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1 Introduction

The remarkable discovery of gravitational waves by the LIGO and Virgo collaborations [1,
2] has ushered in a new era of exploration that promises major new discoveries on black
holes, neutron stars and perhaps even new basic insights into fundamental physics. The-
oretical tools of increased precision, matching that of gravitational-wave signals not only
from current detectors but also from proposed gravitational-wave observatories [3–5],
are required.

The evolution of a compact binary and the ensuing gravitational-wave emission can
be divided in three distinct phases — inspiral, merger and ring down — according to their
underlying properties. The inspiral part of binary mergers, which is the subject of this
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paper, is analyzed through models such as the effective one-body (EOB) formalism [6, 7].
The weak gravitational field during this phase makes it suitable for a perturbative approach
and these models import information from post-Newtonian (PN) gravity [8–38], as well
as the self-force framework [39, 40] and numerical relativity [41–43]. More recently, the
post-Minkowskian (PM) expansion [44–58] has gained prominence due to its capture of the
complete velocity dependence at fixed order in Newton’s constant. By exposing the analytic
structure of each order, this expansion also offers new insight into features of gravitational
perturbation theory, exposes hereto unexpected structure in certain observables, and may
open a path to the resummation of perturbation theory in the classical limit. The PN,
PM and self-force expansions provide important nontrivial cross checks in their overlapping
regions of validity [36–38, 55, 56, 59–61]. For recent reviews see refs. [62–67].

Over the years a close link between classical physics and scattering amplitudes has
been developed [53–55, 57, 68–83] and led to a robust and powerful means for obtaining
two-body Hamiltonians [53] and observables in the post-Minkowskian expansion. It was
obtained by combining modern techniques, such as generalized unitarity [84–91], which
emphasize gauge-invariant building blocks at all stages and build higher-order contributions
from lower-order ones with effective field theory methods. This framework proved its
effectiveness through the construction of the sought after two-body Hamiltonian at the
third order in Newton’s constant [54, 55] and the identification of surprising simplicity in
physical observables of interacting spinning black holes [92]. The scattering angle is of
particular importance, as it provides a direct link [82] with the EOB framework [6, 7] used
to predict gravitational wave emission from compact binaries.

In this paper we investigate the effects of tidal deformations [93–95] on the conservative
two-body Hamiltonian during the inspiral phase, focusing on their structure in the post-
Minkowskian expansion. The tidal deformations offer a window into the equation of state
of neutrons stars [96–99] and test our understanding of black holes [83, 100–107] and of pos-
sible exotic physics [108–114]. While tidal effects are expected to vanish for black holes in
general relativity [97, 115–118], they are of crucial importance for understanding the equa-
tion of state of neutron stars. These corrections are formally equivalent to fifth-order post-
Newtonian effects [24], highlighting the importance of precision perturbative calculations.

Properties of extended bodies that relate to their finite size can be encoded in local-
operator deformations of a point-particle theory by integrating out their internal degrees
of freedom. The set of all possible tidal operators is constrained only by the symmetry
properties of the fundamental theory, such as parity. We introduce our organization of tidal
operators in close analogy with the case of electromagnetic susceptibilities. Indeed, not only
is there a formal similarity between gauge theory and gravity, but the integrand of gravita-
tional scattering amplitudes can be obtained directly from gauge theory using the double
copy [119–123]. For the relatively simple case of the leading-PM order contribution of a
given tidal operator to scattering amplitudes, these relations follow from the factorization of
the point-particle energy-momentum tensor and from the fact that the linearized Riemann
tensor is a product of two gauge-theory field strengths. Thus, in analogy with the case of
electromagnetic interactions of extended bodies, tidal operators may contain arbitrarily-
high number of Riemann curvature tensors with an arbitrary number of derivatives.
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Curvature-squared tidal operators, describing the linear response of an extended body
to an external gravitational field, were recently classified in ref. [107], where an expression
for the two-body Hamiltonian and scattering angle at leading post-Minkowskian order
was conjectured. Here we prove the conjecture for a basis of operators whose Wilson
coefficients in the four-dimensional point-particle effective action are exactly the same as
the worldline electric and magnetic tidal coefficients, related to the corresponding multipole
Love numbers by factors of the typical scale of the body, see e.g. refs. [24, 96–99, 105]. The
lowest-order matrix elements of our tidal operators are, by construction, the same as the
matrix elements of the worldline tidal operators. To establish the map beyond leading
order it is necessary to compare physical quantities. At the next-to-leading order the
contributions of low-derivative R2 tidal operators to the two-body Hamiltonian and to the
scattering angle were determined in refs. [83, 106].

We also obtain the leading-order modifications of the two-body Hamiltonian and of the
scattering angle due to tidal operators with arbitrarily-high number of Weyl tensors, which
describe the nonlinear response of extended bodies to external gravitational field. As usual
we organize the operators in terms of electric and magnetic-type components, E and B, of
the Riemann (or Weyl) tensor. The finite rank of these tensors leads to nontrivial relations
between different operators, allowing us to express the contributions of En and Bn-type
operators for n ≥ 4 in terms of those of products of simpler operators, thus reducing the
number of independent structures.

While these relations appear mysterious for scattering amplitudes in momentum space,
they are made manifest by Fourier-transforming the integral representation of the ampli-
tude to position space. At any loop order, the transform decouples all integrals from each
other. This observation allows us to write down closed-form expressions for amplitudes,
two-body Hamiltonians and scattering angles generated by infinite families of operators.
Beyond leading order the structure of tidally-deformed amplitudes is more complicated,
but the momentum-space methods of refs. [53–55, 83] can be applied systematically. Inte-
gration by parts methods [124, 125] are especially powerful for the conservative two-body
problem because in the potential region of loop integrals all relevant integrals are of single-
scale type [126].

The methods we use to describe tidal operators apply equally well to deformations
of a point-particle theory by any operators, including e.g. those arising in effective field
theory extensions of General Relativity [127–133]. We illustrate this point by working out
the contributions of R3 and R4 and compare them with existing results. The two-body
Hamiltonian and associated observables for a point-particle deformed by tidal operators
interacting with a spinning particle can also be derived through similar methods. To leading
PM order, only the single-graviton interaction of the spinning particle is relevant and it
is captured by the stress tensors described in [92, 134, 135]. As an example, we find the
leading spin-orbit contributions from E2-type tidal operators with an arbitrary number of
derivatives interacting with a spinning particle.

This paper organized as follows. In section 2 we present a description of the operators
encoding tidal deformations. In section 3 we discuss the leading-order tidal contribu-
tions from R2-type operators with an arbitrary number of derivatives. This section also
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demonstrate how to incorporate spin effects for the second body. We proceed to derive
in section 4 the leading contributions of various infinite classes of Rn-type tidal operators
and also comment on their higher-order contributions. In section 5 we discuss the appli-
cation of our methods to the case of Rn extensions of General Relativity. We present our
conclusions in section 6. An appendix gives the explicit results for the contributions of
a collection of high-order tidal operators to the two-body Hamiltonian and the associate
scattering amplitudes.

Note added. While this project was ongoing we became aware of concurrent work by
Cheung, Shah and Solon [136] based on using the geodesic equation and containing some
overlap on leading contributions to the two-body Hamiltonian from the Rn tidal operators.
In addition, the methods developed there determine the two-body Hamiltonian for a tidally-
deformed test particle interacting with a Schwarzschild black hole, to all orders in the
Schwarzschild radius of the latter. We are grateful for interesting and helpful discussions
and sharing drafts.

2 Effective actions for tidal effects

2.1 Effective actions for post-Minkowskian potentials

In this work we study tidal or finite-size effects in the gravitational interactions of two
massive extended bodies. They are encoded in a classical two-body Hamiltonian of the form

H(p, r) =
√

p2 +m2
1 +

√
p2 +m2

2 + V (p, r) , (2.1)

and is extracted systematically, following the general approach introduced in [53], by match-
ing QFT scattering amplitudes to a non-relativistic EFT. If the size of the two bodies
is much smaller than their separation, non-analytic/long-distance classical potential has
the form

V (p, r) ∼ ci(p)m
(
Gm

|r|

)i
, (2.2)

where m carries unit mass dimension and the momentum transfer q, Fourier-conjugate to
r, is much smaller than the center of mass momentum p. Such a conservative potential
arises from integrating out gravitons with momenta ` in the potential region which has the
scaling behavior

` = (`0, `) ∼ (|q||v|, |q|), (2.3)

where |v| ∼ O (|p|/m). Note that Gm is of the order of the effective Schwarzschild radius
of the particles Rs, so the classical expansion1 of the potential is an expansion in Rs/|r|.
If the separation of the two bodies can be of the same order as their typical size R, then
the classical potential takes the form

V (p, r) ∼ ci,k(p)m
(
Gm

|r|

)i ( R
|r|

)k
. (2.4)

1The amplitude also contains non-analytic terms which we will not study here, corresponding to quantum
contributions to the potential of the form (`2

p/r
2)n, where `p is the Planck length.
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For black holes R ∼ Rs so the size of terms with powers of R is comparable to higher
PM orders. For other bodies R > Rs so the contribution should be bigger. For reference,
neutrons stars have R/Rs ∼ 10, and the sun has R/Rs ∼ 105. In practice, it is convenient
to always use Rs/r as the expansion parameter so that the tidal effects just modify the
coefficients in the usual PM potential, i.e. ci,k ∼ ∆ci+k.

From our point of view, the new scale Rs is introduced by integrating out the degrees
of freedom that describe the tidal dynamics of an extended body to yield a point-particle
effective theory. In such an effective theory the finite size effects are encoded as higher-
dimension operators Oi which are suppressed by powers of Rs|q|. Their Wilson coefficients
can be determined either by matching to the complete theory that includes the tidal degrees
of freedom, or by comparing to experiment. A side effect of choosing Rs instead of R as the
scale characterizing finite-size effects is that for less compact bodies the Wilson coefficients
are not necessarily O(1). This approach was pioneered in the context of a worldline PN
formalism in ref. [24], and recently adapted to the PM framework in ref. [106]. In the QFT
language this approach has been recently used in refs. [83, 107]. In section we provide a
systematic treatment of such effective actions and write a basis of operators which simplifies
the translation between QFT and worldline formalisms and makes the relation to familiar
in-in observables manifest.

The cases that we focus on in this paper correspond to leading contributions from
tidal or other operators. Although these operators first contribute to loop amplitudes, the
determination of their leading-order contribution to the two-body potential is straightfor-
ward and formally given by inverting the Born relation between the scattering amplitude
and the potential:

VO(p, r) = − 1
4E1E2

∫
dD−1q

(2π)D−1 e
−iq·rMO(p, q) . (2.5)

Here MO is the leading-order four-scalar scattering amplitude with a single insertion of
O, center of mass momentum p, transferred momentum q. In general the potential is
gauge dependent and not unique. In the above equation we choose to expose the on-shell
condition on q first such that p · q ' O(q2) ∼ 0. This naturally gives the potential in the
isotropic gauge.

Alternatively, the effective two-body Hamiltonian can be constructed by matching its
conservative observables — such as the conservative scattering angle, or the impulse and
spin kick — or the closely-related eikonal phase [137–140],

δO(p, b) = 1
4m1m2

√
σ2 − 1

∫
dD−2q

(2π)D−2 e
−ib·qMO(p, q) , (2.6)

with the corresponding quantities in the complete theory. Here we use −pi = −miui as
the incoming momenta of particle 1 and 2 and

σ ≡ p1 · p2
m1m2

= u1 · u2 . (2.7)

In either case, the matching is carried out order by order in Newton’s constant G, that
is order by order in the post-Minkowskian expansion. The relation between the eikonal
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and conservative observables holds also for the scattering of spinning particles. To leading
nontrivial order, the effect of a composite operator O on the impulse and spin kick in the
center-of-mass frame is

∆p = −∇bδO(b) + . . . , ∆Si = −{Si, δO(b)}+ . . . , (2.8)

where the ellipsis stand for higher-order terms that depend on O and {•, •} is the Poisson
bracket. We expect that the all-order relation between the eikonal phase and conservative
observables put forth in ref. [92] holds in the presence of deformations by tidal and other
composite operators. At leading order, the semiclassical approximation implies that the
eikonal phase coincides with the radial action integrated over the scattering trajectory, i.e.
integrated over a straight line for the leading order calculation. We discuss this further
in section 3.3. The latter allows us to make contact with ref. [105] in which tidal effects
were computed using a classical worldline formalism for a subset of tidal operators. See
also [141] for additional discussion of the relation between radial action, eikonal phase,
and amplitude.

Alternatively the matching can be performed by directly computing a physically mean-
ingful quantity such as the conservative scattering angle, corresponding to the scattering
with radiation reaction turned off; or the closely related eikonal phase. In either case
matching is performed order by order in perturbation theory in Newton’s constant, G,
that is order by order in the post-Minkowskian expansion.

MO(q) = |q|AMO , (2.9)

VO(r) = − 1
4E1E2

2AΓ
(

1
2(D − 1 +A)

)
π(D−1)/2Γ(−1

2A)
|r|−A−(D−1)MO , (2.10)

δO(b) = 1
4m1m2

√
σ2 − 1

2AΓ
(

1
2(D − 2 +A)

)
π(D−2)/2Γ(−1

2A)
|b|−A−(D−2)MO , (2.11)

where we have used the formula for the Fourier transform of a power∫
dDq

(2π)D e
−ix·q|q|A =

2AΓ
(

1
2(D +A)

)
πd/2Γ(−1

2A)
|x|−(A+D) . (2.12)

Here A is power of the soft q carried by the amplitude. For an operator with n power of
Riemann or Weyl tensors with n∂ derivatives acting on them, the leading contribution to
the two-to-two scalar amplitude is

A = 3n+ n∂ − 3− 2ε(n− 1), (2.13)

where we use D = 4− 2ε. For example, for the electric and magnetic operators E2 and B2

we will introduce shortly, n = 2 and n∂ = 0 so A = 3 − 2ε, and every pair of derivatives
acting of these increases n∂ and A by two.

