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1 Introduction

The masses and mixing parameters of both quarks and leptons have been measured pre-
cisely, however the origin of the hierarchical masses and different mixing patterns of quarks
and leptons remain elusive. Although there has been intense theoretical activity in the past
decades, there is still no leading candidate for a flavor theory of quarks and leptons. From
the theoretical point of view, a very appealing possibility is flavor symmetry as the guiding
principle. In this setup, the lepton mixing arises from the mismatched flavor symmetry
breaking patterns in the charged lepton and neutrino sectors, and similarly for the quark
CKM mixing matrix. See [1] for the latest review.

In conventional flavor symmetry models, the scalar potential of the flavon fields has to
be cleverly designed to get the correct vacuum alignment, and generally certain auxiliary
symmetry is necessary to forbid dangerous operators. As a consequence, the models look
rather complex. Recently the modular invariance as flavor symmetry is suggested to over-
come these drawbacks [2]. The lepton mass matrices would appear as the combinations
of Yukawa couplings and modular forms which are holomorphic functions of the modulus
τ . The vacuum expectation value of τ is the unique source of flavor symmetry breaking.
In modular invariant lepton models, the neutrino masses and mixing parameters can be

– 1 –



J
H
E
P
0
5
(
2
0
2
1
)
1
0
2

predicted in terms of a few input parameters and thus these models have strong predictive
power.

The phenomenologies of modular invariance have widely studied in the literature, and
many modular invariant models for lepton masses and mixing have been constructed by
using the inhomogeneous finite modular group ΓN for Γ2 ∼= S3 [3–6], Γ3 ∼= A4 [2–4, 7–31],
Γ4 ∼= S4 [20, 32–39], Γ5 ∼= A5 [37, 40, 41] and Γ7 ∼= PSL(2, Z7) [42]. The formalism of
the homogeneous finite modular group Γ′N which is the double covering of ΓN have been
explored in [43]. The homogeneous finite modular groups Γ′3 ∼= T ′ [43, 44], Γ′4 ∼= S′4 [45, 46]
and Γ′5 ∼= A′5 [47, 48] have been utilized to build lepton and quark models. Moreover, the
modular invariance approach has been extended to include the rational weight modular
forms, then the modular group should be extended to its metaplectic covering group and
the modular forms can be decomposed into irreducible multiplets of the finite metaplec-
tic group Γ̃N [49]. The superstring theory requires six compact space dimensions with
multiple moduli, the modular invariant supersymmetric theories with single modulus has
been extended to more general automorphic supersymmetric theory where several moduli
can occur naturally [50, 51]. The exchange of moduli between electrons and neutrinos
can induce a non-standard neutrino interactions which can leads to a shift of the neutrino
mass matrix [26]. Thus the presence of moduli can potentially be tested in neutrino oscil-
lation experiments [26]. The predictive power of the modular invariance approach would
be improved further by including the generalized CP symmetry (gCP) which acts on the
complex modulus τ as τ CP−−→ −τ∗ up to modular transformations [52–56]. In the symmetric
basis where the generators S and T are represented by unitary and symmetric matrices,
invariance under gCP would require all coupling constants real.

It is known that A4 is the smallest finite modular group which admits a three-dimen-
sional irreducible representation such that the three generations of fermion fields can be
embedded into a triplet. Many A4 modular models have been constructed [2–4, 7–31], and
most predictive models without gCP use eight independent real parameters to describe
the neutrino masses, mixing angles and CP violation phases. In this paper, we intend to
perform a systematical analysis of lepton and quark models based on Γ3 ∼= A4 modular
symmetry with gCP, and we aim at minimizing the number of free parameters. For lepton
models, we find that 20 viable models can successfully describe the experimental data
of lepton masses and mixing parameters in terms of seven real parameters including the
complex modulus τ . In the quark sector, in order to accommodate the measured values of
quark masses and CKM mixing matrix, at least 10 free parameters are necessary and we
obtain thousands of viable quark models with 10 free real parameters. By combining the
lepton and quark sectors, we find that the quark-lepton unification can be achieved with a
common value of the modulus τ .

The paper is organized as follows. In section 2, we give a brief review of the basic
concepts of modular symmetry and modular groups, the even weight modular forms of
level 3 are constructed up to weight 8 and they are organized into irreducible multiplets
of A4. The generalized CP symmetry compatible with A4 modular symmetry is discussed
in section 3. In section 4, we perform a systematical classification of A4 modular lepton
models with gCP symmetry, the phenomenologically viable models with minimal number
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of free parameters and the numerical results of the fit are presented. In section 5, we ultlize
the A4 modular symmetry and the gCP symmetry to explain the quark masses and mixing.
The complete models for quarks and leptons are presented in section 6. We conclude the
paper in section 7.

2 Modular symmetry and modular forms of level N = 3

In this section, we will firstly introduce some basic concepts of modular symmetry. The
modular group Γ can be defined from a 2-dimensional special linear group Γ = SL(2,Z)
with integer entries and determinant equals to 1 [57, 58]:

SL(2,Z) =
{(

a b

c d

) ∣∣∣∣a, b, c, d ∈ Z, ad− bc = 1
}
. (2.1)

The SL(2,Z) group acts on the complex modulus τ in the upper half complex plane =τ > 0
via fractional linear transformations,

τ 7→ γτ = γ(τ) = aτ + b

cτ + d
, γ ∈ SL(2,Z) . (2.2)

It is easy to find that γ and −γ induce the same linear factional transformation and thus
one typically defines the projective special linear group PSL(2,Z) by the quotient group
PSL(2,Z) ≡ SL(2,Z)/{I,−I} with I is the identity matrix. The modular group Γ is
isomorphic to PSL(2,Z) and it has two generators S and T satisfying [57]

S2 = (ST )3 = 1 . (2.3)

The matrix forms of S and T are

S =
(

0 1
−1 0

)
, T =

(
1 1
0 1

)
. (2.4)

Under the actions of S and T , the modulus τ transform as

S : τ 7→ −1
τ
, T : τ 7→ τ + 1 . (2.5)

For a positive integer N , the principal congruence subgroup of level N is defined as

Γ(N) =
{(

a b

c d

)
∈ SL(2,Z), a− 1 = d− 1 = b = c = 0 (mod N)

}
, (2.6)

which is a normal subgroup of the special linear group SL(2,Z). One can find that TN is
an element of Γ(N). The projective principal congruence subgroup is defined as

Γ(N) =
{

Γ(N)/{±I} for N = 1, 2
Γ(N) for N ≥ 3 . (2.7)

– 3 –



J
H
E
P
0
5
(
2
0
2
1
)
1
0
2

Notice that −I does not belong to Γ(N) for N ≥ 3. The finite modular group ΓN is the
quotient group ΓN ≡ Γ/Γ(N) which can be obtained from Γ(1) by imposing the condition
TN = 1. Consequently the generators S and T of ΓN satisfy the relations

S2 = (ST )3 = TN = 1 . (2.8)

The finite modular groups ΓN with N = 2, 3, 4, 5 are isomorphic to S3, A4, S4 and A5
respectively [59]. For N > 5, additional relations besides those in eq. (2.8) are necessary
in order to render the group finite [59].

The modular form f(τ) of weight k and level N is a holomorphic function of the
complex modulus τ and it transforms under the action of Γ(N) as follows,

f(τ)→ f (γτ) = (cτ + d)kf(τ) for ∀ γ =
(
a b

c d

)
∈ Γ(N) . (2.9)

The modular forms of weight k and level N span a finite dimensional linear space. The
modular forms fi(τ) can be arranged into some modular multiplets Yr ≡ (f1(τ), f2(τ), . . .)T

which transform as certain irreducible representation r of the ΓN for even k [2, 43] i.e.

Y
(k)
i (γτ) = (cτ + d)kρij(γ)Y (k)

j (τ) for ∀ γ ∈ Γ , (2.10)

where γ is the representative element of the coset γΓ(N) in ΓN , and ρij(γ) is the represen-
tation matrix of γ.

2.1 Modular forms of level N = 3

The linear space of modular forms of level 3 and weight 2k has dimension 2k + 1, and
the modular forms of level 3 can be organized into different irreducible representation of
the inhomogeneous finite modular group Γ3 ∼= A4 up to the automorphy factor [2]. It is
known that A4 is the discrete symmetry group of the rotations that leave a tethraedron
invariant, or the group of the even permutations of four objects. The A4 group has three
one-dimensional irreducible representations denoted by 1, 1′, 1′′ and a three-dimensional
representation denoted by 3. The representation matrices of the generators S and T are

1 : S = 1, T = 1 ,

1′ : S = 1, T = ω ,

1′′ : S = 1, T = ω2 ,

3 : S = 1
3

−1 2 2
2 −1 2
2 2 −1

 , T =

1 0 0
0 ω 0
0 0 ω2

 , (2.11)
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where ω = e2πi/3 = −1/2+ i
√

3/2. The decomposition of the tensor product of two triplets
α and β is

(α⊗ β)1 = α1β1 + α2β3 + α3β2 ,

(α⊗ β)1′ = α3β3 + α1β2 + α2β1 ,

(α⊗ β)1′′ = α2β2 + α1β3 + α3β1 ,

(α⊗ β)3S
=

 2α1β1 − α2β3 − α3β2
2α3β3 − α1β2 − α2β1
2α2β2 − α1β3 − α3β1

 ,

(α⊗ β)3A
=

α2β3 − α3β2
α1β2 − α2β1
α3β1 − α1β3

 , (2.12)

where (α⊗ β)r denotes the contraction of α and β into the representation r, 3S and 3A
stand for the symmetric and the antisymmetric triplet combinations respectively.

