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1 Introduction

The interpretation of the black-hole entropy in terms of the degeneracy of string microstates
is, beyond any doubt, one of the main achievements of String Theory [1]. This interpreta-
tion relies, on the one hand, on the correct identification of the black-hole charges in terms
of branes whose presence affects the quantization of the string. On the other, it depends
on a correct calculation of the macroscopic entropy. In simple cases, at leading order in
α′, the identification of the field fluxes with the brane sources that would produce them
is straightforward and, also, the macroscopic entropy is given by the Bekenstein-Hawking
formula S = AH/(4GN ), where AH is the area of the horizon. In more complicated cases,
the couplings can make the identification of the brane sources through the charges more
complicated [2] and, beyond leading order in α′, the presence of terms of higher order in
the curvature and, in the Heterotic Superstring case, of complicated Yang-Mills (YM) and
Lorentz Chern-Simons terms [3] can also make the calculation of the macroscopic entropy
very difficult. This is the problem we will deal with in this paper.
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The standard method to calculate the black-hole entropy in theories of higher order
in the curvature is to use Wald’s formalism [4, 5], usually applying directly the Iyer-Wald
prescription [6]. As we have recently discussed in refs. [7–9] (see also references therein),
the Iyer-Wald prescription was derived assuming that all the fields of the theory behave
as tensors under diffeomorphisms which, as matter of fact, is only true for the metric and
uncharged scalars. All the fields of the Standard Model, except for the metric, have some
kind of gauge freedom and do not transform as tensors under diffeomorphisms. Even the
gravitational field, if it is described by a Vielbein instead of by a metric, has a gauge
freedom, as it transforms under local Lorentz transformations. In theories with fermions,
Vielbeins are necessary to work with the spinorial fields in curved space time.

This problem was first noticed and solved by Jacobson and Mohd in ref. [10] for the
Einstein-Hilbert action written in terms of the Vielbein. The solution consists in going back
to the basic formalism of [4, 5] and dealing carefully with the gauge (local Lorentz) symme-
try. In practice, this means taking into account the gauge transformations induced by the
diffeomorphisms on the Vielbein. This can be done, for instance, by defining a Lorentz-
covariant Lie derivative (Lie-Lorentz derivative) which can be decomposed into a standard
Lie derivative and a local Lorentz transformation and which, apart from being covariant un-
der Local lorentz transformations, vanishes identically when the diffeomorphism is an isom-
etry of the metric (see refs. [11, 12]1 which build on earlier work by Lichnerowicz, Kosmann
and others [14–20]). The Lie-Lorentz derivative has recently been used to extend the proof
of the first law of black mechanics to supergravity, including the spinorial fields, in ref. [21].

A more mathematically rigorous (and complicated) treatment based on the theory of
principal bundles, that also applies to Yang-Mills fields, was given by Prabhu in ref. [22].2

Apart from the mathematical complexity, this approach cannot be used to handle higher-
rank form fields such as the Kalb-Ramond (KR) field. For this reason, in ref. [8] we
proposed a simpler alternative, based on the construction of covariant Lie derivatives of all
the fields with gauge freedom (a Maxwell field in the case of ref. [8]). This construction
is based on the introduction of momentum maps [12, 24] which play a crucial role in this
paper and which we will define later. The Lie-Lorentz derivative can also be seen as based
on the definition of a Lorentz momentum map.3

In ref. [27] we have shown how to use momentum maps to construct covariant Lie
derivatives in the Heterotic Superstring Effective action compactified in a torus at zeroth
order in α′. The KR field of that theory contains Abelian Chern-Simons terms4 which
induce Nicolai-Townsend transformations of the 2-form [28]. These terms modify the def-
initions of the conserved charges which ultimately appear in the first law of black hole
mechanics along the lines of the classical refs. [29–32].

In this paper we use the same technique quite extensively to deal with the variety of
fields and couplings that occur in the Heterotic Superstring effective action at first order
in α′ and prove the first law of black hole mechanics, identifying the entropy. As we are

1See also ref. [13] for a more mathematically rigorous point of view.
2See also ref. [23] for a different point of view on this problem.
3In refs. [25, 26], momentum maps emerge as “improved gauge transformations”.
4Only the Kaluza-Klein and winding vector fields appear there at zeroth order in α′.
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going to see, the entropy formula obtained is manifestly gauge-invariant and contains only
terms which are known and can be computed explicitly. This is the first entropy formula
proposed for this theory that satisfies all these properties. It allows us to compute reliably
the entropy of black hole solutions to first order in α′ and compare the result with the
entropy computed through microstate counting. As we will show in the last section, it
gives the same results as the non-gauge-invariant formulae used in refs. [7, 9, 33] in certain
basis.5 This confirms the values of the entropies obtained in those references, and shows
why, in spite of the manifest deficiencies of the entropy formulae used, we obtained the
correct result.

A very interesting aspect of the momentum maps is that they are related to the zeroth
law of black hole mechanics and its generalizations.6 In the simplest case, the momentum
map associated to a Maxwell field can be interpreted as the electrostatic potential.7 The
generalized zeroth law states that it is constant over the black hole horizon [36]. The
horizon’s surface gravity, which is the subject of the zeroth law, is also related to the
Lorentz momentum map. For higher-rank fields, Copsey and Horowitz [37] and, afterwards,
Compère [38] proved a restricted form of the generalized zeroth law (restricted because it
refers only to the bifurcation sphere) which follows from the closedness of certain differential
forms on it. In ref. [27] we proved that these closed forms are related to the momentum
maps and we will call these statements restricted generalized zeroth laws. Here we will
extend the results of ref. [27] to YM and KR fields and to the more complicated couplings
of the Heterotic Superstring effective action at first order in α′.8

The restricted generalized zeroth laws play a crucial role in the proof of the first law
and in the identification of the entropy and they are intimately related to the definitions
of conserved charges. In Wald’s formalism, the entropy is identified only after the terms
∼ ΦδQ have been identified in the first law. As in ref. [27], this identification requires the
addition and subtraction of several terms as demanded by the definitions of the charges Q
and the potentials Φ on account of the restricted generalized zeroth laws. However, in this
case, some of the terms added and subtracted will be shown to contribute to the entropy.

This paper is organized as follows: in section 2 we introduce the effective action of
the Heterotic Superstring to first order in α′ and find how it changes under an arbitrary
variation of the fields, which allows us to determine the equations of motion. In section 3
we study how the fields change under gauge and general coordinate transformations. We
construct variations of the fields that vanish when the parameters of the transformations
generate a symmetry of the field configuration and we find the integrals that give the

5These results differ slightly from the results obtained in refs. [34, 35] using the Iyer-Wald prescription
in the higher-dimensional action before dimensional reduction. As pointed out in ref. [2], the dependence
on the Riemann tensor changes after dimensional reduction and the formulae in refs. [7, 9, 33] have been
found using the dimensionally-reduced action. The formula that we give here does not suffer from any of
these problems. See the discussion in section 7.

6This was first noticed by Prabhu, albeit in a completely different language [22].
7The Maxwell momentum map is defined in a gauge invariant form, and so is the electrostatic potential.

This is in contrast wit the standard definitions of the electrostatic potential used in the literature.
8Some of these couplings have been discussed before in the literature, specially in ref. [39] (see also

references therein). See the discussion in section 7.
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associated conserved charges. The conserved charge associated to the invariance under dif-
feomorphisms is the Wald-Noether charge. As we have discussed, the correct identification
of the conserved charges is essential to obtain for the correct identification of the entropy
in the first law. In section 4 we discuss the restricted generalized zeroth laws of this theory,
which also play an essential role in the proof of the first law. In section 5 we prove the first
law using the results obtained in the previous sections, which leads us to identify the Wald
entropy formula in section 6. Section 7 contains a discussion of our results, comparing
them with the existing literature.