2.2 Effective actions for linear and non-linear tidal effects

We now explain how to parametrize the response of a general body to an external field and
how this can be encoded in an effective action. We will discuss this in detail in the simpler
case of electromagnetism, which will easily generalize to the gravitational case.
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2.2.1 Tidal response in non-linear optics

The full non-linear response of a body to an external electric field Ei is described by the
induced electric dipole moment density Di. In the rest frame of the body, it has a formal
expansion in powers of the electric field [142]:

Di1(t,x) = χ
(1)
i1i2

(t,x)Ei2(t,x) + χ
(2)
i1i2i3

(t,x)Ei2(t,x)Ei3(t,x) + · · · . (2.14)

The first term is the familiar linear response function; the subsequent terms encode the
properties of the body in the susceptibility tensors, χ(n), which are symmetric in their
indices. Similarly, in the presence of a magnetic field Bi, one can write magnetic suscep-
tibilities, as well as general susceptibilities capturing the response under a general electro-
magnetic field.

It is convenient to transform eq. (2.14) to Fourier space, where it takes the form

Di1(−ω1,−q1) = χ
(1)
i1i2

(ω1, q1;ω2, q2)Ei2(ω2, q2)

+ χ
(2)
i1i2i3

(ω1, q1;ω2, q2;ω3, q3)Ei2(ω2, q2)Ei3(ω3, q3) + · · · . (2.15)

Here we have adopted a generalized summation convention where repeated frequencies and
momenta are integrated over, and the Fourier susceptibilities include energy-momentum-
conservation delta functions

χ
(n−1)
i1···in = δ

(∑
i

ωi

)
δ

(∑
i

qi

)
χ̃

(n−1)
i1···in , (2.16)

which account for the fact that the position-space product in eq. (2.14) becomes a Fourier
space convolution in eq. (2.15).

The dipole density can be related to a generating function — or effective action —
S(E), via the usual response formula

Di1(−ω1,−q1) = ∂S(E)
∂Ei1(ω1, q1) . (2.17)

The effective action, following from formally integrating eq. (2.14), is given by

S(E) = 1
2χ

(1)
i1i2

(ω1, q1;ω2, q2)Ei1(ω1, q1)Ei2(ω2, q2)

+ 1
3χ

(2)
i1i2i3

(ω1, q1;ω2, q2;ω3, q3)Ei1(ω1, q1)Ei2(ω2, q2)Ei3(ω3, q3) + · · · . (2.18)

This makes clear that the momentum space susceptibilities are completely symmetric ten-
sors, as well as symmetric functions of all their arguments. S(E) could be put in a form
closer to an action by series expanding the susceptibilities and rewriting the powers of
frequency and three-momenta as derivatives. For instance one can rewrite some terms in
the expansion as follows ∂χ

(1)
i1i2

∂ω1∂qj2
(0)ω1qj2

Ei1(ω1, q1)Ei2(ω2, q2) ∼

 ∂χ
(1)
i1i2

∂ω1∂qj2
(0)

 ∂tEi1(t,x)∇j
xEi2(t,x) .

(2.19)
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Note that the expansion in the three momenta here simply corresponds to a multipole
expansion of the electric fields.

So far we have been working in the rest frame of the object. The choice of a frame
breaks manifest Lorentz invariance down to the rotations around the position of the object.
We would like to covariantize the expressions above so that is they are valid in an arbitrary
reference frame, in which the body moves with velocity v. This can be done by considering
the four-velocity of the object uµ = γ(1,v), where γ is the Lorentz factor. As is well known
the electric field and magnetic fields in the rest frame of the body can be covariantly
written as

Eµ = Fµνu
ν , Bµ = ∗Fµνuν , (2.20)

where Fµν is the electromagnetic field strength, and ∗Fµν its dual. Similarly, it is clear
that any frequency and spatial momenta can be written as

ωi → u · q ≡ uµqµ , qi → (q⊥)µ ≡ Pµνqν , (2.21)

where we have introduced the four momentum of the field, qµi and a projector,

Pµν = ηµν − uµuν , (2.22)

which makes indices purely spatial in the rest frame of the object. Naively this covarianti-
zation requires adding components to the polarizabilities so that χ(n−1)

i1···in → χ
(n−1)
µ1···µn , and we

can write

S(E) = χ(1)
µ1µ2(u · q1, q

⊥
1 ;u · q2, q

⊥
2 )Eµ1(q1)Eµ2(q2)

+ χ(2)
µ1µ2µ3(u · q1, q

⊥
1 ;u · q2, q

⊥
2 , u · q3, q

⊥
3 )Eµ1(q1)Eµ2(q2)Eµ3(q3) + · · · , (2.23)

due to the fact that uµEµ = uµBµ = 0, which follows from the antisymmetry of the
field strength.

The generating function written above describes the non-linear response of an arbitrary
material, including those that violate rotational and Lorentz invariance. In the following
we will be only interested in Lorentz-preserving effects, which impose addition constraints
on the susceptibility tensors. Firstly, Lorentz invariance constrains the index structure of
the susceptibility, which can only be carried by Lorentz-covariant tensors. If we impose
parity, the only such tensors are the metric itself and the graviton momenta, so the tensor
susceptibility must decompose in a set of scalar susceptibilities as follows

χ(1)
µ1µ2 =χ

(1)
0 gµ1µ2 +χ(1)

1 q⊥1µ1q
⊥
2µ2 (2.24)

χ(2)
µ1µ2µ3 =χ

(2)
0 (gµ1µ2q

⊥
3µ3 +gµ2µ3q

⊥
1µ1 +gµ3µ1q

⊥
2µ2) , (2.25)

χ(3)
µ1µ2µ3µ4 =χ

(3)
0 g(µ1µ2gµ3µ4)+χ(3)

1 (gµ1µ2q
⊥
3µ3q

⊥
4µ4 +perms)+χ(3)

2 q⊥1µ1q
⊥
2µ2q

⊥
3µ3q

⊥
4µ4 , (2.26)

where in general each tensor structure must be summed over permutations which respect
the symmetry (µi ↔ µj) while simultaneously swapping q⊥i ↔ q⊥j . Another consequence
of Lorentz invariance is that the scalar susceptibilities only depend on Lorentz invariant
combinations of momenta, so that

χ(n−1)
a (u · qi; q⊥i )→ χ(n−1)

a (u · qi; q⊥i · q⊥j ) . (2.27)

Note that in the rest frame q⊥i · q⊥j = qi · qj .
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2.2.2 Non-linear tidal response in gravity

It is now easy to generalize the tidal response for electromagnetism to its gravitational
analog. In this case we start from the induced quadrupole moment, written in terms of the
gravito-electric field

Qi1j1(t,x) = χ
(1)
i1j1i2j2

(t,x)Ei2j2(t,x) + χ
(2)
i1j1i2j2i3j3

(t,x)Ei2j2(t,x)Ei3j3(t,x) + · · · , (2.28)

where now the gravitational susceptibilities are more general tensors symmetric in each
pair of i and j indices

χ···ij··· = χ···ji··· , χ···iaja···ibjb··· = χ···ibjb···iaja··· . (2.29)

In the rest frame of the object the electric field is related to the Weyl tensor as Eij = C0i0j .
Similar expressions can be written for the response to a gravito-magnetic or to a mixed field.

All of these quantities can be covariantized by introducing

Eµν ≡ Cµανβuαuβ , Bµν ≡ (∗C)µανβuγuδ ≡
1
2εαβγµC

αβ
δνu

γuδ, (2.30)

where all indices are curved and the Levi-Civita tensor is defined as ε0123 = +1. As in the
electromagnetic case the following relations hold

Eµνu
ν = 0 , Bµνu

ν = 0 , (2.31)

as well as
Eµ

µ = 0 , Bµ
µ = 0 , (2.32)

where the first equality is a consequence of the tracelessness of the Weyl tensor. The
corresponding generating function for tidal response is then simply

Sgrav(E) = χ(1)
µ1ν1µ2ν2(u · q1, P q1;u · q2, P q2)φ(p′)Eµ1ν1(q1)Eµ2ν2(q2)φ(p)

+ χ(2)
µ1ν2µ2ν2µ3ν3(u · q1, P q1;u · q2, P q2, u · q3, P q3)φ(p′)Eµ1ν1(q1)Eµ2ν2(q2)Eµ3ν3(q3)φ(p)

+ · · · (2.33)

where, as above, a convolution over all momenta is implicit, and the covariant suscep-
tibilities are traceless in each pair of µ, ν indices ηµνχ···µν··· = 0. Once again, Lorentz
invariance will further constraint the form of the susceptibility tensors in a way analogous
to eqs. (2.24)–(2.26).

2.2.3 From response to QFT effective actions

We now proceed to connect our discussion to a QFT effective action, focusing on the case
of gravity; the electromagnetic case is completely analogous.

The connection can be easily made by interpreting the generating function, Sgrav(E) as
the expectation value in a background field of an operator in a one-particle state |p〉 with

– 9 –



J
H
E
P
0
5
(
2
0
2
1
)
1
8
8

four momentum p = mu, and zero spin. In second-quantized language the one-particle
state is created by a scalar field, φ, at infinity and

Stidal = χ(1)
µ1µ2(u · q1, q

⊥
1 ;u · q2, q

⊥
2 )φ(p)Eµ1(q1)Eµ2(q2)φ(p′) (2.34)

+ χ(2)
µ1µ2µ3(u · q1, q

⊥
1 ;u · q2, q

⊥
2 , u · q3, q

⊥
3 )φ(p)Eµ1(q1)Eµ2(q2)Eµ3(q3)φ(p′) + · · · ,

can be identified as the momentum-space effective action that encodes the response to the
background field. Note that, in order to enforce momentum conservation, the Fourier-
transformed susceptibilities must satisfy

χ
(n−1)
µ1···µn = δ

(∑
i

qi − q
)
χ̃

(n−1)
µ1···µn , (2.35)

where q = −(p + p′). Note that the susceptibilities are initially only defined for q = 0, so
their covariantization requires an extension to q 6= 0. This does not affect the classical limit.
As above, each term in the expansion of susceptibilities is encoded by a higher-dimension
operator in the effective action, where now the factors of four-velocity u can be identified
with derivatives acting on the scalar field. For instance,

∂2n
ω χ(1)

µ1ν1µ2ν2(0, 0)[(u · q1)2n + (u · q2)2n]φ(p′)Eµ1ν1(q1)Eµ2ν2(q2)φ(p)

, ↔ ∂2n
ω χ(1)

µ1ν1µ2ν2(0, 0)
∫
d4x
√
−g 1

m2nφE
µ1ν1∇(ρ1···ρ2n)E

µ2ν2∇(ρ1···ρ2n)φ .

(2.36)

where the classical limit is implicit on the left-hand side. To write a generic operator
appearing in this expansion it is convenient to introduce the combinations,

Êµ1µ2...µn = i2

m2 Symµ1...µn [∇νn . . .∇ν3Cµ1αµ2βP̂
νn
µn . . . P̂

ν3
µ3∇

α∇β ] ,

B̂µ1µ2...µn = i2

m2 Symµ1...µn [∇νn . . .∇ν3(∗C)µ1αµ2βP̂
νn
µn . . . P̂

ν3
µ3∇

α∇β ] ,

Ê(l)
µ1µ2...µn = im+2

mm+2 Symµ1...µn [∇νn . . .∇ν3∇ρ1 . . .∇ρlCµ1αµ2βP̂
νn
µn . . . P̂

ν3
µ3∇(ρ1 . . .∇ρl)∇

α∇β ] ,

B̂(l)
µ1µ2...µn = im+2

mm+2 Symµ1...µn [∇νn . . .∇ν3∇ρ1 . . .∇ρl(∗C)µ1αµ2βP̂
νn
µn . . . P̂

ν3
µ3∇(ρ1 . . .∇ρl)∇

α∇β ] ,
(2.37)

where all the derivatives on the right of the Weyl tensor act on the scalar field, and the
position-space projector is

P̂ νµ = 1
m2 (∂µ∂ν − δνµ∂2) . (2.38)

The terms in the expansion that encode the most general linear response are then

SQFT
tidal

∣∣
linear =m

∫
d4x
√
−g

∞∑
n=2

∞∑
l=0

(µ(n,l)φÊ
(l)
µ1···µnÊ

(l)µ1···µnφ+σ(n,l)φB̂
(l)
µ1···µnB̂

(l)µ1···µnφ)

(2.39)

where the coefficients are related to the susceptibility as µ(n,l) ∼ (∂ω2)l(∂q1·q2)lχ(1)
0 (0; 0),

and the magnetic susceptibilities are related to σ(n,l) in a similar way. Operators like
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φE
(l1)
µ1µ2E

(l2)µ1µ2φ with l1 6= l2 are related to operators with l1 = l2 by integration by parts
and use of scalar field equations of motion. We therefore can ignore them at this order.
Similarly, the effective action

SQFT
tidal

∣∣
non-linear = m

∫
d4x
√
−g

∞∑
n=2

(ρ(n)
e φÊµ1

µ2Êµ2
µ3 · · · Êµnµ1φ

+ ρ(n)
m φB̂µ1

µ2B̂µ2
µ3 · · · B̂µnµ1φ) + · · · (2.40)

encodes part of the lowest-multipole time-independent non-linear response,
It is not difficult to translate the different terms in the response functions into a first

quantized framework. This leads to a one-to-one relation between the higher-dimension
operators in the QFT effective action and worldline operators. The factors of u are iden-
tified with the four-velocity of the worldline uµ = dxµ/dτ and the factors of (u · ∇) simply
become derivatives with respect to the proper time τ . Thus, the analog of the operators
in the effective worldline action are

Eµ1µ2...µn = Symµ1µ2...µn

[
P ν3
µ3 . . . P

νn
µn∇ν3 . . .∇νnCµ1αµ2β

]
uαuβ ,

Bµ1µ2...µn = Symµ1µ2...µn

[
P ν3
µ3 . . . P

νn
µn∇ν3 . . .∇νn(∗C)µ1αµ2β

]
uαuβ ,

E(m)
µ1...µn = (uα∇α)mEµ1...µn = (∂τ )mEµ1...µn ,

B(m)
µ1...µn = (uα∇α)mBµ1...µn = (∂τ )mBµ1...µn , (2.41)

where Pµν = gµν−uµuν is the u-orthogonal projector on the worldline. The effective action
encoding the linear response are

Sworldline
tidal |linear =

∫
dτ

∞∑
n=2

∞∑
l=0

µ(n,l) (E(l)
µ1···µnE

(l)µ1···µn + σ(n,l)B
(l)
µ1···µnB

(l)µ1···µn) . (2.42)

Note that here we use a different normalization than ref. [105], the relation between our
coefficients is µ(n,l)

BDG = 2l!µ(n,l) and σ
(n,l)
BDG = 2(l + 1)!σ(n,l). The non-linear response is

captured by

Sworldline
tidal

∣∣
non-linear =

∫
dτ

∞∑
n=2

ρ(n)
e Eµ1

µ2Eµ2
µ3 · · ·Eµnµ1 +ρ(n)

m Bµ1
µ2Bµ2

µ3 · · ·Bµnµ1)+· · · .