The ring of the modular forms of level 3 can be generated by three linearly independent
modular forms of weight 2 which are given by [2]:

Y1(τ) = i

2π

[
η′(τ/3)
η(τ/3) + η′((τ + 1)/3)

η((τ + 1)/3) + η′((τ + 2)/3)
η((τ + 2)/3) −

27η′(3τ)
η(3τ)

]
,

Y2(τ) = −i
π

[
η′(τ/3)
η(τ/3) + ω2 η

′((τ + 1)/3)
η((τ + 1)/3) + ω

η′((τ + 2)/3)
η((τ + 2)/3)

]
,

Y3(τ) = −i
π

[
η′(τ/3)
η(τ/3) + ω

η′((τ + 1)/3)
η((τ + 1)/3) + ω2 η

′((τ + 2)/3)
η((τ + 2)/3)

]
, (2.13)

where η(τ) is the Dedekind eta-function

η(τ) = q1/24
∞∏
n=1

(1− qn), q = e2πiτ . (2.14)

We can arrange the three modular functions into a vector Y (2)
3 (τ) = (Y1(τ), Y2(τ), Y3(τ))T

transforming as a triplet 3 of A4,

Y
(2)

3 (−1/τ) = τ2ρ3(S)Y (2)
3 (τ), Y

(2)
3 (τ + 1) = ρ3(T )Y (2)

3 (τ) , (2.15)

where ρ3(S) and ρ3(T ) are the representation matrices of S and T in the triplet represen-
tation 3 given in eq. (2.11). Multiplets of higher weight modular forms can be constructed
from the tensor products of Y (2)

3 . At weight k = 4, we find five independent modular forms
which decompose as 3⊕ 1⊕ 1′ under A4,

Y
(4)

3 = 1
2(Y (2)

3 Y
(2)

3 )3 =


Y 2

1 − Y2Y3

Y 2
3 − Y1Y2

Y 2
2 − Y1Y3

 ,

Y
(4)

1 = (Y (2)
3 Y

(2)
3 )1 = Y 2

1 + 2Y2Y3 ,

Y
(4)

1′ = (Y (2)
3 Y

(2)
3 )1′ = Y 2

3 + 2Y1Y2 . (2.16)

– 5 –



J
H
E
P
0
5
(
2
0
2
1
)
1
0
2

Similarly there are seven modular forms of weight 6, and they can be arranged into a singlet
1 and two triplets 3 of A4,

Y
(6)

1 = (Y (2)
3 Y

(4)
3 )1 = Y 3

1 + Y 3
2 + Y 3

3 − 3Y1Y2Y3 ,

Y
(6)

3I = Y
(2)

3 Y
(4)

1 = (Y 2
1 + 2Y2Y3)

Y1
Y2
Y3

 ,

Y
(6)

3II = Y
(2)

3 Y
(4)

1′ = (Y 2
3 + 2Y1Y2)

Y3
Y1
Y2

 . (2.17)

Finally the linearly independent weight 8 modular forms of level 3 can be decomposed into
three singlets 1, 1′, 1′′ and two triplets 3 under A4,

Y
(8)

1 = (Y (2)
3 Y

(6)
3I )1 = (Y 2

1 + 2Y2Y3)2 ,

Y
(8)

1′ = (Y (2)
3 Y

(6)
3I )1′ = (Y 2

1 + 2Y2Y3)(Y 2
3 + 2Y1Y2) ,

Y
(8)

1′′ = (Y (2)
3 Y

(6)
3II)1′′ = (Y 2

3 + 2Y1Y2)2 ,

Y
(8)

3I = Y
(2)

3 Y
(6)

1 = (Y 3
1 + Y 3

2 + Y 3
3 − 3Y1Y2Y3)

Y1
Y2
Y3

 ,

Y
(8)

3II = (Y (2)
3 Y

(6)
3II)3A = (Y 2

3 + 2Y1Y2)


Y 2

2 − Y1Y3

Y 2
1 − Y2Y3

Y 2
3 − Y1Y2

 . (2.18)

3 Generalized CP consistent with A4 symmetry

The modular group SL(2, Z) can consistently combine with the generalized CP symmetry
by introducing another new generator which is represented by [52]

CP =
(

1 0
0 −1

)
. (3.1)

Thus the modular group Γ ≡ SL(2, Z) is enhanced to Γ∗ ≡ GL(2, Z). Under the action of
CP , the complex modulus τ transforms as

τ
CP−→ −τ∗ . (3.2)

As a consequence, the action of Γ∗ on the upper-half complex plane is(
a b

c d

)
∈ Γ∗ :

 τ → aτ+b
cτ+d for ad− bc = 1 ,

τ → aτ∗+b
cτ∗+d for ad− bc = −1 .

(3.3)

Considering the CP transformation, then a modular transformation γ and subsequently
the inverse CP transformation on the modulus τ , we have

τ
CP−→ −τ∗ γ−→ −aτ

∗ + b

cτ∗ + d
CP−1
−→ aτ − b

−cτ + d
. (3.4)
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Hence the consistency condition chain CP → γ → CP−1 maps the modular group element
γ into another element u(γ),1

γ =
(
a b

c d

)
→ u(γ) =

(
a −b
−c d

)
= CPγCP−1 . (3.5)

It is straightforward to check that u is an automorphism and it preserves the structure of
modular group, i.e., u(γ1)u(γ2) = u(γ1γ2). Moreover there is no group element γ′ ∈ Γ such
that u(γ) = γ′γγ′−1, therefore u is an outer automorphism of the modular group. It is
remarkable that u(S) = S−1 and u(T ) = T−1.

On the other hand, the CP transformation acts on the matter field and the modular
form multiplets as follow,

ψ(x) CP−→ Xrψ(xP), Y (τ) CP−→ Y (−τ∗) = XrY
∗(τ) , (3.6)

where x = (t, ~x) and xP = (t,−~x). Applying the consistency condition chain CP → γ →
CP−1 to the matter field, we can obtain the constraint on the generalized CP transforma-
tion Xr,

Xrρ
∗
r(γ)X−1

r = ρr(u(γ)), γ ∈ Γ , (3.7)

which has to be fulfilled for consistent implementation of the generalized CP symmetry in
the context of modular symmetry. It is sufficient to impose the above consistency condition
on the generators S and T ,

Xrρ
∗
r(S)X−1

r = ρ−1
r (S), Xrρ

∗
r(T )X−1

r = ρ−1
r (T ) , (3.8)

In the present work, we study the finite modular group A4, and both S and T are rep-
resented by unitary and symmetric matrices in our working basis, as shown in eq. (2.11).
Hence the CP transformation Xr is determined to take the canonical form,

Xr = 1r , (3.9)

up to an overall phase. Furthermore, eq. (2.12) implies that the Clebsch-Gordan coefficients
are real in the chosen basis, consequently all coupling constants would be real if the theory
is required invariant under the CP.

4 Lepton models based on A4 modular symmetry with gCP

In this section, we shall perform a systematical classification of all minimal lepton models
based on the Γ3 ∼= A4 modular symmetry with gCP. We shall formulate our models in
the framework of N = 1 global supersymmetry. In the present work, the Kähler poten-
tial is taken to be the minimal form as in the original work [2]. Note that the Kähler

1A second CP transformation can possibly be defined with u(γ) = χ(γ)
(

a −b
−c d

)
, where χ(γ) = ±1 is

a homomorphism or more concretely χ(S) = χ(T ) = −1 [45]. In the present work, we consider the even
weight modular forms and the inhomogeneous finite modular group Γ3 ∼= A4, the modular transformation
γ is identified with −γ. Thus two generalized CP symmetries are identical.
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potential is not completely fixed by the modular symmetry [2, 60], there are many other
terms compatible with the modular symmetry in the Kähler potential, thus the predictive
power of modular invariance would be reduced. Top-down constructions in string theory
typically lead to modular symmetry together with certain conventional flavor symmetry.
By combining the traditional flavor symmetry with modular symmetry in the scheme of
eclectic flavor group [61–65], it was shown that both Kähler potential and superpotential
as well as the representations and weights of the fields would be strongly constrained. The
superpotential W(ΦI , τ) can be expanded in power series of the supermultiplets ΦI ,

W(ΦI , τ) =
∑
n

YI1...In(τ) ΦI1 . . .ΦIn , (4.1)

where YI1...In(τ) is a modular form multiplet. Under the modular transformation, the
supermultiplets ΦI and YI1...In(τ) transform as

τ → γτ = aτ + b

cτ + d
, γ =

(
a b

c d

)
∈ SL(2,Z) ,

ΦI → (cτ + d)−kIρI(γ)ΦI ,

Y (τ) → Y (γτ) = (cτ + d)kY ρY (γ)Y (τ) , (4.2)

where −kI and kY are the modular weights of ΦI and YI1...In respectively. Besides, ρI(γ)
and ρY (γ) are unitary representation of the representative element γ in ΓN . The superpo-
tential should be invariant under the modular transformation which implies

kY = kI1 + · · ·+ kIn , ρY ⊗ ρI1 ⊗ . . .⊗ ρIn 3 1 . (4.3)

In the following, the Higgs doublets Hu and Hd are assumed to transform as trivial singlet
1 of A4, and their modular weights kHu and kHd

are zero.

4.1 Charged lepton sector

If both left-handed and right-handed charged lepton fields transform as triplets of A4
modular group, i.e.,

L ≡ (L1, L2, L3)T ∼ 3 , Ec ≡ (Ec1, Ec2, Ec3)T ∼ 3 , (4.4)

then the most general form of the superpotential in charged lepton sector is given by

WE =
∑
ra

gEa

(
Hd(EcL)r′aY

(kL+kNc )
ra

)
1
, (4.5)

where the coupling constants gEa are real because of the invariance under gCP, kL and kEc

denote the modular weights of L and Ec respectively. The modular invariance requires
r′a ⊗ ra = 1, the representation rb can be 1,1′,1′′,3 and they are determined by the
modular weights kL and kEc as shown in table 1. From eq. (4.5), we can read out the
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Modular weight k Modular form Y
(k)

r

k = 2 Y
(2)

3

k = 4 Y
(4)

1 , Y
(4)

1′ , Y
(4)

3

k = 6 Y
(6)

1 , Y
(6)

3I , Y
(6)

3II

k = 8 Y
(8)

1 , Y
(8)

1′ , Y
(8)

1′′ , Y
(8)

3I , Y
(8)

3II

Table 1. Summary of modular forms of level 3 up to weight 8, the subscript r denote the transfor-
mation property under A4 modular symmetry. Here Y (6)

3I and Y (6)
3II stand for two weight 6 modular

forms transforming in the representation 3 of A4. Similar conventions are adopted for Y (8)
3I and Y (8)

3II .

expressions of the elements of the charged lepton mass matrix,

(ME)ij = vd
∑
a,b,c,d

[ (
gEa1(3δij − 1) + gEa2(1− δij)(−1)mod(i−j,3)

)
Y

(kL+kEc )
3a,3−mod(i+j,3)

+ gEb δ2,mod(i+j,3)Y
(kL+kEc )

1b
+ gEc δ1,mod(i+j,3)Y

(kL+kEc )
1′c + gEd δ0,mod(i+j,3)Y

(kL+kEc )
1′′d

]
.

