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1 Introduction

The locality on the hidden variables implies the Bell’s inequality to the correlations of two
separated particles [1]. Later, measuring entangled particles showed the violation of Bell’s
inequality [2]. The Bell test experiments suffered from the locality and detection loopholes.
The locality loophole is the ignorance of possible communication between two measurement
sites. The detection loophole is that the non-perfect detection efficiency increases the upper
bound of Bell’s inequality. Recently, the Bell test experiments closed all loopholes, and
the violation did not disappear [3]. Therefore, the counter-intuitive prediction of Quantum
Mechanics was confirmed.

Although the violation was confirmed, its relation to Quantum Entanglement remains
subtle. For the first step, it is necessary to improve the upper bound from a quantum gen-
eralization. Secondly, each entanglement quantity should diagnose the violation. Now a
quantum generalization of the 2-qubit Bell’s inequality increases the upper bound without
the inconsistency [4]. The maximum violation is monotonically increasing with concur-
rence for all 2-qubit pure states as indicated by the R-matrix [5, 6]. The concurrence is
also monotonically increasing for entanglement entropy. It relates the degree of maximum
violation to Quantum Entanglement. The result also establishes the equivalence between
the maximum violation and the correlation of R-matrix.

We hope to see the same equivalence in many-body situations. However, a partial
trace operation only has one choice in a 2-qubit state. A generic 2-qubit state also only
has one variable for characterizing its entanglement. In other words, the 2-qubit state
is too unusual. It is hard to extend the relationship to a general n-qubit state [7, 8].
Indeed, various difficulties of many-body Quantum Entanglement already appear in the
3-qubit state. Generalizing the Schmidt decomposition [9] shows that a general 3-qubit
quantum has five independent variables [10]. Using the local operations and classical
communication (LOCC) shows two inequivalent entangled classes [11]. Therefore, the
degree of violation is from two entangled classes [11]. The two-body entanglement is not
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Figure 1. We show the difficulties in demonstrating 3-qubit Quantum Entanglement fromMermin’s
inequality.

enough to describe the tripartite entanglement [12]. The genuine tripartite entanglement,
3-tangle, is necessary [12, 13]. The 3-qubit state shows all conceptual issues of many-body
Quantum Entanglement that 2-qubit cannot answer. Providing the qualitative description
to the 3-qubit Quantum Entanglement by Quantum Correlators should solve the universally
conceptual issue of the many-body Quantum Entanglement.

The central question that we would like to address in this letter is the following: What
is the quantitative description of the 3-qubit Quantum Entanglement through Quantum
Correlator? We first discuss the difficulty of building the relationship of Quantum Corre-
lation and Entanglement from Mermin’s inequality. The n-qubit generalization of Bell’s
inequality is called Mermin’s inequality. One can calculate the violation of Mermin’s in-
equality case by case. People also know the necessary entanglement quantities. One can
calculate all entanglement quantities for a general 3-qubit quantum state. The problem is
still there due to two difficulties as in figure 1. The first difficulty is the lack of an analytical
solution of the maximum violation of Mermin’s inequality in the general 3-qubit quantum
state. Because the state depends on five independent variables, it is hard to have an inverse
relation to use entanglement quantities to express a quantum state. Therefore, the second
difficulty is that there is possibly no analytical solution to relate the maximum violation of
Mermin’s inequality to entanglement quantities. If entanglement quantities should give a
complete description of the maximum violation, it should depend on five variables. Similar
to the first difficulty, the maximum violation should not have an analytical description for
the general 3-qubit quantum state. Preparing a 3-qubit state is already no problem [14, 15].
Hence one inevitable task is the theoretical interpretation for a general 3-qubit state.

In this letter, we use a generalized R-matrix to provide an analytical upper-bound
to the maximum violation of Mermin’s inequality. We then show the rewriting of the
upper bound in terms of entanglement measures. The fact is that Mermin’s inequality
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loses the violation in some entangled states. It is not the main problem for Mermin’s
operator. For some pure states, one can determine the unique information from single-
particle reduced density matrices [13, 16]. Here we are interested in studying the unique
information of entanglement measures from some states. The 3-tangle case forbids the
monotonically increasing result. Therefore, Quantum Entanglement cannot diagnose the
violation of Merlin’s inequality in general. The generalized R-matrix avoids the issue. The
classification of pure many-body entanglement is one long-standing problem [17–20]. Due
to the analytical solution, we successfully classify and quantify Quantum Entanglement
with the experiments application.