2 The HST effective action at first order in α′

The Heterotic Superstring effective action can be described at first order in α′ as follows [3]:9

we start by defining the zeroth-order KR field strength H(0) and its components H(0)
µνρ as

H(0) ≡ dB = 1
3!Hµνρdx

µ ∧ dxµ ∧ dxρ , (2.1)

where B = 1
2Bµνdx

µ ∧ dxµ is the KR 2-form potential. Then, if ωab = ωµ
abdxµ is the

Levi-Civita spin connection,10 we define the zeroth-order torsionful spin connections11

Ω(0)
(±) ab = ωab ±

1
2 ıbıaH

(0) , (2.2)

and their corresponding zeroth-order curvature 2-forms and Chern-Simons 3-forms

R
(0)
(±)

ab ≡ dΩ(0)
(±)

ab − Ω(0)
(±)

a
c ∧ Ω(0)

(±)
cb , (2.3a)

ω
(0)
(±) = R

(0)
(±)

a
b ∧ Ω(0)

(±)
b
a + 1

3Ω(0)
(±)

a
b ∧ Ω(0)

(±)
b
c ∧ Ω(0)

(±)
c
a . (2.3b)

Next, we define the gauge field strength 2-form and the Chern-Simons 3-forms for the
YM field AA = AAµdx

µ by

FA = dAA + 1
2fBC

AAB ∧AC , (2.4)

ωYM = FA ∧AA −
1
6fABCA

A ∧AB ∧AC , (2.5)

where we have lowered the adjoint group indices A,B,C, . . . in the structure constants
fAB

C and gauge fields using the Killing metric.
Then, we can define the first-order KR field strength 3-form as

H(1) ≡ H(0) + α′

4
(
ωYM + ω

(0)
(−)

)
. (2.6)

9We use the conventions of ref. [12], reviewed for the zeroth-order case in ref. [27]. In particular, the
relation with the fields in ref. [3] can be found in ref. [40].

10If ea = eaµdx
µ are the Vielbein, the spin connection is defined to satisfy the Cartan structure equation

Dea ≡ dea − ωab ∧ eb = 0.
11We denote by ıaA the inner product of ea ≡ eaµ∂µ (eaµebµ = δab) with the differential form A. If A is

a p-form with components Aµ1···µp , ıaA is the (p− 1) form with components eaνAνµ1···µp−1 .
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Its Bianchi identity takes the well-known form

dH(1) = α′

4
(
FA ∧ FA +R

(0)
(−)

a
b ∧R

(0)
(−)

b
a

)
. (2.7)

Having made these definitions and adding the dilaton field φ, we can write the Heterotic
Superstring effective action to first-order in α′ as

S(1)[ea, B,AA, φ] = g
(d) 2
s

16πG(d)
N

∫
e−2φ

[
(−1)d−1 ? (ea ∧ eb) ∧Rab − 4dφ ∧ ?dφ

+1
2H

(1) ∧ ?H(1) + (−1)dα
′

4
(
FA ∧ ?FA +R

(0)
(−)

a
b ∧ ?R

(0)
(−)

b
a

)]
≡
∫

L(1) .

(2.8)

Although this action is defined in 10 dimensions, we have left the dimension arbitrary
(d) because that allows us to use the results in other dimensions after trivial dimensional
reduction on a torus. In this action, GN (d) is the d-dimensional Newton constant and g(d)

s

is the d-dimensional string coupling constant, identified with the vacuum expectation value
of the exponential of the d-dimensional dilaton field g

(d)
s =< eφ >. In solutions such as

black holes that asymptote to a vacuum solution at infinity eφ → eφ∞ =< eφ >= g
(d)
s .

This is a very complex action. Due to this complexity and to the lemma proven in
ref. [3] which we will explain later, it is convenient to perform a general variation of the
action in two steps: first, we only vary the action with respect to the explicit occurrences
of the fields, where we define “explicit occurrences” as those which do not take place in the
torsionful spin connection Ω(0)

(−). Then, we vary the action with respect to the occurrences
of the fields via Ω(0)

(−) using the chain rule. All the occurrences of the dilaton and YM fields
are explicit, but those of the Vielbein and KR field are not, because they (and only they)
are present in Ω(0)

(−).
Thus, setting g(d) 2

s (16πG(d)
N )−1 = 1 for the time being in order to simplify the formulae,

we find that under a general variation of the “explicit” occurrences of the fields, the action
transforms as follows:

δexpS
(1) =

∫ {
E(1)

exp a ∧ δea + E(1)
expB ∧ δB + E(1)

φ δφ+ E(1)
A δAA

+dΘ(1)
exp(ϕ, δϕ)

}
,

(2.9)

where ϕ stands for all the fields of the theory,

E(1)
exp a = e−2φıa ? (ec ∧ ed) ∧Rcd − 2D(ıbde−2φ) ∧ ?(eb ∧ ec)gca

+ (−1)d−14e−2φ (ıadφ ? dφ+ dφ ∧ ıa ? dφ)

+ (−1)d

2 e−2φ
(
ıaH

(1) ∧ ?H(1) +H(1) ∧ ıa ? H(1)
)

+ α′

4 e
−2φ

(
ıaFA ∧ ?FA − FA ∧ ıa ? FA

+ıaR(0)
(−)

b
c ∧ ?R(0)

(−)
c
b −R

(0)
(−)

b
c ∧ ıa ? R(0)

(−)
c
b

)
(2.10a)
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E(1)
expB = −d

(
e−2φ ? H(1)

)
, (2.10b)

E(1)
φ = 8d

(
e−2φ ? dφ

)
− 2L(1) , (2.10c)

E(1)
A = −α

′

2
{
D
(
e−2φ ? FA

)
+ (−1)de−2φ ? H(0) ∧ FA

}
− α′

4 E(1)
expB ∧AA , (2.10d)

and

Θ(1)
exp(ϕ, δϕ) = −e−2φ ? (ea ∧ eb) ∧ δωab + 2ıade−2φ ? (ea ∧ eb) ∧ δeb − 8e−2φ ? dφδφ

+ e−2φ ? H(1) ∧ δB + α′

2 e
−2φ

(
?FA −

1
2 ? H

(1) ∧AA
)
∧ δAA .

(2.11)

An alternative form of the YM equations that arises in the calculations is

E(1)
A = −α

′

2 D
(
e−2φ ? FA − e−2φ ? H(0) ∧AA

)
+ (−1)d−1α

′

4 e
−2φ ? H(0) ∧ dAA . (2.12)

Observe that neither the YM equations of motion transform covariantly nor is Θ(1)
exp

invariant under YM gauge transformations. For the YM equations this is not a big problem
since the troublesome term is proportional to the KR equation of motion, but there is no
obvious fix for the pre-symplectic potential. Nevertheless, we will see that, in the end, we
will get gauge-invariant charges and, in particular a gauge-invariant Wald-Noether charge.

An important property of the HST effective action is that the YM fields and the
torsionful spin connection occur on exactly the same footing [41]. The variation of the
action with respect to the torsionful spin connection takes exactly the same form as the
YM equation, the only difference being the group indices and their contractions. Thus,

δS(1) =
∫ {

E(1)
exp a ∧ δea + E(1)

expB ∧ δB + E(1)
φ δφ+ E(1)

A ∧ δA
A + E(1) b

a ∧ δΩ(0)
(−)

a
b

+dΘ(1)(ϕ, δϕ)
}
,

(2.13)

where the variation with respect to the torsionful spin connection is given by

E(1) b
a = −α

′

2
{
D(−)

(
e−2φ ? R

(0)
(−)

b
a

)
+ (−1)de−2φ ? H(0) ∧R(0)

(−)
b
a

}
− α′

4 E(1)
expB ∧ Ω(0)

(−)
b
a ,

(2.14)
or

E(1) b
a = −α

′

2 D(−)
(
e−2φ ? R

(0)
(−)

b
a − e−2φ ? H(0) ∧ Ω(0) b

(−) a
)

+ (−1)d−1α
′

4 ? H(0) ∧ dΩ(0) b
(−) a ,

(2.15)
and the pre-symplectic (d− 1)-form is given by

Θ(1)(ϕ, δϕ) = Θ(1)
exp(ϕ, δϕ) + α′

2 e
−2φ

(
?R

(0)
(−)

b
a −

1
2 ? H

(1) ∧ Ω(0)
(−)

b
a

)
∧ δΩ(0)

(−)
a
b , (2.16)

with Θ(1)
exp(ϕ, δϕ) given in eq. (2.11).