(4.6)
In this type of models, the charged lepton mass hierarchies rely on cancellations of compa-
rable terms, and fine-tuning of the coupling constants is required. The numerical analysis
indeed shows that it is impossible to obtain the charged lepton mass hierarchies from simple
charged lepton mass matrices involving few coupling parameters. Thus we turn to consider
another kind of assignments of the charged lepton fields.

We assume that the three generations of left-handed lepton fields transform as a triplet
of A4 modular group, while the right-handed charged leptons transform as one-dimensional
representations of A4 in order to accommodate the charged lepton masses, i.e.

L ≡ (L1, L2, L3)T ∼ 3 , Eci ∼ 1li with i = 1, 2, 3, (4.7)

where l1,2,3 = 0, 1, 2 with 10 ≡ 1, 11 ≡ 1′, 12 ≡ 1′′. The modular weights of L and Ec1,2,3
are denoted as kL and kEc

1,2,3
respectively. The modular invariance enforces the modular

forms coupling to EciLHd should be a triplet of A4, and its modular weight should be
kL + kEc

i
. Thus the most general superpotential for the charged lepton masses is given by

WE =
3∑
i=1

∑
a

αi,aE
c
iLHdY

(kL+kEc
i
)

3a (τ) , (4.8)

where αi,a are coupling constants, and they are constrained to be real by gCP symmetry.
The subscript a indicates that there may exist multiple weight kL + kEc

i
modular forms

which transform as a triplet 3 of A4 as shown in table 1. In the following, we will denote
α1 ≡ αe, α2 ≡ βe and α3 ≡ γe. From eq. (4.8) we can see that the charged lepton mass
matrix can be divided into three rows:

ME =

R1
R2
R3

 , (4.9)
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kEc
i

+ kL Expressions of Ri Constraints

2, 4

αi

(
Y

(kEc
i
+kL)

3,1 , Y
(kEc

i
+kL)

3,3 , Y
(kEc

i
+kL)

3,2

)
vd li = 0

αi

(
Y

(kEc
i
+kL)

3,3 , Y
(kEc

i
+kL)

3,2 , Y
(kEc

i
+kL)

3,1

)
vd li = 1

αi

(
Y

(kEc
i
+kL)

3,2 , Y
(kEc

i
+kL)

3,1 , Y
(kEc

i
+kL)

3,3

)
vd li = 2

6, 8

(
αi,1Y

(kEc
i
+kL)

3I,1 + αi,2Y
(kEc

i
+kL)

3II,1 , αi,1Y
(kEc

i
+kL)

3I,3 + αi,2Y
(kEc

i
+kL)

3II,3 , αi,1Y
(kEc

i
+kL)

3I,2 + αi,2Y
(kEc

i
+kL)

3II,2

)
vd li = 0(

αi,1Y
(kEc

i
+kL)

3I,3 + αi,2Y
(kEc

i
+kL)

3II,3 , αi,1Y
(kEc

i
+kL)

3I,2 + αi,2Y
(kEc

i
+kL)

3II,2 , αi,1Y
(kEc

i
+kL)

3I,1 + αi,2Y
(kEc

i
+kL)

3II,1

)
vd li = 1(

αi,1Y
(kEc

i
+kL)

3I,2 + αi,2Y
(kEc

i
+kL)

3II,2 , αi,1Y
(kEc

i
+kL)

3I,1 + αi,2Y
(kEc

i
+kL)

3II,1 , αi,1Y
(kEc

i
+kL)

3I,3 + αi,2Y
(kEc

i
+kL)

3II,3

)
vd li = 2

Table 2. Possible structures of each row Ri of the charged lepton mass matrix for modular forms
up to weight 8, where αi, αi,1 and αi,2 are Yukawa coupling parameters.

where Ri is a 1× 3 sub-matrix with i = 1, 2, 3. The general form of the i-th row of charged
lepton mass matrix Ri is determined by modular weight kL+kEc

i
and representation indices

li. Using the contraction rules of A4 group given in eq. (2.12), we find the general form of
the (ij) element of ME is

(ME)ij =
∑
a

αi,avdY
(kL+kEc

i
)

3a,3−mod(li+j+1,3) . (4.10)

In the present work, we will be concerned with the modular forms up to weight 8, and
higher weight modular forms can be discussed in a similar way. The explicit forms of Ri
for kL + kEc

i
= 2, 4, 6, 8 are summarized in table 2. From this table, we can see that if

kEc
i

+kL = 2, 4, there will be a single Yukawa coupling parameter αi for each right-handed
charged lepton Eci , while there will be two Yukawa couplings αi,1 and αi,2 for kEc

i
+kL = 6, 8.

We now consider the possible structures of the charged lepton mass matrix. Combining
the possible forms of Ri with i = 1, 2, 3 given in table 2, we can directly obtain the charged
lepton mass matrix. We require that the rank of the charged lepton mass matrix not less
than 3 such that any two rows of the charged lepton mass matrix can not be proportional,
otherwise at least one of the charged leptons would be massless. In other words, the
three generations right-handed charged leptons must be distinguishable from each other
by their modular weight and representations. Notice that the effect of exchanging the
assignments of right-handed charged leptons is to multiply certain permutation matrices
to charged lepton mass matrix from left-hand side, thus the results for the charged lepton
masses and mixing matrix are not changed. Without loss of generality, we can assume
kEc

1
+ kL ≤ kEc

2
+ kL ≤ kEc

3
+ kL. Thus there are the following four possible cases.

• kEc
1

+ kL = kEc
2

+ kL = kEc
3

+ kL.
In this case, all three generations of right-handed charged lepton have the same
modular weights, and the values of kEc

i
+ kL can be 2, 4, 6, 8. To distinguish three

right-handed charged leptons, their assignments of one-dimensional representations
under A4 should be different. As a result, the values of l1, l2 and l3 can only be
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chosen as
(l1, l2, l3) = (0, 1, 2) , (4.11)

where the exchange of the values of li with i = 1, 2, 3 will not give any new results.
Notice that once the values of (kEc

1
+ kL, kEc

2
+ kL, kEc

3
+ kL) and (l1, l2, l3) are fixed,

the explicit structure of charged lepton mass matrix can be read off directly from
table 2.

• kEc
1

+ kL = kEc
2

+ kL < kEc
3

+ kL.
In this case, there are 6 allowed combinations of (kEc

1
+ kL, kEc

2
+ kL, kEc

3
+ kL),

(kEc
1
+kL, kEc

2
+kL, kEc

3
+kL) = (2, 2, 4), (2, 2, 6), (2, 2, 8), (4, 4, 6), (4, 4, 8), (6, 6, 8) .

(4.12)
Since kEc

1
= kEc

2
, the values of l1 should be distinct from l2, while l3 is not constrained,

l1 6= l2 , l1,2,3 ∈ {0, 1, 2} . (4.13)

Consequently (l1, l2, l3) can take 9 set of values,

(0, 1, 0) , (0, 1, 1) , (0, 1, 2) , (0, 2, 0) , (0, 2, 1) , (0, 2, 2) , (1, 2, 0) , (1, 2, 1) , (1, 2, 2) .
(4.14)

• kEc
1

+ kL < kEc
2

+ kL = kEc
3

+ kL.
When the last two generations of right-handed charged leptons are assigned with the
same modular weight, the values of (kEc

1
+ kL, kEc

2
+ kL, kEc

3
+ kL) can be

(kEc
1
+kL, kEc

2
+kL, kEc

3
+kL) = (2, 4, 4), (2, 6, 6), (2, 8, 8), (4, 6, 6), (4, 8, 8), (6, 8, 8) .

(4.15)
The second and third generations of right-handed charged leptons must transform
differently under A4, therefore we have l2 6= l3 while the value of l1 is free. Similarly
we can obtain 9 allowed assignments of (l1, l2, l3),

(0, 0, 1) , (0, 0, 2) , (0, 1, 2) , (1, 0, 1) , (1, 0, 2) , (1, 1, 2) , (2, 0, 1) , (2, 0, 2) , (2, 1, 2) .
(4.16)

• kEc
1

+ kL < kEc
2

+ kL < kEc
3

+ kL.
If all the right-handed charged leptons have different modular weights, the values of
(kEc

1
+ kL, kEc

2
+ kL, kEc

3
+ kL) have 4 choices:

(kEc
1

+ kL, kEc
2

+ kL, kEc
3

+ kL) = (2, 4, 6), (2, 4, 8), (2, 6, 8), (4, 6, 8) . (4.17)

In this case, the representation assignments of three right-handed charged leptons
are irrelevant. As a consequence, there are 27 possible combinations of (l1, l2, l3),

(0, 0, 0) , (0, 0, 1) , (0, 0, 2) , (0, 1, 0) , (0, 1, 1) , (0, 1, 2) , (0, 2, 0) , (0, 2, 1) , (0, 2, 2) ,
(1, 0, 0) , (1, 0, 1) , (1, 0, 2) , (1, 1, 0) , (1, 1, 1) , (1, 1, 2) , (1, 2, 0) , (1, 2, 1) , (1, 2, 2) ,
(2, 0, 0) , (2, 0, 1) , (2, 0, 2) , (2, 1, 0) , (2, 1, 1) , (2, 1, 2) , (2, 2, 0) , (2, 2, 1) , (2, 2, 2) .

(4.18)
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In short, we find there are totally 4 + 6 × 9 + 6 × 9 + 4 × 27 = 220 possible structures of
charged lepton mass matrix that will lead to non-vanishing charged lepton masses.