2 Mermin’s inequality

The Mermin’s operator is

M≡ A1 ⊗A2 ⊗A′3 +A1 ⊗A′2 ⊗A3 +A′1 ⊗A2 ⊗A3 −A′1 ⊗A′2 ⊗A′3, (2.1)

where
Aj ≡ ~aj · ~σ; A′j ≡ ~a′j · ~σ; ~σ ≡ (σx, σy, σz). (2.2)

The ~a and ~a′ are the unit vectors. For any 3-qubit state, the upper bound of the expectation
value of the Mermin’s operator is:

〈M〉 ≡ Tr(ρM) ≤ 4, (2.3)

where ρ ≡ |ψ〉〈ψ| is a density matrix. Mermin’s inequality is 〈M〉 ≤ 2. Therefore, the
quantum state shows the violation when the 〈M〉 is larger than 2. The maximum violation
monotonically increases for the concurrence in 2-qubit. The different choice of Mermin’s
operator should provide a different quantification to Quantum Entanglement. Therefore,
considering all possible choices of Mermin’s operator

γ ≡ max
M
〈M〉 (2.4)

should be proper to demonstrate Quantum Entanglement because it is independent of a
partial trace operation.

The expectation value of the Mermin’s operator is given by:

〈M〉 =
(
a1, a

T
2 Ra

′
3

)
+
(
a1, a

′T
2 Ra3

)
+
(
a′1, a

T
2 Ra3

)
−
(
a′1, a

′T
2 Ra

′
3

)
, (2.5)

where aj ≡ (aj,x, aj,y, aj,z)T . The superscript T refers to the transpose. The definition of
a′j is similar to the aj . The R ≡ (Rx, Ry, Rz) is the generalized R-matrix. Each element of
the generalized R-matrix is defined as Rj ≡ (Rjkm). The inner product is defined as

(
a1, a

T
2 Ra

′
3
)
≡

3∑
i1,i2,i3=1

a1,i1a2,i2a
′
3,i3Ri1i2i3 , (2.6)
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where Rj1j2j3 ≡ Tr(ρσj1 ⊗ σj2 ⊗ σj3). Note that the following vectors are orthogonal:

V ≡
(
a2,ja

′
3,k + a′2,ja3,k

)
;

V ′ ≡
(
a2,ja3,k − a′2,ja′3,k

)
. (2.7)

The norm of two vectors is:

|V |2 = 2 + 2 cos(θ2) cos(θ3);
|V ′|2 = 2− 2 cos(θ2) cos(θ3), (2.8)

where ~al · ~a′l ≡ cos(θl). The range of θl is 0 ≤ θl ≤ π. Here we define cos(2θ) ≡
cos(θ2) cos(θ3), where 0 ≤ θ ≤ π/2. Therefore, we introduce the orthogonal unit-vectors,
c; c′, as in the following:

V ≡ 2c cos(θ); V ′ ≡ 2c′ sin(θ). (2.9)

Therefore, we rewrite the formula as 〈M〉 = 2 cos(θ)
(
a1, Rc

)
+2 sin(θ)

(
a′1, Rc

′). The matrix
multiplication of RRT has three possible but not equivalent choices in general:

R
(1)
j1J1
≡ Rj1j2j3 |J1=(j2,j3);

R
(2)
j2J2
≡ Rj1j2j3 |J2=(j1,j3);

R
(3)
j3J3
≡ Rj1j2j3 |J3=(j1,j2), (2.10)

where j1, j2, j3 = x, y, z. The different matrix multiplications give different results. Hence
we obtain:

γ ≤ γR = 2 min
R(1),R(2),R(3)

√
u2

1 + u2
2, (2.11)

where the u2
1 and u2

2 are the two largest eigenvalues of RRT . Here we used the following
inequality |xT1 Bx2| ≤ λ|x1||x2|. The x1 is the m-dimensional vector, and x2 is the n-
dimensional vector. The B is an m×n rectangular matrix, and λ is the maximum singular
value of B. The inequality saturates the upper bound only when the vectors, x1 and x2,
are the corresponding singular vectors for the λ. We will show that γR is not equivalent to
γ in general.