(2.43)

Thus, for a particle of mass mi described by the scalar field φi, the correspondence
between worldline operators and QFT Lagrangian operators is∫

dτE(l)
µ1...µnE

(l)µ1...µn ←→ mi

∫
d4x
√
−gφiÊ(l)

µ1...µnÊ
(l)µ1...µnφi , (2.44)∫

dτB(l)
µ1...µnB

(l)µ1...µn ←→ mi

∫
d4x
√
−gφiB̂(l)

µ1...µnB̂
(l)µ1...µnφi . (2.45)

The normalization of the QFT operators is fixed such that their four-point matrix elements
in the classical limit reproduce the expectation value of the worldline operators, provided
that the normalization of the asymptotic states is the same for both of them, i.e. it is a
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nonrelativistic normalization for the QFT states. One may similarly construct a corre-
spondence between worldline and QFT operators with more factors of the Riemann tensor.
For more details about the correspondence between QFT amplitudes and worldline matrix
elements see e.g. ref. [143].

2.2.4 Four dimensional relations

In any fixed dimension, the operators described above satisfy relations stemming from their
finite number of components;2 thus they give an overcomplete description of the physics of
extended bodies.

One class of relations follows from the electric and magnetic fields being tensors of
finite rank. Naively they have rank four, but because Eµνuν = Bµνu

ν = 0 their rank is
lowered to three. This is not a surprise: it is a consequence of the fact that Eµν and Bµν
are the covariant versions of the purely spatial Eij , Bij in the rest frame. The simplest
relation following from the finiteness of the ranks of E and B is

E[µ1
µ2Eµ2

µ3Eµ3
µ4Eµ4]

µ1 = 0 , (2.46)

which, together with the tracelessness of E, implies that E4 = 1/2(E2)2. More generally,
relations can be found which involve mixed powers of the electric and magnetic fields. For
operators with no derivatives all such relations can be generated by evaluating the following
determinant as a formal power series

det[1 + t(E + rB)] =
∞∑
i=2

i∑
j=0

Ri,jt
irj . (2.47)

The rank-three property of an arbitrary combination of E and B implies that Ri≥4,j = 0.
A sample of such relations is

23R4,0 = (E2)2 − 2(E4) = 0 ,
22R4,2 = 2(EB)2 + (B2)(E2)− 2(EBEB)− 4(E2B2) = 0 ,

5R5,0 = (E5)− 5
6(E2)(E3) = 0 ,

6R5,2 = 6(E2BEB) + 6(E3B2)− (B2)(E3)− 3(E2)(EB2) = 0 ,
2R5,4 = 2(EB4)− (B2)(EB2) = 0 , (2.48)

as well as the ones that follow by interchanging E and B. Here the round parenthesis
denote the matrix trace,

(O) ≡ Tr[O] . (2.49)

Recursively solving them implies that any operator of the form (En≥4) can be written as
a polynomial in E2 and E3 as follows

(En) = n
∑

2p+3q=n

1
2p3q

Γ(p+ q)
Γ(p+ 1)Γ(q + 1)(E2)p (E3)q . (2.50)

2In a different context these relations are known as evanescent operators which are operators whose
matrix elements vanish in four-dimensions but not in general dimension [144, 145].
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A similar relation holds for (B2n), while (B2n+1) = 0 in a parity-invariant theory such
as GR.

Another class of relations follows from the vanishing of the Gram determinants of any
five or more four-momenta. They imply that certain terms in the power series expansion
of susceptibilities are not linearly independent. For instance,

det(vi · vj) = 0 with vi ⊂ {p1, p2, q1, q2, q3} . (2.51)

A final class of relations, which we will not detail any further, follows from the over-
antisymmetrization of indices of both derivatives and E or B.

An exhaustive enumeration of the E2- and B2-type operators was carried out in
ref. [107], using Hilbert series techniques [146–148], which automatically eliminate the
redundancies described here. In contrast, we will not make an attempt to eliminate all
redundant operators, but rather use their relations as a check on our framework and cal-
culations.

3 Leading order E2 and B2 tidal effects

In this section we discuss the leading-order contribution of the two-graviton tidal operators
constructed in section 2. The analysis parallels to some extent that of ref. [107], with the
main difference being the choice of operator basis. Our choice aligns with the worldline
approach [24, 105] making it straightforward to compare Love numbers. We also evaluate
all integrals providing a proof of the results with arbitrary numbers of derivatives. Here
we work in an amplitudes-based approach following refs. [53–55, 83].

3.1 Constructing integrands

The first task is to write down a scattering amplitude from which classical scattering
angles and Hamiltonians can be extracted. To obtain the integrand we use the generalized
unitarity method [84–91]. In this method, the integrand is constructed from the generalized
unitarity cut which we define to be

C ≡
∑

states
Mtree

(1) M
tree
(2) M

tree
(3) · · ·M

tree
(m) , (3.1)

where the Mtree
(i) are tree amplitudes, some of which can have operator insertion. As a

simple example, figure 1 displays the unitarity cut containing the leading-order effect of an
R2 tidal operator.

In general, the cuts that can contribute to the conservative classical Hamiltonian satisfy
some simple rules. The first is that generalized unitarity cuts must separate the two matter
lines to opposite sides of a cut, which follows from the fact we are interested only in long-
range interactions. Another general rule is that every independent loop must have at least
one cut matter line, so the energy is restricted to a matter residue. Any contribution with
a graviton propagator attached to the same matter line also does not contribute to the
conservative classical part. Further details are found in ref. [55].
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1

2 3

4

ℓ1 ℓ2

Figure 1. The generalized cut for leading-order contributions to E2- or B2-type tidal operators.
Each blob is an on-shell amplitude, which in this case is local. Each exposed line is taken to be on
shell and the blobs represent tree amplitudes. The dark blob contains an insertion of an E2- or B2-
type higher-dimension operator with an arbitrary number of additional derivatives. The external
momenta are all outgoing and the arrows indicated the direction of graviton momenta.

In constructing the amplitude integrand we may immediately expand in soft-graviton
momenta, since each power of graviton momentum effectively carries an additional power
of ~ and is quantum suppressed. This expansion can be carries out either on at the level
of the input tree amplitudes or after assembling the cuts. The order to which a give
term needs to be expanded is dictated by simple counting rules. Terms with too high
a scaling in the graviton momenta are dropped. For example, at one-loop for the case
without tidal or other higher-dimension operators this implies that any term in a diagram
numerator with more than a single power of loop momentum in the numerators yields only
quantum-mechanical contributions; some terms require fewer loop-momentum factors. In
the presence of higher-dimension operators, the leading classical contributions can have
higher powers of loop momentum dictated simply by the number of extra derivatives in the
operator compared to the usual two derivative minimal coupling; the extra implicit powers
of ~ are made up by the coefficient so the entire expression corresponds to a classical result.

In general to sew the trees together into generalized cuts one should use physical-state
projectors which depend on null reference momenta

Pµνρσ =
∑

states
εµν(−p)ερσ(p) = 1

2
(
PµρPνσ + PµρPνσ

)
− 1
D − 2P

µνPρσ , (3.2)

where Pµρ = ηµρ− (nµpρ +nρpµ)/(n · p) and nµ is the null reference momentum. However,
the reference momenta will drop out if the seed amplitudes are manifestly transverse. In
fact, one can always arrange for such terms to automatically drop out [149].

Alternatively, we can also use four-dimensional helicity states to sew gravitons across
unitarity cuts. In general, some caution is required in the presence of infrared or ultravio-
let singularites, although at least through third post-Minkowskian order helicity methods
have been shown to correctly capture all contributions [55]. For cases without non-trivial
infrared or ultraviolet divergences,3 we can straightforwardly apply four-dimensional meth-
ods. In our cases, the above D-dimensional sewing is simple enough so we will not use
four-dimensional helicities here.

3There are ultraviolet divergence at even loop orders that local in momentum transfer q, e.g. in the 3PM
scattering [54, 55]. However, these are irrelevant for long-range dynamics because they can be absorbed by
a contact interaction.
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Finally, the information from multiple generalized cuts must be merged into a single
expression. This can either be accomplished at the level of the integrand or after inte-
gration. For leading tidal coefficients, effectively only a single cut contributes, so merging
information from the cuts is trivial.

3.1.1 Simplifications from leading classical order

The on-shell amplitudes in the unitarity cut simplifies dramatically if we are only interested
at leading classical order. Because there is no enhancement from iteration, any terms
beyond the leading order in graviton momenta are quantum mechanical and can thus be
ignored. For example, consider a three-point scalar-graviton-scalar amplitude at tree level

M3(φ(p), h(`), φ(p′)) = −κpµpνεµν(`) , (3.3)

where κ is related to Newton’s constant by κ2 = 32πG. For any of the three-point ampli-
tudes inserted in figure 1, we can replace the scalar momenta p by the external momentum
p2 at leading classical order. Physically this implies that we ignore all back reaction on the
particle 2, so all three-point amplitudes in figure 1 are approximately the same.

For the amplitude with higher-dimension operator, it suffices to use linearized version
of the curvature operators. Expanding the metric in the usual way, gµν = ηµν + κhµν , we
find the Weyl tensor to leading order is

Cµνρσ = −2κ∂[µ|∂[ρhσ]|ν] +O(κ2,�h) . (3.4)

In deriving this expression we have also dropped terms proportional to the equations of
motion for the graviton; this is because they do not contribute to the on-shell matrix
elements necessary for the evaluation of the leading-order amplitude. The linearized Weyl
tensor in momentum space then reads

C lin
µνρσ(`) ≡ κ

2 [`µ`ρ ε(`)νσ − `ν`ρ ε(`)µσ − `µ`σ ε(`)νρ + `ν`σ ε(`)µρ] . (3.5)

The linearized Weyl tensor can be written a form that manifests the double copy in terms
of two gauge-theory field strengths

C lin
µνρσ(`) = κ

2F
lin
µν (`)F lin

ρσ (`) , (3.6)

where
F lin
µνρσ(`) ≡ `µε(`)ν − `νε(`)µ , (3.7)

and we identify the graviton polarization tensor as ε(`)νσ = ε(`)νε(`)σ. This simple exam-
ple of a double-copy relation [119–123], which is trivial at the linearized level, then implies
that the leading-order amplitudes for tidal operators display double-copy relations. The
gauge invariance is manifest.

To make the gravitational coupling manifest in all equations, we will extract all fac-
tors of κ from the building blocks of amplitudes. The linearized electric and magnetic
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components of the linearized Weyl tensor (3.5) follow from eq. (2.30)

Eµ1µ2(`,p) = 1
2m2

[
`µ1`µ2(p·ε(`)·p)−(p·`)(`µ1ε(`)µ2ρp

ρ+`µ2ε(`)µ1ρp
ρ)+ε(`)µ1µ2(p·`)2

]
,

(3.8)

Bµ1µ2(`,p) = 1
4m2 εαβγµ

[
(p·`)(`αε(`)βµ2−`

βε(`)αµ2)+`β`µ2(p·ε(`))α−`α`µ2(p·ε(`))β
]
,

(3.9)

where the particle momentum and its four-velocity are related in the usual way, pµ = muµ.
It is then straightforward to assemble the amplitude with insertions of a higher-dimension
operator from above formulae.

In general to sew trees into generalized cuts one should use physical-state projectors
which depend on null reference momenta. However, for the leading-order contributions
that we will mostly be studying here, the terms containing dependence on the reference
momentum automatically drop out because they are contracted into manifestly gauge-
invariant (transverse) quantities.4 Effectively, we can use the numerator of the de Donder
gauge propagator,

Pµνρσ =
∑

states
εµν(−p)ερσ(p)→ 1

2
(
ηµρηνσ + ηµρηνσ

)
− 1
D − 2η

µνηρσ , (3.10)

to sew gravitons across cuts. Combining the projector with the three-point amplitude in
eq. (3.3) at leading classical order, effectively turns the graviton polarization tensors of the
higher-dimension operator into

εµν(`)→ Tµν(p2) =
(
p2,µp2,ν −

m2
2

Ds − 2ηµν

)
. (3.11)

Crucially the result is independent of the loop momentum, implying that the sewing auto-
matically imposes Bose symmetry for the gravitons of the higher-dimension operator. As
we will outline in section 4, this no longer holds beyond leading order where back-reaction
becomes important. For example, at next-to-leading order pairs of the stress tensor in
eq. (3.3) can source a single graviton, acting as a sort of “impurity”, which may be inter-
preted as the first correction to the gravitational field of a free particle towards that of a
Schwarzschild black hole.

The discussion above can be extended to include the leading-order scattering of scalars
deformed by higher-dimension operators off higher-spin particles described the Lagrangian

4In fact, one can always arrange for such terms to automatically drop out [149].
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in ref. [92]. For a generic spinning body the stress tensor is5

M3(φs(p), h(`), φs(p′)) = −κV µν
3 (φs(p), h(`), φs(p′))εµν(`) , (3.12)

V µν
3 (φs(p), h(`), φs(p′)) = pµpν

∞∑
n=0

CES2n

(2n)!

(
` · S(p)
m

)2n

− i`ρp(µS(p)ν)ρ
∞∑
n=0

CBS2n+1

(2n+ 1)!

(
` · S(p)
m

)2n
,

where ` is the graviton momentum and S(p)µ and S(p)µν are the covariant spin vector and
spin tensor, related by

Sµν(p) = − 1
m
εµνγδpγSδ(p) , Sµ(p) = − 1

2mεµβγδpβSγδ(p) , (3.13)

and we recall that in the classical limit ` · S(p)/m = O(1).
For the Kerr black hole the stress tensor, originally found in ref. [135] from different

considerations, is obtained by setting CES2n = CBS2n+1 = 1 and has the closed-form
expression

MKerr
3 (φs(p), h(`), φs(p′)) = −κ exp(ia ∗ `)(µ

ρp
ν)pρεµν(`) , (3.14)

where

aµ = 1
2p2 ε

µ
νρσp

νSρσ(p) , (a ∗ `)µν ≡ εµνρσaρ`σ . (3.15)

Despite the more complicated dependence on the graviton momentum, the sewing
of the spinning three-point amplitudes with the composite operator contact term can be
carried by a replacement analogous to eq. (3.11). For example, for a particle with the stress
of a Kerr black hole, it is

εµν(`)→ TKerr
µν (`, p2) = exp(ia ∗ `)(α

ρp
β)pρ

(
δµαδ

ν
β − ηαβ

ηµν

Ds − 2

)
. (3.16)

We note that only the terms with an even number of spin vectors, in general governed by
the coefficients CES2n , contribute to the trace part of this replacement. To shorten the
ensuing equations, in the following we will use the replacement

εµν(`)→ Tµνgen(`, p2) =
(
pµ2p

ν
2 −

m2
2

Ds − 2η
µν

)
A(`)− i

2`ρ(p
µ
2S

νρ(p2) + pν2S
µρ(p2))B(`) ,

(3.17)

where A(`) and B(`) can be read off eqs. (3.12) and (3.16).