From table 2, we can find that for the cases kEc
i

+ kL = 2, 4, there is only one coupling
αi in the i-th row, while there are two couplings αi,1 and αi,2 for kEc

i
+ kL = 6, 8. As a

consequence, the number of real Yukawa coupling constants in charged lepton mass matrix
is determined by the values of kEc

i
+ kL with i = 1, 2, 3. If all the three modular weights

kEc
i

+ kL take the values 2 or 4, there will be 3 real coupling parameters in charged lepton
mass matrix. If we change kEc

i
+kL = 2, 4 to kEc

i
+kL = 6, 8, one more real coupling in the

i-th row of the mass matrix will be introduced. Thus the minimal number of real couplings
in the charged lepton mass matrix ME is 3, and the maximum number is 6. According to
the number of free coupling constants in the charged lepton mass matrix, we can divide the
220 possible forms of ME into four distinct classes: M I

E , M II
E , M III

E and M IV
E in which 3, 4,

5 and 6 couplings are involved in the charged lepton mass matrix respectively. Moreover,
we find thatM I

E ,M II
E ,M III

E andM IV
E include 20, 90, 90 and 20 possible form of the charged

lepton mass matrix. The results of charged lepton mass matrix discussed above are also
applicable to up and down quark mass matrices as will be shown in section 5.

4.2 Neutrino sector

We assume neutrinos to be Majorana particles and the neutrino masses are generated
through the effective Weinberg operator or the type-I seesaw mechanism. If neutrino
masses are described by the Weinberg operator and the three lepton doublets are assigned
to an A4 triplet 3, the general superpotential for neutrino masses is

Wν =
∑
ra

gνa
Λ
(
HuHu(LL)r′aY

(2kL)
ra (τ)

)
1 , (4.19)

where gνa are coupling constants, kL is the modular weight of L, the modular weight of
Higgs field Hu is assumed to be vanishing. The modular invariance requires r′a ⊗ ra = 1,
and the possible assignments of ra can be 1,1′,1′′,3, and its value depends on the modular
weight 2kL as shown in table 1. The explicit forms of the elements of neutrino mass matrix
can be denoted as

(Mν)ij = v2
u

Λ
∑
a,b,c,d

[
gνa(3δij − 1)Y (2kL)

3a,3−mod(i+j,3) + gνb δ2,mod(i+j,3)Y
(2kL)

1b

+ gνc δ1,mod(i+j,3)Y
(2kL)

1′c + gνdδ0,mod(i+j,3)Y
(2kL)

1′′d

]
. (4.20)

where i, j = 1, 2, 3. If neutrino masses are generated through the type-I seesaw mecha-
nism, for the triplet assignments of both right-handed neutrinos N c and left-handed lepton
doublets L, the most general form of the superpotential in the neutrino sector is

Wν =
∑
rb

gDb

(
Hu(N cL)r′bY

(kL+kNc )
rb

)
1

+
∑
rc

gMc

(
Λ(N cN c)r′cY

(2kNc )
rc

)
1
, (4.21)

where gDb and gMc are coupling constants, kNc is the modular weight of N c. The modular
invariance requires r′b ⊗ rb = 1 and r′c ⊗ rc = 1, the representation rb and rc can be
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1,1′,1′′,3 and they are determined by the modular weights kL and kNc as shown in table 1.
From eq. (4.21), we can read out the expressions of the elements of Dirac and Majorana
neutrino mass matrices,

(MD)ij = vu
∑
a,b,c,d

[(
gDa1(3δij − 1) + gDa2(1− δij)(−1)mod(i−j,3)

)
Y

(kL+kNc )
3a,3−mod(i+j,3)

+gDb δ2,mod(i+j,3)Y
(kL+kNc )

1b
+ gDc δ1,mod(i+j,3)Y

(kL+kNc )
1′

c
+ gDd δ0,mod(i+j,3)Y

(kL+kNc )
1′′

d

]
,

(MN )ij = Λ
∑
a,b,c,d

[
gMa (3δij − 1)Y (2kNc )

3a,3−mod(i+j,3) + gMb δ2,mod(i+j,3)Y
(2kNc )

1b

+ gMc δ1,mod(i+j,3)Y
(2kNc )

1′
c

+ gMd δ0,mod(i+j,3)Y
(2kNc )

1′′
d

]
. (4.22)

The effective light neutrino mass matrix in the type-I seesaw models is given by the seesaw
formula,

Mν = −MT
DM

−1
N MD . (4.23)

We are only interested in the models with less free parameters, and we list the possible
neutrino models in table 3, for which the resulting light neutrino mass matrices contain
less than 4 free real parameters besides the complex modulus τ .

4.3 Phenomenologically viable lepton models

In section 4.1 and section 4.2, we have systematically constructed the charged lepton and
neutrino mass matrices respectively. By diagonalizing the mass matrices we can obtain
the charged lepton and neutrino masses and the lepton mixing matrix. The variation of
the model parameters will dynamically affect the values of these experimental observables.
In order to quantitatively estimate how well a model can describe the data, we perform a
χ2 analysis to find out the best fit values of the input parameters and the corresponding
predictions for lepton masses and mixing parameters. Because the inverted ordering (IO)
neutrino mass spectrum is disfavored by the global data analyses [66, 67] at about 3σ
confidence level, we focus on normal ordering (NO) neutrino masses in this paper. The χ2

function is defined as
χ2 =

n∑
i=1

(
Pi(x1, x2, . . . , xm)− µi

σi

)2
, (4.24)

where Pi are predictions for the physical observables including neutrino mixing parameters
θ12, θ13, θ23, δlCP and the mass ratios me/mµ, mµ/mτ , ∆m2

21/∆m2
31 which are complex

nonlinear functions of the free parameters of the model, µi and σi denote the central values
and 1σ deviations respectively of the corresponding quantities given in following. From
the NuFIT v5.0 with Super-Kamiokanda atmospheric data [68], the best fit values and 1σ
ranges of the neutrino parameters are

sin2 θl12 = 0.304+0.012
−0.012 , sin2 θl13 = 0.02219+0.00062

−0.00063 , sin2 θl23 = 0.573+0.016
−0.020 ,

δlCP /π = 1.0944+0.1500
−0.1333 ,

∆m2
21

10−5eV2 = 7.42+0.21
−0.20 ,

∆m2
31

10−3eV2 = 2.517+0.026
−0.028 ,

(4.25)
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kL, kNc Neutrino mass matrix

W1 1, — Mν = gν


2Y (2)

3,1 − Y (2)
3,3 − Y (2)

3,2

−Y (2)
3,3 2Y (2)

3,2 − Y (2)
3,1

−Y (2)
3,2 − Y (2)

3,1 2Y (2)
3,3


v2

u
Λ

W2 2, — Mν =

g
ν
1


2Y (4)

3,1 − Y (4)
3,3 − Y (4)

3,2

−Y (4)
3,3 2Y (4)

3,2 − Y (4)
3,1

−Y (4)
3,2 − Y (4)

3,1 2Y (4)
3,3

+ gν2Y
(4)

1

1 0 0
0 0 1
0 1 0

+ gν3Y
(4)

1′

0 0 1
0 1 0
1 0 0



v2

u
Λ

W3 3, — Mν =

g
ν
1


2Y (6)

3I,1 − Y (6)
3I,3 − Y (6)

3I,2

−Y (6)
3I,3 2Y (6)

3I,2 − Y (6)
3I,1

−Y (6)
3I,2 − Y (6)

3I,1 2Y (6)
3I,3

+ gν2


2Y (6)

3II,1 − Y (6)
3II,3 − Y (6)

3II,2

−Y (6)
3II,3 2Y (6)

3II,2 − Y (6)
3II,1

−Y (6)
3II,2 − Y (6)

3II,1 2Y (6)
3II,3

+ gν3Y
(6)

1

1 0 0
0 0 1
0 1 0



v2

u
Λ

S1 2, 0 MD =


2gD1 Y

(2)
3,1 (−gD1 + gD2 )Y (2)

3,3 (−gD1 − gD2 )Y (2)
3,2

(−gD1 − gD2 )Y (2)
3,3 2gD1 Y

(2)
3,2 (−gD1 + gD2 )Y (2)

3,1

(−gD1 + gD2 )Y (2)
3,2 (−gD1 − gD2 )Y (2)

3,1 2gD1 Y
(2)

3,3

 vu , MN = gM

1 0 0
0 0 1
0 1 0

Λ

S2 −1, 1 MD = gD

1 0 0
0 0 1
0 1 0

 vu , MN = gM


2Y (2)

3,1 − Y (2)
3,3 − Y (2)

3,2

−Y (2)
3,3 2Y (2)

3,2 − Y (2)
3,1

−Y (2)
3,2 − Y (2)

3,1 2Y (2)
3,3

Λ

S3 1, 1 MD =


2gD1 Y

(2)
3,1 (−gD1 + gD2 )Y (2)

3,3 (−gD1 − gD2 )Y (2)
3,2

(−gD1 − gD2 )Y (2)
3,3 2gD1 Y

(2)
3,2 (−gD1 + gD2 )Y (2)

3,1

(−gD1 + gD2 )Y (2)
3,2 (−gD1 − gD2 )Y (2)

3,1 2gD1 Y
(2)

3,3

 vu , MN = gM


2Y (2)

3,1 − Y (2)
3,3 − Y (2)

3,2

−Y (2)
3,3 2Y (2)

3,2 − Y (2)
3,1

−Y (2)
3,2 − Y (2)

3,1 2Y (2)
3,3

Λ

S4 −2, 2 MD = gD

1 0 0
0 0 1
0 1 0

 vu , MN =

g
M
1


2Y (4)

3,1 − Y (4)
3,3 − Y (4)

3,2

−Y (4)
3,3 2Y (4)

3,2 − Y (4)
3,1

−Y (4)
3,2 − Y (4)

3,1 2Y (4)
3,3

+ gM2 Y
(4)

1

1 0 0
0 0 1
0 1 0

+ gM3 Y
(4)

1′

0 0 1
0 1 0
1 0 0


Λ

S5 −3, 3 MD = gD

1 0 0
0 0 1
0 1 0

 vu , MN =

g
M
1


2Y (6)