3 Quantum entanglement and quantum correlation

A general 3-qubit quantum state up to a local unitary transformation is [10]

|ψ〉 = λ0|000〉+ λ1e
iφ|100〉+ λ2|101〉+ λ3|110〉+ λ4|111〉. (3.1)

The λj is non-negative. The range of φ is 0 ≤ φ ≤ π. The normalization of a density
matrix Trρ = 1 provides the normalization λ2

0 + λ2
1 + λ2

2 + λ2
3 + λ2

4 = 1. Hence a general
3-qubit quantum state only has five independent variables.

Using the 3-qubit quantum state shows that the eigenvalues of RRT ≡M follows from
the equation x3 + α

(j)
1 x2 + α

(j)
2 x + α

(j)
3 = 0. The solution x is the eigenvalue of RRT .
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The superscript (j) indicates the choice of RRT multiplication. The α(j)
1 , α

(j)
2 , α

(j)
3 are

real-valued. The eigenvalues are also real-valued. Hence the discriminant is not a positive
number:

∆(j) ≡
(
−
(
α

(j)
1
)3

27 − α
(j)
3
2 + α

(j)
1 α

(j)
2

6

)2
+
(
α

(j)
2
3 −

(
α

(j)
1
)2

9

)3

≡
(
γ

(j)
1
)2 +

(
γ

(j)
2
)3 ≤ 0. (3.2)

The eigenvalues are:

x
(j)
1 = −α

(j)
1
3 + 2

√
−γ(j)

2 cos
[1

3 arccos
(

γ
(j)
1

(−γ(j)
2 )

3
2

)]
;

x
(j)
2 = −α

(j)
1
3 + 2

√
−γ(j)

2 cos
[1

3 arccos
(

γ
(j)
1

(−γ(j)
2 )

3
2

)
+ 2π

3

]
;

x
(j)
3 = −α

(j)
1
3 + 2

√
−γ(j)

2 cos
[1

3 arccos
(

γ
(j)
1

(−γ(j)
2 )

3
2

)
− 2π

3

]
. (3.3)

Therefore, the variables, α(j)
1 ;α(j)

2 ;α(j)
3 , fully determines γR. In other words, we successfully

establish the relation of Quantum Correlation and Quantum Entanglement.
For a 3-qubit quantum state, all invariant quantities are the following:

I1 = Trρ2
1; I2 = Trρ2

2; I3 = Trρ2
3;

I4 = τ1|23 − τ1|2 − τ1|3;

I5 = Tr
(
(ρ1 ⊗ ρ2)ρ12

)
− 1

3Tr(ρ3
1)− 1

3Tr(ρ3
2), (3.4)

where ρj is the reduced density matrix of the j-th qubit. The τ1|23 ≡ 2(1− Trρ2
1) [6]. The

√
τi1|i2 is the entanglement of formation of the i1 qubit and i2 qubit [6]. The entanglement

of formation is defined as the following [5, 6]:

C(ρ) ≡ min
pj ,ψj

∑
j

pjC(ψj) = max(0, Q1 −Q2 −Q3 −Q4),

Q1 ≥ Q2 ≥ Q3 ≥ Q4;
ρ =

∑
j

pj |ψj〉〈ψj |, (3.5)

where Qj is the eigenvalue of
√
ρ(σy ⊗ σy)ρ∗(σy ⊗ σy) [5, 6]. The ∗ is the complex con-

jugate. The minimization is the overall decompositions of the density matrix ρ. The I4
is called 3-tangle [12]. The I5 is a combination of the correlation of the reduced density
matrix of the first qubit and second qubit Tr

(
(ρ1 ⊗ ρ2)ρ12

)
− Tr(ρ2

1) − Tr(ρ2
2) and other

invariant quantities. We choose the following entanglement quantities:

E1 ≡ τ1|2; E2 ≡ τ1|3; E3 ≡ τ2|3;