5For compactness of expressions, we employ here a slightly different notation than it is standard in the
literature, e.g. [92, 134]. The translation is Chere

ES2n = Cstandard
ES2n , Chere

BS1 = 1 and originates from the minimal
coupling and Chere

BS2n+1 = Cstandard
BS2n .
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3.2 Momentum-space analysis

Before discussing the leading-order effects of the most general tidal operators introduced
in section 2, we discuss here the simpler case of operators E(m)

µ1µ2 , corresponding to the
multipoles of the gravitational field of the quadrupole operator Eµν .

The construction of the relevant four-point matrix element of the operator
φE

(m)
µ1µ2E

(m)µ1µ2φ, corresponding to the darker blob in figure 1, is straightforward. The
matrix element is

ME2
l,2

(h(`1),h(`2),φ(p1),φ(p4)) = 2κ2m1
(
DE2

l,2
(p1, `1,p4, `2)+DE2

l,2
(p1, `2,p4, `1)

)
,

DE2
l,2

(p1, `1,p4, `2) =
(
i

m1

)2l
(p1 ·`1)l(p1 ·`2)lEµ1µ2(`1,p1)Eµ1µ2(`2,p4) .

(3.18)

As noted earlier, because tidal operators are gauge invariant and constructed out of Weyl
tensors, this matrix element obeys the transversality conditions for the two gravitons. Thus,
their contribution to generalized unitarity cut in figure 1 automatically accounts for the
physical-state projection. The sewing is then simply given by the replacement in eq. (3.11).
To leading order in soft expansion we can also replace all p1 · `2 = −p1 · `1 +O(q).

The resulting amplitude is

ME2
l,2

(p, q) = iκ2
∫

dD`1
(2π)D

ME2
l,2

(h(`1), h(`2), φ(p3), φ(p4))
∣∣
εµν(`i)→Tµν(p2)

`21((`1 − p2)2 −m2
2)(q − `1)2

= 4im1κ
4
∫

dD`1
(2π)D

(u1 · `1)2lEµ1µ2(`1, p1)Eµ1µ2(`2, p1)
∣∣
εµν(`i)→Tµν(p2)

`21((`1 − p2)2 −m2
2)(q − `1)2 , (3.19)

where the numerator is given more explicitly by

Eµ1µ2(`1, p1)Eµ1µ2(`2, p1)
∣∣
εµν(`i)→Tµν(p2) (3.20)

= 1
8m

4
2

[
(u1 · `1)2

(
(u1 · `1)2 + 1

2q
2
)
− 2σ2q2 (u1 · `1)2 + 1

8q
4(1− 2σ2)2

]
+O(q6) .

Further expanding the amplitude in the soft limit leads to

ME2
l,2

(p, q) = 64iπ2G2|q|3+2lm1m
3
2((1− 2σ2)2I2l + 4(−1 + 4σ2)I2(1+l) + 8I2(2+l)) ,

where I2l are triangle integrals

I2l =
∫

dD`

(2π)D
|q|−2l+1(` · u1)2l

`2(−2` · u2)(`− q)2 , (3.21)

which must be evaluated in the potential region. The results of these integrals were con-
jectured in ref. [107]. Here we present the proof, by going to the frame in which particle 2
is at rest

u1µ = −(σ, 0, 0,
√
σ2 − 1) , u2µ = −(1, 0, 0, 0) , qµ = (0, q) = (0, qx, qy, qz) , (3.22)
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under which `iµ = (`0i , `i) = (`0i , `xi , `
y
i , `

z
i ). Note that since qz = q · ẑ = O(q2) by on shell

conditions, we can treat qz ≈ 0 if we are only interested in the leading classical limit. We
then have

I2l = (σ2 − 1)l
∫

dD`

(2π)D
|q|−2l+1(`z)2l

(2`0)`2(`− q)2 = i(σ2 − 1)l

22l+1(4π)(D−1)/2

∫
dD−1`

π(D−1)/2
|q|−2l+1(2`z)2l

`2(`− q)2 ,

(3.23)
where in the second equality we have evaluated the residue of the energy pole with a
symmetry factor 1/2 because the graviton propagators cannot be on shell in the potential
region. The remaining integral is a Euclidean triangle with a linearized propagator and is
given by Smirnov in ref. [150],

∫ dD−1`

π(D−1)/2
(q2)a+b+ c

2−
3
2

(`2 − i0)a[(`− q)2 − i0]b(2`z − i0)c (3.24)

= e
iπc

2 |q|−2ε
Γ
(
c
2
)

Γ
(

3
2 − a−

c
2 − ε

)
Γ
(

3
2 − b−

c
2 − ε

)
Γ
(
a+ b+ c

2 + ε− 3
2

)
2Γ(a)Γ(b)Γ(c)Γ(3− a− b− c− 2ε) ,

for q · ẑ = 0 which is valid for leading order in the classical limit. The result is

I2l = − i(σ2 − 1)l

4l+2−ε(4π)1/2−ε |q|
−2ε

Γ
(

1
2 − ε

)
Γ
(

1
2 + ε

)
Γ
(

1
2 − l

)
Γ (1− ε+ l)

. (3.25)

Using the result for these integrals with ε = 0 the amplitude is

ME2
l,2

(p, q) = |q|3+2lME2
l,2

(p) , (3.26)

ME2
l,2

(p) = G2m1m
3
2

(−1)lπ3/2Γ(1
2 + l)

22(1+l)Γ(3 + l)
(3.27)

× (σ2 − 1)l(11 + 4l(3 + l)− 6(5 + 2l)σ2 + (5 + 2l)(7 + 2l)σ4) .

The corresponding potential and eikonal phase are

VE2
l,2

(p, r) = −1
4E1E2|r|2l+6

23+2lΓ(3 + l)
π3/2Γ(−3

2 − l)
ME2

l,2
(p) , (3.28)

δE2
l,2

(p, b) = 1
4m1m2

√
σ2 − 1

1
|b|2l+5

23+2lΓ(5
2 + l)

πΓ(−3
2 − l)

ME2
l,2

(p) . (3.29)

It is not difficult to see that, for l = 0 and l = 1, eq. (3.29) reproduces the expectation
values of the operators E2 and (Ė)2 evaluated in ref. [105].

The calculation above can be easily repeated for the operator B(l)
µνBµν (l); it amounts

to replacing in eq. (3.19) E with B given in eq. (3.9). The resulting amplitude, potential
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and eikonal phase are:

MB2
l,2

(p, q) = |q|3+2lMB2
l,2

(p) , (3.30)

MB2
l,2

(p) = G2m1m
2
2
(−1)lπ3/2Γ(1

2 + l)
22(l+1)Γ(3 + l)

(5 + 2l)(σ2 − 1)l+1(1 + 2l + (7 + 2l)σ2) , (3.31)

VB2
l,2

(p, r) = −1
4E1E2|r|2l+6

23+2lΓ(3 + l)
π3/2Γ(−3

2 − l)
MB2

l,2
(p) , (3.32)

δB2
l,2

(p, b) = 1
4m1m2

√
σ2 − 1

1
|b|2l+5

23+2lΓ(5
2 + l)

πΓ(−3
2 − l)

MB2
l,2

(p) . (3.33)

Similarly to eq. (3.29), the eikonal phase above evaluated on l = 0 and l = 1 reproduces
the expectation values of the operators B2 and (Ḃ)2 found in [105].

3.3 Position-space analysis

Alternatively, the calculation can be done in position space, more specifically in the rest
frame of particle 2 as in eq. (3.22). This approach will provide a simple way to generalize the
analysis beyond one loop. There are two key observations here. First, the amplitude with
C2 operator insertion in eq. (3.18) factorizes into a product of the multipole expansions of
electric or magnetic tensors

ME2
l,2

(h(`1), h(`2), φ(p1), φ(p4))

= 4m1κ
2
(
i

m1

)2l
((p1 · `1)lEµ1µ2(`1, p1))((p1 · `2)lEµ1µ2(`2, p1)) +O(q2l+4) , (3.34)

where we have applied the classical limit p4 = −p1 + O(q) to eq. (3.18). Second, in the
potential region, we can integrated out graviton energy component by picking up residue
from the matter propagator [53, 55]. This sets `01 = `02 = 0 and implies the graviton
momenta `1, `2 are purely spatial. To exploit the factorization at the integrand level, we
further Fourier transform the spatial q in eq. (3.19) to position space6

ME2
l,2

(p, r) ≡
∫

dD−1q

(2π)D−1 e
−ir·q M̃E2

l,2
(p, q) (3.35)

= κ2

4m2

2∏
i=1

∫
dD−1`i

(2π)D−1
e−ir·`i

`2
i

ME2
l,2

(h(`1), h(`2), φ(p1), φ(p4))
∣∣
εµν(`i)→Tµν(p2).

Crucially, the dependence on the two graviton momenta `1, `2 factorizes and each of them
can be treated as an independent variable. Together with the factorization in eq. (3.34),

6The Fourier transform acts on the amplitude with generic off-shell q, which is three dimensional. We
use M̃(p, q) to denote amplitude with off-shell q.
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the Fourier transform acts on individual electric tensor Eµ1µ2(`i, p1). We define

Eµν(r, p1)≡
∫

dD−1`i
(2π)D−1

e−ir·`i

`2
i

Eµν(`i, p1)
∣∣
ερσ(`)→Tρσ(p2)

= −m2
2

16π|r|5
[
3
(
r2 +2(σ2−1)z2

)
u2µu2ν−3σr2(u2µu1ν +u2µu1ν)+2r2u1µu1ν

+3(2σ2−1)rµrν−6σ
√
σ2−1z (u2µrν +u2µrν)+3

√
σ2−1z (u1µrν +u1µrν)

+((3σ2−2)r2−3(σ2−1)z2)ηµν
]
, (3.36)

where rµ = (0, r) = (0, x, y, z) in the frame of eq. (3.22) as the electric field sourced by p2
in position space. The Fourier transform of scalar-graviton amplitude (with the graviton
propagators) is then

ME2
l,2

(h1, h2, φ(p1), φ(p4)|r) ≡
2∏
i=1

∫
dD−1`i

(2Π)D−1
e−ir·`i

`2
i

ME2
l,2

(h(`1), h(`2), φ(p1), φ(p4))

= ME2
l,2

(h(`1), h(`2), φ(p1), φ(p4)|Eµ1µ2(`j , p1)→ Eµ1µ2(rj , p1), `i → i∇j)
∣∣
rj→r

,

(3.37)

where any loop momentum `j is replaced with the gradient on the position rj of the electric
field Eµ1µ2(rj , p1) and all rj are identified with r. The two-scalar scattering amplitude in
position space then has a simple form

ME2
l,2

(p, r) = κ2

4m2
ME2

l,2
(h1, h2, φ(p1), φ(p4)|r)

= κ4m1
m2

(σ2 − 1)l
[
(ẑ · ∇)l Eµ1µ2(r, p1)

]2
, (3.38)

where in the second line we plug in the result in eq. (3.34), apply the replacement in
eq. (3.37) and ẑ is the unit vector along z direction.

The position-space result is generally not isotropic; namely, it could depend on ẑ · r.
To make the result isotropic, we go back to momentum space and impose the on-shell
condition ẑ · q = O(q2) ' 0,

MO(p, q) =
∫
dD−1r e+ir·qMO(p, r)

∣∣
ẑ·q=0 . (3.39)

Since the result only depends on the covariant variables σ and q2 = −q2, it can be promoted
to any other frame. All Fourier-transforms that appear in this calculation are of the form∫

dD−1r
eir·q(ẑ · r)s

rh
= (−1)s/2πD/2

2h−s−D+1
|q|h−s−D+1

sin(1
2π(D − 1− h))

Γ(1
2(1 + s))

Γ(1
2h)Γ(1 + 1

2(h− s−D + 1))
,

(3.40)

for some exponents h and integer s. The isotropic potential then follows from eq. (2.10).
From the position-space amplitude we can directly obtain the eikonal phase, although

it can be calculated easily once we have the amplitude MO(p, b). To see this, we simply
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invert the amplitude in terms of eq. (2.5) and plug it into eq. (2.6)

δO(p, b) = 1
4m1m2

√
σ2 − 1

∫
dD−2q

(2π)D−2 e
−ib·q

∫
dD−1reir·qMO(p, r)

∣∣∣
q=(qx,qy ,0)

= 1
4m1m2

√
σ2 − 1

∫ ∞
−∞

dzMO(p, r = (b, z)), (3.41)

where we use b = (bx, by, 0) and r = (x, y, z). Since we are only interested in the leading or-
der, the particle trajectory can be treated as a straight line. In the frame where particle 2 is
rest at the origin, the position of particle 1 is xµ1 = (t, r) = bµ+uµ1τ = τ(σ, bx, by,

√
σ2 − 1).

The above formula can be written as

δO(p, b) = 1
4m1m2

∫ ∞
−∞

dτMO(p, r(τ)) . (3.42)

So the eikonal phase can be obtained straightforwardly fromMO(p, r(τ)). This is expected
because the eikonal phase is proportional to the worldline action integrated over a straight
line. Our approach here offers a derivation from purely scattering-amplitudes perspective.

The advantage of position-space approach is that it is very general. The discussion
above applies to contribution of any tidal operator at its leading classical order. The only
integrals needed, to any loop order, are in eq. (3.40). We will discuss and illustrate this
point in more detail in section 4.

The discussion above can be generalized easily to the case with magnetic operators.
The position-space magnetic component of the linearized Weyl tensor, contracted with a
point-particle stress tensor, is

Bµν(r, p1) ≡
∫

dD−1`i
(2π)D−1

e−ir·`i

`2
i

Bµν(`i, p1)
∣∣
ερσ(`)→Tρσ(p2). (3.43)

We have the scalar-graviton amplitude in position space

MB2
l,2

(h(`1),h(`2),φ(p1),φ(p4)|r)≡
2∏
i=1

∫
dD−1`i

(2Π)D−1
e−ir·`i

`2
i

MB2
l,2

(h(`1),h(`2),φ(p1),φ(p4))

=MB2
l,2

(h(`1),h(`2),φ(p1),φ(p4)|Bµ1µ2(`j ,p1)→Bµ1µ2(rj ,p1), `i→ i∇j)
∣∣
rj→r

.