3I,1 − Y (6)
3I,3 − Y (6)

3I,2

−Y (6)
3I,3 2Y (6)

3I,2 − Y (6)
3I,1

−Y (6)
3I,2 − Y (6)

3I,1 2Y (6)
3I,3

+ gM2


2Y (6)

3II,1 − Y (6)
3II,3 − Y (6)

3II,2

−Y (6)
3II,3 2Y (6)

3II,2 − Y (6)
3II,1

−Y (6)
3II,2 − Y (6)

3II,1 2Y (6)
3II,3

+ gM3 Y
(6)

1

1 0 0
0 0 1
0 1 0


Λ

Table 3. The predictions for the neutrino mass matrices, the neutrino masses are generated through
the Weinberg operator for the models W1,2,3 and the type-I seesaw mechanism for the models
S1,2,3,4,5. Here we only present the cases which involve at most three real coupling constants in the
effective light neutrino mass matrix.

where θl12, θ
l
13 and θl23 are the three lepton mixing angles, δlCP is the Dirac CP phase, ∆m2

21
and ∆m2

31 are the neutrino mass squared differences. The charge lepton masses will enter
in the χ2 function in the form of their ratios, the best fit values and 1σ errors are taken
from ref. [69],

me/mµ = 0.004737± 0.000040, mµ/mτ = 0.05857± 0.00047 , (4.26)

at the grand unified theory (GUT) scale 2 × 1016 GeV. Notice that the charged lepton
mass matrices are given at the scale where the modulus τ obtains the vacuum expectation
value 〈τ〉, which is expected to be around the GUT scale. The overall scale of the charged
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lepton mass matrix doesn’t affect the mass ratios and mixing parameters, and it is fixed
by the central value of mτ = 1.30234GeV at GUT scale. Similarly the overall scale of the
light neutrino mass matrix is fixed by the solar neutrino mass squared difference ∆m2

21 =
7.42 × 10−5 eV2. It has been shown that the effect of renormalization group evolution
(RGE) on the neutrino masses and mixing parameters can be negligible for small value of
tan β and NO neutrino masses [7], hence the corrections from RGE are not considered.2

The minimization algorithm in TMinuit [70], a package developed by CERN, is used to
numerically minimize the value of χ2 function to determine the best fit values of the input
parameters. The free parameters vary in some given ranges in TMinuit. We regard the
complex modulus τ as a random complex number in the fundamental domain F : |Reτ | ≤ 1

2 ,
Imτ > 0 and |τ | ≥ 1. The absolute values of all coupling constants freely run in the range
of [0, 106].

Combining the possible structures in the charged lepton sector and neutrino sector,
we can obtain 220 × 8 = 1760 lepton models. In this paper, we are only interested in
the minimal models that are compatible with the experimental data, thus only the lepton
models with 7 real parameters (A) and 8 real parameters (B) are considered.3 We perform
a comprehensive numerical analysis for these models one by one.

(A) Models with 7 real parameters.
There are two possibilities: 3 couplings in the charged lepton sector and 2 couplings
in the neutrino sector, or 4 couplings in the charged lepton sector and 1 coupling
in the neutrino sector. The former case has 20 × 2 = 40 (number of charged lepton
models times neutrino models) lepton models, and the latter case has 90 × 2 = 180
possible models. We scan over all these models and optimize the χ2 function with
the TMinuit package. We find that 20 lepton models out of them can give very good
fit to the experimental data for certain values of input parameters. All the 20 models
share the same neutrino model S2 in table 3, while the charged lepton models are
different and they are listed in table 4, where the modular weights k′Ec

i
≡ kEc

i
+kL and

the representation indices li with i = 1, 2, 3 are given explicitly. The corresponding
charged lepton mass matrices can be straightforwardly read out from table 2 with
the given values of k′Ec

i
and li. Furthermore we show the best fit values of the input

parameters and the predictions of the mixing parameters and neutrino masses in
table 5 for NO neutrino mass spectrum. It is notable that the first ten models
C1,...,10–S2 give quite similar predictions for the lepton observables at the best fit
points, and the predictions of the other ten models C11,...,20–S2 are also very similar.

2The neutrino mass rations and mixing angles are almost RGE invariant for hierarchical NO neutrino
spectrum, while the light neutrino masses as well mass-squared differences could change under RGE. In our
numerical analysis, the χ2 involves the neutrino mixing angles, Dirac CP phase and the ratios of neutrino
mass-squared differences. The overall scale of the neutrino matrix is determined by the solar neutrino
mass squared difference so that the absolute neutrino masses can be fixed. Hence the effect of RGE can
be absorbed into the overall factor of the neutrino matrix, and the results of fitting are not significantly
changed by RGE.

3The minimal A4 modular models for leptons contain 6 real parameters, nevertheless they are incom-
patible with the experimental data.
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Models (k′Ec
1
, k′Ec

2
, k′Ec

3
) (l1, l2, l3) Models (k′Ec

1
, k′Ec

2
, k′Ec

3
) (l1, l2, l3)

C1 (2, 4, 8) (0, 0, 1) C11 (2, 2, 6) (1, 0, 2)
C2 (4, 4, 8) (1, 0, 1) C12 (2, 4, 6) (1, 0, 2)
C3 (4, 4, 8) (2, 0, 1) C13 (2, 4, 6) (1, 1, 2)
C4 (2, 4, 8) (1, 0, 1) C14 (2, 2, 6) (1, 2, 2)
C5 (2, 4, 8) (2, 0, 1) C15 (2, 4, 6) (1, 2, 2)
C6 (2, 4, 8) (0, 1, 2) C16 (2, 2, 6) (2, 0, 0)
C7 (4, 4, 8) (0, 1, 2) C17 (2, 2, 6) (2, 1, 0)
C8 (2, 4, 8) (1, 1, 2) C18 (2, 4, 6) (2, 0, 0)
C9 (4, 4, 8) (2, 1, 2) C19 (2, 4, 6) (2, 1, 0)
C10 (2, 4, 8) (2, 1, 2) C20 (2, 4, 6) (2, 2, 0)

Table 4. List of the charged lepton models C1, C2, . . . , C20, where k′Ec
i
≡ kEc

i
+ kL is the modular

weight of the modular forms in the charged lepton Yukawa coupling. We would like to remind that
the right-handed charged lepton Eci transform as 1li under A4 with 10 ≡ 1, 11 ≡ 1′ and 12 ≡ 1′′.

Models
Best fit values of the input parameters for NO

χ2
minRe〈τ〉 Im〈τ〉 βe/αe γe,1/αe γe,2/αe αevd/MeV (gD)2v2

u

gM Λ /meV

C1–S2 0.19214 1.09373 230.31529 1.20754×103 2.04179×103 0.32342 24.74650 4.87172
C2–S2 0.19214 1.09373 183.94677 964.37095 1.63075×103 0.40495 24.74647 4.87191
C3–S2 0.19214 1.09373 62.75683 329.01303 556.35886 1.18694 24.74648 4.87191
C4–S2 0.19214 1.09373 132.87150 696.60007 1.17795×103 0.56061 24.74647 4.87191
C5–S2 0.19214 1.09374 72.13887 378.32788 639.58609 1.03246 24.74642 4.86955
C6–S2 −0.13677 1.18044 241.68127 3.75452×103 −2.35923× 103 0.33938 23.58270 4.87172
C7–S2 −0.13677 1.18044 183.94677 2.85758×103 −1.79567× 103 0.44590 23.58267 4.87191
C8–S2 −0.13678 1.18043 75.69807 1.17614×103 −739.00172 1.08340 23.58289 4.86955
C9–S2 −0.13677 1.18044 62.75684 974.91502 −612.62690 1.30698 23.58267 4.87191
C10–S2 −0.13677 1.18044 139.42871 2.166×103 −1.36109× 103 0.58827 23.58267 4.87191
C11–S2 0.17243 1.14007 0.01051 11.53676 6.32548 67.00293 23.96081 9.61938
C12–S2 0.17244 1.14004 0.00526 11.53706 6.32415 67.00313 23.96145 9.58973
C13–S2 0.17235 1.14019 0.00504 11.53723 6.32610 67.00833 23.95954 9.59010
C14–S2 0.17243 1.14007 0.01917 11.53674 6.32549 67.00294 23.96081 9.61938
C15–S2 0.17248 1.13999 0.00503 11.53695 6.32352 67.00093 23.96217 9.59336
C16–S2 −0.17243 1.14007 0.01051 6.32548 11.53675 67.00297 23.96080 9.61938
C17–S2 −0.17243 1.14007 0.01917 6.32549 11.53674 67.00297 23.96080 9.61938
C18–S2 −0.17249 1.13996 0.00504 6.32449 11.53444 67.00001 23.96252 9.59010
C19–S2 −0.17241 1.14010 0.00526 6.32455 11.53774 67.00516 23.96072 9.58973
C20–S2 −0.17237 1.14015 0.00504 6.32468 11.53901 67.00708 23.95998 9.59336

Models
Predictions for mixing parameters and neutrino masses at best fit point

sin2 θl12 sin2 θl13 sin2 θl23 δlCP /π me/mµ mµ/mτ ∆m2
21/∆m2

31 α21/π α31/π m1/meV m2/meV m3/meV mββ/meV
C1−10–S2 0.30287 0.02218 0.58073 1.41681 0.00474 0.05857 0.02957 1.43461 0.92299 10.96085 13.94060 51.27982 8.57441
C11−20–S2 0.33670 0.02162 0.57918 1.01474 0.00474 0.05857 0.03030 0.94333 1.85751 10.90683 13.89816 50.67471 3.52050

Table 5. The best fit values of the input parameters at the minimum of the χ2 for NO neutrino
masses. We give the predictions for neutrino mixing angles θ12, θ13, θ23 and Dirac CP violating
phase δCP as well as Majorana CP violating phases α21, α31, and the light neutrino masses m1,2,3
and the effective mass mββ in neutrinoless double beta decay.
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The models C1,...,5–S2 only differ in the first row, the value of the coupling constant
αe associated with the first row should be smaller than βe, γe,1 and |γe,2| in order to
be accommodate the hierarchical charged lepton masses, as can be seen from table 5.
Numerically the contribution of the first row is found to be of order 10−3 with respect
to the other two rows. Therefore the five models C1,...,5–S2 give similar numerical
results and the best fit values of τ are very close to each other. Analogously the
models C6,...,10–S2 are also only different in the first row whose contributions are
negligible. Notice that the best fit values of τ of the models C1,...,5–S2 and C6,...,10–
S2 are different, it is a numerical coincidence that they give similar predictions for
the lepton masses and mixing parameters. Analogously the above reasoning also
holds true for the latter ten models C11,...,20–S2 except that the contribution of the
second row rather than the first row is insignificant. For illustration, we take the
model C1–S2 as an example. We use the widely-used sampler MultiNest [71, 72]
to scan the parameter space fully and efficiently, and the predictions for the lepton
masses and mixing parameters are required to be compatible with data at 3σ level.
The correlations among the input parameters and observables are shown in figure 1.
We see that the CP violation phase δlCP is predicted to be around 1.5π and the
atmospheric mixing angle θl23 is in the second octant. These predictions could be
tested in the forthcoming neutrino oscillation experiments.

