy expansion where the correct
expansion is

t→ 0 , s , v ,− papa → −
1
4 , w → −1

2 ,
1
2

[(
u→ 0 , r → −1

4

)
+
(
u→ −1

4 , r → 0
)]

, (4.23)
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where in the last line we took the averaged over the two limits and (4.23) is consistent
with momentum conservation, and conforms to the symmetries of the S-matrix. Note that
in the limit −papa → −1

4 , we conform to the RR-tachyon two-point function, for which
papa = 1

4 is a constraint.
Next, we derive the precise form of the all-order corrections to the couplings of two

tachyons and two gauge fields with exact coefficients in the worldvolume of the DD system.
We will then show that they reproduce the all-order gauge field poles in an EFT analysis.
By algebraic computations, we will also show that the corresponding existing proposal in
the literature is inconsistent.

The string amplitude is non-vanishing in the case of RR potentials given by Cp−5, Cp−3
and Cp−1. In the Cp−5 case, the amplitude has just contact terms as follows:

A1 = 64i2−
1
2π

(p− 4)! N1N2k4ck3bξ1eξ2ak1d ε
a0...ap−5cbaedHa0...ap−5 , (4.24)

where

N1 = 2−2(t+s+u+v+r+w)−1 Γ(−2u+ 1
2) Γ(−2t+ 1)

Γ(−2t− 2u+ 3
2)

, (4.25)

N2 =
Γ(−u− r − w) Γ(−t− v − r + 1

2) Γ(r − s) Γ(−t− s− u− v − r − w)
Γ(−u− s− w) Γ(−t− s− v + 1

2) Γ(−u− w − t− v − 2r + 1
2)

. (4.26)

It is readily seen that the leading contact terms can be reproduced by the EFT couplings

µp(2πα′)4
∫ ∞∑

n=−1
bn(α′)n+1Cp−5 ∧ F ∧ F ∧DT1 ∧DT2 . (4.27)

Other contact terms can be reproduced by properly adding higher derivative corrections;
for more details see [90]. The amplitude has infinitely many massless poles in the Cp−3
case, and there are infinitely many tachyon poles in the Cp−1 case, where, for the sake of
obtaining correct higher derivative corrections, it is sufficient to reconstruct the infinite set
of gauge field poles.

For p = n+ 2, the amplitude is given by

AAATTCp−1 = 8iµp√
2π(p− 2)!

εa0···ap−1aHa0···ap−3k2ap−2ξap−1

×
(
k3au

′(2ξ.k4) + k4ar
′(2ξ.k3)− ξau′r′

)
N3N4 , (4.28)

where N3, N4 are the multiplications of various Gamma functions; for their explicit forms,
see appendix B of [90].

Having taken the proper expansion, one can show that all massless poles in the string
amplitude are given by

8iµp√
2π(p− 2)!

1
(w′ + r′ + u′)ε

a0···ap−1aHa0···ap−3k2ap−2ξap−1(
k3au

′(2ξ.k4) + k4ar
′(2ξ.k3)− ξau′r′

) ∞∑
n,m=0

dn,m(u′ + r′)n(u′r′)m , (4.29)
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using momentum conservation in directions parallel to the branes, (k1+k2+k3+k4+p)a = 0,
and the Bianchi identity

pbHa0···ap−4ε
a0···ap−1b = 0 . (4.30)

5 All-order two-tachyon-two-gauge field couplings

In this section, we determine the all-order part of the EFT Lagrangian on the worldvolume
of a DD system that is separately quadratic in gauge fields and tachyons, following the
procedure used in [91]4 to compute the highly-symmetric four-tachyon vertices to all orders
in α′ in the non-BPS case; we shall then verify the result by comparing the resulting gauge
field poles against those of the corresponding string amplitude. Our results modify and
complete previous simpler proposals [86, 87], whose subtle shortcomings we shall thus begin
by highlighting before turning to the main part of this section.

Old proposal. The vertices Va(A,A(1), T1, T2) stem from the part of the EFT Lagrangian
of the DD system that is separately quadratic in gauge fields and tachyons. In what follows,
we will first review the tachyon-two gauge field EFT couplings of non-BPS branes that have
been proposed in the literature [86, 87], and show that these do not reproduce the desired
string disc amplitude in the case of the DD system, after which we shall provide a remedy
in the form of a modified set of EFT higher-derivative couplings for this system. To spell
out the couplings, it is useful to define the quadri-linear higher-derivative operators5

Dnm(E,F,G,H) := Db1 · · ·DbmDa1 · · ·DanEFD
a1 · · ·DanGDb1 · · ·DbmH , (5.1)