(3.44)

Again we identify all rj in the end with r. The position-space amplitude is then

MB2
l,2

(r) = 1
m2

(
κ

2

)2
MB2

l,2
(h1, h2, φ(p1), φ(p4)|r) . (3.45)

Let us comment on an interesting relation between electric and magnetic operators.
In position space we find

Eµν(r, p1)Eµν(r, p1) = 3m4
2

128π|r|10

[
3(σ2 − 1)(r2 − z2)(σ2r2 − (σ2 − 1)z2) + r4

]
, (3.46)

Bµν(r, p1)Bµν(r, p1) = 9m4
2

128π|r|10 (σ2 − 1)(r2 − z2)(σ2r2 − (σ2 − 1)z2) . (3.47)

– 22 –



J
H
E
P
0
5
(
2
0
2
1
)
1
8
8

The two operators are almost identical. The difference between the two is independent
of σ which is sub-sub-leading in the high-energy limit σ � 1. As explained in ref. [105],
this is expected because the difference is proportional to Weyl tensor squared which is
independent of σ. This behavior has also been observed at the next-to-leading order in
ref. [106].

3.4 General multipole operators

Following the example discussed in detail in the previous sections, we proceed to evaluate
the amplitudes and the corresponding eikonal phases with one insertion of the generic
tidal operators φE(l)

µ1...µnE
(l)µ1...µnφ and φB

(l)
µ1...µnB

(l)µ1...µnφ. As already mentioned for
operators with n = 2, we may choose without loss of generality, the two E and B factors
to have equal upper index.

The calculations for the two operators are parallel. For this reason, in the common part
we will collectively denote E or B by X, and specialize at them at the end. Thus, to leading
order in κ, the momentum space expressions of Ê(l) and B̂(l) defined in eq. (2.37) are

X(l)
µ1µ2...µn = i2l+(n−2)

(
i

m

)l
(p · `)lSymµ1...µn [P ν3

µ3 (p)`ν3 . . . P
νn
µn (p)`νnX(`, p)µ1µ2 ] +O(κ2) ,

(3.48)

where P νiµi are the momentum space form of the projectors in eq. (2.38) and Xµ1µ2(`, p)
being given by Eµ1µ2 and Bµ1µ2 in eqs. (3.8)–(3.9) for the two operators, respectively. The
symmetrization over the indices µ1, . . . , µn includes division by the number of terms. In
the expression above ` is the graviton momentum, p is the scalar momentum and ε(`) in
the explicit expressions of Eµ1µ2 and Bµ1µ2 is the graviton polarization tensor.

The product of two linearized X(l)
µ1...µn with different graviton momenta `1 and `2, and

contracted as in eqs. (2.44) and (2.45), contains three different structures: (1) all projectors
are contracted with each other, (2) all but one projector are contracted with each other
and (3) all but two projectors are contracted with each other. The four-point matrix
element of the operator φX(l)

µ1...µnX
(l)µ1...µnφ needed for the construction of the four-scalar

amplitude is

MX2
l,n

(h(`1), h(`2), φ(p1), φ(p4)) = 2κ2m1
(
DX2

l,n
(p1, `1, p4, `2) +DX2

l,n
(p1, `2, p4, `1)

)
,

(3.49)

where

DX2
l,n

(p1, `1, p4, `2)

= i2(n−2)i2l(−1)l 2(n− 2)!
n! (u1 · `1)2l

[
(`1 · P (p1) · P (p4) · `2)n−2ΠX

1 (p1, `1, p4, `2)

+ 2(n− 2)(`1 · P (p1) · P (p4) · `2)n−3ΠX
2 (p1, `1, p4, `2) (3.50)

+ 1
2(n− 2)(n− 3)(`1 · P (p1) · P (p4) · `2)n−4ΠX

3 (p1, `1, p4, `2)
]
.
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The three factors ΠX
1 (p1, `1, p4, `2) are given by

ΠX
1 (p1, `1, p4, `2) = Xµ1µ2(`1, p1)Xµ1µ2(`2, p4) , (3.51)

ΠX
2 (p1, `1, p4, `2) = `1 · P (p1) ·X(`2, p4) ·X(`1, p1) · P (p4) · `2 ,

ΠX
3 (p1, `1, p4, `2) = `1 · P (p1) ·X(`2, p4) · P (p1) · `1 `2 · P (p4) ·X(`1, p1) · P (p4) · `2 .

To the order we are interested in we may freely replace p4 → −p1, since the difference is of
subleading order in the expansion in small transferred momentum. For n = 2, the second
and third line vanish and, for X ≡ E, we recover the four-point matrix element of the
operator φE(l)

µ1µ2E
(l)µ1µ2φ given in eqs. (3.18).

Sewing this matrix element with two three-point scalar-graviton amplitudes in eq. (3.3)
using the rule (3.11) leads to

MX2
l,n

(p,q) = 8(8πG)2i2(n−2)m1m
4
2

2(n−2)!
n!

×
[
M(l)

n (ΠX
1 )+2(n−2)M(l)

n (ΠX
2 )+ 1

2(n−2)(n−3)M(l)
n (ΠX

3 )
]
, (3.52)

Ml,n(ΠX
k ) =

∫
dD`

(2π)D
(u1 ·`)2l((u1 ·`)2 + 1

2q
2)n−2

`2((`−p2)2−m2
2)(`−q)2

(
q2

(u1 ·`)2 + 1
2q

2

)k−1

M(ΠX
k ) , (3.53)

where k = 1, 2, 3.
BothM(ΠEk) andM(ΠBk ) have the same general structure:

M(ΠX
i ) = AXi (u1 · `)2((u1 · `)2 + 1

2q
2) +BX

i q
2(u1 · `)2

+ CXi q
2((u1 · `)2 + 1

2q
2) +DX

i q
4(1− 2σ2)2 . (3.54)

The coefficients A, . . . ,D for the amplitude with an insertion of an electric-type operator
are given by

AE1 = 1 , BE1 = −2σ2 , CE1 = 0 , DE1 = 1
8 ,

AE2 = 1
2 , BE2 = 1

8(1− 8σ2) , CE2 = 0 , DE2 = 1
16 ,

AE3 = 1
2 , BE3 = −1

2σ
2 , CE3 = 0 DE3 = 1

32 , (3.55)

while those for the amplitude with an insertion of the “magnetic” operator are

AB1 = 4 , BB1 = (1− 8σ2) , CB1 = −1 , DB1 = 1
2 ,

AB2 = 2 , BB2 = −4σ2 , CB2 = −1
2 , DB2 = 1

4 ,

AB3 = 0 , BB3 = 1
4(1− 8σ2) , CB3 = −1

4 , DB3 = 1
8 . (3.56)

In the soft limit, all integrals in the amplitude (3.52) are of the type

In,2l =
∫

dD`

(2π)D
|q|1−2(n+l)(u1 · `)2l((u1 · `)2 + 1

2q
2)n

`2(−2u2 · `)(`− q)2 ; (3.57)
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they can be evaluated in terms of the triangle integrals (3.21) found in section 3.2:

In,2l =
n∑
u=1

Cun

(
−1

2

)n−u
I2(l+u)

= − i

32
(−)n+l

22l+n
Γ(l + 1

2)
√
πΓ(l + 1) (σ2 − 1)m2F1

(
1
2 + l,−n, 1 + l, 1

2(1− σ2)
)
, (3.58)

where Cun are binomial coefficients. In terms of these integrals, the three terms M(l)
n (ΠX

k )
making up the complete amplitude are

Ml,n(ΠX
k ) = AXk In+1−k,2(l+1) +BX

k In−k,2(l+1) + q2CXk In+1−k,2l + (1− 2σ2)DX
k In−k,2l) ,

(3.59)

with coefficients A, . . . ,D given in (3.55) and (3.56). Using these building blocks it is
then straightforward to assemble the amplitudesME2

l,n
(p, q) andMB2

l,n
(p, q) in eq. (3.52).

The eikonal phases follows by Fourier-transforming them to impact parameter space and
including the appropriate factors as in eq. (3.29). Choosing n = 2 we recover the amplitudes
in eqs. (3.26) and (3.30). Last, the two-body potential and the eikonal phase are related
to the leading-order amplitude in the usual way as in eqs. (2.5) and (2.6).

The position-space analysis also works in this case. In fact. for this approach it is
convenient to sidestep the encoding of the tidal effects in a particular basis of higher-
dimensions operators and work directly with the susceptibility χ. From this perspective
the matrix element of an arbitrary tidal operator quadratic in the electric field is

MχEE(h(`1), h(`2), φ(p1), φ(p4))
= 2m1κ

2χµ1ν1µ2ν2(u1 · `1, ˆ̀1;u1 · `2, ˆ̀2)Eµ1ν1(`1, p1)Eµ2ν2(`2, p1)
+ (p1 ↔ p4, u1 ↔ u4). (3.60)

Bose symmetry guarantees that this is symmetric in the two gravitons, so the manipula-
tions in the previous section can be repeated here. The Fourier transform of the one-loop
integrand, after sewing the unitarity cut and evaluating the energy integral, is

MχEE(p,r)

= κ2

4m2

∫
dD−1`1
(2π)D−1

e−ir·`1

`2
1

∫
dD−1`2
(2π)D−1

e−ir·`2

`2
2
MχEE(h(`1),h(`2),φ(p1),φ(p4))

∣∣
εµν(`)→Tµν(p2)

= m1κ
4

2m2

[
χµ1ν1µ2ν2(vẑ ·i∇1,∇⊥1 ;vẑ ·i∇2,∇⊥2 )Eµ1ν1(r1,p1)Eµ2ν2(r2,p1)

]
r1=r2=r

, (3.61)

where v =
√
σ2 − 1, ∇⊥ = ∇ − v2 ẑ (ẑ ·∇), and we have introduced different positions,

ri, for all the gravitons. They are to be set equal after the derivatives are evaluated. As
before, we can obtain the isotropic potential by first generating the on-shell amplitude
through eq. (3.39) and Fourier transforming back to the position space. The eikonal phase
can either be obtained from eq. (2.6) or directly fromMχEE(p, r) via eq. (3.42).
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3.5 Adding spin

It is not difficult to formally the calculation in the previous sections to include spin de-
grees of freedom for the particle with momentum p2. It amounts to changing Tµν(p2) in
eqs. (3.19), (3.35), (3.52) and (3.60) with TKerr

µν (p2, li) in eq. (3.16) or its general form
defined from eq. (3.12) and parametrized as in eq. (3.17) and multiplying the resulting
amplitude by the product of spin-S polarization tensors.

With this replacement, the contraction of two electric-type tensors Eµ1µ2(`i, p1) is

Eµ1µ2(`1, p1)Eµ1µ2(`2, p1)
∣∣
εµν(`i)→T gen

µν (p2) (3.62)

= 1
8m

4
2A(`1)A(`2)(8(` · u1)4 + 4(` · u1)2q2(1− 4σ2) + q4(1− 2σ2)2)

− i4m
3
2A(`1)B(`2)q2σ(−4(` · u1)2 + q2(−1 + 2σ2))S2[u1, q]

+ i

2m
3
2(A(`2)B(`1) +A(`1)B(`2))` · u1σ(4(` · u1)2 + q2(1− 2σ2))S2[`, q]

− i4m
3
2(A(`2)B(`1)−A(`1)B(`2))q2σ(4(` · u1)2 + q2(1− 2σ2))S2[`, u1]

+1
2m

2
2B(`1)B(`2)(` · u1)2(−2(` · u1)2 + q2σ2)S2[eµ, q]S2[eµ, `]

+1
2m

2
2B(`1)B(`2)(` · u1)2(2(` · u1)2 − q2σ2)S2[eµ, `]S2[eµ, `]

+m2
2B(`1)B(`2)` · u1((` · u1)2 − q2σ2)S2[`, q]S2[u1, q]

−1
2m

2
2B(`1)B(`2)q2((` · u1)2 − q2σ2)S2[`, p1]S2[u1, q]

−m2
2B(`1)B(`2)(` · u1)2σ2 S2[`, q]2

+1
2m

2
2B(`1)B(`2)q2(−(` · u1)2 + q2σ2)S2[`, u1]2 +O(q5) ,

where `1 = `, `2 = q − ` and

S2[a, b] ≡ S(p2)µνaµbν , S2[eµ, a]S2[eµ, b] ≡ ηµνS(p2)µρaρS(p2)νσbσ . (3.63)

For vanishing spin, A(`i) = 1 and B(`i) = 0, only the first line of eq. (3.62) survives and
we recover eq. (3.19). One may expand eq. (3.62) to arbitrary order in spin. For example,
to first nontrivial order, which corresponds to inclusion of the spin-orbit interaction for
particle 2, we find

Eµ1µ2(`1, p1)Eµ1µ2(`2, p1)
∣∣
εµν(`i)→T gen

µν (p2) = Eµ1µ2(`1, p1)Eµ1µ2(`2, p1)
∣∣
εµν(`i)→Tµν(p2) (3.64)

+ i

4CBS1m3
2 σ(4` · u1S2[`, q] + q2 S2[u1, q])(4(` · u1)2 + q2(1− 2σ2)) +O((q · S)2) ,

where the first term on the right-hand side is given by eq. (3.20). We recall that, as
introduced in section 3.1.1, CBS1 stands for the gravitational coupling that is linear in
spin. With the standard normalizations CBS1 = 1, but we keep it here to ease tracking the
spin dependence.

It is straightforward, albeit tedious, to write out explicitly an integral representation
of the amplitude by plugging in eq. (3.62) in eq. (3.19). We will refrain however from doing
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so, and rather only comment on its structure. In addition to the integrals in eq. (3.21), the
spin dependence introduces also tensor integrals:

Iµ1...µs
l =

∫
dD`

(2π)D
|q|−2l−s+1`µ1 . . . `µs(` · u1)l

`2(−2` · u2)(`− q)2 ; (3.65)

they may be parametrized as a scalar integral Il[w, s] by contracting the free indices with
an arbitrary vector w, from which the desired tensor integral is extracted by taking s

derivatives. Note that, unlike the triangle integrals in eq. (3.21), here the exponent l is not
constrained to be even. To leading order in spin only the vector integral is relevant. To
this order, eq. (3.64) becomes:

ME2
l,2,S(p2)(p, q) = ε2 · ε3ME2

l,2
(p, q) (3.66)

+ 128(−1)lCBS1G2π2σ|q|2l+3
(
S2[u1, q]

(
(−1 + 2σ2)I2l + 4I2+2l

)
+ 4S2[eµ, q]

(
(1− 2σ2)Iµ1+2l − 4Iµ3+2l

))
m1m

3
2ε2 · ε3 +O((q · S)2) .

