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1 Introduction

Supersymmetry breaking has proven a formidable challenge since the early days of string
theory. Leaving aside the potential appearance of tachyons, the supersymmetry breaking
ingredients often produce tadpole sources for dynamical fields, unstabilizing the vacuum [1,
2]. In terms of underlying supersymmetric moduli space, this can be described in terms of
a non-trivial potential for the moduli, with the tadpole signaling that the theory is sitting
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on a slope, rather than at a minimum (or an otherwise tachyonic extremum). Simple
realizations arise in early models of supersymmetry breaking using antibranes in type II
(orientifold) compactifications [3–6]. As in these models such tadpoles arise for fields in the
NSNS sector, they are usually known as NSNS tadpoles. However, since similar phenomena
arise in more general contexts e.g. for open string moduli (or in other constructions like
heterotic or M-theory), we refer to them as dynamical tadpoles.

They are in contrast with non-dynamical tadpoles, i.e. tadpoles for non-propagating
p-form fields (such as the familiar RR tadpoles), which lead to topological consistency
conditions on string vacua. Instead, dynamical tadpoles indicate not an inconsistency of the
theory, but the fact that equations of motion are not obeyed in the proposed configuration,
which should be modified to a spacetime dependent solution, e.g. rolling down the slope of
the potential (see e.g. [7–9] for this approach in the above context). Hence, they are often
treated more lightly, or directly ignored/hidden under the rug.

In this work we argue that such a mistreatment of dynamical tadpoles has a dramatic
impact on the consistency of the theory, and in particular can lead to stark contradiction
with Quantum Gravity, in the form of violations of some of the best established swampland
constraints [10, 11] (see [12, 13] for reviews), in particular the Weak Gravity Conjecture
(WGC) [14].

We illustrate these ideas in an explicit example of a type IIB orientifold compactifica-
tion with NSNS and RR 3-form fluxes [15, 16], with D7-branes, and admitting a supersym-
metric minimum. We focus on supersymmetric instantons given by euclidean D3-branes
(ED3-branes) wrapped on 4-cycles, satisfying the axion WGC [14], and in fact saturating
it as the BPS relation [17]. We consider toroidal models (and orbifolds thereof), on which
D7-branes have position ‘moduli’ which are in fact stabilized by the fluxes [18–21]. The
potential arises by the axion monodromy mechanism [22–25], with the axion played by
the periodic D7-brane position. Moving the D7-branes slightly off this minimum leads to
a controlled supersymmetry breaking due to flux-induced extra tension on the D7-brane
worldvolume, and the generation of dynamical tadpoles, in particular for the D7-brane
position ‘modulus’ itself. This kind of displacement has been exploited in the construction
of models of inflation [26, 27].

The key point is that the flux-induced extra energy density stored on the D7-brane
worldvolume sources corrections to the geometry, which are usually encoded in a corrected
internal warp factor (see [28], based on [29] in the supersymmetric setup). We show that
this procedure implies brooming a dynamical tadpole under the rug, and that it leads to
a contradiction with Quantum Gravity; concretely, it produces corrections to the action of
ED3-brane instantons which violate the axion WGC.

The problem lies in the assumption that the backreaction of the supersymmetry break-
ing source is fully encoded in an internal warp factor, with no effect on the non-compact
spacetime configuration, hence ignoring the dynamical tadpole sourced by supersymme-
try breaking. Quantum Gravity is thus reminding us that consistent configurations must
necessarily include spacetime dependence to account the dynamical tadpole.

Although we showed this for a concrete model, we expect the general ideas to hold in
more general configurations, and even genuinely non-supersymmetric vacua. In fact, we
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advocate that these general ideas must play a crucial role in understanding how swamp-
land constraints on vacua extend to ‘moduli’ spaces with non-trivial scalar potential. In
particular, unless a proper treatment of the dynamical tadpoles is implemented, the famil-
iar formulation of swampland constraints such as the WGC can be expected to hold only
in vacua.

One can turn this logic around and consider that the condition to satisfy the WGC
in its familiar formulation can be equivalent to the condition to sit at a vacuum, i.e.
minimizing the corresponding scalar potential. This is indeed what happens in our D7-
brane case study, and we expect this to hold in more generality.1 In fact, we provide
extra support for this idea in an amusingly unrelated setup; we show that the condition
of Z-minimization [32, 33], which in holographic dualities provides the gravitational dual
of a-maximization of 4d N = 1 SCFTs [34] in terms of type IIB AdS5 ×X5 vacua, follows
from applying the WGC for D3-branes wrapped on 3-cycles of the internal variety X5.

The paper is organized as follows. In section 2 we consider D-brane backreaction
effects, both in the supersymmetric (section 2.1) and the non-supersymmetric setups (sec-
tion 2.2). In section 3, we describe a class of models and discuss how mistreatment of its
dynamical tadpole can lead to naive violations of the WGC. In section 3.1 we describe
the supersymmetric toroidal orientifolds with D7-branes and 3-form fluxes. In section 3.2
we discuss the dynamical tadpole generated when D7-branes move off its minimum, and
discuss its backreaction. In section 3.3 we argue that computation of the backreaction only
in the internal space can lead to violation of the WGC for different classes of ED3-brane
instantons. In section 4 we construct and explicit orientifold of T6/(Z2×Z2) realizing this
idea. In sections 4.1 and 4.2 we review different discrete choices in toroidal orientifolds,
and in section 4.3 we employ them to build our explicit example, which is equipped with
suitable fluxes in section 4.4. We conclude with some final considerations in section 5. In
appendix A we illustrate that the same ideas underlie the condition of Z-minimization in
AdS5 vacua providing gravitational duals to large classes of 4d N = 1 quiver SCFTs.

2 D-brane backreactions in local models

In our examples, the dynamical tadpole is sourced by D-branes, hence its proper discussion
requires accounting for the D-brane backreaction. In this section we consider several exam-
ples of backreaction of D-branes on other D-branes, in cases where they preserve a common
supersymmetry, or not. For our examples in later sections we need to focus on backreaction
effects on ED3’s, so we restrict to this case in this section, although the ideas generalize
easily to other branes. We also mainly focus on local models, leaving the discussion of
global models, and the issues of the resulting dynamical tadpoles, to section 3.

2.1 Warm up: supersymmetric backreactions

We start with a review of supergravity backgrounds sourced by D-branes (D3-branes, D7-
branes, and bound states thereof), and the backreaction effects on ED3-branes preserving

1This view aligns with the recent progress in relating swampland constraints on spacetime configurations
and on properties of states defined on them, see for instance [30, 31].
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a common supersymmetry. In these supersymmetric cases, the discussion in this section is
related to alternative description in terms of generalized calibrations, see [35–42].

2.1.1 D7 on ED3

Consider type IIB theory onM4×X4×R2, with X4 a compact K3 or T4, and consider ND7
D7-branes spanning the directions 01234567 and transverse to 89 (see below for remarks
on the bounds on ND7). In this theory, there is a BPS instanton given by an euclidean
D3-branes (ED3) spanning X4 and localized in 0123 and 89, in general not coinciding
with the D7-brane in those coordinates. The fact that the ED3 is BPS is easy to verify
from the common solutions to the supersymmetry conditions of the D7 and the ED3.
In an alternative view, there is a ‘no-force’ condition, which is easy to check from the
open string perspective, from the vanishing of the 1-loop annulus amplitude. Here we are
instead interested in the closed string perspective, in which we check that the supergravity
background created by the D7-brane exerts ‘no net force’ on the ED3 (in more proper
language, the action of the ED3 is independent of its position with respect to the D7).

We consider the background created by the D7-branes. Denoting by z the complex
plane in 89, and using r = |z|, the metric has the general brane solution structure

ds2 = Z(r)−
1
2 ηµν dx

µ dxν + Z(r)−
1
2ds 2

X4 + Z(r)
1
2dz dz̄ . (2.1)

The function Z(r) obeys the 2d Laplace equation with a point source at the origin. In the
non-compact case, for ND7 D7-branes, we have

Z = −ND7
2π log(r/L) + . . . , (2.2)

where L is a scale set by e.g. by the global compactification (see section 3 for a related
discussion), and the dots correspond to extra contributions due to possible distant sources.
In addition, there is a non-trivial background for the dilaton

e−φ = Z(r) (2.3)

and for the 10d axion. These are more easily described by combining them into the 10d
complex coupling τ = C0 + ie−φ. For the case in eq. (2.2), it is given by

τ = ND7
2πi log(z/L) + . . . (2.4)

This encodes the shift C0 → C0 + 1 upon the shift z → e2πiz as one surrounds one D7.
This is a good approximation for a small number of D7-branes; due to the non-flat

asymptotics, larger ND7 overcloses the transverse space to a compact structure better
described in F-theory [43]. In our description we will deal with one D7-brane and, if
necessary, we consider the compact configuration close to the weakly coupled IIB limit of
the orientifold of T2 by ΩR(−1)FL , where R : z → −z introducing O7-planes [44]. In such
situation, the above function Z should be replaced by a T2 Green’s function, see later for
analogous examples.
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It is now straightforward to consider an ED3 in the probe approximation, and to
evaluate its action to check it is independent of its position relative to the D7-brane.
Concretely, the effect of the backreaction is to introduce factors of Z which cancel off

SED3 =

(
Z−

1
4
)4

Vol(X4)
Z−1gs

= Vol(X4)
gs

. (2.5)

This is the closed string version of the BPS property.
As usual, the open string description is more suitable for inter-brane distances below

the string scale, while the closed string exchange description is better suited for larger
distances. In this case the discussion is equivalent in both pictures, due to the large
amount of supersymmetry in the system.