D′nm(E,F,G,H) := Db1 · · ·DbmDa1 · · ·DanED
a1 · · ·DanFGDb1 · · ·DbmH . (5.2)

The existing proposal for the EFT Lagrangian of DD systems consists of the leading
couplings

Tp(πα′)3TrS
(
m2T 2FµνF

νµ + DαT DαT FµνF νµ − 4FµαFαβDβT DµT
)
, (5.3)

at order (α′)3 and where TrS denotes the symmetrised trace, combined with the higher-
order couplings

LTTAAold EFT = −Tp(πα′)
∞∑

n,m=0
(α′)2+n+m(Lnmold 1 + Lnmold 2 + Lnmold 3 + Lnmold 4) , (5.4)

4The S-matrix element for scattering of one RR particle and four tachyons on a DD-brane is given
in [91], and its relation to the Veneziano amplitude [92] is spelled out in there as well. Moreover, the all-
order corrections to fermionic couplings [93] as well as a power series representation of the corresponding
string amplitudes were obtained well beyond the factorized limit in [90].

5IfD is a differential operator acting in an algebra of functions, then we use the convention Dfg ≡ (Df)g.
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where6

Lnmold1 =m2TrS
(
an,m[Dnm(T ,T ,Fµν ,F νµ)+Dnm(Fµν ,F νµ,T ,T )]

+ bn,m[D′nm(T ,Fµν ,T ,F νµ)+D′nm(Fµν ,T ,F νµ,T )]+c.c.
)
, (5.5)

Lnmold2 = TrS
(
an,m[Dnm(DαT ,DαT ,Fµν ,F νµ)+Dnm(Fµν ,F νµ,DαT ,DαT )]

+ bn,m[D′nm(DαT ,Fµν ,DαT ,F νµ)+D′nm(Fµν ,DαT ,F νµ,DαT )]+c.c.
)
, (5.6)

Lnmold3 =−2TrS
(
an,m[Dnm(DβT ,DµT ,Fµα,Fαβ)+Dnm(Fµα,Fαβ ,DβT ,DµT )]

+ bn,m[D′nm(DβT ,Fµα,DµT ,Fαβ)+D′nm(Fµα,DµT ,Fαβ ,DβT )]+c.c.
)
, (5.7)

Lnmold4 =−2TrS
(
an,m[Dnm(DβT ,DµT ,Fαβ ,Fµα)+Dnm(Fαβ ,Fµα,DβT ,DµT )]

+ bn,m[D′nm(DβT ,Fαβ ,DµT ,Fµα)+D′nm(Fαβ ,DµT ,Fµα,DβT )]+c.c.
)
. (5.8)

Using LTTAAold , the EFT sub-amplitude

ACAATTgauge−ch = V a(Cp−3, A,A)Gab(A)V b(A,A, T, T ) (5.9)

contains the following infinite set of gauge poles

8iµpεa0···ap−1aHa0···ap−3k1ap−2ξ1ap−1
1

(p− 2)!(u′ + r′ + w′)

∞∑
n,m=0

(an,m + bn,m) (5.10)

(u′mr′n + u′nr′m)[k3au
′(2ξ.k4) + k4ar

′(2ξ.k3)− ξau′r′] .

At zeroth order in α′, the residue is given by

4u′r′(a0,0 + b0,0) = −π2u′r′ , (5.11)

while the corresponding quantity in the disc amplitude is given by

d0,0u
′r′ = −π

2

3 u′r′ = d0,0u
′r′ . (5.12)

Clearly, the old EFT proposal does not reproduce the string result. Indeed, this discrepancy
prevails at higher orders in the α′-expansion; for example, at the first order in α′, the EFT
residue is given by

2u′r′(u′ + r′)(a1,0 + a0,1 + b1,0 + b0,1) = 0 , (5.13)
6The first few an,m and bn,m coefficients are given by

a0,0 = −π
2

6 , b0,0 = −π
2

12
a1,0 = 2ζ(3), a0,1 = 0, b0,1 = b1,0 = −ζ(3)
a1,1 = a0,2 = −7π4/90, a2,0 = −4π4/90, b1,1 = −π4/180, b0,2 = b2,0 = −π4/45
a1,2 = a2,1 = 8ζ(5) + 4π2ζ(3)/3, a0,3 = 0, a3,0 = 8ζ(5),
b0,3 = −4ζ(5), b1,2 = −8ζ(5) + 2π2ζ(3)/3
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in disagreement with the string theory results, which reads

d1,0u
′r′(u′ + r′) = 8ξ(3)u′r′(u′ + r′) . (5.14)

In other words, the proposed EFT coulings do not apply to the DD configuration at hand.