The parallelism between the YM and torsionful spin connection terms also leads to
the same problems of non-covariance of E(1) b

a and non-invariance of the additional term
in Θ(1).
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An important difference between the equations of motion of these two connections
is that, according to the lemma proven in ref. [3], E(1) a

b is proportional to α′ and to
a combination of the zeroth-order equations E(0)

a ,E(0)
B and E(0)

φ . This means that field
configurations that solve the equations E(1)

exp a = 0, E(1)
expB = 0, E(1)

φ = 0 and E(1)
A = 0 are

solutions of the complete first-order equations, to that order in α′. This crucial property
effectively reduces the degree of the differential equations to 2, avoiding the problems that
arise with dynamical equations that involve derivatives of the fields of higher order.

3 Variations of the fields

It is convenient to start by describing the gauge transformations of the fields and the
associated Noether identities to be able to compute the associated conserved charges. Af-
terwards, we will discuss the transformations of the fields under diffeomorphisms and the
associated Wald-Noether charge.

3.1 Gauge transformations

The fields occurring in the effective action eq. (2.8) transform under 3 kinds of gauge
transformations:

1. KR gauge transformations with 1-form parameter Λ, δΛ, which only act on B.

2. YM gauge transformations with parameter χA, δχ, which act on the YM fields and
on B as Nicolai-Townsend transformations.

3. Local Lorentz transformations with parameter σab, δσ, which act on the Vielbein and
induce transformations of spin connections and curvature and which also act on B

as Nicolai-Townsend transformations.

The transformation rules are

δσe
a = σabe

b , (3.1a)
δχA

A = DχA ≡ dχA + fBC
AABχC , (3.1b)

δB = (δΛ + δχ + δσ)B = dΛ− α′

4 χAdA
A − α′

4 σ
a
bdΩ(0)

(−)
b
a . (3.1c)

The induced local Lorentz transformations of the connections are

δσω
ab = Dσab = dσab − 2ω[a|

cσ
c|b] , (3.2a)

δσΩ(0)
(−)

ab = D(0)
(−)σ

ab = dσab − 2Ω(0)
(−)

[a|
cσ
c|b] , (3.2b)

and the transformations of the curvatures are

δχF
A = −χBfBCAFC (3.3a)

δσR
ab = 2σ[a|

cR
c|b] . (3.3b)

δσR
(0)
(−)

ab = 2σ[a|
cR

(0)
(−)

c|b] . (3.3c)
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Finally, for the sake of completeness and their later use, we quote the gauge transfor-
mations of the Chern-Simons 3-forms

δχω
YM = α′

4 d
(
χAdA

A
)
, (3.4a)

δσω
(0)
(−) = +α′

4 d
(
σabdΩ(0)

(−)
b
a

)
, (3.4b)

and the Ricci identities

DDχA = −fBCAχBFC = δχF
A , (3.5a)

D(0)
(−)D

(0)
(−)σ

ab = −2R(0)
(−)

[a|
cσ
c|b] = δσR

(0)
(−)

ab . (3.5b)

The exact invariance of the action S(1) in eq. (2.8) under the above gauge transforma-
tions leads, in a rather trivial way, to the following Noether identities [40]

dE(1)
expB = 0 , (3.6a)

DE(1)
A + (−1)d−1α

′

4 E(1)
expB ∧ dAA = 0 , (3.6b)

D(0)
(−)E

(1)
b
a + (−1)d−1α

′

4 E(1)
expB ∧ dΩ(0)

(−) b
a = 0 , (3.6c)

E(1) [a
exp ∧ eb] + α′

4 E(1)
expB ∧ dΩ(0) ab + (−1)d−1D(0)

(−)E
(1) ab = 0 . (3.6d)

Eq. (3.6c) is just a particular case of eq. (3.6b) with adjoint Lorentz indices. Further-
more, the last two identities imply the symmetry of the Einstein equation, which in the
language f differential forms and Vielbeins, is expressed in the form

E(1) [a
exp ∧ eb] = 0 . (3.7)

3.2 Gauge charges

For the sake of simplicity, we are going to start by the charge associated to the δΛ trans-
formations, that we are going to call Kalb-Ramond charge.

3.2.1 Kalb-Ramond charge

Let us consider the transformation of the action eq. (2.8) under the gauge transformations
δΛ. Taking into account that this symmetry only acts on B,12 eqs. (2.13) and (2.16) we get

δΛS
(1) =

∫ {
E(1)

expB ∧ dΛ + d
[
e−2φ ? H(1) ∧ dΛ

]}
. (3.8)

Integrating by parts the first term and using the Noether identity eq. (3.6a)

δΛS
(1) =

∫
d
{

(−1)dE(1)
expB ∧ Λ + e−2φ ? H(1) ∧ dΛ

}
≡
∫
dJ[Λ] . (3.9)

12We consider the variation of the torsionful spin connection to be zero under this transformation.
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Since δΛS
(1) = 0, the integrand must vanish, which means that J[Λ] must be locally

exact. Indeed,

J[Λ] = dQ[Λ] , with Q[Λ] = Λ ∧
(
e−2φ ? H(1)

)
. (3.10)

Integrating the (d − 2)-form Q[Λ] over (d − 2)-dimensional compact surfaces Sd−2 for Λs
that leave the KR field B invariant we get conserved charges associated to those Λs. These
Λs are simply closed 1-forms.13 The Hodge decomposition theorem allows us to write
each of them as the sum of an exact and a harmonic form that we denote by Λe and Λh,
respectively. On-shell, the exact form Λe = dλ will not contribute to the integral and the
charge will be given by

Q(Λh) =
∫
Sd−2

Λh ∧
(
e−2φ ? H

)
. (3.11)

Now we can use duality between homology and cohomology: if CΛh is the (d − 3)-cycle
dual to Λh we arrive at the charges

Q(Λh) = − g
(d) 2
s

16πG(d)
N

∫
CΛh

e−2φ ? H , (3.12)

where we have recovered the factor of g(d) 2
s (16πG(d)

N )−1 and added a conventional sign.

3.2.2 Yang-Mills charge

Now, let us consider the charges associated to the YM gauge transformations δχ. Again,
from eqs. (2.13) and (2.16), taking into account that this symmetry acts on the YM fields
AA but also on the KR 2-form B, we have

δχS
(1) =

∫ {
E(1)

expB ∧ δχB + E(1)
A ∧ δχA

A

+d
[
e−2φ ? H(1) ∧ δχB + α′

2 e
−2φ

(
?FA −

1
2 ? H

(1) ∧AA
)
∧ δχAA

]}
.

(3.13)

The parameters χA that we will use are those that preserve the field configuration,
leaving AA and B invariant. The YM fields are left invariant by covariantly constant χAs,
i.e. χAs that we will denote by κA satisfying

DκA = 0 . (3.14)

We can call these parameters vertical Killing vector fields from he principal bundle point of
view, with the standard Killing vectors of the base manifold playing the rôle of horizontal
Killing vector fields.

13Here we follow refs. [37, 38]. This discussion is identical to the discussion we made for the zeroth-order
case in ref. [27].