2.1.2 D3 on ED3
Les us now consider a different example. Consider again type IIB theory onM4×X4×R2 as
above, with X4 compact, and consider ND3 D3-branes along 4d Minkowski space. Although
the discussion can be carried out in more generality, we are interested in smearing the D3-
branes as a constant density along X4. The backreaction thus depends only on the radial
direction in the complex plane z = reiθ spanned by 89. This is similar to the above D7-
brane case, and in fact both are related by ‘T-duality’2 in X4. Adapting the celebrated
D3-brane supergravity solution to the case of a warp factor obeying a 2d Laplace equation,
we have

ds2 = Z(r)−
1
2 ηµν dx

µ dxν + Z(r)
1
2ds 2

X4 + Z(r)
1
2dz dz̄ , (2.6)

with
Z(r) = −gsND3

2π log(r/L) + . . . (2.7)

Here the dots denote extra pieces, due to global structure e.g. due to possible distant
sources, and L again denotes a global (e.g. compactification) scale.

The D3-branes also source the RR 4-form C4. Given its self-duality, the background
can be expressed in terms of the components of C4 along X4. This leads to the following
profile with the polar angle θ

ϕ ≡
∫

X4
C4 = ND3

2π θ + . . . (2.8)

We now consider a BPS instanton given by an ED3 wrapped on X4, and describe the
effect of the backreaction. The ED3 feels the warping in the metric, and couples directly
to the axion ϕ, so its Dirac-Born-Infeld + Chern-Simons action picks up a factor

1
gs

(
−gsND3

2π log r
)
− i ND3

2π Im log z + . . . = −ND3
2π log z + . . . (2.9)

In this case, it is the holomorphy of the result that encodes the BPS nature of the ED3. Our
computation is essentially that in [29]; indeed, using (2.9) as the corrected instanton action,
for e.g. ND3 = 1 the 4d non-perturbative contribution to e.g. the superpotential gives

W = z e−S
0
ED3 , (2.10)

2This would be Fourier-Mukai in case X4 =K3.
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where the factor 2π has been reabsorbed and S0
ED3 is the instanton action in the absence

of correction. For the open string perspective on this result, see [45–48].

2.1.3 D7/D3 on ED3

By combining the results of the previous two sections, it is straightforward to study
the backreaction of BPS bound states of D7- and D3-branes (namely, magnetized D7-
branes [49–51]). The gravitational backreaction is obtained using the harmonic superposi-
tion rule in supergravity [52]

ds2 = Z
− 1

2
D7 Z

− 1
2

D3 ηµν dx
µ dxν + Z

− 1
2

D7 Z
1
2
D3 ds

2
X4 + Z

1
2
D7 Z

1
2
D3 dz dz̄ , (2.11)

with
ZD7 = −ND7

2π log(r/L) , ZD3 = −gsND3
2π log(r/L) , (2.12)

where we are ignoring the dots. In addition, we have backgrounds for the IIB complex
coupling τ and the axion ϕ as in eq. (2.8)

τ = ND7
2πi log(z/L) , ϕ = ND3

2π Im ( log z) . (2.13)

In the ED3 action, the dilaton background cancels with the D7-brane metric backreaction
factor ZD7, leaving a net effect due only to the D3-branes, given by (2.9).

The generalization of results of the previous sections to global supersymmetric setups is
clear, by simply replacing ZD7, ZD3 by the corresponding solutions of the Laplace equation

−4ZD3/7
(
x8, x9

)
= ρD3/7

(
x8, x9

)
. (2.14)

The above examples correspond to the local solutions of ρD3/7 ∼ ND3/7 δ2(z, z̄). In global
compact setups, the Laplace equation implies some non-trivial integrability conditions on
the sources, which are closely related to the dynamical tadpoles. We thus postpone their
discussion to section 3.

2.2 Non-supersymmetric backreactions

In this section we consider supersymmetry breaking sources, including anti-D3-branes
(dubbed D3-branes in the following), and their backreaction effect on ED3’s. Our aim
is to obtain the backreaction of D7-branes with induced D3/D3-brane charge, as arises
in the presence of NSNS 2-form field backgrounds (ubiquitous in compactifications with
NSNS and RR 3-form fluxes [15, 16]). Our results provide a simple re-derivation of [28] (to
which we refer the reader for a detailed discussion), and generalize easily to some further
effects not considered therein.

2.2.1 Anti-D3 on ED3

Consider the setup of type IIB theory on M4 ×X4 ×R2 as in section 2.1.2, but with ND3
D3-branes instead of D3-branes. We consider the model locally, so that we ignore global
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tadpoles. Since the D3-branes have the same tension but opposite charge compared with
D3-branes, their backreaction on the metric is given by (2.6) with

Z(r) = −
gsND3

2π log(r/L) + . . . (2.15)

and the backreaction on the RR 4-form equals to eq. (2.8) with an extra sign

ϕ = −
ND3
2π θ + . . . . (2.16)

The effect on an ED3 located at position z is multiplication by a factor

− ND3
2π log(z̄/L) + . . . . (2.17)

This anti-holomorphic dependence reflects the fact that locally, the ED3 and D3 preserve
common supersymmetries, albeit those opposite to the ED3/D3 system (and globally, by
the CY threefold compactification).

2.2.2 D7/D3/anti-D3 on ED3

We could now consider the backreaction of D3/D3 pairs. However, these systems are
strongly unstable due to tachyons, and we prefer to consider a more tractable alternative,
which in fact is our main setup in future sections. We consider type IIB theory on M4 ×
X4 × R2 with a D7-brane wrapped on X4 with equal smeared (in X4) D3/D3 charge
distributions. These arise in the presence of a worldvolume gauge background with field
strength F2 and/or pullbacked NSNS 2-form background B2, which combine into

F2 = 2πα′ F2 +B2 . (2.18)

The D3/D3 charge distributions cancel locally when it satisfies

F2 ∧ F2 = 0 . (2.19)

The individual D3- and D3-brane contributions are obtained by extracting the self- and
anti-selfdual pieces

F2,± = 1
2(F2 ± ?4F2) , (2.20)

where ?4 is Hodge in X4. In particular, we have

ND3 =
∫

X4
F2,+ ∧ F2,+ , ND3 = −

∫
X4
F2,− ∧ F2,− (2.21)

and (2.19) implies ND3 = ND3, as anticipated.
Since both contribute in the same way to the gravitational background, it is useful to

introduce
N3 =

∫
X4
|F2|2 = ND3 +ND3 = 2ND3 . (2.22)

To compute the backreaction, we superimpose the effects of the corresponding brane
charges, as computed in earlier sections. This is the leading contribution in an expansion
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with the sources (flux densities) as perturbative parameter; this implies ignoring corrections
that would involve e.g. solving the gravitational background of a source in the background
created by another source. The present expansion fits well with the regime needed for
coming sections, and agrees with the detailed analysis in [28].

The result is that the correction to the ED3 action is controlled by a factor
−N3

2π log(r/L). Particularizing to toroidal X4 = T4 and constant backgrounds, we have

SED3 =
[

1− 1
2π |F2|2 log(r/L) + . . .

]
S0

ED3 , (2.23)

where for future convenience we have added a constant piece in the prefactor, so that
the action is S0

ED3 when F2 = 0. The above result is easily understood from different
perspectives. The D7-brane backreaction on the dilaton and metric cancel out, leaving an
effective D3- and D3-brane distribution, whose backreaction on C4 cancels exactly, and
whose backreaction on the metric add up. As anticipated, we recover the result in [28].

As a final remark, we emphasize that, although the configuration is non-supersym-
metric, it does not lead to tachyons. Indeed open strings with both endpoints on the
D7-brane are insensitive to the worldvolume magnetic flux, and are hence tachyon-free.
On the other hand, in forthcoming compact models with orientifolds, open strings between
the D7-brane and its orientifold image have stretching contributions to their squared mass
which overcome the potential tachyonic contributions from the non-supersymmetric flux.
In fact, in the long inter-brane distance regime, the non-supersymmetric open string sector
leads, in the closed string channel interpretation, to the backreaction interactions just
discussed. Similar remarks apply to examples in coming sections.