New proposal. An improved EFT Lagrangian for the DD system can be found using
the method of [91]; the sought for all-order expression for the DBI-SYM Lagrangian is
given by

LDBI =−Tp(2πα′)
(
m2|T |2+DT ·(DT )∗−πα

′

2
(
F (1) ·F (1)+F (2) ·F (2)

))
+Tp(πα′)3

×
(

2
3DT ·(DT )∗

(
F (1) ·F (1)+F (1) ·F (2)+F (2) ·F (2)

)
+2m2

3 |T |
2
(
F (1) ·F (1)+F (1) ·F (2)+F (2) ·F (2)

)
− 4

3 ((DµT )∗DβT+DµT (DβT )∗)
(
F (1)µαF

(1)
αβ +F (1)µαF

(2)
αβ +F (2)µαF

(2)
αβ

))
, (5.15)

at the leading order in the α′-expansion, and

LTTAAEFT = −Tp(πα′)
∞∑

n,m=0
(α′)2+n+m(Lnm1 + Lnm2 + Lnm3 + Lnm4 ) , (5.16)

to higher orders, where

Lnm1 =m2TrS
(
an,m[Dnm(T,T ∗,F (1)

µν ,F
(1)νµ)+Dnm(F (1)

µν ,F
(1)νµ,T,T ∗)]

− bn,m[D′nm(T,F (2)
µν ,T

∗,F (1)νµ)+D′nm(F (1)
µν ,T,F

(2)νµ,T ∗)]+c.c.
)
, (5.17)

Lnm2 = TrS
(
an,m[Dnm(DαT,DαT

∗,F (1)
µν ,F

(1)νµ)+Dnm(F (1)
µν ,F

(1)νµDαT,DαT
∗)]

− bn,m[D′nm(DαT,F (2)
µν ,DαT

∗,F (1)νµ)+D′nm(F (1)
µν ,DαT,F

(2)νµ,DαT ∗)]+c.c.
)
,

(5.18)

Lnm3 =−2TrS
(
an,m[Dnm(DβT,DµT

∗,F (1)µα,F
(1)
αβ )+Dnm(F (1)µα,F

(1)
αβ ,D

βT,DµT
∗)]

− bn,m[D′nm(DβT,F (2)µα,DµT
∗,F

(1)
αβ )+D′nm(F (1)µα,DµT,F

(2)
αβ ,D

βT ∗)]+c.c.
)
,

(5.19)

Lnm4 =−2TrS
(
an,m[Dnm(DβT,DµT

∗,F
(1)
αβ ,F

(1)µα)+Dnm(F (1)
αβ ,F

(1)µα,DβT,DµT
∗)]

− bn,m[D′nm(DβT,F
(2)
αβ ,DµT

∗,F (1)µα)+D′nm(F (1)
αβ ,DµT,F

(2)µα,DβT ∗)]+c.c.
)
,

(5.20)
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where bn,m = bm,n, and F (1) and F (2), respectively, are the gauge field strengths on the
D-brane and D-brane. We note that unless the field strengths on the D- and D-brane are
treated separately, the EFT residues in the gauge channel cannot be made to match the
string results even to the leading order in α′.

The modification of the EFT Lagrangian proposed here can also be motivated by the
structure of EFT couplings on the DD system including fermions, viz. ψ̄2γaTψ1DaT and
ψ1DaT ψ̄

2γaT , found recently in [93].

Reproduction of gauge field poles. Let us consider again the EFT sub-amplitudes
with massless gauge fields poles, viz.

ACAATTEFT = Va(Cp−3, A,A
(1))Gab(A)Vb(A,A(1), T1, T1) , (5.21)

where, working perturbatively, the vertex Va(Cp−1, A) and propagator Gab(A) are given,
provided that one uses the following gauge propagator and vertices:

Gab(A) = iδab
(2πα′)2Tp(u′+r′+w′)

, (5.22)

Va(Cp−3,A,A
(1)) = µp(2πα′)2

(p−2)! εa0···ap−1aH
a0···ap−3k

ap−2
1 ξap−1

∞∑
n=−1

bn(α′k1 ·k)n+1 , (5.23)

Va(Cp−3,A,A
(2)) =−µp(2πα

′)2

(p−2)! εa0···ap−1aH
a0···ap−3k

ap−2
2 ξap−1

∞∑
n=−1

bn(α′k2 ·k)n+1 , (5.24)

where k is the momentum of the off-shell gauge field. Thus, the all-order form of the vertex
Va(Cp−3, A,A