(B) Models with 8 real parameters.
This type of models involve 6 real coupling constants, and they can be decomposed
into: 3 couplings in both neutrino and charged lepton sectors, or 4 couplings in
charged lepton sector and 2 couplings in neutrino sector, or 5 couplings in charged
lepton sector and 1 coupling in neutrino sector. There are totally 440 such models
up to weight 8. In the same fashion as previous case, we numerically minimize the
χ2 function with the TMinuit package. Eventually we find 360 phenomenologically
viable lepton models for certain values of input parameters, and 206 models are
consistent with the experimental data at 1σ level. Due to the limit of space, we
present eight benchmark models, the structures of the charged lepton sector are given
in table 6. We show the best fit values of the input parameters and the predictions of
the mixing parameters and neutrino masses in table 7 under the assumption of NO
neutrino masses. The A4 modular model with gCP symmetry was recently studied
in [30], and a lepton model with 8 parameters was proposed. It corresponds to the
D2–W2 model in our work, see table 7 for the numerical results of this model.

5 Quark models based on A4 modular symmetry with gCP

In this section, we proceed to consider the quark models in the framework of A4 modu-
lar symmetry with gCP. Similar to what we have done for the charged lepton sector in
section 4.1, we can systematically analyze possible quark models with A4 modular sym-
metry. If the left-handed and right-handed quark fields are assigned to A4 triplet 3, the
three generations of quark fields would be treated on an equal footing. Generally more
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Figure 1. The predictions for the correlations among the input free parameters, neutrino mixing
angles, CP violation phases and neutrino masses in the lepton model C1–S2. The vertical and
horizontal dashed lines are the 3σ bounds taken from [68].

free parameters are needed and they should be fine tuned to generate the mass hierarchies
of quarks. On the other hand, if all the quark fields transform as singlets under A4, the
quark mass matrices would be less constrained by modular symmetry. Hence we shall con-
sider the representation assignment: the three generations of left-handed quark fields are
assigned to a triplet 3 of the A4 modular group while the right-handed quarks are singlets
of A4, i.e.,

QL ≡ (Q1, Q2, Q3)T ∼ 3 , qci ∼ 1li with q = u, d, i = 1, 2, 3, (5.1)
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Models (k′Ec
1
, k′Ec

2
, k′Ec

3
) (l1, l2, l3)

D1 (4, 6, 8) (1, 2, 2)
D2 (2, 2, 2) (0, 2, 1)
D3 (2, 4, 4) (0, 1, 2)
D4 (4, 4, 6) (1, 2, 0)
D5 (4, 6, 8) (0, 1, 1)
D6 (2, 2, 8) (0, 2, 1)
D7 (2, 2, 4) (0, 1, 0)
D8 (4, 4, 4) (0, 1, 2)

Table 6. List of the charged lepton models D1, D2,. . . , D8, where k′Ec
i
≡ kEc

i
+ kL is the weight

of the modular forms in the charged lepton Yukawa coupling. The left-handed lepton fields are
assumed to be an A4 triplet and the right-handed changed leptons Eci transform as 1li under A4.

Best fit values of the input parameters for NO
Model D1–W1 Model D4–S1 Model D2–W2 D3–W3

Re(τ) 0.05389 Re(τ) 0.35597 Re(τ) 0.06026 0.01908
Im(τ) 2.66993 Im(τ) 0.94804 Im(τ) 1.01109 1.02906

βe,1/αe 2.29253×103 βe/αe 2.78535×103 βe/αe 51.55285 15.57674

βe,2/αe 4.22108×104 γe,1/αe 558.22251 γe/αe 765.43156 0.03590

γe,1/αe 1.21762×103 γe,2/αe −651.31064 gν2/g
ν
1 14.03290 −0.30519

γe,2/αe 2.91946×104 gD2 /g
D
1 3.54628 gν3/g

ν
1 1.14817 7.97382

αevd/MeV 3.35046 αvd/MeV 0.26571 αvd/MeV 1.32754 60.61083

(v2
u/Λ)/meV 28.48955 ((gD1 )2v2

u/(gMΛ))/meV 2.69366 (gν1v2
u/Λ)/meV 3.51922 12.59531

Model D5–S2 Model D6–S3 Model D7–S4 D8–S5

Re(τ) −0.17648 Re(τ) −0.08357 Re(τ) 0.23585 −0.30537
Im(τ) 1.12772 Im(τ) 1.15143 Im(τ) 1.47319 1.77322

βe,1/αe 69.56803 βe/αe 120.79494 βe/αe 16.52692 3.53453×103

βe,2/αe 158.37007 γe,1/αe 20.66057 γe/αe 0.01649 209.08250

γe,1/αe 3.93725×103 γe,2/αe −22.46201 gM2 /gM1 −2.78133 −2.66807

γe,2/αe −1.61631× 103 gD2 /g
D
1 −0.76278 gM3 /gM1 5.54678 −0.07778

αvd/MeV 0.33971 αvd/MeV 4.99601 αvd/MeV 75.92891 0.36424

((gD)2v2
u/(gMΛ))/meV 24.23812 ((gD1 )2v2

u/(gMΛ))/meV 16.74812 ((gD)2v2
u/(gM1 Λ))/meV 56.40935 26.95432

Models
Predictions for mixing parameters and neutrino masses at best fitting point

χ2
minsin2 θl12 sin2 θl13 sin2 θl23 δlCP /π me/mµ mµ/mτ ∆m2

21/∆m2
31 α21/π α31/π m1/meV m2/meV m3/meV mββ/meV

D1–W1 0.33989 0.02244 0.53179 1.11139 0.00474 0.05853 0.02989 1.06921 0.14655 27.84586 29.14261 56.98847 10.04516 8.11653
D2–W2 0.30933 0.02242 0.52707 1.09701 0.00474 0.05857 0.02906 0.00931 1.00870 63.29939 63.88046 80.93137 60.55211 2.99557
D3–W3 0.30895 0.02234 0.55798 1.24021 0.00474 0.05857 0.02917 0.14358 1.41214 18.10917 20.04600 53.49454 16.76825 1.86338
D4–S1 0.30993 0.02237 0.56318 1.24722 0.00474 0.05857 0.02923 1.30471 0.49605 27.07896 28.41074 57.10709 16.19580 1.68604
D5–S2 0.31005 0.02237 0.56302 1.33116 0.00474 0.05857 0.02924 0.14241 1.52824 10.96356 13.93197 51.45661 10.40884 3.15331
D6–S3 0.31244 0.02235 0.56370 1.15976 0.00474 0.05857 0.02925 1.01310 0.35970 2.57262 8.97320 50.32765 0.11038 1.03321
D7–S4 0.30972 0.02237 0.56394 1.19850 0.00474 0.05857 0.02924 1.05455 1.94805 9.32428 12.68236 51.13357 3.22886 1.07827
D8–S5 0.31123 0.02230 0.56132 1.47812 0.00474 0.05857 0.02921 0.05237 0.82489 12.08684 14.83212 51.72936 13.65139 1.35963

Table 7. The best fit values of the input parameters at the minimum of the χ2 under the assumption
of NO neutrino masses. We give the predictions for neutrino mixing angles θl12, θl13, θl23, and Dirac
CP violating phase δlCP as well as Majorana CP violating phases α21, α31, and the light neutrino
masses m1,2,3 and the effective mass mββ in neutrinoless double beta decay.
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where the convention for 1li is the same as that in eq. (4.7). The modular weights of left-
and right-handed quarks are denoted as kQL

and kqc
i
respectively. The superpotential for

the quark masses is determined by the assignments of right-handed quarks and the values
of kQL

+ kqc
i
,

Wq =
3∑
i=1

∑
a

αi,aq
c
iQLHu/dY

(kQL
+kqc

i
)

3a , (5.2)

where αi,a are coupling constants. The general form of the (ij) entry of the quark mass
matrix Mq is

(Mq)ij =
∑
a

αi,avu/dY
(kQL

+kqc
i
)

3a,3−mod(li+j+1,3) . (5.3)

Analogous to the charged lepton sector in section 4.1, if we are only concerned with modular
forms up to weight 8, then the explicit form of Rqi (i-th row ofMq) with kQL

+kqc
i

= 2, 4, 6, 8
can be obtained from table 2 with the replacements kL + kEc

i
→ kQL

+ kqc
i
. As a result,

the quark mass matrix can also take 220 possible structures. According to the number
of free coupling parameters in quark mass matrix, we can divide the 220 possible quark
mass matrices into four distinct classes: M I

Q, M II
Q , M III

Q and M IV
Q in which 3, 4, 5 and 6

couplings are introduced in the quark mass matrix respectively. The number of models are
20, 90, 90 and 20 respectively for these four classes.