– 9 –



J
H
E
P
0
5
(
2
0
2
1
)
1
1
0

The integrability condition of the vertical Killing vector equation is, according to
eq. (3.5a),

δκF
A = −fBCAκBFC = 0 , (3.15)

so they also leave the field strengths invariant, as expected.
The vertical Killing vector fields κAs will not leave B invariant, though, but we can

rewrite the transformation in the form

δκB = −α
′

4 κAdA
A = −α

′

2 κAF
A + d

(
α′

4 κAA
A
)
. (3.16)

Now we observe that, due to the YM Bianchi identity DFA = 0, κAFA is a closed 2-form
and, locally, there is a 1-form Ψκ such that

dΨκ = −κAFA , (3.17)

and which we will call vertical YM momentum map.14

Then, we define the parameter of a compensating Λ transformation

Λχ = −α
′

2 Ψχ −
α′

4 χAA
A , (3.18)

where Ψχ is a 1-form such that, when χA = κA (i.e. when it is a vertical Killing vector field),
it satisfies eq. (3.17). Combining the original δχ transformation with the compensating δΛχ
transformation we find a new δχB that vanishes for covariantly constant χAs:

δχB ≡ −
α′

2
(
dΨχ + χAF

A
)
− α′

4 DχA ∧A
A . (3.19)

The vanishing of δχB for covariantly constant χAs is gauge invariant because

δχ′δχ ∼ Dχ . (3.20)

Substituting the transformation eq. (3.19) and the standard gauge transformation of
the YM fields into eq. (3.13) we get

δχS
(1) =

∫ {
E(1)
A ∧ Dχ

A + E(1)
expB ∧

[
−d

(
α′

2 Ψχ + α′

4 χAA
A
)
− α′

4 χAdA
A
]

+ d

{
e−2φ ? H(1) ∧

[
−d

(
α′

2 Ψχ + α′

4 χAA
A
)
− α′

4 χAdA
A
]

+α′

2 e
−2φ

(
?FA −

1
2 ? H

(1) ∧AA
)
∧ DχA

}}
.

(3.21)

14Compare this equation with the equation satisfied by the standard (horizontal) YM momentum map
eq. (3.43).
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Integrating by parts the first terms and combining the different terms in an appropriate
way we can rewrite the variation in the form

δχS
(1) =

∫ {
(−1)dχA

(
DE(1)

A + (−1)d−1α
′

4 E(0)
expB ∧ dAA

)
−
(
α′

2 Ψχ + α′

4 χAA
A
)
∧ dE(0)

expB

+ d

{
(−1)d−1χA

(
E(1)
A + (−1)dα

′

4 e
−2φ ? H(0) ∧ dAA

)
−
(
α′

2 Ψχ + α′

4 χAA
A
)
∧E(0)

expB

+ e−2φ ? H(1) ∧
[
−d

(
α′

2 Ψχ + α′

4 χAA
A
)]

+α′

2 e
−2φ

(
?FA −

1
2 ? H

(1) ∧AA
)
∧ DχA

}}
.

(3.22)

The terms in the first and second lines vanish identically because of the Noether identities
eqs. (3.6b) and (3.6a), respectively, and we arrive at

δχS
(1) =

∫
d

{
(−1)d−1χA

(
E(1)
A + (−1)dα

′

4 e
−2φ ? H(0) ∧ dAA

)
−
(
α′

2 Ψχ + α′

4 χAA
A
)
∧E(0)

expB

− d
(
α′

2 Ψχ + α′

4 χAA
A
)
∧
(
e−2φ ? H(0)

)
+α′

2 e
−2φ

(
?FA −

1
2 ? H

(1) ∧AA
)
∧ DχA

}
≡
∫
dJ[χ] .

(3.23)

The same arguments we made in the previous case lead to the existence of a (d−2)-form
Q[χ] such that J[χ] = dQ[χ]. The (d− 2)-form is given by

Q[χ] = −(−1)dα
′

2
{
e−2φ ?

(
−χAFA

)
+ (−1)dΨχ ∧

(
e−2φ ? H(0)

)}
. (3.24)

For Abelian vector fields the κAs are constant and Ψκ = κAA
A (up to a total derivative)

and we recover immediately the Q[χ] found in ref. [27]. On the other hand, when we change
Ψκ by a total derivative, Q[κ] is invariant on-shell up to a total derivative which will not
contribute to the charge which is now given by the integral

Q[κ] = − g
(d) 2
s

16πG(d)
N

∫
Sd−2

(−1)dα
′

2
{
e−2φ ? dΨκ + (−1)dΨκ ∧

(
e−2φ ? H(0)

)}
, (3.25)

where we have made use of the definition of the vertical momentum map Ψκ in eq. (3.17).
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3.2.3 Lorentz charge

Let us now consider local Lorentz transformations. As we have stressed repeatedly we can
treat the local Lorentz transformations and the torsionful spin connection in parallel to the
YM gauge transformations and the gauge fields. The only difference is the presence of one
additional term in the Lorentz case: the Einstein-Hilbert case. If we follow the same steps
as in the YM case we arrive to

Q[σ] = (−1)d−1e−2φ?(ea∧eb)σab−(−1)dα
′

2
{
e−2φ?

(
−σabR(0)b

a

)
+(−1)dΠσ∧

(
e−2φ?H(0)

)}
,

(3.26)
where Πσ is a 1-form that becomes a vertical Lorentz momentum map when the Lorentz
parameter σab = κab, a Lorentz parameter that generates a symmetry of the field configura-
tion, i.e. a vertical Killing vector. This happens when the Vielbein and the spin connection
are left invariant

κabe
b = 0 , (3.27a)

Dκab = 0 . (3.27b)

These two conditions imply the invariance of the torsion 1
2 ıbıaH

(0) Hence, they also implies
the invariance of the torsionful spin connection Ω(0)

(−)
a
b,

D(0)
(−)κ

a
b = 0 . (3.28)

These conditions can be used to modify the transformation of the KR field so that it
is also left invariant, as we did in the YM case. We just quote the final form:

δσB = −α
′

2
(
dΠσ + κabR

(0)
(−)

b
a)
)
− α′

4 D
(0)
(−)σ

a
b ∧ Ω(0)

(−)
b
a , (3.29)

where the vertical Lorentz momentum map Πσ is such that, when σab = κab

dΠκ = κabR
(0)
(−)

b
a . (3.30)

The conserved charge is the integral of the (d− 2)-form eq. (3.26) for vertical Killing
vector fields κab satisfying eqs. (3.27) and (3.27b). The first condition annihilates the first
term, corresponding to the Einstein-Hilbert term in the action but the rest of the terms
survive in this case and we get the non-vanishing Lorentz charge

Q[κ] = g
(d) 2
s

16πG(d)
N

∫
Sd−2

{
(−1)dα

′

2
[
e−2φ ? dΠκ + (−1)dΠκ ∧

(
e−2φ ? H(0)

)]}
. (3.31)

In the proof of the first law we will find the integral of (d − 2)-form eq. (3.26) for a
Lorentz parameter that satisfies eq. (3.27b) only. This integral give, precisely, the entropy.
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3.3 The transformations under diffeomorphisms

Now we turn our attention to the diffeomorphisms. Our treatment is similar to the treat-
ment of the δχ gauge transformations, although the use of compensating gauge transforma-
tions admits a more general justification in terms of the gauge covariance of the modified
transformations (covariant Lie derivatives). Since we have discussed these modifications
at length in refs. [8, 27] we will only discuss the aspects not covered there: torsionful spin
connections, non-Abelian gauge fields and the more complicated transformations of the
KR 2-form.

In this section k will always be a (horizontal) Killing vector which generates a symmetry
of the complete field configuration.