E4 ≡ τ = I4; E5 ≡ I5 + 1
4(E2

1 + E2
2 + E2

4) + E2
3 (3.6)

because the E5 is invariant for the different RRT -multiplication, but the I5 does not.
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The E1, E2, E3 are the functions of the concurrences C1, C2, C3. The Cj ≡√
2(1− Trρ2

j ) is the concurrence of the j-th qubit. By the relation, using the E1, E2, · · · , E5

is the same as using the I1, I2, · · · , I5. Now we use the R(1) to calculate the α(1)
1 , α

(1)
2 , α

(1)
3 :

α
(1)
1 = −1− (2E2

1 + 2E2
2 + 2E2

3 + 3E2
4)

= −1− (C2
1 + C2

2 + C2
3 )

≡ −1− C2
T ;

α
(1)
2 = 2(E2

1 + E2
2 + E2

4)E2
3 + 2(E2

1 + E2
2)(E2

4 + 1)
+E4

1 + E4
2 + 4E2

4 + 16E5;
α

(1)
3 = (E2

1 + E2
2 + 2E2

3 + 2E2
4)

×(2E4
4 + 2E2

1E
2
2 + E2

1E
2
4 + E2

2E
2
4)

−(E2
1 + E2

2 + 2E2
4 + 8E5)2. (3.7)

The CT is called total concurrence. This entanglement measure is also invariant for dif-
ferent multiplication ways of RRT . We exchange E2 and E3 to obtain α(2)

2 and α(2)
3 . For

exchanging E1 and E3, we get α(3)
2 and α(3)

3 . It is easy to show that α(j)
1 is negative, and α(j)

2
is non-negative. Hence the upper bound γR contains all necessary entanglement measures.

Now we show the analytical solution to the maximum violation of Mermin’s inequality.
Due to the inequality:

0 ≤ θ(j) ≡ 1
3 arccos

(
γ

(j)
1

(−γ(j)
2 )

3
2

)
≤ π

3 , (3.8)

only the first eigenvalue x(j)
1 is not negative for all possible variables. The inequality also

implies x(j)
3 ≥ x

(j)
2 . Therefore, the calculation of γR always chooses x(j)

1 and x
(j)
3 for a

general 3-qubit quantum state. Hence we obtain

γR = 2 min
j

√√√√−2α(j)
1

3 + 2
√
−γ(j)

2 cos
(
θ(j) − π

3

)
. (3.9)

Indeed, it does not have a global monotonically increasing function for γR. It is consistent
with the LOCC [11]. The 3-qubit quantum state has two inequivalent entangled classes,
GHZ- andW-state [11]. In other words, quantifying 3-qubit Quantum Entanglement should
at least need three parameters. Two parameters are for the overlapping level between a
state and the GHZ-state and W-state. The remaining one is for quantifying Quantum
Entanglement. Hence we should fix two parameters for the quantification and consistency
of LOCC. We find that γR is monotonically increasing for −α(j)

1 without varying γ(j)
2 and

θ(j). The α(j)
1 is invariant for the different RRT -multiplication. It should be suitable to

quantify Quantum Entanglement. Hence we can use γ(j)
2 and θ(j) to classify Quantum

Entanglement. We will show one figure to demonstrate when we compare the γR to γ.
We perform the optimization on 〈M〉 using a direct numerical calculation. We then

prepare 1000 3-qubit quantum states. Figure 2 shows the differences between the γ and
γR. Because −α(j)

1 does not depend on the index j, we remove the index j in this figure.

– 6 –
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Figure 2. Theoretical upper bound (orange) and numerical results (blue) versus −α1 (x-axis).

We also choose λ4 = 0 to demonstrate the classification in figure 3. Here we can do a more
detailed analysis but less trivial than the two-body case (the γR only depends on E1, E2,
and E3). We also compare the γR to γ in this figure. The γR is monotonically increasing
for −α1 as expected, but the γ does not. It shows the difference again. Because the
classification is relevant to complicated functions, it is hard to find. Hence we demonstrate
the usefulness of the analytical solution.