2.2.3 D5/anti-D5 on ED3

We now consider an effect present in this setup, but not included in [28]. In the presence
of the worldvolume background F2, there is an induced D5- or D5-brane density, which
also must backreact on the geometry. For simplicity and future use, we consider X4 = T4

(or an orbifold thereof), and consider constant F2, so that the D5-brane charge is smeared,
and the solution does not depend on internal coordinates in X4. We also focus on induced
D5-brane charge, and the results will extend easily to D5/D5 setups needed later on.

The supergravity background created by a D5-brane (e.g. along 45 and transverse to
67 in X4) is determined by a 2d harmonic function ZD5(r) as

ds2 = Z
− 1

2
D5 ηµν dx

µ dxν + Z
− 1

2
D5 ds 2

45 + Z
1
2
D5 ds

2
67 + Z

1
2
D5 dz dz̄ ,

e−2φ = ZD5 .
(2.24)

In local R2 we have
ZD5 = −gsND5

2π log(r/L) + . . . . (2.25)

The above backreaction superimposes to D7/D3/D3 as discussed earlier.
There is also a RR 2-form background, which will not be relevant to our setups. In

fact, we are interested in obtaining the correction to the action of an ED3 (along 4567)
from the above background, and the latter does not couple to the RR 2-form. Note also
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that in this case there is no correction coming from the backreacted metric, since the ZD5
factors have inverse power for 45 and 67, and they cancel off. One is thus left with the
correction to the dilaton, which gives a correction to S0

ED3 by a factor

S0
ED3 →

[
1− 1

4π |F2| log(r/L) + . . .

]
S0

ED3 , (2.26)

where we expanded Z
1
2
D5 to first order in the induced D5-brane charge, and we already

included the constant piece 1, as above.
In the above expressions we have been sloppy concerning numerical factors, which

are not essential to our analysis below, since it is enough to keep track of the parametric
dependence with induced charges. The signs of the different contributions are on the other
hand crucial.

3 Dynamical tadpoles and WGC in D7-brane models

3.1 A D7-brane model

We are considering the model with D7-brane and 3-form fluxes in [20], which we now review.
Although the specific model fulfilling the conditions we need is discussed in section 4, we
here discuss the general class of type IIB orientifolds of T6, or rather orbifolds thereof, like
T2 × T4/Z2, or T6/(Z2 × Z2). For concreteness, we carry out the description in terms
of the latter, although we also discuss the simpler alternatives when indicated. We take
a factorized (T2)3 structure, with coordinates 0 ≤ xi, yi ≤ 1, i = 1, 2, 3 for each T2,
and complexify them as zi = xi + τiy

i. We mod out by ΩR(−1)FL , where R flips all
T6 coordinates, zi → −zi, which introduces 64 O3-planes. In addition, in the presence
of orbifold quotients, e.g. Z2 × Z2, there are additional sets of 4 O7i-planes localized on
the ith T2. The O3-plane charge is canceled against contributions from the upcoming 3-
form fluxes, and D3-branes if necessary, which can be located at arbitrary positions. The
models typically also contain D7i-branes, transverse to the ith T2. These can be located at
arbitrary positions, provided we include the corresponding orbifold and orientifold images,
and that we comply with the flux stabilization, discussed next.

Following [20] we introduce a specific choice of NSNS and RR 3-form fluxes,

F3 = 4π2α′N
(
dx1 ∧ dx2 ∧ dy3 + dy1 ∧ dy2 ∧ dy3

)
,

H3 = 4π2α′N
(
dx1 ∧ dx2 ∧ dx3 + dy1 ∧ dy2 ∧ dx3

)
.

(3.1)

Although naively N ∈ Z due to flux quantization, it must actually be some suitable
multiple of some Nmin due to the diverse quotients; for instance, N ∈ 2Z for T6 orientifolds
with standard (i.e. negatively charged) O3-planes [53], and N ∈ 4Z, 8Z in T6/(Z2 × Z2)
orientifolds [54, 55], as we recall in section 4.4.

The flux superpotential admits supersymmetric minima for

τ1τ2 = −1 , τ3τ = −1 , (3.2)

where τ is the 10d IIB complex coupling.
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The fluxes also stabilize some of the D7-brane moduli as follows. The presence of the
fluxes introduces an in general non-zero pullback of the NSNS 2-form on the D7-branes.
For instance, for a D71 at a generic position

(
x1, y1), in a suitable gauge we have

B|D71 = 4π2α′N
(
x1 dx2 ∧ dx3 + y1 dy2 ∧ dx3

)
. (3.3)

The supersymmetry condition [56] requires that (2.18) is primitive, and of type (1, 1) when
expressed in complex components. This is clearly satisfied at the origin z1 = 0, where D71-
branes can thus be stabilized. However, as emphasized in [20] it is possible to locate them
at other positions

(
x1, y1) if Nx1, Ny1 ∈ Z, by compensating (3.3) with suitably quantized

worldvolume gauge fluxes. For our purposes, we just need some D7-brane to be located at
the origin, and we can consider a general distribution for the rest. For concreteness, using
the above freedom, and the fact that N is even from flux quantization, we choose to locate
the D71-branes distributed in sets of 8 on top of the O71-planes so as to have local charge
cancellation (see section 4.3 for an explicit example).

For orientifolds of T6/(Z2 × Z2) there are typically3 additional kinds of D7-branes,
that we now discuss. D72-brane behave similar to the D71-branes above, and introduce no
qualitative new features. On the other hand, for D73-branes, motion away from the origin
is compatible with supersymmetry and corresponds to a flat direction. This is because
the induced B-field is (1, 1) (and primitive) hence satisfies the supersymmetry conditions.
Our focus is in supersymmetry breaking effects, so we will not be interested in exploring
this possibility.

Focusing again on D71-branes, we also note that, despite the induced B-fields, there is
no net induced D3-brane charge, since (3.3) wedges to zero with itself, cf. (2.19). In fact in
other models, or even in this model but for the motion of the D73-branes, there is a non-zero
net induced D3-brane charge, proportional to the displacement squared. This is compatible
with the cancellation of tadpoles for the RR 4-form due to a mechanism unveiled in [27]:
the backreaction of the induced D5-brane charges on the D7-brane modifies the RR 3-form
flux F3, changing the flux contribution to the tadpole in precisely the right amount. In our
examples we focus on D7-brane motions not involving induced net D3-brane charge, and
hence no such modification of the F3 flux background.

3.2 Moving off the minimum and the dynamical tadpole

We now start addressing our main point, by introducing a source of supersymmetry break-
ing, which triggers a dynamical tadpole. A simple way to achieve this is to consider moving
away from the minimum of the potential. Among the different ways to climb up the po-
tential, we focus on the motion of D71-branes because they lead to better understood
backreaction effects, of the kind discussed in section 2 (clearly, D72-brane motion leads to
similar results).

Consider the above type IIB orientifold, and consider a fixed point at which some
D71-branes sit, which without loss of generality we take to be the origin x1 = y1 = 0. To
be precise, we consider regular D7-branes with respect to the relevant orbifold group, so

3Albeit, not in the specific example to be constructed in section 4.
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that they can move off into the bulk (see section 4 for a detailed discussion of constructions
allowing this motion) e.g. in the first complex plane, to the position

z1 = ±ε ∈ R , (3.4)

where the two signs correspond to a D7-brane and its image.
This motion is along a massive direction, off the minimum of the potential, due to

the non-trivial B-field (3.3) on the D71-brane worldvolume. Since there is no net D3-
brane charge, this can be regarded as a D3/D3-brane tension localized at z1 = ±ε, and
proportional to N2|ε|2, backreacting on the metric, as in section 2.2.1. This is also the
scaling of the potential energy stored in the configuration. In addition, there is an induced
D5-brane change on the D7-brane (and its corresponding D5-brane in its image), which
imply a backreaction on the dilaton, as in section 2.2.3. Notice, that this is a consequence
of the fact that the induced D5- and D5-branes sit at different locations (related by the
orientifold action) in the internal space, hence can lead to a non-trivial backreaction on
different fields, even if the total brane charge adds up to zero in the internal space, as
demanded by RR tadpole cancellation (as there are no O5-planes) or relatedly, by the fact
that the (zero mode of the) corresponding RR field is projected out by the orientifold. We
are now interested in computing the backreaction of these extra sources. Since everything
will be happening in a complex plane, from now on we denote z1 and τ1 by z and τ (hoping
for no confusion with the IIB complex coupling).

Since we consider a motion |ε| � L, where L sets the size of the (T2)1 directions,
we can start with a local model as in section 2. Note that we still consider Ms � ε so
that we can use the supergravity description to obtain the backreaction. In general, there
is a non-trivial supergravity background created by the D3-branes and O3-planes in the
configuration, the D7-branes and O7-planes, and finally the induced D3/D3-branes, and
D5- (and D5-) branes. In coming sections we are interested in the effect of this background
on ED31-branes,4 for which most of these contributions cancel. As discussed in section 2.2,
the key backreaction effects are in the warp factor Z sourced only by the induced tension on
the D7-brane worldvolume, and the induced D5-brane backreaction on the dilaton. They
schematically read

Z ' 1− N2|ε|2

2π [ log ( |z − ε|/L) + log ( |z + ε|/L) ] + . . .

g−1
s ' 1− N |ε|

4π [ log ( |z − ε|/L) + log ( |z + ε|/L) ] + . . .