As shown in above discussion, both up and down quark mass matrices can take 220
possible structures with proper weight and representation assignments of quark fields. In
a concrete model where both up and down quark mass matrices are involved, the possible
number of real couplings will range from 6 to 12 besides the complex modulus τ . There are
totally 10 observables in quark sector, including six quark masses mu,c,t, md,s,b, three quark
mixing angles θq12, θ

q
13, θ

q
23, and one quark CP violation phase δqCP . The quark model will

not be attractive if too many free parameters are required to fit the ten quark observables.
Hence we only focus on the models with number of free parameters no more than 11. More
specifically, we only consider the following four kinds of quark models.

(I) Quark model with 8 free real parameters including Re(τ ) and Im(τ ).
In this case, there are total 6 free couplings in the up and down quark mass matrices,
which can only originated from the assignment Mu ∈M I

Q and Md ∈M I
Q. The triplet

modular forms that enter the quark superpotentials in eq. (5.2) can only be Y (2)
3 and

Y
(4)

3 . Combining the up and down quark mass matrices, we can obtain 20×20 = 400
models which have 8 free real parameters.

(II) Quark model with 9 free real parameters including Re(τ ) and Im(τ ).
For the quark models with 9 free parameters, the classifications of quark mass ma-
trices should be

Mu ∈M I
Q , Md ∈M II

Q , or Mu ∈M II
Q , Md ∈M I

Q . (5.4)

There are 20× 90× 2 = 3600 distinct models with 9 free parameters.
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(III) Quark model with 10 free real parameters including Re(τ ) and Im(τ ).
There are three types of the combinations of the up and down quark mass matrices
in this case,

Mu ∈M I
Q , Md ∈M III

Q ,

or Mu ∈M III
Q , Md ∈M I

Q ,

or Mu ∈M II
Q , Md ∈M II

Q . (5.5)

So there are total 20× 90× 2 + 90× 90 = 11700 models with 10 free real parameters.

(IV) Quark model with 11 free real parameters including Re(τ ) and Im(τ ).
If there are 11 parameters in quark mass matrices, we find that they should satisfy
the following conditions,

Mu ∈M I
Q , Md ∈M IV

Q ,

or Mu ∈M IV
Q , Md ∈M I

Q ,

or Mu ∈M II
Q , Md ∈M III

Q ,

or Mu ∈M III
Q , Md ∈M II

Q . (5.6)

Counting all the possibilities, we can obtain 2×20×20 + 2×90×90 = 17000 models
with 11 free real parameters.

Similar to the lepton sector, we need to find the phenomenologically viable quark
models through the χ2 analysis, the definition of the χ2 function involves experimental
data of the ratios of quark masses and quark mixing parameters,

mu/mc = (1.9286± 0.6017)× 10−3 , mc/mt = (2.8213± 0.1195)× 10−3 ,

md/ms = (5.0523± 0.6191)× 10−2 , ms/mb = (1.8241± 0.1005)× 10−2 ,

θq12 = 0.22736± 0.00073 , θq13 = 0.00349± 0.00013 ,
θq23 = 0.04015± 0.00064 , δqCP /π = 0.3845± 0.0173 . (5.7)

The central values and 1σ ranges at GUT scale are taken from ref. [69] with tan β = 10
and the SUSY breaking scale MSUSY = 10TeV. Analogous to the lepton sector, we use the
central value of mt = 87.4555GeV and mb = 0.9682GeV at GUT scale to determine the
overall coefficients of the quark mass matrices Mu and Md respectively.

We scan the parameter space of the above quark models one by one with the TMinuit
package. Unfortunately, we have not found a model with 8 parameters that is consistent
with the experimental data, and the minimum of χ2 is very large. There is also no model
with 9 parameters which can accommodate the experimental data at 3σ confidence level.
But some models with 9 parameters can achieve a relatively small χ2, and only the mixing
angle θq23 marginally lies outside the 3σ allowed region. It’s reasonable to regard these
models as a good leading order approximation, we will give such an example below. For
models with 10 or 11 parameters, we find thousands of models can accommodate the
experimental data. It is too lengthy to show all these phenomenologically viable models,
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consequently only some examples are provided in this work and they are given in section 6
within the complete models for leptons and quarks.

Here we present an example of the quark models with 9 parameters. In this model,
the quark fields transform under modular symmetry A4 as follows,

QL ∼ 3 , uc ∼ 1 , cc ∼ 1′ , tc ∼ 1′′ , dc ∼ 1′′ , sc ∼ 1′ , bc ∼ 1′′ ,
kQL

= 2− kuc = 2− kcc = 2− ktc = 2− kdc = 4− ksc = 6− kbc , (5.8)

where the modular weight kQL
is a general integer. The modualr invariant superpotentials

are given as

Wu = αuu
c
1(QLY (2)

3 )1Hu + βuc
c
1′(QLY

(2)
3 )1′′Hu + γut

c
1′′(QLY

(2)
3′ )1′Hu ,

Wd = αdd
c
1′′(QLY

(2)
3 )1′Hd + βds

c
1′(QLY

(4)
3 )1′′Hd + γd,1b

c
1′′(QLY

(6)
3I )1′Hd

+γd,2bc1′′(QLY
(6)

3II)1′Hd . (5.9)

The corresponding up and down quark mass matrices can be written as

Mu =


αuY

(2)
3,1 αuY

(2)
3,3 αuY

(2)
3,2

βuY
(2)

3,3 βuY
(2)

3,2 βuY
(2)

3,1
γuY

(2)
3,2 γuY

(2)
3,1 γuY

(2)
3,3

 vu ,

Md =


αdY

(2)
3,2 αdY

(2)
3,1 αdY

(2)
3,3

βdY
(4)

3,1 βdY
(4)

3,3 βdY
(4)

3,2
γd,1Y

(6)
3I,2 + γd,2Y

(6)
3II,2 γd,1Y

(6)
3I,1 + γd,2Y

(6)
3II,1 γd,1Y

(6)
3I,3 + γd,2Y

(6)
3II,3

 vd . (5.10)

The best fit values of the input parameters are given as follows

〈τ〉 = 0.49175 + 0.88563i , βu/αu = 518.22933 , γu/αu = 1.83596× 105 ,

βd/αd = 9.39751 , γd,1/αd = 32.46046 , γd,2/αd = −0.02697 ,

αuvu = 0.00034 GeV, αdvd = 0.05081 GeV .

(5.11)
The quark mixing parameters and mass ratios are determined to be

θq12 = 0.22734 , θq13 = 0.00332 , θq23 = 0.05708 , δqCP = 0.39532 π ,

mu/mc = 0.00193 , mc/mt = 0.00282 , md/ms = 0.05055 , ms/mb = 0.01815 .
(5.12)

We find that only θq23 is somewhat large, all other observables are within the 3σ ranges of
the experimental data given in eq. (5.7). Notice that if we adopt the experimental data
of quark masses and mixings used in ref. [27], this model would be compatible with data
very well.4

4In ref. [27], the central values as well the 1σ errors of the quark masses and mixing parameters are
taken from [73]. Comparing the experimental data used in ref. [27] with those in the present work, we can
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6 Unified models of leptons and quarks

In the above two sections, we have discussed the phenomenologically viable models in lepton
sector and quark sector separately. Now we shall investigate whether the A4 modular
can describe the flavor structures of quark and lepton simultaneously, where the complex
modulus τ works as a portal to combine these two sectors. All coupling constants are real
because of the gCP symmetry, thus the vacuum expectation value of τ is the only source
of CP violation phases of both quarks and leptons.

In section 4, we have found 20 lepton models with 7 parameters and 360 lepton models
with 8 parameters that can accommodate the experimental data. In section 5, we have
found thousands of quark models with 10 or 11 parameters that can explain the experi-
mental data of quark masses and mixing. In each sector, the experimentally 3σ-allowed τs
are recorded in the TMinuit optimization processes. By showing the τ sample of lepton
sector and quark sector in the same plot, we can see whether there are overlapping regions.
In this way, we can easily determine whether the experimental data of quarks and leptons
can be described in a given combination of lepton and quark models. It turns out that the
lepton models with 7 parameters (L7) together with the quark models with 10 parameters
(Q10) failed to accommodate the experimental data, while the combinations of L7–Q11 and
L8–Q10 can explain the measured masses and mixings of both quarks and leptons. We can
find thousands of these two kinds of unified models. Due to the limitation of the length
of the article, we only give one example of L7–Q11 unification and one example of L8–Q10
unification in the following.

6.1 Unified model of L7–Q11

In this section, we give an example of the unified model with 7 parameters in the lepton
sector and 11 parameters in the quark sector. The complex modulus τ in the quark and
lepton sectors is the same one, so the total number of real free parameters is 7+11−2 = 16.
Thus this model is relatively predictive, and it use 16 real free parameters to describe the
22 mass and mixing parameters of quarks and leptons. In the lepton sector, the model is
denoted as C13–S2, which has been described in section 4.3. For the sake of clarity, we list
the details of the model in the following. The representation assignments and the modular
weights of the lepton fields are,

L ∼ 3 , ec ∼ 1′ , µc ∼ 1′ , τ c ∼ 1′′ , N c ∼ 3 ,
kL = −1 , kec = 3 , kµc = 5 , kτc = 7 , kNc = 1 . (6.1)

The corresponding modular invariant lepton superpotentials are given by

WE = αee
c
1′(LY

(2)
3 )1′′Hd +βeµ

c
1′(LY

(4)
3 )1′′Hd + γe,1τ

c
1′′(LY

(6)
3I )1′Hd + γe,2τ

c
1′′(LY

(6)
3II)1′Hd ,

Wν = gDHu(N cL)1 + gMΛ
(
(N cN c)3SY

(2)
3

)
1
. (6.2)

find that the best-fit values of quark Yukawa couplings and the CKM mixing parameters are almost the
same while the 1σ ranges given in [27] are larger than the corresponding ones used in our paper. To be
more specific, the 1σ erros of θq

12 and θq
23 in [27] are about 5 and 10 times as large as the corresponding

values in this paper respectively, while the 1σ regions of other observables are about twice as large as those
in eq. (5.7).