In the two-body case, the correlation of the R-matrix provides the maximum violation.
We generalize the R-matrix fromMermin’s inequality and relate the matrix to entanglement
measures as in the two-qubit case. The generalized R-matrix cannot show the maximum
violation in general. Our result provides a concrete realization for relating Quantum Cor-
relation to Quantum Entanglement. Two-Body Quantum Entanglement only depends on
one independent variable. One can rewrite the maximum violation in terms of concurrence.
The rewriting can also be inverted. Because a general three-qubit quantum state has five
independent variables, we lose the inverse relation. Measuring entanglement measures by
experiment correlators becomes difficult. We will reduce a generic 3-qubit problem to one
entanglement measure. It is helpful for the experimental realization of our theoretical study.
In figure 3, we find no monotonically increase in γ. It suggests that Quantum Entanglement
cannot induce the violation of Mermin’s inequality. Later we will move to one entanglement
measure. We will show no monotonic increasing behavior. It shows the impossibility of
demonstrating Quantum Entanglement by the degree of violation of Mermin’s inequality.
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γ R
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Figure 3. Theoretical upper bound (orange) and numerical results (blue) versus −α1 (x-axis) with
the fixed parameters γ(j)

2 = −0.0884 and θ(j) = 0.00238.

4 Experiment correlator and tripartite entanglement

We turn off λ2 and λ4 then only leaves the non-vanishing E1. When we consider λ3 =
λ4 = 0, the only non-vanishing entanglement quantity is E2. For the E3, we turn off the
λ0. Finally, we choose the λ1 = λ2 = λ3 = 0 to measure 3-tangle. Figure 4 shows the
monotonically increasing behavior of γR for the E1, E2, E3, E4. We find that the results are
identical for E1, E2, E3, while the result for E4 is different. The mismatch at the small E4
region corresponds to the small −α1 region in figure 2. With only λ0 and λ4, the 3-qubit
state is the GHZ class, λ0|000〉 + λ4|111〉. The GHZ class is different from the other 3
cases (at least one qubit is the same). We can check the first three cases. The θ(j) remains
0. The γR = γ is monotonically increasing with entanglement quantity as in 2

√
1 + E2

j .
While in the GHZ class, the θ(j) jumps from 0 to π/3 at E2

4 = 1/3 in the theoretical upper
bound. Hence it shows the difference of the γR and γ from the non-vanishing θ(j). The
numerical solution shows that some entangled states do not have the violation. However,
some entangled states also have smaller values than the product state in the γR. Hence no
violation of inequality in an entangled state is not the main issue for Mermin’s operator.
The real problem occurs when a state only depends on one entanglement measure. For
this case, the monotonically increasing behavior cannot lose. Otherwise, it is impossible
to quantify Quantum Entanglement. Hence Quantum Entanglement cannot be a source of
violation for Mermin’s inequality. Choosing other operators can show the monotonically
increasing behavior in the GHZ class [7, 8]. However, the proposal is also not general.
Because the three-qubit quantum state has two inequivalent entangled classes, the result
possibly implies no generic operators to show the violation from Quantum Entanglement.
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Figure 4. Theoretical (orange) and numerical results (blue) versus E2
1 (upper left), E2

2 (upper
right), E2

3 (lower left), and E2
4 (lower right).

Because we already have complete information for the E1, E2, E3, E4 from the one
entanglement measure case, the only unknown quantity is E5. One can measure various
quantum states to extract E5 from α

(1),(2),(3)
2 and α(1),(2),(3)

3 . Because E5 is relevant to the
correlation between the reduced density matrices, it should be interesting.

5 Outlook

One difficulty of many-body Quantum Entanglement is too many independent variables.
A 3-qubit quantum state has five independent variables. Naively, One should expect a
quintic equation for relating the correlators to Quantum Entanglement. Our theoretical
study showed that naive expectation is wrong. Because RRT is a three by three matrix,
the cubic equation is enough. Therefore, we could show an analytical solution to the γR.
The five necessary entanglement variables all appear in the γR.

It has a general expectation that the violation is a diagnosis of quantumness. Our 3-
qubit study should suggest “Violation 6= Quantum”. We proposed an alternative diagnosis,
the generalized R-matrix. Developing a generic diagnosis to an n-qubit state should be a
revolutionary breakthrough.

We provided a classification to quantify Quantum Entanglement by Quantum Correla-
tors. A partial trace operation is unnecessary for measuring γR. A partial trace operation
leads to a hard-measuring problem to entanglement quantities. Therefore, measuring γR is
possible. Because the correlator is measurable [14], the classification is realizable. There-
fore, our study provided an alternative measure by the correlators.
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