(3.5)

where we introduce the constant term 1 to recover trivial backreaction for ε = 0. Here
the overall prefactors depending on N |ε| provide the induced brane density, and the dots
hide global features to which turn next. Note that in these and coming expressions, we
are only interested in the parametric dependence and we skip order 1 numerical factors, in
particular in the coefficients of the log terms for the metric and dilaton profiles. On the
other hand, the explicit minus sign and the structure of the bracket of logs itself is identical

4In section 3.3.3 we also consider ED(−1)-brane instantons. These are also BPS with respect to the su-
persymmetric D3/O3 and D7/O7 background, and again disappear in the relevant part of the backreaction.
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for both backgrounds, as it is determined by the solution of a Laplace equation in R2 with
sources at z = ±ε.

The above expression is valid for small ε, since we take the linear/quadratic approx-
imation for the induced D5/D3-brane density. The result can however be extended for
larger ε by using the full DBI contribution, e.g. for the 3-brane charge we sketchily change

|ε|2 → 2
(√

1 + |ε|2 − 1
)
. (3.6)

We will nevertheless stick to small ε, since it controls the expansion of weak supersymmetry
breaking sources employed in the computation of the leading backreaction effect. In any
event, the only relevant information is that the coefficients of the logs are positive definite
(up to the explicitly indicated sign) for any value of ε, and vanish at ε = 0 at least as O(ε).

We now turn to a very important point. We eventually need the backreaction at a
general position z, not necessarily close to the origin. Hence, even if ε is small, we need
to consider the global compactification. For this, in principle, one would simply promote
the previous logarithmic backreaction to a solution of the Laplace equation with a delta
function source cf. (2.14). However, this leads to a problem of integrability of the equation,
as the left hand side integrates to zero in a compact space, and the right hand side does
not. This is nothing but the dynamical tadpole problem presented in the introduction:
there is a vacuum energy stored in the internal space, which leads to an inconsistency of
the equations of motion.

An usual procedure (see [28], based on [29] in the supersymmetric setup) is to modify
the equations of motion (the Laplace equation) by introducing a constant distribution
of background source compensating the delta function (i.e. so that the right hand side
integrates to zero). In other words, we promote

log
( |z + ε|

L

)
+ log

( |z − ε|
L

)
→ G2

( |z + ε|
L

)
+G2

( |z − ε|
L

)
, (3.7)

where G2(z) is the 2d Green’s function, satisfying

4G2
(
z − z′

)
= δ2

(
z − z′

)
− 1
L2 Im τ

. (3.8)

Here L is explicitly the length of the T2 sides, set to L = 1 in what follows for simplicity.
The solution is given by (see e.g. [28, 57], also [58] in a different context)

G2(z) = 1
2π log

∣∣∣∣ϑ1(z|τ)
η(τ)

∣∣∣∣− (Im z)2

2 Im τ
, (3.9)

with, defining the nome q = e2πiτ ,

ϑ1(z|τ) = 2q1/8 sin(πz)
∞∏
m=1

(1− qm)
(
1− 2 cos(2πz)qm + q2m

)
,

η(τ) = q1/24
∞∏
m=1

(1− qm) ,
(3.10)
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and where an additive integration constant has been fixed to have the Green function
integrated to zero (so that a constant density of source gives rise to no correction).

The above trick is a well-defined mathematical procedure, but its physical meaning
is questionable. It corresponds introducing by hand in (3.8) a constant negative tension
background in the internal geometry, which indeed sounds troublesome. Alternatively, it
corresponds to ignoring the dynamical tadpole (potential for the D7-brane position off its
minimum) and to insist that the configuration still admits a solution with distortions only
in the internal space, keeping the external 4d Minkowski spacetime. In the following section
we argue that these are not just subtle technicalities, but, rather that putting the dynam-
ical tadpole under the rug, can lead to direct contradiction with quantum gravitational
swampland constraints, in particular the Weak Gravity conjecture.

3.3 The clash with the WGC

In this section we show that in the theory there are objects that implement the WGC in the
vacuum, but for which the above discussed backreaction (with the tadpole hidden under
the rug) induces corrections in the wrong direction, so that the configuration no longer
obeys the WGC.

A simple possibility is to focus on BPS objects at the supersymmetric minimum, and
to track their properties in the displaced configuration. As anticipated in section 2.2, we
consider the axion WGC and focus on the ED3-brane instantons wrapped on X4, and
transverse to the z1-complex plane. We consider two possibilities, to be discussed in turn,
regular ED3-branes, which are mobile and can be located at different positions in z1, and
fractional ED3-branes, which are stuck at a given fixed point (and can be regarded as
ED3/ED(−1) bound states).

3.3.1 The regular ED3

Consider a regular ED3, namely one that can be located at any position in z1, before the
introduction of fluxes (since the latter lead to localization, as will be mentioned soon). In
the case of a T6 orientifold, this is achieved by introducing an orientifold image, and if
there are orbifold quotients this requires a specific choice of Chan-Paton actions, whose
details we skip (see section 4 for an extensive discussion).

At the supersymmetric minimum, the action for the BPS ED3-brane instanton is

S0 = ImT , (3.11)

where T is the 4-cycle modulus of the underlying T6. The BPS relation ensures these
instantons saturate the axion WGC, in fact also for arbitrary instanton charge (e.g. multiply
wrapped ED3s).

Although the above observations apply for instantons located at arbitrary z1, the
introduction of 3-form fluxes leads to a localization effect, since, e.g. away from z1 = 0 the
ED3 picks up a B-field exactly as in (3.3), which contributes to increase its action. This
contribution grows quadratically with |z1| and is not suppressed for small ε, so it dominates
over ε-dependent backreaction corrections. Hence in the following we focus on the effect of
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backreactions on ED3 located at z1 = 0, where the direct flux-induced localization vanishes
(however, we advance that ED3s at other possible locations will bite back in section 3.3.2).

When we move the D7-brane off its minimum, the backreaction (3.5) enters as a
multiplicative factor in the instanton action. Hence, the correction to the ED3 action at
z = 0 is

∆S = −C ( log |ε| ) Im T , (3.12)

with a positive definite coefficient C, vanishing for ε→ 0, with the sketchy structure

C ∼ N |ε|
2π + N2|ε|2

π
. (3.13)

Note that N |ε|, N2|ε|2ImT encodes the total induced 5-brane and 3-brane tensions, and
correspond to N5, N3 in (2.25), (2.22), respectively.

Since we have small ε, this gives a positive correction ∆S positive, thus increasing
the action of the instanton. Actually this is not yet problematic. In fact, since (3.12)
follows from just the local model approximation, there is no finite 4d Planck scales and
hence no contradiction with the WGC so far. Notice also that the dynamical tadpole has
not yet been ignored, since the Laplace equation in non-compact spaces does not require
the cancellation of sources, hence the introduction of the fake background to cancel the
tadpole. This agrees with our picture that it is the mistreatment of the dynamical tadpole
that leads to problems with quantum gravitational constraints.

3.3.2 Going compact: the ED3 landscape

In this section we consider the compact T2 model, and the modification it implies for the
ED3-brane action and its interplay with the axion WGC.

As we have explained, to describe the backreaction in the compact T2 we have to
promote the logs in earlier expressions to solutions of the 2d Laplace equation cf. (3.7),
which leads to the dynamical tadpole problem. Getting rid of it as described above, the
effect of the backreaction on the action of an ED3 at a general location z is

− CGtot.(z; ε) ≡ −C [G2(z + ε|τ) +G2(x− ε|τ) ] , (3.14)

where Gtot. is the total Green’s function due to the two sources at z = ±ε. This by itself
does not lead to a substantial modification, since its local behavior near z = 0 is just the
above logs, so we recover the same correction to the action of the ED3 at z = 0. However,
there is an important novelty in the compact model, since there are locations away from
z = 0 where the B-field induced on the volume of the ED3-brane can be canceled by
a suitable worldvolume magnetic flux, giving a vanishing (2.18) on the ED3. Namely,
recalling (3.3), we see that for an ED3 at x1 = n1/N , y1 = n2/N , with ni ∈ Z, we may
cancel the induced B-field by choosing

F2 = −
(
n1 dx

2 ∧ dx3 + n2 dy
2 ∧ dx3

)
. (3.15)

This is nothing but the ED3 version of the open string landscape of [20]. These ED3s are
in the same topological charge sector as the original ED3 at z = 0 because

∫
X4
F2∧F2 = 0.
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(a) N = 2 (b) N = 4

Figure 1. Plot of Gtot. for τ = 2i and ε = 0.1. The blue dots are the ED3 open string landscape
points, and the green one z = 0.

(a) N = 2 (b) N = 4

Figure 2. Plot of Gtot. for τ = 2i and ε = 0.1. The blue dots are the ED3 open string landscape
points, and the green one z = 0.