3.3.1 Lie-Lorentz derivatives

The transformations of the Vielbeins, the Levi-Civita spin connection and its curvature 2-
form have been discussed in refs. [8, 27], but it is convenient to adapt some of the formulae
to the torsionful spin connection. They are generically given in terms of the Lie-Lorentz
(or Lorentz-covariant Lie derivative refs. [11, 12, 14–17]) by δξ = −Lξ. Therefore, we will
continue this discussion in terms of the latter.

The parameter of the compensating local Lorentz transformation that appears in the
Lie-Lorentz derivative of Ω(0) ab

(−) is still given by

σξ
ab = ıξω

ab −∇[aξb] , (3.32)

but it is useful to rewrite it using Ω(0) ab
(−) in the covariant derivatives. Due to the complete

antisymmetry of the torsion, it takes the simple form

σξ
ab = ıξΩ

(0) ab
(−) −D

(0)
(+)

[aξb] . (3.33)

Observe that the presence of fully antisymmetric torsion does not modify the Killing
equation15

2D(0)
(±) (aξb) = 0 . (3.34)

Notice that eqs. (3.33) and (3.34) are completely independent of H(0) even if we have
formally rewritten them in terms of the torsionful spin connection Ω(0)

(−).
The Lie-Lorentz derivative of the torsion ıbıaH

(0) follows the general formula while
that of the Levi-Civita connection ωab is given by

Lξωab = £ξω
ab −Dσξab , (3.35)

and, therefore, it is easy to see that

LξΩ
(0) ab
(−) = £ξΩ

(0) ab
(−) −D

(0)
(−)σξ

ab , (3.36)

and it is equally easy to see that it can be rewritten in the form

LξΩ
(0) ab
(−) = ıξR

(0) ab
(−) +D(−)P(−)ξ

ab , (3.37)

15The presence of generic torsion does modify the Killing equation.
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with
P(−)ξ

ab ≡ D(0)
(+)

[aξb] . (3.38)

The identity

ξνR
(0)
(−) νµ

ab +D(0)
(−)µP(−)ξ

ab = D(0)
(−)

[a
(
∇b]ξµ +∇µξb]

)
− 3

2∇[µ|
(
ξνH

(0)
ν|ρσ]

)
eaρebσ , (3.39)

proves that δξΩ
(0) ab
(−) = −LξΩ

(0) ab
(−) vanishes when ξµ = kµ, because, in that case,

− ıkR
(0) ab
(−) = D(0)

(−)P(−)k
ab . (3.40)

Because P(−)k
ab satisfies this equation, we will call it the horizontal Lorentz momentum

map associated to the torsionful spin connection.
k, then, generates a diffeomorphism that leaves the metric invariant and the KR 3-form

field strength.
Again, P(−)ξ

ab is a Lorentz tensor and δξΩ
(0) ab
(−) = −LξΩ

(0) ab
(−) is a Lorentz tensor,

although Ω(0) ab
(−) is a connection. When it vanishes, it vanishes in all Lorentz frames.

3.3.2 Lie-Yang-Mills derivatives

Since the spin connection is just the connection of the Lorentz group, this case is very
similar to the previous one, the main difference being that the YM fields are fundamental
fields while the spin connection is a composite field. Apart from this, in many (but not all,
because of the absence of a YM analogue of the Vielbein) instances we may just apply the
same formulae with the sole change of the adjoint group indices, as we are going to see.

In order to find the gauge-covariant Lie derivative of YM fields it is convenient to
consider the Lie-Lorentz derivative of the curvature tensor first. In this case, since we do
not know the form of the parameter of the compensating gauge transformation, we can
simply consider the standard Lie derivative of the gauge field strength 2-form defined in
eq. (2.4):

£ξF
A = (ıξd+ dıξ)FA = DıξFA − fBCAıξABFC , (3.41)

where we have used the Bianchi identity DFA = 0.
When ξ = k this expression should vanish up to an infinitesimal gauge transformation

with some parameter that we denote by χ̃kA. Then,

DıkFA = fBC
A
(
ıkA

B + χ̃k
B
)
FC ≡ fBCAPkBFC , (3.42)

which, upon use of the Ricci identity eq. (3.5a), can be solved by a PkA that we call the
(horizontal) Yang-Mills momentum map satisfying the equation

− ıkFA = DPkA . (3.43)

Eq. (3.40) is nothing but a particular case of this equation for which the momentum
map is explicitly known. This happens because we know how to express the gauge field in
terms of a more fundamental field (the Vielbein). In general, the general form of PkA is
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not known but is determined up to a covariantly-constant gauge parameter. We will use a
Pξ

A which is undetermined except for the fact that it reduces to PkA satisfying eq. (3.43)
for Killing vectors.

Now, we can use as a definition of the Lie-Yang-Mills derivative of FA the following
expression which is guaranteed to vanish when ξ = k on account of eq. (3.42):

LξFA = DıξFA − fBCAPξBFC = £ξF
A − δχξF

A , (3.44)

where the gauge compensating parameter χξA is given by the (now usual) expression

χξ
A = ıξA

A − PξA . (3.45)

The Lie-Yang-Mills derivative of the gauge field is then

LξAA ≡ £ξA
A −DχξA = ıξF

A +DPξA , (3.46)

and, by construction, it vanishes automatically when ξ is a Killing vector field kµ and PkA

is the momentum map satisfying eq. (3.43).

3.3.3 The Kalb-Ramond field

The parameters of the compensating YM and local Lorentz transformations of the KR
field are the same transformations χξA and σξ

ab that we perform on other fields with
YM and Lorentz indices, given by eqs. (3.45) and (3.32). Thus, if we want to construct
a transformation of this field under diffeomorphisms that annihilates it when ξ = k by
combining its standard Lie derivative with gauge transformations, the only gauge parameter
we can still play with is the 1-form Λ because the rest are already completely determined.
We have

δξB =−£ξB + (δΛξ + δχξ + δσξ)B

=−£ξB + dΛξ −
α′

4 χξ AdA
A − α′

4 σξ
a
bdΩ(0) b

(−) a .
(3.47)

Again, it is convenient to start by considering the transformation of the 3-form field
strength H(1) defined in eq. (2.6) under diffeomorphisms, because it is gauge invariant:

δξH
(1) =−£ξH

(1)

=− ıξdH(1) − dıξH(1)

=− dıξH(1) − α′

2
(
ıξFA ∧ FA + ıξR

(0)
(−)

a
b ∧R

(0)
(−)

b
a

)
,

(3.48)

where we have used the Bianchi identity eq. (2.7).
When ξ = k we can use eqs. (3.40) and (3.43), integrate by parts, and use the Bianchi

identities for the curvatures, getting:

δkH
(1) =− dıkH(1) + α′

2
(
DPk A ∧ FA +D(−)P(−) k

a
b ∧R

(0)
(−)

b
a

)
=− d

[
ıkH

(1) − α′

2
(
Pk AF

A + P(−) k
a
bR

(0)
(−)

b
a

)]
.

(3.49)
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By assumption, the above expression must vanish identically. Therefore, locally, there must
exist a gauge-invariant 1-form, the horizontal Kalb-Ramond momentum map Pk, satisfying

− ıkH(1) + α′

2
(
Pk AF

A + P(−) k
a
bR

(0)
(−)

b
a

)
= dPk . (3.50)

Then, if we apply the rule of thumb that the parameter of the compensating gauge trans-
formation is the inner product of the vector that generates the diffeomorphisms with the
“connection” (here B) minus the momentum map (here some 1-form Pξ that in this case
satisfies eq. (3.50) when ξ = k)

Λξ = ıξB − Pξ , (3.51)

we arrive at the following candidate for δξB:

δξB =−£ξB + dΛξ −
α′

4
(
χξ AdA

A + σξ
a
bdΩ(0) b

(−) a
)

=− ıξH(1) − α′

4
(
AA ∧ ıξFA + Ω(0) a

(−) b ∧ ıξR
(0) b
(−) a

)
− dPξ + α′

4
(
Pξ AdA

A + P(−) ξ
a
bdΩ(0) b

(−) a
)
.