(1)) is determined from

µp(2πα′)2
∞∑

n=−1
bn(α′)n+1Cp−3 ∧Da0 . . . DanF ∧Da0 . . . DanF . (5.25)

To the leading order in the α′-expansion, we take the vertex Va(A,A(1), T1, T2) from the
second line of (5.15), with the result

Va(A(1), A(1), T1, T1) = 2iTp(πα′)3
[2

3ka
[
r′(2k3 · ξ) + u′(2k4 · ξ)

]
(5.26)

+ k3au
′(2ξ.k4) + k4ar

′(2ξ.k3)− ξau′r′
]
,

Va(A(2), A(1), T1, T2) = 2iTp(πα′)3
[1

3ka
[
r′(2k3 · ξ) + u′(2k4 · ξ)

]
+ (5.27)

+ k3au
′(2ξ.k4) + k4ar

′(2ξ.k3)− ξau′r′
]
,

where ka is the momentum of the off-shell gauge field. Indeed, substituting the above
vertices into (5.21) reproduces the first massless singularity of (4.29).

Note that the correction to the vertex is read off by

− 2α′µp
∞∑
n=0

an

(
α′

2

)n
Cp−1 ∧ (DaDa)n[(F (1) − F (2))|T |2] , (5.28)

which is the extension of the couplings that are given in (2.6).
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Proceeding to higher orders, we use the two-tachyon-two-gauge field couplings
from (5.16), which read

4iTp(α′)n+m(an,m − bn,m)Tr (λ2λ3λ4Λβ)
[(

(k2 ·k3)m(k2 ·k4)n + (k2 ·k3)n(k2 ·k4)m

(k1 ·k)m(k2 ·k)n + (k3 ·k)n(k2 ·k)m
]
[k3au

′(2ξ.k4) + k4ar
′(2ξ.k3)− ξau′r′] , (5.29)

where ka is the off-shell gauge field momentum. The above vertices yield the following
infinite set of massless poles in the EFT:

8iµpεa0···ap−1aHa0···ap−3k1ap−2ξ1ap−1
1

(p− 2)!(u′ + r′ + w′)

∞∑
n,m=0

(an,m − bn,m) (5.30)

(u′mr′n + u′nr′m)[k3au
′(2ξ.k4) + k4ar

′(2ξ.k3)− ξau′r′] ,

which indeed agree with the massless singularities of the corresponding string ampli-
tude (4.29); for example, in the leading order, that is, for n = m = 0, the string amplitude
produces 4d0,0u

′r′, while at zeroth order in α′ the EFT yields

16u′r′(a0,0 − b0,0) = −4π2

3 u′r′ , (5.31)

which is identical to 4d0,0u
′r′. At first order of α′, the string amplitude yields 4d1,0u

′r′(u′+
r′), and in the modified EFT we obtain

8u′r′(u′ + r′)(a1,0 + a0,1 − b1,0 − b0,1) = 32ξ(3)u′r′(u′ + r′) = 4d1,0u
′r′(u′ + r′) , (5.32)

in perfect agreement with worldsheet computations. One can check that the equivalence
holds to all orders. Hence, all gauge field poles of the DD system are reconstructed from the
proposal (5.16) for the all-order two-tachyon-two-gauge field couplings of EFT Lagrangian
in an exact and ambiguitiy-free fashion.

In particular, we have found that it is necessary to embed the mixed coupling

F (1) · F (2) (5.33)

into the tachyon-extended DBI-SYM action (5.15) to match EFT and string amplitudes.

6 Conclusion

In summary, using worldsheet methods, we have obtained the two-tachyon-two-gauge field
couplings in (5.16) of the EFT on the worldvolume of DD systems to all orders in α′.

Working perturbatively, whereby all kinetic terms remain uncorrected (to leading or-
der in gs), the massless and tachyonic singularities shed light on the structure of higher-
derivative corrections to couplings, and help in determining the exact coefficients of the
aforementioned couplings. In particular, we have found that already at the leading order,
the DBI-SYM action (5.15) contains F (1)F (2)-couplings in order for the EFT to be consis-
tent with the worldsheet.7 We have also found that the Cp−1 ∧F coupling of the WZ term
does not receive any higher-derivative correction.

7In previous works, it has been shown that Dφi(1) ·Dφi(2)-couplings are required on the worldvolume of
DD systems for consistency between EFT and worldsheet descriptions [94].
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Let us comment on how our results may provide a guide along future directions towards
new ideas in the context of non-BPS branes.

Note that if one uses the ordinary trace effective action [95] instead of (2.2), the
resulting effective action cannot generate all-order singularities of the string amplitudes.