It is not difficult to evaluate in the usual way the vector integrals, by writing them as
a linear combination of u1, u2 and q and solving for the coefficients in terms of the scalar
triangle integrals in eq. (3.21). Alternatively, one may re-evaluate the integrals in eq. (3.21)
by treating u1, u2 and q as uncorrelated vectors, differentiate s times with respect to u1
and then impose u2

i = 1, ui · q = 0. For the vector integrals we find

Iµ2l+1 = −u
µ
1 − u

µ
2y

y2 − 1 I2l+2 . (3.67)

Thus, the amplitude with the first spin-dependent term for particle 2 is

ME2
l,2,S(p2)(φ(p1), φ(p2), φ(p3), φ(p4)) = ε2 · ε3ME2

l,2
(φ(p1), φ(p2), φ(p3), φ(p4)) (3.68)

− CBS1G2π3/2 Γ(1
2 + l)

22l−5Γ(3 + l)m
3
2σ(−1 + σ2)l(−3 + (7 + 2l)σ2)|q|3+2lS2[p1, (iq)]ε2 · ε3

+O((q · S)2) .

To extract the two-body potential in terms of the rest-frame spin it is necessary to expand
the product of polarization tensors to leading order in spin, as discussed in ref. [92]. Using
the relations

ε2 · ε3 =
(

1− i εrskp
r
2p
s
3S

k

m2(m2 + E(p2)) +O(S2q2)
)

+O(q) ,

εµνρσp1µp2νqρSiσ = (E1 + E2) (p× q) · Si , (3.69)

the amplitude becomes

ME2
l,2,S(p2)(φ(p1), φ(p2), φ(p3), φ(p4))

=ME2
l,2

(p)|q|2l+3 +

 ME2
l,2

(p)
m2(E2 +m2) + (E1 + E2)ME2

l,2,1
(p)

 |q|2l+3 i(p× q) · S2

+O((q · S)2) , (3.70)
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whereME2
l,2,1

is the coefficient of S2[p1, (iq)] in eq. (3.68) and, as before, the bar indicates
that all q dependence has been extracted. The two-body potential and the eikonal phase
are then extracted by three-dimensional and two-dimensional Fourier-transforms, in terms
of their spinless counterparts and the coefficient of the spin-dependent structure in the
amplitude:

VE2
l,2,S2(p, r) = VE2

l,2
(p, r)− (p× r) · S2

4E1E2|r|2l+8
24+2lΓ(4 + l)
π3/2Γ(−3

2 − l)

×

 ME2
l,2

(p)
m2(E2 +m2) + (E1 + E2)ME2

l,2,1
(p)

+O((rS)2) ,

(3.71)

δE2
l,2,S2(p, b) = δE2

l,2
(p, b) + 1

4m1m2
√
σ2 − 1

(p× b) · S2
|b|2l+7

24+2lΓ(7
2 + l)

πΓ(−3
2 − l)

×

 ME2
l,2

(p)
m2(E2 +m2) + (E1 + E2)ME2

l,2,1
(p)

+O((rS)2) .

(3.72)

The position-space analysis extended to include spin degrees of freedom is equally
straightforward. It amounts to substituting in eqs. (3.36) and (3.61) the stress tensor
Tµν(p2) by the general spin-dependent one in eq. (3.17) or, for the scattering off a Kerr
black hole, with TKerr

µν (p2) in eq. (3.16). As already emphasized, T gen
µν (`i, p2) depends on the

graviton momentum `i which now makes a leading-order contribution because of the spin
dependence. Nevertheless, the contribution of T gen

µν (`i, p2) can be organized as a differential
operator acting on the position-space three-dimensional scalar propagator:

Eµ1µ2(r, p1) = Eµ1µ2(i∇, p1)
∣∣
εµν(`i)→T gen

µν (i∇,p2)

∫
dD−1`i

(2π)D−1
e−ir·`i

`2
i

. (3.73)

The structure of the stress tensor (3.16) implies that, for scattering off a Kerr black hole,
the complete spin dependence is governed by the non-Abelian Fourier transform∫

dD−1`i
(2π)D−1

e−i(r̂−â)·`i

`2
i

, (3.74)

where r̂ = r 1l4 and â is a vector of matrices, (âσ)µν = εµνρσa
ρ, with a defined in eq. (3.15).

One may evaluate it by formally expanding the integrand in â.
On general grounds, as discussed in ref. [92], the impulse and spin kick is computed

from the eikonal phase (3.72) through the relations (2.8) agree with those computed from
Hamilton’s equations of motion based on the two-body potential (3.71). The same holds
for the magnetic analog of eqs. (3.72) and (3.71).

4 Nonlinear tidal effects

The amplitude with nonlinear tidal effect, i.e. the scattering with an Xn operator insertion,
where X stands for E or B, can be constructed from the unitarity cut in figure 2. We
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1

2 3

4

ℓ1 ℓn

Figure 2. The generalized cut for leading order contributions to nonlinear tidal operators. Each
blob is simply a (local) on-shell amplitude. The dark blob contains the Xn tidal operator. The
direction of graviton momentum flow is indicated by the arrows.

will mostly focus on leading contribution for such an operator in this section. In this case,
the simplifications described in section 3.1.1 are all applicable. Namely, the amplitude
with Xn tidal operator is still comprised of linearized electric and magnetic Weyl tensor in
eqs. (3.8) and (3.9); and the sewing of three-point amplitudes with the amplitude with Xn

tidal operator is effectively replacing the polarization εµν(`i)→ Tµν(p2) for each graviton.
Start from the unitarity cut in figure 2. After sewing we find

MXn(p, q) = κn

mn−1
2

∫
MXn(h(`1), . . . , h(`n), φ(p1), φ(p4))

∣∣
εµν(`i)→Tµν(p2)

× 1
`21`

2
2 · · · `2n

[
i

(−2u2 · `1)
i

(−2u2 · `12) . . .
i

(−2u2 ·
∑n−1
j=1 `j)

]
, (4.1)

where we integrate over `i with i = 1, . . . , n− 1 and
∑n
i=1 li = q.

As discussed in the previous section, we can include spin degrees of freedom for the
field without the tidal deformation by simply replacing in eq. (4.1) the point-particle stress
tensor Tµν with that of the general spinning particle T gen

µν , cf. eq. (3.17), or with that of a
Kerr black hole, cf. (3.16).

The calculations from position space and momentum space also follow similarly as
before. We discuss them in turn.

4.1 Leading order position-space analysis

Start with eq. (4.1). Again we consider the rest frame of particle 2 in which we have
eq. (3.22). The first step is to integrate out energy in potential region. Using the iden-
tity [151]

δ

(
n∑
i=1

`0i

)[
i

(−2u2 ·`1+i0)
i

(−2u2 ·`12+i0) . . .
i

(−2u2 ·
∑n−1
j=1 `j+i0)

+perm
]

=πn−1
n∏
i=1

δ(`0i ) ,

(4.2)

where perm is the rest of n! permutations of `1,...,n. Since the integrand is invariant under
permutations, this localizes all `0i = 0 with a 1/n! prefactor

MXn(p, q) = (−κ)n

(2m2)n−1 n!

∫ [
n∏
i=1

dD−1`i
(2π)D−1

1
`2
i

]
δ

(
q −

n∑
i=1

`i

)
×MXn(h(`1), . . . , h(`n), φ(p1), φ(p4))

∣∣
εµν(`i)→Tµν(p2), (4.3)
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To evaluate this integral, we use the same manipulations as at one loop. First consider
the Fourier transform to position space

MXn(p, r) =
∫

dD−1q

(2π)D−1 e
−ir·qM̃Xn(p, q)

= (−κ)n

(2m2)n−1 n!

n∏
i=1

∫
dD−1`i

(2π)D−1
e−ir·`i

`2
i

MXn(h(`1), . . . , h(`n), φ(p1), φ(p4))
∣∣
εµν(`i)→Tµν(p2)

= (−κ)n

(2m2)n−1 n!MXn(h1, . . . , hn, φ(p1), φ(p4)|r), (4.4)

where we use eq. (3.36) to define

MXn(h1, . . . , hn, φ(p1), φ(p4)|r) (4.5)

≡
n∏
i=1

∫
dD−1`i

(2π)D−1
e−ir·`i

`2
i

MXn(h(`1), . . . , h(`n), φ(p1), φ(p4))
∣∣
εµν(`i)→Tµν(p2)

= MXn(h(`1), . . . , h(`n), φ(p1), φ(p4)|Xµ1µ2(`j , p1)→ Xµ1µ2(rj , p1), `j → i∇j)
∣∣∣
rj→r

.

As before all the coordinates rj are identified as r in the end. The above formula is
very general and applies to higher multipole operators or general susceptibilities similar to
eq. (3.61). Recall thatMXn(h(`1), . . . , h(`n), φ(p1), φ(p4)) is only a function of Eµ1µ2(`i, p2),
Bµ1µ2(`i, p2), and Mandelstam invariants. The Fourier transform simply replaces them
with their corresponding in position-space expressions defined in eqs. (3.36) and (3.43). As
before, the result ofMXn(p, r) is generally not isotropic, because any u1 · ` in momentum
space generates dependence on ẑ·`. To bring it into the isotropic form, we Fourier transform
back to momentum space, as in eq. (3.39).

A simple example is the operator EµνEνρEρ µ, denoted as (E3). With the contraction
of three E tensors (3.36) given by

Eµν(r, p1)Eνρ(r, p1)Eρ µ(r, p1) = 3m6
2

4096π3|r|13

[
9(σ2−1)(r2−z2)(σ2r2−(σ2−1)z2)+2r2

]
,

(4.6)
the graviton-scalar amplitude is

M(E3)(h1, h2, h3, φ(p1), φ(p4)|r) = 12κ3m1 Eµν(r, p1)Eνρ(r, p1)Eρ µ(r, p1) . (4.7)

Plugging into eq. (4.4) then yields the four-scalar amplitude in position space

M(E3)(p, r) = −κ
6m1

2m2
2
Eµν(r, p1)Eνρ(r, p1)Eρµ(r, p1). (4.8)

Using the Fourier transform formula in eq. (3.40), we arrive the final result

M(E3)(p, q) = −|q|
6−4ε

2ε M(E3)(p) = 18
11!!G

3m1m
4
2π

(7
4 − 9σ2 + 10σ4

) |q|6−4ε

ε
. (4.9)

An important feature of the position-space scalar-graviton amplitude (4.5), which we
already encountered in the one-loop analysis in section 3.3, is that it factorizes into a
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product of position-space E tensor, defined in eq. (3.36) and its magnetic counterpart,
perhaps with additional derivatives. As explained in section 2, the fact that these position-
space tensors have rank 3 implies that such a product can be further expressed as a sum of
products of traces of at most three factors. For example, eq. (2.50) gives the decomposition
of any power of a rank-3 matrix in terms of in terms of traces of two and three such matrices.
It applies directly to the four-scalar amplitude with an insertion of (En) and expresses it as
a sum of four-scalar amplitudes with an insertion of (E2)n2(E3)n3 with n = 2n2 + 3n3. It
also applies directly to amplitudes with an insertion of (Bn). While the resulting amplitude
vanishes of n is odd, it also further simplifies if n is even. The parity-odd nature of Bµ,ν(r,p)
and position-space factorization imply that, to leading order, (B3) = 0 because there are
insufficient vectors to saturate the Levi-Civita tensor. Therefore, to leading order, the
analog of eq. (2.50) for the magnetic operators reduces to

(Bn=2k) = 1
2k−1 (B2)k . (4.10)

The amplitudes collected in the appendix A verify these formulas for up to n = 8.
The momentum-space four-scalar amplitude is related to the position-space four-scalar

amplitude by single (D− 1)-dimensional Fourier transform. The structure of the position-
space amplitude is essential. This observation allows us to evaluate amplitudes and the
corresponding two-body potentials to leading order for arbitrary operators.

Since the position-space scalar-graviton amplitudes with one insertion of either one of
(E2), (B2) or (E3) have a similar structure, we will discuss them simultaneously, referring
to these operators as (O). They have the form,

M̃(O) = N(O)
1
rh

(
a(O) + b(O)

(r · u1)2

r2 + c(O)
(r · u1)4

r4

)
, (4.11)

where N(O) is an operator-dependent normalization factor. For the three operators it is,

N(E2) = N(B2) = 24G2π2m1m
3
2 , N(E3) = 25G3π3m1m

4
2 , (4.12)

and the coefficients are

a(E2) = 3(1− 3σ2 + 3σ4)
2π2 , b(E2) = 9(1− 2σ2)

2π2 , c(E2) = 9
2π2 ,

a(B2) = 9σ2(σ2 − 1)
2π2 , b(B2) = 9(1− 2σ2)

2π2 , c(B2) = 9
2π2 ,

a(E3) = −3(2− 9σ2 + 9σ4)
8π3 , b(E3) = −27(1− 2σ2)

8π3 , c(E3) = − 27
8π3 . (4.13)

The exponent of the overall r factor is h = 6 for (O) = (E2) and (O) = (B2) and h = 9
for (O) = (E3).