Hence, the condition that we actually obtain a violation of the WGC is that the backreacted
ED3 action increases for all points of the ED3 open string landscape. In terms of (3.14), the
condition is that the value of Gtot. is negative at all the ED3 open string landscape points.

Since flux quantization in orientifolds of T6 requires that N must be at least multiple
of 2 (and possibly for 4 or 8, in further orbifolds), the ED3 open string landscape points
include at least the four points z = 0, 1/2, τ/2, (1+τ)/2. This is non-trivial, since recall the
integral of the Green’s function integrates to zero over T2, hence scans over both positive
and negative values. In fact, we have performed extended numerical checks for different
values of ε and τ , and have always found that the above condition seems impossible to
fulfill. In other words, even if the value of Gtot can be made negative at one or even several
of these points, there is always at least one of them where Gtot is positive. In figures 1, 2
we provide typical examples for τ = 2i, ε = 0.1, 0.2, and N = 2, 4.

The pattern is clear and shows that there is no violation of the WGC in this sector
of axion charges. Although it could be interesting to have a direct analytical proof of this
result, we instead move the discussing the WGC in other closely related charge sectors.
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3.3.3 The fractional ED3/ED(−1) sector

The discussion in the previous section makes it clear that the WGC for regular ED3s
is satisfied precisely because they are free to move in the T2, so that there is always
a representative of the charge sector with small enough action. In this section we seek
further and consider fractional ED3-branes, which can be stuck at fixed points, and show
that the corresponding WGC is violated.

In orientifolds of toroidal orbifolds, in addition to the regular ED3-branes there may
be fractional ED3-branes, stuck at the orbifold fixed points. These arise when it is possible
to endow the ED3-branes with Chan-Paton indices not in the regular representation of the
orbifold group. On general grounds, it is not obvious that one can build models in which
D7-branes can be mobile (as we need, to move off the minimum) while admitting fractional
ED3-branes stuck at the orbifold points. We postpone this technical discussion, and the
construction of an explicit model, to section 4, and here proceed with those aspects related
to the WGC.

For our purposes in this section, it suffices to note that flux quantization in orbifolds
ensures that the orbifold points lie at possible ED3 open string landscape positions, so that
(suitably magnetized) fractional ED3s maintain their minimal action, without suffering an
increase due to the pullbacked B-field. Hence, since these ED3’s are stuck at such position,
it would naively seem straightforward to find values of parameters τ , ε, such that the Gtot.
at that particular location is negative. Some obvious examples are given by the figures
above. This would seem to lead to direct violation of the WGC.

However, although the final conclusion is correct, this is not exactly how things work,
due to important subtlety. Recall the intuition that fractional branes cannot move off
the fixed point because they carry charges under RR fields in the orbifold twisted sector
(geometrically, they are secretly wrapped on the cycles collapsed at the orbifold singularity).
In other words, they can be regarded as ED3/ED(−1)-brane bound states. We are thus
dealing with a multi-charge sector, and must hence consider the multi-axion version of the
WGC. This is described in terms of the convex hull WGC [59–61]. In the following, we
sketch the discussion in the simplified situation that there is only one twisted axion,5 since
the generalization to several introduces no new features. Also, we abuse language to use
the more familiar particle WGC terminology, such as ‘state’ or ‘mass’ (instead of instanton
and action).

Consider the situation before the introduction of the 3-form fluxes. We can consider the
set of BPS (possibly fractional) ED3/ED(−1)-brane bound states, for arbitrary charges.
The BPS condition ensures that all these states saturate the WGC condition, and that
their charge to mass ratio lie in the extrema region given by the unit ball. Namely, for any
rational direction in charge space, there is a BPS state saturating the WGC, namely with
unit charge to mass ratio. This is illustrated in figure 3a.

Let us now consider including the backreaction effects. In the direction of the purely
untwisted charge, the discussion is as in the previous section, and although the fractional

5We are also skipping the discussion of the 10d axion, to which ED(−1)-brane instantons couple; again
they do not significantly change the argument or its conclusion.
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Twisted

Untwisted

(a) The 2-axion convex hull WGC for the BPS case.
The solid line describes the set of BPS states, satu-
rating the WGC for any rational direction.

Twisted

Untwisted

(b) After including backreaction, the curve of former
BPS states is deformed away from the unit circle.
In the purely untwisted charge direction, the WGC
is satisfied, but it is violated in the purely twisted
charge direction.

Figure 3. The 2-axion convex hull WGC before and after including backreaction.

ED3 at the orbifold point does not satisfy the WGC bound, the theory does contain other
states satisfying the strict inequality. Hence the curve of former BPS states is deformed
outward along that direction, with the deformation controlled by the small parameter ε.

In the direction of the purely twisted charge, the charged states are (fractional and
regular) ED(−1)-branes. Although we have not discussed them in section 2, the backreac-
tion effects are straightforward to describe. Since they have no extended dimensions, the
ED(−1)-branes are insensitive to the warp factor sourced by the induced D3-brane charge;
on the other hand, their action is controlled by g−1

s , which gets corrected due to the in-
duced D5-brane charge. Promoting its value (3.5) to the global setup, we find a correction
given by (3.14), with a positive definite coefficient C ∼ N |ε| from the 5-brane source. In
analogy with the argument for ED3s, this correction increases the action for fractional
ED(−1) brane instantons, again with the deviation controlled by ε. Since we are dealing
with twisted charges, there are no representatives in this charge sector in other locations,
so there is no charged states satisfying the WGC in this charge sector. Combining results
for general rational charge vectors, the WGC diagram looks like figure 3b. The unit ball
is squashed by an amount controlled by ε, and there is a violation of the WGC in the
direction close enough to the purely twisted axion charge vector.

We can be more precise about figure 3. In figure 3a we are showing all possible states
with charges (n,m) under the untwisted and twisted axions given by bound states of ED3-
branes wrapped n times on T2 and m fractional ED(−1)-brane instantons. Since they
are BPS they fill out the round circle. In figure 3b, the corrections controlled by ε go
in opposite directions for the untwisted and twisted directions, and the states fill out the
ellipse. Since now the convex hull does not contain the unit ball, there is a violation of the
WGC, in particular close to the twisted axion charge vector.
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It is worth to stress that such corrections to the action have been computed using the
Green function defined in (3.9) satisfying (3.8). Hence the inconsistency with the WGC is
clearly related to the fact that the proposed backreaction does not solve the equations of
motion, due to the mistreatment of the dynamical tadpole.

As a final remark, note that we have not discussed the values of the Planck scale
and axion decay constants. In fact, since we are working in the effective theory of the
supersymmetric vacuum, and have simply changed a scalar VEV, the axion decay constants
remain fixed; or more precisely, any change in the axion decay constant should be encoded
in a dependence on the scalars. This would lead to a discussion in terms of the scalar WGC
(see [62], also [63, 64] for variants, and [13] for the axion version). However, this does not
help to satisfy the constraint since e.g. for a single axion the SWGC reads [13]

f2S2 + f2(∂φS)2M2
P ≤M2

P . (3.16)

Hence the scalar contribution is positive definite and adds to the gravitational contribution.
The simplest explanation for the non-fulfillment of the WGC in the configuration is

thus that it does not provide a consistent background, due to the artificial removal of
the dynamical tadpole. In other words, the configuration makes the inconsistency of the
background manifest as an incompatibility with quantum gravity, namely with swamp-
land constraint.

In the next section we build an explicit orientifold with the features described above.
Readers not interested in the details are advised to jump to the conclusions in section 5.

4 An explicit Z2 × Z2 orientifold example

In this section we build an orientifold of T6/(Z2×Z2) with mobile D71-branes which allows
for fractional ED3 branes stuck at some fixed points, hence provides an explicit realization
of the above ideas. As we will see, the fact that we are interested in D7- and ED3-branes
associated to the same 4-cycle in T6 makes it non-trivial to allow mobile D7s and stuck
ED3s. For the benefit of the reader, we take the opportunity to review the key points of
type IIB orientifolds, and some of the main models illustrating them, to better explain our
eventual choice of final model realizing mobile D7-branes and stuck ED3-branes.

4.1 Choice of discrete torsion

Orientifolds of T6/(Z2 × Z2) have been studied for decades, and illustrate the wealth of
possible discrete parameters in defining orientifolds of orbifold varieties. On one hand, the
T6/(Z2 × Z2) orbifold admits a choice of Z2 discrete torsion [65–67]. The two resulting
models are distinguished by a parameter ε = ±1 determining the action of the generator
θ of one of the Z2’s on the states of the sector twisted by the generator ω of the second
Z2 (equivalently, as a relative weight between two disjoint SL(2,Z) orbits of contributions
to the torus partition function). Since the twisted sector of ω contains 2-cycles (collapsed
at the orbifold singularities) and 3-cycles (given by the 2-cycles times a 1-cycle in the
unrotated T2), the choice of discrete torsion determines if the θ projection keeps the ω-
twisted 2-cycles or the 3-cycles. Including a similar analysis for the three different twisted
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sectors, and the untwisted contributions, the resulting CY threefolds have Hodge numbers
(h1,1, h2,1) = (3, 51) for one choice (which we will refer to as without discrete torsion, and
denote with ε = +1) and (h1,1, h2,1) = (51, 3) for the other choice (which we will refer to as
with discrete torsion, and denote with ε = −1). We warn the reader that the convention
of ‘with/without’ is not uniform in the literature, and that we follow the one used in part
of the literature on orientifolds (see later), which is opposite to e.g. [67].