We note that the tachyon potential that we used is the same as in boundary string
field theory (BSFT), i.e.,

V (T iT i) = 1 + πα′m2T iT i + 1
2(πα′m2T iT i)2 + · · · , (6.1)

where m2
T = −1/(2α′) and Tp is the tension of a p-brane. The expansion complies with

the first couple of terms of the potential V (|T |) = eπα
′m2|T |2 taken from BSFT [96, 97].

If one just uses the derived effective actions of this paper, one can precisely generate all
infinite singularities and contact terms of string theory. Indeed we also discussed that the
presence of new mixed couplings like F (1) ·F (2), as well as Dφ(1) ·Dφ(2), are inevitable and
necessary to derive the actual and consistent results that are demanded when matching
string computations with EFT.

Combining EFT techniques with stringy symmetries [98], whereby the S-matrix must
be symmetric under exchanging s and t, and have massless u-channel poles, one learns that
all ki.kj → 0, and hence we revealed that the unique expansion (u → 0, s, t → −1/4) for
the five point function.

Carrying out the symmetrized trace in DBI action over σ factors, one finds

1
2TrS

(
V (T iT i)

√
1+[T i,T j ][T j ,T i]

)
=
(

1−π2T
2+π2

24T
4+· · ·

)(
1+T 4+· · ·

)
. (6.2)

Hence, the tachyon gets condensated at T → ∞, thereby the tachyon potential tends to
zero precisely.

It is natural to think of the all-order highly symmetric EFTs as counterparts to the
holographic duals of Vasiliev’s higher spin gravitys [65] in their turn thought of as consistent
truncations of FCS models; for a review, see [99]. The latter are formulated in terms of hor-
izontal Quillen superconnections on noncommutative fibered manifolds with star-product
local FCS action functionals in which all semi-classical nonlocalities have been incorpo-
rated into differential graded algebras. The differential graded algebras serve as natural
configuration spaces for noncommutative sigma models of Alexandrov-Kontsevich-Schwarz-
Zaboronsky (AKSZ) type [100]; Vasiliev’s higher spin geometries subject to boundary con-
ditions then arise on-shell as strict operator realizations of these algebras in representations.

The FCS models contain defects of co-dimension one in their turn containing differ-
ent sub-defects in various co-dimensions; thus, the FCS models serve as “grandparents”
for cascades of noncommutative gauge theories of AKSZ type. It is natural to expect
these cascades to induce chains of dualities of topological field theory type between sub-
algebras inhabiting the sub-defects, treated as objects of a geometric category, connected
by algebraic morphisms mediated by the theory inhabitating the parent defect, treated as
morphisms of the geometric category.
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In these schemes, Vasiliev’s theory plays the role of a parent theory arising in the
FCS model in co-dimension one in its turn containing different sub-defects in various co-
subdimensions. In particular, in co-dimension there are sub-defects harbouring fractional
spin gravity given by extensions of the original8 fractional spin gravity of Chern-Simons
type [74] by unfolded conformal matter fields [65–67] arising in the noncommutative AKSZ
sigma model in zero- and two-forms in bi-fundamental representations of conformal higher
spin and color groups with topological gauge fields.9

Thinking of the FCS model as a tensionless analog of an open-closed string field theory,
with Vasiliev’s higher spin gravity and fractional spin gravity, respectively, playing role of
closed- and open-string sectors, the counterpart of open-closed string duality in the case
of a single stack of D-branes becomes the refined holography proposal involving developed
largely independently by Vasiliev [65] and Nilsson [66, 67], thus representing a morphism
from a single sub-defect to the empty set. By this reasoning, a simple proposal for a
tensionless analog of a DD system is thus a higher spin gravity model with two fractional
spin gravity duals, thus representing a morphism from between two sub-defect.

The derivative structure of cubic and quartic vertices of the DD EFT and of effective
Fronsdal actions for higher spin gravity are similar. Indeed, the cubic vertices only have
a finite number of derivatives for a given set of spins, while the quartic vertices are given
by all-order derivative expansions weighted by α′ and the cosmological constant in the
DD EFT and higher spin gravity, respectively. One may thus propose that there exists
a geometrization of the multi-linear Moyal-like couplings of the EFT at high energies by
extending its Quillen superconnection to that of a suitable fractional spin gravity theory
(including propagating SYM fields in its matter sector), and correspondingly switching
from the metric-like DBI-SYM plus WZ action to a dual noncommutative AKSZ action.
The resulting configuration spaces of strictly quantized differential graded algebras could
provide a framework for resolving classical singularities in SYM gauge theory; for related
results in higher spin gravity, see [101].
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