The position- space amplitude with an insertion of an operator made up of n such
traces is simply given by raising (4.11) to the nth power and adjusting the normalization
factor,

M̃(O)n = N(O)n

[
1
rh

(
a(O) + b(O)

(r · u1)2

r2 + c(O)
(r · u1)4

r4

)]n
. (4.14)
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The change in normalization factor is related to the normalization of the tree-level ampli-
tude with one insertion of the composite operator. We find

N(E2)n = N(B2)n = 22n+2G2nπ2nm1m
2n+1
2 , N(E3)n = 23n+2G3nπ3nm1m

3n+1
2 . (4.15)

To obtained the momentum-space scattering amplitude with an insertion of an arbi-
trary operator (O)n we first use twice the binomial expansion and put the position-space
amplitude in the form

M̃(O)n =
N(O)n

rnh

n∑
k=0

k∑
l=0

(
n

k

)(
k

l

)
an−kO blO c

k−l
O

((r · u1)2

r2

)2k−l
. (4.16)

Using then the general tensor Fourier-transform relation (3.40) which enforces q · u1 =
q2/2→ 0 leads to the desired result:

M(O)n(p, q) =
N(O)n

|q|D−nh−1

n∑
k=0

k∑
l=0

(
n

k

)(
k

l

)
an−kO blO c

k−l
O (4.17)

×
2D−hn−1πD/2(σ2 − 1)2k−lΓ(1

2 + 2k − l)
sin(π2 (D − hn− 1))Γ(1

2(3 + hn−D))Γ(2k − l + 1
2hn)

,

where D = 4− 2ε. The two-body potential and the eikonal phase follow then straightfor-
wardly via eqs. (2.9)–(2.12):

V(O)n(p,r) =−
N(O)n

4E1E2 |r|nh
n∑
k=0

k∑
l=0

(
n

k

)(
k

l

)
an−kO blO c

k−l
O (σ2−1)2k−lΓ(1

2 +2k−l)Γ(1
2hn)

√
πΓ(2k−l+ 1

2hn)
,

(4.18)

δ(O)n(p,b) =
N(O)n

4m1m2 |b|nh−1

n∑
k=0

k∑
l=0

(
n

k

)(
k

l

)
an−kO blO c

k−l
O (σ2−1)2k−l−1/2

×
Γ(1

2 +2k−l)Γ(1
2(hn−1))

Γ(2k−l+ 1
2hn)

.

As discussed earlier, parity and factorization of the position-space amplitude implies
that, to leading order in the classical limit, amplitudes with an insertion of an operator
which has at least one parity-odd factor vanish identically even if the operator is overall
parity-even. Thus, eq. (2.50) with E → B implies that the approach described here yields
the two-body potential for all nonlinear tidal operators of the type (B2n).

The discussion above can be easily extended to cover amplitudes with one insertion of
(En). eq. (2.50) expresses it as a linear combination of amplitudes with one insertion of
(E2)n2(E3)n3 with 2n2 + 3n3 = n. The position space form of the latter involves a product
of two factors analogous to the right-hand side of eq. (4.14). Each of them can be binomially
expanded (with a slight simplification based on the equality b(E2)/b(E3) = c(E2)/c(E3) visible
in eq. (4.13)) and put in a form analogous to the right-hand side of eq. (4.16). Fourier-
transforming using eq. (3.40) and putting together all terms leads to the momentum-space
amplitude with one insertion of (En).

The general formulas above show explicitly that the difference E2n−B2n is subleading
in the high-energy limit. This extends the observations of refs. [105, 106] beyond the
linear order.
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4.2 Order by order momentum-space analysis

The above position-space evaluation is a very effective means for evaluating leading con-
tributions to any given tidal operator. Momentum-space methods for evaluating the loop
integrals instead offer a straightforward way to systematically extend the results to higher
orders following the methods presented in refs. [53–55]. Indeed following these methods,
next to leading order contributions to E2 and B2 tidal operators were evaluated in ref. [83].
A related approach for tidal operators based on world lines has been recently given in
ref. [106] where additional E2 operators were evaluated.

Here we first re-evaluate the amplitudes in momentum space through C4 and then
discuss the extension to higher orders. The starting point is again the generalized cut
shown in figure 2. We evaluate the expressions in D-dimensions. Here we do not make use
of the special real-space factorization of the integrals discussed in the previous section, but
rather simply carry out the evaluation of the cut and then reduce the result to a basis of
independent momentum products. We can simplify the resulting expressions considerably
by applying the cut conditions and expanding in small momentum transfer q. Specifically,
we can choose a basis of momentum invariants which does not contain any of the products
(p2 · `k), since the cut conditions give(

−p2 +
k∑
i=1

`i

)2

−m2
2 = 0 → (p2 · `k) =

k∑
i=2

i−1∑
j=1

(`i · `j)−
k−1∑
i=1

(p2 · `i) , (4.19)

where the final term can be eliminated inductively starting with p2 · `1 = 0. Products of
the form (p3 · `k) can then be eliminated using momentum conservation p3 = −p2 − q =
−p2 −

∑
`i. Since the cut graviton momenta scale as O(q), the cut conditions thus ensure

that the scaling of (p2 · `k) or (p3 · `k), which naively would be O(q), instead scale as O(q2).
This greatly aids in the simplification of the integrand after expanding in small q.

Unlike in the position-space analysis, the integrals do not decouple into a product,
and in general, the momentum-space integrals can be challenging to evaluate. To do so,
we use FIRE6 [152, 153] which uses integration by parts methods [124, 125] to reduce the
integrals a single master integral, which can then be evaluated either by direct integration
or by differential equations [154–157]. Evaluating the integrals is the most significant
bottleneck for this method, but the task is significantly aided by the use of special variables
as described in [126],

p1 = −(p̄1 − q/2) , p4 = p̄1 + q/2 , p2 = −(p̄2 + q/2) , p3 = p̄2 − q/2 . (4.20)

The p̄i are orthogonal to q by construction: p̄i · q = 0. As described in more detail in
ref. [126], with these variables the matter propagators reduce to

1
(p2 + `1···i)2 −m2

2
= 1

2p̄2 · `1···i
+O(q0) , (4.21)

so the matter propagators are linear in the loop momenta. In addition, we can define
normalized external momenta, ūµi = p̄µi /

√
m2
i − q2/4, such that ū2

i = 1 The net effect
is that the q2 dependence is scaled out of the integral so that it is only a function of a
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Figure 3. The L-loop fan integral.

single-scale ū1 · ū2 = σ + O(q2). Using these variables integral encountered at any order
of perturbation theory can then be converted to a single scale integral. Such integrals are
quite amenable to integration-by-parts methods, greatly speeding the evaluation.

The restriction to the potential region precludes pinching any propagators and the
existence of irreducible scalar products. Thus, the result of IBP reduction is a single
master integral, with a coefficient given by powers of q dictated by dimensional analysis,
as well as a polynomial in σ. The master integral is the scalar fan integral in figure 3,
which can be easily evaluated by factorizing the loops by going to position space and
Fourier transforming back, with the result

I
(L)
fan =

∫ (L+1∏
i=1

dD`

(2π)D
1
`2i

)
|q|2−Lδ(

∑
i `i − q)

(−2u2 · `1 + i0)(−2u2 · `12 + i0) · · · (−2u2 · `1···n−1 + i0)

= iL+2

2L(4−2ε)πL( 3
2−ε)

Γ
(

1
2 − ε

)L+1
Γ
(
(ε− 1

2)L+ 1
)

Γ(L+ 2)Γ
(
(1

2 − ε)(L+ 1)
) |q|−2εL . (4.22)

At one loop this agrees with eq. (3.25) with l = 0, and at two and three loops it yields

I
(2)
fan = 1

768π2
(q2)−2ε

2ε +O(ε0) , I
(3)
fan = − i

49152π2 +O(ε) . (4.23)

The results of the IBP reduction at two loops gives the amplitudes with a single
insertion of the tidal operators in terms of a single master integral:

M(E3) = 1024
385 π

3G3m1m
4
2|q|6

(7
4 − 9σ2 + 10σ4

)
I

(2)
fan ,

M(EB2) = 1024
1155π

3G3m1m
4
2|q|6

(
σ2 − 1

) (
1 + 10σ2

)
I

(2)
fan ,

M(B3) =ME2B = 0 . (4.24)

As expected, the parity odd operators E2B and B3 operator do not contribute.
At three loops, by reducing the integrand to the sole master integral we find the

following for the amplitudes with an insertion of the single trace operators,

M(E4) =−i 983
9031680π

4G4m1m
5
2|q|9(1231−7304σ2+18590σ4−22880σ6+12155σ8)I(3)

fan ,

M(B4) =−i 140569
9031680π

4G4m1m
5
2|q|9(σ2−1)2(1+10σ2+85σ4)I(3)

fan ,
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Figure 4. The generalized cuts that need to be evaluated at next to leading order for an Rn type
tidal operator.
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Figure 5. Sample diagrams for next-to-leading-order contributions for the R3 tidal operators which
are simple to evaluate.
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41

Figure 6. Sample diagrams next-to-leading order contributions for the R3 tidal operators that
involve iteration contributions or nontrivial integrals.

M(EEBB) =−i 10813
27095040π

4G4m1m
5
2|q|9(σ2−1)(41+689σ2−2925σ4+3315σ6)I(3)

fan ,

M(EBEB) = i
10813

27095040π
4G4m1m

5
2|q|9(σ2−1)(25+481σ2−2925σ4+3315σ6)I(3)

fan . (4.25)

Similarly, the amplitudes with double trace insertions evaluate to,

M(E2)2 =−i 983
4515840π

4G4m1m
5
2|q|9(1231−7304σ2+18590σ4−22880σ6+12155σ8)I(3)

fan ,

M(B2)2 =−i 140569
4515840π

4G4m1m
5
2|q|9(σ2−1)2(1+10σ2+85σ4)I(3)

fan ,

M(E2)(B2) =−i 10813
4515840π

4G4m1m
5
2|q|9(σ2−1)(19+299σ2−975σ4+1105σ6)I(3)

fan ,

M(EB)2 = 0 , (4.26)

It is not difficult to check that these results satisfy the four-dimensional relations described
in section 2. In addition, they agree with the results obtained in the previous section for
tidal operators with arbitrary numbers of Es and Bs and collected in the appendix for a
variety of operators up to E8 and B8.
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Figure 7. Cut for a general Rn type operator. In the case j = 1, it is convenient to take the single
graviton attaching to the bottom matter line as off shell and part of a tree amplitude including
the lower massive scalar line. All other gravitons and exposed matter lines are taken on shell. The
direction of graviton momentum flow is indicated by the arrows.

An important aspect of the momentum-space approach is that it gives a systematic
means for obtaining corrections higher order in Newton’s constant for any operator inser-
tion. For example figure 4 shows the generalized cuts that would need to be evaluated
to obtain the next-to-leading order corrections from an C3 tidal operator. In the first of
these cuts the four-point amplitude can appear at any location on the top matter line.
The mapping of the integrands resulting from these cuts onto a integral basis generates a
number of diagrams. For example, in figure 5 we show a sample of the diagrams that are
quite easy to evaluate for an R3 tidal operator, as we can again evaluate the integral using
the real-space technique presented in the previous section. More complicated diagrams
that involve iteration contributions or non-trivial integrations are shown in figure 6. In
these cases, the integrals do not factorize, but the momentum-space approach of evaluat-
ing cuts and reducing to a basis of master integrals will still be quite feasible. As noted
in refs. [57, 83] the probe limit simplifies the evaluation of the contributions. In any case,
it is clear that amplitude methods can be applied beyond leading order to understand the
systematics of higher-dimension operators. We leave this to future studies.

5 Effective field theory extensions of GR

The same methods apply just as well to any operator, not just the tidal ones. For example,
we can consider the Rn operators arising from unknown short distance physics. Here we
will not classify such operators, but pick illustrative examples. The effect of operators up
to R4 has already been discussed in some detail in refs. [129–133]. In order to be concrete
here we discuss an effective action of the form

S = 1
16πG

∫
dDx
√
−g (−R+ cKKµ1...ρnR

µ1ν1σ1ρ1Rµ2ν2σ2ρ2 · · ·Rµnνnσnρn) , (5.1)

where the first term is the usual Einstein-Hilbert action, and Kµ1...ρn merely gives the
contraction between the Riemann tensors. Each independent contraction carries an inde-
pendent Wilson coefficient cK .
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We construct the integrands for pure Rn modifications of gravity in a similar manner
as for those of the tidal operators. The leading contribution to the potential due to Rn

operators is captured by the cuts in figure 7. The diagrams in general are a product of
two fan diagrams, where all graviton legs, as well as the matter lines between the three
point vertices, are on shell, the exception being the case where (n − 1) on-shell gravitons
attach to one of the matter lines, while one graviton which we take to be off shell attaches
to the other matter line. In this case, it is convenient to include the matter line to which
the single graviton propagator is attached as part of a single tree amplitude.

To evaluate the cuts in figure 7 we use the replacement derived above (see eq. (3.11)).
This simplifies the form of the Riemann tensor:

Rµνρσ(`i)
∣∣
εµν(`i)→Tµν(pa) = −1

2

(
`µi `

ρ
i

(
pνap

σ
a −

1
2η

νσm2
a

)
− (σ ↔ ρ)

)
+ ((µ, ρ)↔ (ν, σ)) +O(q3) , (5.2)

where pa and ma are the momentum and mass of the matter line the graviton attaches
to. When contracted in sequence with other gravitons attaching to the same matter line,
products involving the matter momenta in the above expression must reduce to pa·pa = m2

a,
or the q scaling will become sub-leading, as shown in the previous section.

The cut corresponding to figure 7 is simply a product of two fans,

CRn = Kµ1...ρnOµ1...ρj (`1, . . . , `j ; p1)Oµj+1...ρn(`j+1, . . . , `n; p2) , (5.3)

where, for instance,

Oµ1...ρj (`1, . . . , `j ; p1) = Rµ1ν1σ1ρ1
1 · · ·Rµjνjσjρjj

∣∣
εµν(`i)→Tµν(p1) . (5.4)

As in previous sections, the integrands obtained after restoring the cut propagators are also
well suited for applying position-space techniques. In this case, we must introduce a ficti-
tious momentum transfer q′ such that the integrand decouples in two parts, corresponding
to the two terms in eq. (5.3) decouple, and the corresponding propagators attached to one
matter line or the other. The energy integrations can be carried out as in the previous
sections with the result

MRn(p,q)

=Kµ1...ρn

∫
dD−1q′ δ(q +q′)

∫  j∏
a=1

dD−1`a
(2π)D−1

 δ(
∑j
a=1 `a+q′)Oµ1...ρj (`1, . . . ,`j ;p1)

`2
1 · · ·`2

j

×
∫  n∏

a=j+1

dD−1`a
(2π)D−1

 δ(
∑n
a=j+1 `a−q)Oµj+1...ρn(`j+1, . . . ,`n;p2)

`2
j+1 · · ·`2

n

. (5.5)

Writing

δ(q + q′) =
∫

dD−1x

(2π)D−1 e
i(q+q′)·x (5.6)
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Figure 8. The corrections from (a) R3 and (b,c) R4 operators that appear in EFT extensions of
GR. The double-line notation indicates that we have not used on-shell conditions on that line.

and taking the Fourier transform of the amplitude we find

MRn(p, r) =
∫

dD−1q

(2π)D−1 e
−iq·rMRn(p, q)

= Kµ1...ρn

∫
dD−1x

∫  j∏
a=1

dD−1`a
(2π)D−1

e−i`a·x

`2
a

Oµ1...ρj (`1, . . . , `j ; p1)

×
∫  n∏

a=j+1

dD−1`a
(2π)D−1

e−i`a·(r−x)

`2
a

Oµj+1...ρn(`j+1, . . . , `n; p2)

= Kµ1...ρn

∫
dD−1xOµ1...ρj (x; p1)Oµj+1...ρn(r − x; p2) . (5.7)

The product in momentum space has become a convolution in position space over x, which
can be viewed as the position in the bulk, i.e. away from the massive particle trajectories,
at which the Rn operator is inserted. Note however that this formula does not have a
natural interpretation in position space, given that the energy integrals in each factor were
performed by going to the rest frame of different particles. In practice, as in previous
sections, this formula can be used by transforming one last time to momentum space, so
that the convolution is trivialized and each factor can be written in isotropic coordinates.