From a geometric perspective, a fractional ED3-brane wrapped on a holomorphic 4-
cycle stuck at orbifold fixed points must be secretly wrapped on a collapsed 2-cycle at the
singularity. Hence, in order to allow for them, the underlying orbifold model must contain
blowup 2-cycles, namely it must be the (h1,1, h2,1) = (51, 3) choice (with discrete torsion
or ε = −1, in our conventions).

This means that the T6/(Z2 × Z2) orientifold we need is not the one constructed
in [68], which corresponds to the model (h1,1, h2,1) = (3, 51) (without discrete torsion, or
ε = +1, in our convention). This can be checked by noticing that the Chan-Paton matrices
defining the orbifold actions on the D-branes give not a true representation of the orbifold
group, but a projective one, as explained in [69, 70] (the ‘with/without’ convention there
is opposite to ours, and follows [67]). Instead we must focus on models based on the
choice (h1,1, h2,1) = (51, 3) (with discrete torsion, or ε = −1, in our convention). This may
sound troublesome, since models with this choice of discrete torsion tend to have positively
charged orientifold planes, and hence require the introduction of antibranes [71, 72] (see
also [3–5, 73, 74] for examples in other orientifolds). We will later on see how our model
does not suffer from this problem.

4.2 Choice of vector structure

When performing the orientifold quotient, there are further discrete choices to consider.6
In the twisted sectors of a general orbifold element Zn, the orientifold usually acts by
exchanging oppositely twisted sectors.7 This implies that the sector twisted by an order
2 orbifold element R is mapped to itself, and there is a discrete choice of sign for the
corresponding orientifold action Ω′ (where the prime indicates that worldsheet parity is in
general accompanied by geometric (or other) actions) [76]. As explained in this reference,
this manifests in the open string sector of a Dp-brane as the following condition on the
Chan Paton matrices

γR,p = ± γΩ′,p γ
T
R,p γ

−1
Ω′,p . (4.1)

The choices +/− are (this time, universally) known as with/without vector structure,
see [77] (also [78]) for geometric interpretation underlying the naming. An important aspect
is that the choice is correlated with a choice of orientifold action on the closed string sector,
hence the sign choice in the open sector must hold for all D-branes in the model.

6Actually, the most obvious choice would be the SO/Sp projection. In the discussion below, we assume
we take the projection corresponding to negatively charged orientifold planes, to the extent allowed by the
other discrete choices (which in some cases force some of these orientifold planes to be positively charged).

7See [75] for a notable exception.
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A typical choice of Chan-Paton matrices for any of these branes in models without
vector structure is, in a suitable basis,

γR,p = diag (i1n,−i1n) , γΩ′,p =
(

1n
1n

)
or γΩ′,p =

(
i1n

−i1n

)
, (4.2)

where n denotes the number of D-branes in a given set fixed under the orbifold and ori-
entifold actions, and the two choices of γΩ′,p are symmetric/antisymmetric for the SO/Sp
projections. For instance, the 6d T4/Z2 model in [79, 80] corresponds to the above action
for n = 16 on 32 coincident D-branes mapped to themselves by the orbifold and orientifold
actions. Similarly, in the 4d model in [68] the orientifold action on each Z2 orbifold twist
is of this kind (albeit in not simultaneously diagonalizable way, as befits the projective
representation required for the discrete torsion choice of the model). Generalizations to
other orbifold groups have also been constructed [81] (see also [82]).

As is clear from the template (4.2), the orientifold acts by exchanging the two different
kinds of fractional branes of the underlying Z2 orbifold. Hence a consistent orientifold
action requires that the orbifold action on D-branes is in the regular representation, namely
tr γR,p = 0, and hence one cannot have stuck fractional D-branes. For our purposes in the
main text, this would be fine to allow for mobile D7-branes, but it forbids having stuck
ED3-branes. Note that, in the particular case of the model in [68], this also agrees with our
earlier discussion of the absence of fractional 4-cycles for that choice of discrete torsion.

Hence, for our purposes in the main text, we are interested in models where the
orientifold action on an orbifold element rotating the first complex plane is with vector
structure. Models with vector structure have been considered, starting from [76] (see [83]
for 4d examples) and they involve an extra subtlety. In the D9-brane description, the
orbifold fixed points also fixed under this orientifold action with vector structure, have
positive RR charge. Hence, as shown in [76], a consistent supersymmetric model can be
achieved only if 8 of the 16 fixed points have orientifold action with vector structure, and the
other 8 have orientifold action without vector structure (with the difference implemented
by a suitable Wilson line). The model thus contains D9-branes, but no D5-branes. The
model has a T-dual with D5-branes and no D9-branes, which had been constructed in [84].
We now turn to the construction of this 6d model, but in terms of D7-branes, to later
employ it to build a 4d model with mobile D7-branes and admitting stuck ED3s.

The construction of the 6d model is as follows. Take T4 parameterized by (z1, z2) with
zi = xi + τiyi, and xi, yi with periodicities 1. We have a Z2 orbifold action generated by
θ : (z1, z2)→ (−z1,−z2), with 16 orbifold fixed points at the locations xi = 0, 1

2 , yi = 0, 1
2 .

We orientifold by ΩR1(−1)FL with R1 : (z1, z2) →
(
−z1 + 1

2 , z2
)
. This leads to 4 O71-

planes (which we take negatively charged), located at x1 = 1
4 ,

3
4 , y1 = 0, 1

2 , and spanning z2.
There are 32 D71-branes, whose distribution in the z1 plane should respect the symmetries,
and will be discussed later on. The orbifold fixed points do not sit on top of the O71-planes,
so the orientifold action exchanges them. The orientifold group also includes the element
ΩR1θ(−1)FL , which is however freely acting since R1θ : (z1, z2) →

(
z1 + 1

2 ,−z2
)
. Hence,

there are no crosscap RR tadpoles, namely no O72-planes, and hence no D72-branes need
to be introduced. This reproduces the cancellation of untwisted tadpoles, with only one
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kind of brane, as in the T-duals [76, 84]. On the other hand, since the orientifold planes do
not coincide with the orbifold fixed points, they do not induce twisted RR tadpoles. Hence
the D71-branes can be located anywhere in the z1-plane, for instance as 8 independent
D7-branes with their corresponding orbifold and orientifold images. If they are located
on top of an orbifold or orientifold fixed point, their symmetry is enhanced. For instance,
locating 16 D7-branes on top of an orientifold plane and 16 on top of its orbifold image, one
gets SO(16) vector multiplets of 6d N = 1, with one adjoint hypermultiplet. If we locate
16 D7-branes on top of an orbifold point, and 16 at its orientifold image, cancellation of
RR disk twisted tadpoles enforces

tr γθ,71 = 0 → γθ,71 = diag (18,−18) , (4.3)

at each of the two orbifold fixed points. In this case the gauge group is U(8)2, with two
hypermultiplets in the ( , ). Although sitting at the orbifold fixed point, the D71-branes
can be move off into the bulk, and this corresponds to Higgsing with the bifundamental
down to less symmetric patterns, possibly down to the generic U(1)8. As a related comment,
note that the equality of +1 and -1 entries in (4.3) is not enforced by the orientifold action
(which is merely mapping one orbifold fixed point to the other), but by the disk RR tadpole
condition. This implies that it is perfectly consistent to have a D3-brane wrapped on the
directions z2 and sitting at an orbifold fixed point in z1 (with another D3-brane at its
orientifold image position) with

tr γθ,3 6= 0 → e.g. γθ,3 = 1 . (4.4)

This D3-brane sources a twisted tadpole, but there are non-compact dimensions transverse
to it in which the flux lines can escape to infinity. The fact that the D3-brane sources this
charge implies it cannot be moved off the orbifold fixed point. Indeed, the open string sector
does not contain any matter fields for the choice (4.4). This wrapped D3-brane corresponds
to a BPS string in the 6d theory, and is to become a stuck ED3 in the upcoming 4d model,
by wrapping its two dimensions on the extra T2.

4.3 The 4d model

It is now easy to combine different above ingredients to build a 4d model with mobile D7-
branes and admitting stuck ED3s. We consider a factorized T6 parameterized by (z1, z2, z3)
with zi = xi + τiyi, and xi, yi with periodicities 1. We mod out by the Z2 × Z2 orbifold
action generated by θ : (z1, z2, z3) → (−z1,−z2, z3) and ω : (z1, z2, z3) → (z1,−z2,−z3).
This leads to the familiar 16×3 orbifold fixed planes, and as explained in section 4.1, we
choose the model leading to (h1,1, h2,1) = (51, 3) (i.e. with discrete torsion or ε = −1, in
our convention).