(3.52)

Let us see if, with this definition, δkB = 0. Using eqs. (3.50), (3.43) and (3.40) we get,
instead of zero, a total derivative

δkB =− α′

4 d
(
Pk AA

A + P(−) k
a
bΩ

(0) b
(−) a

)
, (3.53)

which we can simple absorb in redefinition of Λξ in eq. (3.51):

Λξ ≡ ıξB − Pξ + α′

4 d
(
Pξ AA

A + P(−) ξ
a
bΩ

(0) b
(−) a

)
. (3.54)

With this new parameter,

δξB = −£ξB + dΛξ −
α′

4 χξ AdA
A − α′

4 σξ
a
bdΩ(0) b

(−) a

= −
[
ıξH

(1) − α′

2
(
Pξ AF

A + P(−) ξ
a
bR

(0) b
(−) a

)
+ dPξ

]
+ α′

4
(
AA ∧ δξAA + Ω(0) a

(−) b ∧ δξΩ
(0) b
(−) a

)
≡ −LξB ,

(3.55)

that vanishes identically when ξ = k by virtue of the definition of the KR momentum map
eq. (3.50) and of δξAA = δξΩ

(0) b
(−) a = 0.

The behavior of this variation under gauge transformations is far from obvious. A
direct calculation gives

δgaugeδξB = α′

4
(
dχA ∧ δξAA + dσab ∧ δξΩ

(0) b
(−) a

)
, (3.56)

with δξAA = −LξAA with the Lie-Yang-Mills covariant derivative given by eq. (3.46) and
with δξΩ

(0) ab
(−) = −LξΩ

(0) ab
(−) , with the Lie-Lorentz derivative given by eq. (3.37). There-

fore, although the δξB defined above is not gauge-invariant, δkB vanishes in a gauge-
invariant way.
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3.4 The Wald-Noether charge

Now we consider the variation of the action S(1) given in eq. (2.8) under the transformations
δξ = −Lξ for all the fields, where Lξ is the gauge-covariant derivative, which for the Vielbein
is given by [8]

Lξea = Dξa + Pξ
a
be
b , (3.57)

for the torsionful spin connection in eq. (3.37), for the YM fields in eq. (3.46) and for the
KR field in eq. (3.55).

From eq. (2.13)

δξS
(1) = −

∫ {
E(1)

exp a ∧
(
Dıξea + Pξ

a
be
b
)

+ E(1)
φ ıξdφ

+ E(1)
A ∧

(
ıξF

A +DPξA
)

+ E(1) b
a ∧

(
ıξR

(0) a
(−) b +D(−)P(−)ξ

a
b

)
+ E(1)

expB ∧
[
ıξH

(1) + α′

4
(
AA ∧ ıξFA + Ω(0) a

(−) b ∧ ıξR
(0) b
(−) a

)
− α′

4
(
Pξ AdA

A + P(−) ξ
a
bdΩ(0) b

(−) a
)

+d
[
Pξ −

α′

4
(
Pξ AA

A + P(−) ξ
a
bΩ

(0) b
(−) a

)]]
−dΘ(1)(ϕ, δξϕ)

}
,

(3.58)
where Θ(1)(ϕ, δξϕ) is given by

Θ(1)(ϕ,δξϕ) = e−2φ?(ea∧eb)∧(ıξRab+DPξ ab)−2ıade−2φ?(ea∧eb)∧(Dıξeb+Pξ bcec)
+8e−2φ?dφıξdφ

−e−2φ?H(1)∧
{
ıξH

(1)+α′

4
(
AA∧ıξFA+Ω(0)a

(−) b∧ıξR
(0)b
(−) a

)
−α

′

4
(
PξAdA

A+P(−)ξ
a
bdΩ(0)b

(−) a
)

+d
[
Pξ−

α′

4
(
PξAA

A+P(−)ξ
a
bΩ

(0)b
(−) a

)]}
−α

′

2 e
−2φ

(
?FA−

1
2 ?H

(0)∧AA
)
∧
(
ıξF

A+DPξA
)
.

−α
′

2 e
−2φ

(
?R

(0)
(−)

b
a−

1
2 ?H

(0)∧Ω(0)
(−)

b
a

)
∧
(
ıξR

(0)a
(−) b+D(−)P(−)ξ

a
b

)
. (3.59)

Integrating by parts and using the Noether identities eqs. (3.6a), (3.6b), (3.6c), (3.7)
and the Noether identity associated to the invariance under diffeomorphisms

(−1)dDE(1)
expaıξe

a+E(1)
expB∧ıξH

(1)+E(1)
φ ıξdφ

+
(

E(1)
A +α′

4 E(0)
expB∧AA

)
∧ıξFA+

(
E(1)b

a+α′

4 E(0)
expB∧Ω(0)b

(−) a

)
∧ıξR

(0)a
(−) b = 0 ,

(3.60)

we can see that the volume term in the variation of the action eq. (3.58) reduces to another
total derivative

δξS
(1) =

∫
dΘ(1) ′(ϕ, δξϕ) , (3.61)
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with

Θ(1) ′(ϕ, δξϕ) = Θ(1)(ϕ, δξϕ)

+ (−1)dE(1)
exp aıξe

a + (−1)d−1E(1)
expB ∧ Pξ

+ (−1)d
(

E(1)
A + α′

4 E(0)
expB ∧AA

)
Pξ

A

+ (−1)d
(

E(1) b
a + α′

4 E(0)
expB ∧ Ω(0) b

(−) a

)
P(−)ξ

a
b .

(3.62)

The usual reasoning leads us to the off-shell identity

dJ(1)[ξ] = 0 , (3.63)

where
J(1)[ξ] ≡ Θ(1) ′(ϕ, δξϕ) + ıξL(1) , (3.64)

and to the local existence of a (d− 2)-form Q(1)[ξ] such that J(1)[ξ] = dQ(1)[ξ].
A straightforward calculation leads to the fully gauge-invariant Wald-Noether charge

Q(1)[ξ] = (−1)d ? (ea ∧ eb)
[
e−2φPξ ab − 2ıade−2φξb

]
+ (−1)d−1α

′

2
[
Pξ Ae

−2φ ? FA + P(−)ξ
a
b

(
e−2φ ? R

(0) b
(−) a

)]
− Pξ ∧

(
e−2φ ? H(1)

)
,

(3.65)

which is one of the main results of this paper.

4 Restricted generalized zeroth laws

One of the main ingredients in Wald’s approach to the first law of black hole mechanics
is the zeroth law stating that κ is constant over the horizon [36]. Originally, this law was
proved using the Einstein equations and the dominant energy condition (see, for instance,
ref. [42]) but a completely geometrical proof was presented in ref. [43].

In presence of an electromagnetic field one also needs to use the generalized zeroth
law that guarantees that the electrostatic potential is also constant over the whole horizon.
There is no purely geometrical proof of this law, though, and the standard proof also makes
use of the Einstein equations and of the dominant energy condition. In ref. [27] we have
explained how this proof can be extended to a theory containing an arbitrary number of
Abelian vector fields and the KR field coupled to them via Chern-Simons terms. Essentially
one gets a sum of non-negative terms containing the contribution of each field, and each
of them has to vanish. Extending this proof to the non-Abelian case is possible, as long
as we restrict ourselves to a gauge group with definite positive Killing metric because one
gets sums of non-negative terms. However, the R(0) 2

(−) term of our theory is of YM type,
but with non-definite Killing metric because of the non-compactness of the Lorentz group
and the proof cannot be extended to this case in a straightforward manner.