The inclusion of derivatives, ∇2mRn, or of spin on the matter lines poses no obstruction
to applying this method. In the former case one must organize the additional powers of loop
momentum in the integrand into either factor in analogy with eq. (5.3). The factorization
argument carries over and the additional loop momenta become derivatives in position
space acting on either factor of eq. (5.7). For the case of spin, the only difference is
that the Fourier transforms in eq. (5.7) become non-Abelian Fourier transforms defined in
eq. (3.74).

As simple examples, consider the cases of OR3 = Rµ1ν1
µ2ν2R

µ2ν2
µ3ν3R

µ3ν3
µ1ν1 and

O(R2)2 = (Rµ1ν1
µ2ν2R

µ2ν2
µ1ν1)2. The contributing generalized unitarity cut for the R3

operator are shown in figure 8(a) while the two potentially contributing cuts for the R4

operator are shown in figure 8(b,c). In the diagrams the double-line notation indicates that
we have not used on-shell conditions on that line, but consider the two connected blobs as
part of a single tree amplitude.7

7Whether on-shell conditions are used on the intermediate leg corresponds to shifting the coefficient of
φRnφ operators.
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After carrying out the integration, the R3 and R4 amplitudes are

MR3 =− 6cR3G2π2m2
1m

2
2(m1 +m2)|q|3(σ2 − 1) ,

M(R2)2 =− 27

315c(R2)2G3πm2
1m

2
2(m2

1 +m2
2)(q2)3−2ε

2ε (3σ2 − 1) , (5.8)

where we took the operators to have coefficient c3
R and c(R

2)2 respectively. Taking the
Fourier transform (2.12) to position space gives the potentials

VR3 = 18
E1E2

cR3G2m2
1m

2
2(m1 +m2)(σ2 − 1) 1

r6 ,

V(R2)2 = 28

E1E2
c(R2)2G3m2

1m
2
2(m2

1 +m2
2)(3σ2 − 1) 1

r9 . (5.9)

TheOR3 amplitude and potential was obtained previously in refs. [130–133] and we find
agreement. In ref. [130] the authors also evaluate the effect of an additional R3 operator,

G3 = OR3 −RµναβRβγνσRσµγα ; (5.10)

this is related to tidal operators via a field redefinition up to operators that vanish in
four dimensions. This can be seen by evaluating its four-dimensional four-point amplitude,
which feeds into the two-graviton cut, using spinor-helicity methods [130]:

MG3(φ(p1), h++(k2), h++(k3), φ(p4)) ∝ [23]4(−q2 + 2m2
1) . (5.11)

Since this is a local contribution, it is already captured by tidal operators of the form E2,
B2. Interestingly, though, if this operator were present with a sufficiently large coefficient,
it would produce a result equivalent to the leading tidal Love numbers, even if these are
set identically to zero for black holes in Einstein gravity [97, 115–118].

The leading PN contribution from the R4 operator (O(R2)2) was calculated in ref. [129],
with which we find agreement. We can also easily determine that the other operators con-
sidered in ref. [129] give no contribution to the leading conservative potential. The con-
tribution from O(R2)(RR̃) = (Rµ1ν1

αβε
αβ

µ2ν2R
µ2ν2

µ1ν1)(Rµ3ν3
µ4ν4R

µ4ν4
µ3ν3) is zero simply

because it is parity-odd. The operator O(RR̃)2 = (Rµ1ν1
αβε

αβ
µ2ν2R

µ2ν2
µ1ν1)2, while being

parity even, contributes zero at leading order, in analogy to the tidal operator O(EB)2 . In
both cases, the factorization of the integrand in real space forces the separate parity-odd
factors to evaluate to zero, as discussed in section 4.1

Here we refrain from evaluating the amplitudes for the R5 and higher operators. How-
ever, in these cases, there is an additional link between the Rn extensions of Einstein gravity
and the tidal operators. After carrying out the soft expansion of the integrand for the Rn

operators, one encounters ultraviolet divergences that renormalize tidal operators [24]. For
example, in principle the R5 operator, which produces a diagram with three gravitons at-
tached to one matter line and two attached to the other, could produce a UV subdivergence
and thereby renormalize E2 or B2 tidal operators (with additional derivatives). It would
be an interesting problem to systematically study this interplay for infinite sequences of
Rn operators.
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6 Conclusions

In this paper we evaluated the leading-PM order contributions to the two-body Hamiltonian
from infinite classes of tidal operators using momentum space and position space scattering
amplitude and effective field theory methods. The same principles yield leading-PM order
Hamiltonian terms from tidal deformations probed by a spinning particle and also from
effective field theory modifications of general relativity. Our results offer a new perspective
on the general structure of linear and nonlinear tidal effects in the relativistic two-body
problem while also being of potential phenomenological interest.

Our analysis of E2 and B2 tidal operators arbitrary number of derivatives is similar
to that of ref. [107], except that we use a basis of operators which aligns with the more
standard worldline tidal operators [24, 105]. Their Wilson coefficients are the same (up to
an overall normalization that we provide) with the worldline electric and magnetic tidal
coefficients which in turn are proportional to the corresponding multipole Love numbers.
By directly evaluating all relevant integrals we obtain explicit expressions for the two-body
Hamiltonian and the amplitude’s eikonal phase, from which both scattering and closed-
orbit observables can be found straightforwardly. We illustrated the inclusion of spin by
working out the leading-order tidal contributions from E2-type operators with arbitrary
number of derivatives for one object interacting with the spin of the other.

For tidal operators with arbitrary numbers of electric or magnetic components of the
Weyl tensor, the integrand for the leading-order contributions are not difficult to con-
struct because their building blocks are tree-level leading order on-shell matrix elements
of the point-particle energy-momentum tensor and of the tidal operator. The simple loop-
momentum dependence and the permutation symmetry of the three-point amplitude factors
makes the integrals simple to evaluate. Indeed, Fourier-transforming all graviton propa-
gators decouples all integrals from each other, making it straightforward to write down
explicit results for infinite classes of tidal operators. We have verified that the results ob-
tained this way thought direct momentum space integration. While position space methods
make leading-order calculations straightforward, momentum-space methods can be applied
systematically, to arbitrary PM order.

An interesting feature of gravitational tidal operators, which we exploited in their
description, is their close similarity with gauge theory operators describing the interac-
tion of extended charge distributions with electromagnetic fields. This formal connection
extends to dynamical level double-copy relations. For leading-order contributions this is
a straightforward consequence of the factorization of the linearized Riemann tensor into
two gauge-theory field strengths and of the factorization of the energy-momentum tensor
into two gauge theory currents. Such double-copy factorizations also hold for the energy-
momentum tensor [92]. It would be very interesting to investigate double-copy relations
beyond the leading PM order.

In summary, in this paper we took some steps towards systematically evaluating con-
tributions to the two-body Hamiltonian from infinite families of tidal operators. The
leading order in G results are remarkably simple, suggesting that much more progress will
be forthcoming.
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A Appendix Summary of explicit results

In this appendix we collect explicit results for scattering amplitudes with a tidal operator
insertion. Using eq. (2.5), this immediately gives us the potential. Here we consider the
amplitudes with operator insertions of the type En−2mB2m. We express the amplitude in
terms of the variable σ = p1 · p2/m1m2. The general formulae for (E2)n, (B2)n and (E3)n

are given from eq. (4.16) to eq. (4.18) with the coefficients in eq. (4.13). Here we give
explicit results corresponding up to 7 loops in the amplitudes approach. As noted in the
text, the amplitudes with an odd B-field insertions vanish by parity so we do not include
those. We also do not explicitly list cases where a trace contains an odd number of Bs
since these also vanish.

To list the amplitudes we scale out the powers of |q| from the scattering amplitudes,
following eq. (2.9),

MX2n = |q|3(2n−1)MX2n = |q|3(2n−1)CX2n , (A.1)

for a tidal operator which we build from a total of 2n Es or Bs, independent of the trace
structure. For operators where total number of Es and B is odd the rescaling is bit
difference because of the appearance of a divergence

MX2n+1 = |q|6n−4nεMX2n = − 1
2n

1
ε
|q|6n−4nεCX2n+1 , (A.2)

The long-range classical contribution comes from the log q2 term that arises from expanding
in ε.

As discussed in section 2, the potential is given in the two-body Hamiltonian is given
by a Fourier transform (2.5) and the eikonal phase is also given by eq. (2.6). Carrying out
the Fourier transform we have from eq. (2.10) and eq. (2.11)

VX2n = − 1
4E1E2

82n−1 Γ(3n)
π3/2Γ(3

2 − 3n)
CX2n

|r|6n
, (A.3)

δX2n = 1
4m1m2

√
σ2 − 1

82n−1 Γ(3n− 1
2)

πΓ(3
2 − 3n)

CX2n

|b|6n−1 , (A.4)
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where we only keep the finite term in ε. Similarly, for the odd powers

VX2n+1 = 1
4E1E2

(−1)n Γ(6n+ 2)
2π

CX2n+1

|r|6n+3 , (A.5)

δX2n+1 = 1
4m1m2

√
σ2 − 1

(−1)n−182n Γ(3n+ 1)2

π

CX2n+1

|b|6n+2 . (A.6)

For X2 we have,

C(E2) = 5
23G

2m1m
3
2π

2
(11

5 − 6σ2 + 7σ4
)
,

C(B2) = 5
23G

2m1m
3
2π

2
(
σ2 − 1

) (
1 + 7σ2

)
, (A.7)

where the parenthesis on the operator denote the matrix trace, as defined in eq. (2.49).
For X3:

C(E3) = −22 32

11!! G
3m1m

4
2π

(7
4 − 9σ2 + 10σ4

)
,

C(EB2) = −22 3
11!!G

3m1m
4
2π
(
σ2 − 1

) (
1 + 10σ2

)
. (A.8)

For X4:

C(E4) = − 11 · 13
212 (7!!)2G

4m1m
5
2π

2
(1231

143 −
664
13 σ

2 + 130σ4 − 160σ6 + 85σ8
)
,

C(B4) = − 11 · 13
212 (7!!)2G

4m1m
5
2π

2
(
σ2 − 1

)2 (
1 + 10σ2 + 85σ4

)
,

C(EEBB) = − 11 · 13
212 (7!!)2G

4m1m
5
2π

2
(
σ2 − 1

)(41
39 + 53

3 σ
2 − 75σ4 + 85σ6

)
,

C(EBEB) = 11 · 13
212 (7!!)2G

4m1m
5
2π

2
(
σ2 − 1

)(25
39 + 37

3 σ
2 − 75σ4 + 85σ6

)
,

C(E2)2 = 2C(E4) ,

C(B2)2 = 2C(B4) ,

C(E2)(B2) = − 11 · 13
211 (7!!)2G

4m1m
5
2π

2
(
σ2 − 1

)(19
13 + 23σ2 − 75σ4 + 85σ6

)
. (A.9)

For X5:

C(E5) = 1
26 (19!!)G

5m1m
6
2π
(
1094− 8535σ2 + 24608σ4 − 32832σ6 + 17280σ8

)
,

C(E3B2) = 1
26 5 (19!!)G

5m1m
6
2π(σ2 − 1)

(
499 + 10144σ2 − 46656σ4 + 51840σ6

)
,

C(EBEBE) = − 1
25 5 (19!!)G

5m1m
6
2π(σ2 − 1)

(
61 + 1336σ2 − 7776σ4 + 8640σ6

)
,

C(EB4) = 32

22 5 (19!!)G
5m1m

6
2π(σ2 − 1)2

(
1 + 12σ2 + 120σ4

)
,

C(E3)(B2) = 3
24 5 (19!!)G

5m1m
6
2π(σ2 − 1)

(
61 + 1336σ2 − 7776σ4 + 8640σ6

)
,
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C(E2)(EB2) = 3
25 5 (19!!)G

5m1m
6
2π(σ2 − 1)

(
85 + 1600σ2 − 5184σ4 + 5760σ6

)
,

C(B2)(EB2) = 2CEB4 . (A.10)

For X6, X7, X8:

C(E6) = 17 ·19 ·35

221 52 (13!!)2G
6m1m

7
2π

2
(

5558245
26163 −

328930
171 σ2 + 609305

81 σ4− 144980
9 σ6

+ 183425
9 σ8−14950σ10 +5175σ12

)
,

C(B6) = 17 ·19 ·35

221 52 (13!!)2G
6m1m

7
2π

2(σ2−1)3
(
5+69σ2 +575σ4 +5175σ6

)
,

C(E7) =− 3
212 (31!!)G

7m1m
8
2π
(
1496063−15991430σ2 +71940660σ4

−177188000σ6 +253373120σ8−200648448σ10 +69189120σ12
)
, (A.11)

C(E8) =− 23 ·29 ·37 ·5
231 72 (19!!)2G

8m1m
9
2π

2
(

57426585223
7293645 − 10076129056

105705 σ2 + 32319394660
63423 σ4

− 1227512720
783 σ6 + 82520830

27 σ8−3916416σ10 +3294060σ12

−1718640σ14 +441595σ16
)
,

C(B8) =− 23 ·29 ·37 ·5
231 72 (19!!)2G

8m1m
9
2π

2(σ2−1)4
(
35+620σ2 +6138σ4 +47740σ6 +441595σ8

)
.

As noted in section 4, in the high-energy limit, where σ is large, simple relations are visible
between amplitudes with E2 and B2 operators inserted [105, 106].
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