We now perform an orientifold ΩR1(−1)FL , with R1 : (z1, z2, z3) →
(
−z1 + 1

2 , z2, z3
)
.

As explained in section 4.2, this leads to 4 O71-planes located at x1 = 1
4 ,

3
4 , y1 = 0, 1

2 ,
and spanning z2. On the other hand, ΩR1θ(−1)FL and ΩR1θω(−1)FL act with a shift
in the coordinate z1, hence are freely acting and do not introduce O72- and O73-planes.
Finally ΩR1ω(−1)FL acts geometrically as R1ω : (z1, z2, z3) →

(
−z1 + 1

2 ,−z2,−z3
)
, and
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leads to 64 O3-planes, at x1 = 1
4 ,

3
4 , y1 = 0, 1

2 , xi, yi = 0, 1
2 for i = 2, 3. Note that the

O71 planes exchange the θ-fixed orbifold points (and similarly for the ωθ-fixed points), but
maps each ω-fixed plane to itself (and similarly for the O3-planes). In particular, notice
that there are points which are simultaneously fixed under the ω action and the O3-plane
(or O71-plane) action.

We must now specify the discrete choices for these orientifold actions, to achieve the
desired result. We take negatively charged O71-planes, so as to have a total of 32 D71-
branes, as counted in the covering space. Since we seek to have mobile D71-branes and
stuck ED3-branes in z1, we need the action of ΩR1(−1)FL on the θ orbifold to be with vector
structure, just as in the last 6d example discussed above. On the other hand, the action
of ΩR1(−1)FL on the ω orbifold cannot be with vector structure, since this would lead to
positively charged O3-planes, whose RR charge cannot be canceled in a supersymmetric
way. Hence this sector should have Chan Paton matrices without vector structure. The
orientifold action on the θω sector follows from the above, and is without vector structure.

Notice that this pattern matches the observation in [71] that in orientifolds of T6/(Z2×
Z2) there are three discrete sign choices εi determining the orientifold action on the cor-
responding orbifold element, morally εi = +1 (resp. εi = −1) implies the corresponding
orientifold planes are negatively (resp. positively) charged. These signs are correlated with
the discrete torsion parameter ε by ε1ε2ε3 = ε. Our model has discrete torsion ε = −1,
and hence requires that at least one orientifold action has εi = −1. However, the model
cleverly evades the need to introduce positively charged orientifolds planes, because the
εi = −1 action corresponds to the θ orbifold sector, where the orientifold action is freely
acting and no actual orientifold planes appear. The two εi = +1 sectors are the θω sector,
without orientifold planes, and the ω, with negatively charged O3-planes.

To make the above description more explicit, let us describe the Chan-Paton action
on the 32 D3-branes. In the actual model in the main text, the D3-branes will actually be
replaced by 3-form fluxes, see section 4.4, so they are here used just to illustrate the effect
of discrete choices in open string sectors.

We consider 16 D3-branes located at and O3-plane, and 16 at the image under the
orbifold action θ (or θω). Each set is mapped to itself by the action ω and by Ω′ ≡
ΩR1(−1)FL , which should be represented by matrices γω,3, γΩ′,3 of the form (4.2). On the
other hand, if we include the 16+16 set in a single matrix γθ,3 to describe the action of
θ, its interplay with ΩR1(−1)FL should be with vector structure. Finally, recall that the
matrices γθ,3, γω,3 should provide a non-projective representation of the orbifold group,
due to the choice of discrete torsion. A simple choice satisfying these properties is

γθ,3 =
(

116
116

)
, γω,3 = diag (i18,−i18; i18,−i18) , γΩ′,3 =


i18

−i18
i18

−i18

 .

Although γθ,3 and γω,3 commute, we have not diagonalized the former so as to maintain
the 16+16 split manifest. The matrices satisfy (4.1) with + sign for γθ,3 and − sign for
γω,3. We have chosen antisymmetric γΩ′,3 corresponding to an Sp projection.
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For D71 branes, we choose to locate 8 on top of each O71-plane, which we recall are
exchanged pairwise by θ. The Chan-Paton matrices in the corresponding 8+8 set is similar
to the above, but with symmetric γΩ′,7, namely

γθ,71 =
(

18
18

)
, γω,71 = diag (i14,−i14; i14,−i14) , γΩ′,71 =


14

14
14

14

 .

4.4 Introducing 3-form fluxes

As already mentioned, and is clear in the main text, the model must include NSNS and
RR 3-form fluxes, which contribute to the RR 4-form tadpole cancellation. In particular,
in the normalization (3.1), we have

Nflux = 1
(2π)4α′2

∫
X6
F3 ∧H3 = 2N2 . (4.5)

The RR tadpole condition is
Nflux +ND3 = 32 , (4.6)

where ND3 is the number of D3-branes, as counted in the covering space. Hence, the
condition for the flux contribution not to overshoot8 the RR tadpole is that N ≤ 4.

One may fear that this bound is too small for an orientifold of T6/(Z2 × Z2), due
to flux quantization conditions. As mentioned in the main text, it was argued in [53]
that in orientifolds of T6, NSNS and RR fluxes must be quantized in multiples of 2, if
the model has all negatively charged O3-planes, while odd quanta are allowed only if
other (positively charged) exotic O3-planes are included. In addition, the Z2 orbifold
projections in general allow for smaller 3-cycles than in the underlying T6, leading to
more strict quantization conditions. In fact, as shown in [54, 55] the orientifold of the
T6/(Z2×Z2) with (h11, h21) = (3, 51) (without discrete torsion, or ε = 1, in our convention)
requires 3-form fluxes to be quantized in multiples of 8, leading to an overshoot of their
RR tadpole contribution. However, happily, for the T6/(Z2 × Z2) we are actually using,
with (h11, h21) = (51, 3) (with discrete torsion, or ε = −1, in our convention), it was shown
in [54] that 3-form fluxes must be quantized in multiples of 4. Thus, the minimum amount
of flux available for this model leads to N = 4, which precisely saturates the RR tadpole
cancellation, without need of D3-branes.

We would like to finish with an important observation, which relates flux quantization
with the ‘energetics’ of the stuck ED3-branes of interest in the main text. The 3-form
fluxes (3.1) are clearly invariant under the orbifold and orientifold transformations. How-
ever, this invariance is not manifest once we write down explicit expressions for the NSNS
2-form gauge potential. For instance, let us redefine the origin in the z1-plane, so that the
origin z1 = 0 corresponds to an orientifold plane, as in the main text. Then, we may write

B = 4π2α′N
(
x1 dx2 ∧ dx3 + y1 dy2 ∧ dx3

)
, (4.7)

8Notice that a moderate overshoot can actually be allowed, and still maintain supersymmetry, if one
includes suitably magnetized D9-branes, as implemented in [85, 86] to solve a similar overshooting problem
in [54, 55, 87].
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cf. (3.3). This is invariant under the orientifold action, but not invariant under the orbifold
action (which in the z1-plane acts as a reflection with respect to e.g. (x1, x2) =

(
1
4 , 0
)
.

Clearly this is just because (4.7) holds in a local patch, and we are allowed to make gauge
transformations among different patches. Hence, near (x1, x2) =

(
1
4 , 0
)

we may fix a
different gauge and represent the same H3 with

B = 4π2α′N
( (
x1 − 1

4

)
dx2 ∧ dx3 + y1 dy2 ∧ dx3

)
, (4.8)

which is invariant under the orbifold, but not the orientifold action. The question now
is, if we consider ED3-brane instantons stuck at the orbifold fixed point, which of the
two expressions for the B-field should we consider? This is relevant, because its pullback
on the ED3 worldvolume provides a contribution to the ED3 action, and hence seems to
have an impact on whether or not the WGC is satisfied. The answer is simply that both
expressions are valid, if we consider not just a given ED3, but rather the whole set of
magnetized ED3s, with different magnetization quanta. Indeed, the shift in the B-field
upon the gauge transformation can be translated in a change in the magnetization of an
ED3 by an amount

− 1
4 N dx2 ∧ dx3 . (4.9)

This can be absorbed by a properly quantized worldvolume magnetic flux precisely thanks
to the 3-form flux quantization condition N = 4 (or a multiple thereof, in general).

An equivalent description is in terms of axion monodromy, with the ‘axion’ given
by position of the ED3-branes; considering the full tower of magnetized ED3-branes, the
tower at z1 = 1

4 is identical to the tower at z1 = 0 modulo ED3-branes with different
magnetization F2 = ndx2 ∧ dx3 changing as n → n − 1. Another equivalent description
is in the language of [20] cf. section 3.3.2, as follow. In terms of the B-field (4.7), there is
an open string landscape of BPS ED3’s at points x1N ∈ Z, y1N ∈ Z; hence, for N = 4,
the orbifold fixed point z1 = 1

4 is one of the open string landscape points where some
ED3 with suitable magnetization can cancel the corresponding B-field. This cancellation is
made manifest in the alternative local expression (4.8). Notice that a similar mechanism is
exploited for the D71-branes so that their distribution in sets of 8 on top of the O71-planes,
as discussed in section 4.3, remains a valid supersymmetric background in the presence
of fluxes.