It is, however, possible to prove the first law in bifurcate horizons if one can proof gen-
eralized zeroth laws for the matter fields restricted to the bifurcation sphere BH where the
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Killing vector associated to the event horizon, k, vanishes identically. These restricted gen-
eralized zeroth laws state the closedness of certain differential forms on BH. The definitions
of the potentials as certain constants follow from them as we are going to explain.

Assuming all the fields are regular over the horizon, it is clear that the inner products
of their field strengths with k must vanish on BH:

ıkdφ
BH= 0 , (4.1a)

ıkH
BH= 0 , (4.1b)

ıkF
A BH= 0 , (4.1c)

ıkR
(0) a
(−) b

BH= 0 . (4.1d)

Eq. (4.1a) is actually true over the whole spacetime, by assumption. From eq. (4.1c)
and the definition of the YM momentum map PkA we find that

DPkA
BH= 0 , (4.2)

which tells us that the horizontal YM momentum map PkA is, at the same time, a vertical
Killing vector field on BH. This is what is needed in order to have an associated conserved
charge there (see the discussion in section 3.2.2).

Analogously, from eq. (4.1d) and the definition of the momentummap P(−)k
a
b eq. (3.40)

we get

D(0)
(−)P(−)k

a
b
BH= 0 , (4.3)

which tells us that the horizontal Lorentz momentum map PkA is, also, a vertical Killing
vector field on BH.

Observe that the last two equations have as a consequence the existence of the gauge-
invariant 1-forms ΨPk and ΠPk defined by

dΠPk
BH= P(−)k

a
bR

(0) b
(−) a , (4.4a)

dΨPk
BH= Pk AF

A . (4.4b)

The closedness of the right-hand sides of these equations on BH, which guarantee the local
existence of ΨPk and ΠPk there are the restricted generalized zeroth laws for the YM and
torsionful spin connection fields.

Finally, from eq. (4.1b) and the definition of the KR momentum map eq. (3.50) plus
the above two equations that define ΨPk and ΠPk we get

d

[
Pk −

α′

2 (ΨPk + ΠPk)
]
BH= 0 , (4.5)

which is the restricted generalized zeroth law of the KR field.
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5 The first law

Following Wald [5], we start by defining the pre-symplectic (d− 1)-form [4]

ω(1)(ϕ, δ1ϕ, δ2ϕ) ≡ δ1Θ(1)(ϕ, δ2ϕ)− δ2Θ(1)(ϕ, δ1ϕ) , (5.1)

and the symplectic form relative to the Cauchy surface Σ

Ω(1)(ϕ, δ1ϕ, δ2ϕ) ≡
∫

Σ
ω(1)(ϕ, δ1ϕ, δ2ϕ) . (5.2)

When ϕ is a solution of the equations of motion Eϕ = 0, δ1ϕ = δϕ is an arbitrary
variation of the fields and δ2ϕ = δξϕ is their variation under diffeomorphisms [6]

ω(1)(ϕ, δϕ, δξϕ) = δJ(1) + dıξΘ(1) ′ = δdQ(1)[ξ] + dıξΘ(1) ′ , (5.3)

where, in our case, the Noether-Wald (d−2)-form charge Q(1) is given by eq. (3.65) and Θ′ is
given in eq. (3.62). Since, on-shell, Θ(1) = Θ(1) ′, we have that, if δϕ satisfies the linearized
equations of motion, δdQ(1) = dδQ(1). Furthermore, if the parameter ξ = k generates a
transformation that leaves the field configuration invariant, δkϕ = 0,16 linearity implies
that ω(1)(ϕ, δϕ, δkϕ) = 0, and

d
(
δQ(1)[k] + ıkΘ(1) ′

)
= 0 . (5.4)

Integrating this expression over a hypersurface Σ with boundary δΣ and using Stokes’
theorem we arrive at ∫

δΣ

(
δQ(1)[k] + ıkΘ(1) ′

)
= 0 . (5.5)

We consider field configurations that describe asymptotically flat, stationary, black-
hole spacetimes with bifurcate horizons H and the Killing vector k is the one whose Killing
horizon is the black hole’s event horizon. k, then, will be given by a linear combination
with constant coefficients Ωn of the timelike Killing vector associated to stationarity, tµ∂µ
and the [1

2(d− 1)] generators of inequivalent rotations in d spacetime dimensions φµn∂µ

kµ = tµ + Ωnφµn . (5.6)

The constant coefficients Ωn are the angular velocities of the horizon.
The hypersurface Σ to be the space bounded by infinity and the bifurcation sphere

BH on which k = 0, so δΣ has two disconnected pieces: a (d− 2)-sphere at infinity, Sd−2
∞ ,

and the bifurcation sphere BH. Then, taking into account that k = 0 on BH, we obtain
the relation

δ

∫
BH

Q(1)[k] =
∫

Sd−2
∞

(
δQ(1)[k] + ıkΘ(1) ′

)
. (5.7)

As explained in refs. [6, 38], the right-hand side can be identified with δM − ΩmδJn,
where M is the total mass of the black-hole spacetime and Jn are the independent compo-
nents of the angular momentum.17

16Notice that our goal in section 3.3 was, precisely, to construct variations of the fields δξ with that
property.

17When the spacetime has compact dimensions, the d-dimensional mass M is a combination of the lower-
dimensional mass and Kaluza-Klein charges. The details depend on the compactification and will be studied
elsewhere.
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Using the explicit form of Q(1)[k], eq. (3.65), noticing that −2ıade−2φkb
BH= 0 and

restoring the overall factor g(d) 2
s (16πG(d)

N )−1, we find

δ

∫
BH

Q(1)[k] = g
(d) 2
s

16πG(d)
N

δ

∫
BH

(−1)de−2φ ? (ea ∧ eb)Pk ab

+ g
(d) 2
s

16πG(d)
N

δ

∫
BH

(−1)d−1α
′

2 P(−)k
a
b

(
e−2φ ? R

(0) b
(−) a

)

+ g
(d) 2
s

16πG(d)
N

δ

∫
BH

(−1)d−1α
′

2 Pk Ae
−2φ ? FA

− g
(d) 2
s

16πG(d)
N

δ

∫
BH

Pk ∧
(
e−2φ ? H(1)

)
.

(5.8)

The right-hand side of this identity is expected to be of the form TδS+ ΦδQ for some
charges Q and potentials Φ. However, when we compare the third and fourth integrals in
the right-hand side with the definitions of the YM and KR charges eqs. (3.25) and (3.12)
we see that some terms are missing in the integrand of the first and that, in the second,
there is no closed or harmonic form in the integrand, since the horizontal KR momentum
map is not necessarily closed on BH. We found a similar problem in ref. [27] and the
solution is essentially the same: add and subtract the same term in different integrals in
order to complete the integrand of the definition of YM charge and in order to construct a
1-form which is closed in BH.

The 1-form which is closed on BH and which contains Pk follows from the restricted
generalized zeroth law of the KR field, eq. (4.5). We must add a term −α′

2 ΨPk to the
fourth integral and subtract the same term to the third, which now contains all the terms
associated to the YM charge because of the restricted generalized zeroth law eq. (4.2).
However, eq. (4.5) also tells us to add another term −α′

2 ΠPk to the fourth integral and
we can only compensate by subtracting it to the second. This completes the closed 1-
form in the fourth integral and completes the integrand of the Lorentz charge according to
eq. (3.31) and thanks to the restricted generalized zeroth law eq. (4.3).