5 Discussion and conclusions

In this paper we have considered the backreaction of supersymmetry breaking effects, and
the corresponding dynamical tadpole, in explicit examples of type IIB toroidal orientifold.
We have shown that the resulting configurations seem to violate the WGC for certain
axions. We have argued that the underlying problem is due to the unphysical assump-
tion of ignoring the effects of the dynamical tadpoles on the 4d spacetime configuration,
restricting the backreaction to the internal space. Hence, these are examples of theories
in which dynamical tadpoles manifest as direct incompatibility with quantum gravity, via
swampland constraints.
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These examples and the above interpretation open up many new avenues, among
others:

• Our source of supersymmetry breaking is based on moving slightly off the minimum
of an otherwise supersymmetric theory. It would be nice to carry out the arguments
in this paper in a genuinely non-supersymmetric model.

• It would be interesting to find models where the spacetime dependence sourced by
the dynamical tadpole can be solved, and to address the formulation of the WGC in
those backgrounds. In particular, it may well be possible that the WGC does not
hold in its usual formulation. For instance, the usual black hole arguments for the
WGC for particles is based on the stability of remnants, a feature which is sensitive
to new effects if one is considering e.g. time-dependent configurations.

• We have also encountered models where the dynamical tadpole does not seem to lead
to violation of the WGC. It would be interesting to explore if they violate some
other swampland constraint. Conversely, these models could potentially be used to
uncover new swampland constraints not considered hitherto.

• Cancellation of topological tadpoles (such as RR tadpoles), which are often associated
to cancellation of anomalies in the spacetime theory, or on suitable probes [88]. The
ED3 and ED(−1)-brane instantons in our examples are reminiscent of probes of the
dynamical tadpoles, albeit in a dynamical rather than topological way. It would
be interesting to explore the interplay of dynamical tadpoles and probes in more
general setups.

These and other related questions seem capable of shedding new light in the long-standing
problem of dynamical tadpoles in string theory. We hope to come back to them in fu-
ture work.
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A Z-minimization and a-maximization from WGC

In the main text we have shown that in certain string models, configurations away from
the vacuum lead to an uncanceled dynamical tadpole which manifests as a non-fulfillment
of the WGC. Hence, the condition to satisfy the WGC by minimizing the action of suitable
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charged states turns out to be equivalent to minimization of the scalar potential. In this
appendix we explain how this idea explains the condition of Z-minimization in the context
of AdS vacua in holography. We point out that in this context the deviation from the
vacuum is not a modulus or light scalar direction, but rather involves modes with masses
comparable with the cutoff, i.e. the KK scale; this suggests a more general validity of our
arguments beyond their use in effective field theory.

A.1 Overview of Z-minimization

In this section we recall the key ideas in [32, 33]. Consider the AdS/CFT duality between 4d
N = 1 quiver gauge theories, obtained from D3-branes at a toric CY threefold singularity
Y6, and type IIB string theory on AdS5 ×X5, with the horizon X5 given by the base of
the real cone Y6. The CY condition of Y6 implies that X5 is Sasaki-Einstein, and has
at least one U(1) symmetry (dual to the SCFT U(1)R-symmetry). It is generated by the
Reeb vector, obtained from the complex structure J of Y6 by

ξ = J

(
r
∂

∂r

)
, (A.1)

Using the condition that X5 is Einstein, it is possible to fix the normalization of the
Ricci tensor as

Rmn = 4gmn . (A.2)

This Ricci tensor can be obtained extremizing the Einstein-Hilbert action, which can be
recast as the volume of X5 [32]

S[g] =
∫

X5
d5x
√
g (RX5 − 12) = 8Vol(X5) (A.3)

which in turn depends only on the Reeb vector ξ. This means that the problem of finding
the metric for the Sasaki-Einstein manifold reduces to the minimization of the volume with
respect to the Reeb vector. Although this is the starting point for the WGC discussion
in the next section, for completeness we close this flash review with the expression of this
volume in terms of the toric data.

For toric Y6, the Sasaki-Einstein manifold X5 has at least a U(1)3 isometry. Let
us introduce the 3d vectors defining the toric fan data of Y6; since they lie on a plane,
they are of the form vi = (1, wi), with wi giving the toric diagram of the geometry. The
computation of the volume of X5 is done using the Duistermaat-Heckman formula and via
localization, which boils down to simple closed formulas in the toric case. We write down
the coordinates of ξ = (3, b2, b3) as

Vol (X5) ≡ π3

3

d∑
i=1

det (vi−1, vi, vi+1)
det (ξ, vi−1, vi) det (ξ, vi, vi+1) , (A.4)

The quantity Z is defined as the volume of a Sasaki-Einstein manifold, relative to that of
the round sphere. It is an algebraic number given by

Z(b2, b3) ≡ 1
(2π)3Vol (X5) = 1

24

d∑
i=1

det (vi−1, vi, vi+1)
det (ξ, vi−1, vi) det (ξ, vi, vi+1) , (A.5)
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The AdS solution thus corresponds to the configuration which minimizes this quantity
with respect to the Reeb vector, a procedure known as Z-minimization. Incidentally, this
provides the gravity dual of the a-maximization [34] in the holographic 4d N = 1 SCFT.

In the following section we will look at particles obtained by D3-branes wrapped on a
3-cycle. Such cycle Σi has a volume that also can be expressed as a function of the Reeb
vector and, in the toric case, using the fan data of Y6. It is another result in [32] that the
volume of a 3-cycle as a function of ξ is

Vol (Σi) ≡ 2π2 det (vi−1, vi, vi+1)
det (ξ, vi−1, vi) det (ξ, vi, vi+1) . (A.6)

From this expression it is possible to show that9

Vol (X5) = π

6

d∑
i=1

Vol (Σi) . (A.7)

Finally, before proceeding with the WGC, it is better to define R the radius of the AdS
space and of the internal manifold X5. Eq. (A.4) and (A.6) become

Vol (X5) = π3R5

3

d∑
i=1

det (vi−1, vi, vi+1)
det (ξ, vi−1, vi) det (ξ, vi, vi+1) ,

Vol (Σi) = 2π2R3 det (vi−1, vi, vi+1)
det (ξ, vi−1, vi) det (ξ, vi, vi+1) .

(A.8)

This means that eq. (A.7) is

Vol (X5) = πR2

6

d∑
i=1

Vol (Σi) . (A.9)

Notice, moreover, that, we can define the Z-function normalizing the volume with respect
to a 5-sphere of radius R and still get the same expression as in eq. (A.5).

A.2 Z-minimization from WGC

We now show that the above condition of Z-minimization is equivalent to the requirement
that the WGC is satisfied for a suitable set of charged states in the AdS theory. For this
purpose, we consider type IIB theory compactified on AdS5 ×X5, with the volume of X5
relative to that of S5 (of same radius as the AdS, R) given by the function Z(ξ), which is
minimized at the vacuum.

We now consider a set of states whose masses depend on the Reeb vector. As explained
above, we can take D3-branes wrapped on 3-cycles Σi of X5. The ratio of the masses
mi/mi;0 of such state for a general trial Reeb vector, and for the vacuum one is

mi

mi; 0
= Vol(Σi)

Volmin(Σi)
. (A.10)

9For details of the general proof for toric Sasaki-Einstein manifold, the reader can have a look at [32].
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In order to express it in a WGC format, we need to obtain the gauge couplings of the
U(1)R under which these are charged. By dimensional reduction from 10d we have

g−2 = M8
s g
−2
s Vol(X5)R2 , (A.11)

where the last R2 is just a standard normalization factor.
We can also compute the 5d Planck mass by reduction from 10d to get

M3
P, 5 = M8

s g
−2
s Vol(X5) . (A.12)

They are related by
gM

3
2
P, 5 = R−1 , (A.13)

independently of Vol(X5). This is useful, since in this system the free parameters in the
Reeb vector are not actual moduli in this configuration (their masses are of the order of the
KK scale), so their change is not really a deformation in a given effective theory. Hence, it
is questionable to use the same or different values for g andMP, 5 in comparing the vacuum
and configurations away from it. The above relation allows us to circumvent this discussion
and proceed to the result.

We now use that the wrapped D3-branes are BPS states at the vacuum and satisfy

mi; 0 = g QM
3
2
P, 5 = Q

R
. (A.14)

where Q denotes its charge under U(1)R. Hence at the configuration away from the vacuum
we have

mi = g QM
3
2
P, 5

Vol(Σi)
Volmin(Σi)

. (A.15)

Due to the convexity of the volume functions with respect to the Reeb vector ξ [32, 33]
(see also [89–91]), the only way to satisfy the WGC is to take the value ξ = ξmin. In other
words, we recover the Z-minimization condition from WGC considerations.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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