The result of these additions and subtractions is

δ

∫
BH

Q(1)[k] = g
(d) 2
s

16πG(d)
N

δ

∫
BH

(−1)de−2φ ? (ea ∧ eb)Pk ab

+ g
(d) 2
s

16πG(d)
N

δ

∫
BH

(−1)d−1α
′

2
[
e−2φ ? dΠPk + (−1)dΠPk ∧

(
e−2φ ? H(0)

)]

+ g
(d) 2
s

16πG(d)
N

δ

∫
BH

(−1)d−1α
′

2
[
e−2φ ? dΨPk + (−1)dΨPk ∧

(
e−2φ ? H(0)

)]

− g
(d) 2
s

16πG(d)
N

δ

∫
BH

[
Pk −

α′

2 (ΨPk + ΠPk)
]
∧
(
e−2φ ? H(1)

)
, (5.9)
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where ΨPk and ΠPk satisfy eqs. (4.4b) and (4.4a), respectively, whose integrability is guar-
anteed by the fact that the YM and Lorentz momentum maps are covariantly constant on
BH (the restricted generalized zeroth laws).

Now, let us assume that the particular field configuration under consideration admits
a set of covariantly constant YM parameters on BH that we label with an index I, κIA

DκAI
BH= 0 , ⇒ Pk

A BH= ΦIκAI , (5.10)

where the constants ΦI will be interpreted as the potentials associated to the YM charges
QI computed with the parameter κIA eq. (3.25)

QI ≡ Q[κI ] = g
(d) 2
s

16πG(d)
N

∫
BH

(−1)d−1α
′

2
[
e−2φ ? dΨI + (−1)dΨI ∧

(
e−2φ ? H(0)

)]
, (5.11)

where
dΨI = −κI AFA . (5.12)

As a result, the third line in eq. (5.9) becomes ΦIδQI .
Now, following refs. [37, 38], as a consequence of the KR restricted generalized zeroth

law eq. (4.5), we can write (Hodge decomposition)

Pk −
α′

2 (ΨPk + ΠPk) BH= de+ ΦiΛh i , (5.13)

where e is some function, the Λh i are the harmonic 1-forms of the bifurcation sphere and
the Φi are constants that can be interpreted as the potentials associated to the KR charges
Qi = Q(Λh i) eq. (3.12)

Qi = − g
(d) 2
s

16πG(d)
N

∫
CΛh i

e−2φ ? H , (5.14)

where CΛh i is the (d− 3)-cycle dual to the harmonic 1-form Λh i in BH.
As a result, the fourth line in eq. (5.9) becomes ΦiδQi, and we are left with the first

two, which are linear in the Lorentz momentum map Pkab, which, on BH, is given by κnab,
where nab is the binormal to the horizon. The terms in those two lines must, therefore, be
interpreted as those giving rise to the term TδS in the first law

δM = TδS + ΦIδQI + ΦiδQi + ΩnδJn . (5.15)

6 Wald entropy

It follows from the results of the previous section that the entropy is given by

S = (−1)d g
(d) 2
s

8G(d)
N

∫
BH

e−2φ
{[
?(ea ∧ eb) + α′

2 ? R
(0)
(−)

ab
]
nab + (−1)dα

′

2 Πn ∧ ?H(0)
}
, (6.1)

where we have defined the 1-form Πn (vertical Lorentz momentum map associated to the
binormal) on the bifurcation sphere

dΠn
BH= R

(0)
(−)

abnab . (6.2)
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This is the main result of this paper, which we will discuss in the next section. It is
worth stressing that the term that involves Πn, and which has been shown to give an impor-
tant contribution to the entropy of well-known black-hole solutions refs. [7, 9, 33–35] occurs
in the entropy formula just to cancel an equivalent term that we had to add to get the
correct definition of the KR charge and the associated potential. Without a detailed knowl-
edge of the conserved charges, the restricted generalized zeroth laws and the potentials
associated, the presence of that term in the entropy formula could not have been guessed.

7 Discussion

In this paper we have derived an entropy formula for the black-hole solutions of the Het-
erotic Superstring effective action to first order in α′ using Wald’s formalism [4, 5] taking
carefully into account all the symmetries of the theory. As a result, our entropy formula
eq. (6.1) is manifestly gauge invariant. In particular, it is manifestly invariant under local
Lorentz transformations.

It is interesting to compare this result with the one that would follow from the direct
(and naive) application of the Iyer-Wald prescription [6]. The first two terms in eq. (6.1)
can be obtained from eq. (2.8) by varying the Einstein-Hilbert term and the R2

(−) term
with respect to the Riemann curvature tensor, but the third term cannot be obtained in
that way from the H2 term. As stressed in refs. [7, 9, 33], the variation of this term with
respect to the Riemann tensor gives a term of the form

α′

4 e
−2φ

(
Ω(0)

(−)
abnab

)
∧ ?H(0) , (7.1)

which is not Lorentz-covariant. The coefficient of this term differs from the last term in
eq. (6.1) if we associate Πn to Ω(0)

(−)
abnab, which is the right thing to do as we are going

to show. But this coefficient changes after dimensional reduction, as observed in ref. [2].
The explicit calculation in ref. [33] shows that the right coefficient is the one that arises
after dimensional reduction,18 but, certainly, there are ambiguities in the way in which the
Chern-Simons terms are defined in lower dimensions.

It is interesting to observe that because Dnab
BH= 0,

dΠn
BH= d

(
Ω(0)

(−)
abnab

)
+ Ω(0)

(−)
a
c ∧ Ω(0)

(−)
cbnab . (7.2)

For the non-extremal Reissner-Nordström black hole of ref. [44], whose α′ corrections
were computed in ref. [33], the second term vanishes identically in the tangent space basis
used (see appendix C). This shows that, in that basis, our entropy formula and the entropy
formula obtained via the Iyer-Wald prescription (after dimensional reduction) give the same
result. Of course, our formula is valid in any basis.

Our entropy formula seems to differ from the entropy formula obtained in ref. [45], but
a detailed comparison is not possible since that formula contains undetermined parameters

18The entropy calculated in this way satisfies the first law or, equivalently, the thermodynamic relation

∂S

∂M
= 1
T
.
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that guarantee its invariance under Lorentz transformations. In ref. [45] it was argued
that those undetermined parameters do not contribute to the entropy in certain cases but,
without an explicit expression, it is difficult to understand why or when this may happen.
Furthermore, as we have shown, the identification of the entropy formula can only be made
after the first law of black hole mechanics has been proven, and this requires a careful
identification of the conserved charges of the theory: some terms (the one involving Πn)
occur in the entropy formula only because they are needed to compensate other terms that
have to appear in the correct definition of the KR charge. This analysis was simply not
carried out in ref. [45].

Our entropy formula (the contribution due to the presence of Lorentz- or gravitational
Chern-Simons terms in H(1)) also differs from the one found in ref. [39]. Observe that
eq. (40) in ref. [39], similar to the terms contained in the formulae derived in refs. [7, 9] and
to eq. (7.1) is not covariant. Thus, it may only give the right result in certain basis, if at
all.19 The problems in the derivation of ref. [39] are having overlooked the KR conserved
charge and the determination of the gauge parameters that generate symmetries of the
complete field configuration.

Finally, it is interesting to note that the entropy formula looks like the charge asso-
ciated to the Lorentz transformations generated by the binormal to the horizon. These
transformations preserve the connections ω and Ω(0)

(−) on the bifurcation sphere, but they
do not preserve the Vielbein, as we assumed in section 3.2.3 (eq. (3.27)), which produces
an additional term associated to the Einstein-Hilbert term.

The main use of the entropy formula that we have found is to put in solid ground
the calculations of the macroscopic entropies of α′-corrected black holes, an ineluctable
condition for a fair comparison with the microscopic ones. More α′-corrected solutions will
be available to this end [47]. As mentioned in the introduction, another necessary ingredient
for this comparison is the correct identification of the relation between the charges of the
black hole and the branes in the string background. These results and those of our previous
work [27] single out a very precise definition of the conserved charges, which turn out to be
of Page type, conserved and gauge-invariant under the assumptions made. This fact should
shed light on this problem and we intend to pursue this line of research in future work.
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