– 23 –



J
H
E
P
0
5
(
2
0
2
1
)
1
0
2

The corresponding charged lepton and neutrino mass matrices read as

ME =


αeY

(2)
3,3 αeY

(2)
3,2 αeY

(2)
3,1

βeY
(4)

3,3 βeY
(4)

3,2 βeY
(4)

3,1
γe,1Y

(6)
3I,2 + γe,2Y

(6)
3II,2 γe,1Y

(6)
3I,1 + γe,2Y

(6)
3II,1 γe,1Y

(6)
3I,3 + γe,2Y

(6)
3II,3

 vd ,

MD = gD

1 0 0
0 0 1
0 1 0

 vu , MN = gM


2Y (2)

3,1 − Y (2)
3,3 − Y (2)

3,2

−Y (2)
3,3 2Y (2)

3,2 − Y (2)
3,1

−Y (2)
3,2 − Y (2)

3,1 2Y (2)
3,3

Λ . (6.3)

The quark fields transform under the A4 modular symmetry as follow,

QL ∼ 3 , uc ∼ 1 , cc ∼ 1 , tc ∼ 1 , dc ∼ 1 , sc ∼ 1′ , bc ∼ 1′ ,
kQL

= 2− kuc = 4− kcc = 6− ktc = 4− kdc = 6− ksc = 8− kbc . (6.4)

Then the Yukawa superpotentials for the quark masses are

Wu = αuu
c
1(QLY (2)

3 )1Hu + βuc
c
1(QLY (4)

3 )1Hu + γu,1t
c
1(QLY (6)

3I )1Hu

+γu,2tc1(QLY (6)
3II)1Hu ,

Wd = αdd
c
1(QLY (4)

3 )1Hd + βd,1s
c
1′(QLY

(6)
3I )1′′Hd + βd,2s

c
1′(QLY

(6)
3II)1′′Hd

+γd,1bc1′(QLY
(8)

3I )1′′Hd + γd,2b
c
1′(QLY

(8)
3II)1′′Hd . (6.5)

We find the up and down quark mass matrices take the following form

Mu =


αuY

(2)
3,1 αuY

(2)
3,3 αuY

(2)
3,2

βuY
(4)

3,1 βuY
(4)

3,3 βuY
(4)

3,2
γu,1Y

(6)
3I,1 + γu,2Y

(6)
3II,1 γu,1Y

(6)
3I,3 + γu,2Y

(3)
3II,3 γu,1Y

(6)
3I,2 + γu,2Y

(3)
3II,2

 vu ,

Md =


αdY

(4)
3,1 αdY

(4)
3,3 αdY

(4)
3,2

βd,1Y
(6)

3I,3 + βd,2Y
(6)

3II,3 βd,1Y
(6)

3I,2 + βd,2Y
(6)

3II,2 βd,1Y
(6)

3I,1 + βd,2Y
(6)

3II,1
γd,1Y

(8)
3I,3 + γd,2Y

(8)
3II,3 γd,1Y

(8)
3I,2 + γd,2Y

(8)
3II,2 γd,1Y

(8)
3I,1 + γd,2Y

(8)
3II,1

 vd . (6.6)
We perform a global fit to the experimental data of quark and lepton simultaneously, the
best fit values of the input parameters are determined to be

〈τ〉 = −0.17492 + 1.13648i , βe/αe = 0.00500 , γe,1/αe = 11.54025 ,

γe,2/αe = 6.27248 , αevd = 0.06688 MeV ,
(gD)2v2

u

gMΛ = 23.94439 meV ,

βu/αu = 4.62725× 102 , γu,1/αu = 7.66928× 103 , γu,2/αu = −1.51202× 105 ,

βd,1/αd = 2.35800× 102 , βd,2/αd = 14.19700 , γd,1/αd = 94.91290 ,

γd,2/αd = 3.84761 , αuvu = 0.00046 GeV, αdvd = 0.00298 GeV .

(6.7)
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We see that the quark and lepton mass hierarchies require hierarchical values of the coupling
constants, this can be naturally achieved by the weighton mechanism in which modular
symmetry singlet field with non-vanishing modular weight plays the role of flavon [25]. The
mass hierarchies of the charged leptons could possibly be addressed by modular symmetry
around certain fixed points of the complex modulus τ , but generally more free parameters
are necessary [30, 74, 75]. The corresponding predictions for masses and mixing parameters
of leptons and quarks are given as

sin2 θl12 = 0.33632 , sin2 θl13 = 0.02164 , sin2 θl23 = 0.57884 , δlCP = 0.98516 π ,

α21 = 1.05680 π , α31 = 0.14266 π , me/mµ = 0.00474 , mµ/mτ = 0.05857 ,

∆m2
21

∆m2
31

= 0.03040 , m1 = 10.87722 meV , m2 = 13.86412 meV ,

m3 = 50.48811 meV ,
∑
i

mi = 75.22945 meV , mββ = 3.51842 meV ,

θq12 = 0.22719 , θq13 = 0.00350 , θq23 = 0.03988 , δqCP = 0.38850 π ,

mu/mc = 0.00166 , mc/mt = 0.00289 , md/ms = 0.04605 , ms/mb = 0.01837 .
(6.8)

We find that all of these observables are predicted to lie in the experimentally preferred
3σ ranges. We use the package Multinest to comprehensively scan the parameter space
of lepton sector and quark sector independently, we require all the observables are in the
experimentally preferred 3σ regions, and the results are plotted in figure 2. We can see there
is indeed an overlapping region in the τ plane, which is colored in black. It is obvious that
the allowed value of τ shrink to a small region if we include the experimental constraints
of both quarks and leptons. The allowed values of all observables scatter in narrow ranges
around the best fit values.

6.2 Unified model of L8–Q10

In this section, we give another example of the unified model with 8 parameters in the lepton
sector and 10 parameters in the quark sector. The total number of real free parameters in
this unified model is also 8+10−2 = 16. The lepton model isD8–S5, and the transformation
properties of the lepton fields are,

L ∼ 3 , ec ∼ 1 , µc ∼ 1′ , τ c ∼ 1′′ , N c ∼ 3 ,
kL = −3 , kec = 7 , kµc = 7 , kτc = 7 , kNc = 3 . (6.9)

Then we can read out the superpotentials of charged leptons and neutrinos as

WE = αee
c
1(LY (4)

3 )1Hd + βeµ
c
1′(LY

(4)
3 )1′′Hd + γeτ

c
1′′(LY

(4)
3 )1′Hd ,

Wν = gDHu(N cL)1 + gM1 Λ
(
(N cN c)3SY

(6)
3I

)
1

+ gM2 Λ
(
(N cN c)3SY

(6)
3II

)
1

+ gM3 Λ(N cN c)1Y
(6)

1 , (6.10)
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Figure 2. The predictions for the correlations among the input free parameters, neutrino mixing
angles, CP violation phases and neutrino masses in the unified model L7–Q11. The red and blue
areas denote points compatible with experimental data of quarks and leptons respectively, and the
black is the overlapping region. The vertical and horizontal dashed lines are the 3σ bounds taken
from [68].
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which gives rise to

ME =


αeY

(4)
3,1 αeY

(4)
3,3 αeY

(4)
3,2

βeY
(4)

3,3 βeY
(4)

3,2 βeY
(4)

3,1
γeY

(4)
3,2 γeY

(4)
3,1 γeY

(4)
3,3

 vd , MD = gD

1 0 0
0 0 1
0 1 0

 vu ,

MN =

gM1


2Y (6)
3I,1 − Y (6)

3I,3 − Y (6)
3I,2

−Y (6)
3I,3 2Y (6)

3I,2 − Y (6)
3I,1

−Y (6)
3I,2 − Y (6)

3I,1 2Y (6)
3I,3

+ gM2


2Y (6)

3II,1 − Y (6)
3II,3 − Y (6)

3II,2

−Y (6)
3II,3 2Y (6)

3II,2 − Y (6)
3II,1

−Y (6)
3II,2 − Y (6)

3II,1 2Y (6)
3II,3



+gM3 Y
(6)

1

1 0 0
0 0 1
0 1 0


Λ . (6.11)

The assignments for the quark fields are

QL ∼ 3 , uc ∼ 1 , cc ∼ 1 , tc ∼ 1 , dc ∼ 1 , sc ∼ 1′ , bc ∼ 1′′ ,
kQL

= 2− kuc = 4− kcc = 6− ktc = 2− kdc = 2− ksc = 8− kbc . (6.12)

The modular invariant superpotentials for quark masses read as follows,

Wu = αuu
c
1(QLY (2)

3 )1Hu + βuc
c
1(QLY (4)

3 )1Hu + γu,1t
c
1(QLY (6)

3I )1Hu

+γu,2
(
tc1(QLY (6)

3II)1
)

1
Hu ,

Wd = αdd
c
1(QLY (2)

3 )1Hd + βds
c
1′(QLY

(2)
3 )1′′Hd + γd,1b

c
1′′(QLY

(8)
3I )1′Hd

+γd,2bc1′′(QLY
(8)

3II)1′Hd . (6.13)

We find the up and down quark mass matrices are given by

Mu =


αuY

(2)
3,1 αuY

(2)
3,3 αuY

(2)
3,2

βuY
(4)

3,1 βuY
(4)

3,3 βuY
(4)

3,2
γu,1Y

(6)
3I,1 + γu,2Y

(6)
3II,1 γu,1Y

(6)
3I,3 + γu,2Y

(6)
3II,3 γu,1Y

(6)
3I,2 + γu,2Y

(6)
3II,2

 vu ,

Md =


αdY

(2)
3,1 αdY

(2)
3,3 αdY

(2)
3,2

βdY
(2)

3,3 βdY
(2)

3,2 βdY
(2)

3,1
γd,1Y

(8)
3I,2 + γd,2Y

(8)
3II,2 γd,1Y

(8)
3I,1 + γd,2Y

(8)
3II,1 γd,1Y

(8)
3I,3 + γd,2Y

(8)
3II,3

 vd . (6.14)

The agreement between the model predictions and the experimental data is optimized for
the following values of the input parameters are

〈τ〉 = −0.30537 + 1.77322i , βe/αe = 3.53453× 103 , γe/αe = 209.08250 ,

gM2 /gM1 = −2.66807 , gM3 /gM1 = −0.07778 , αevd = 0.36424 MeV ,

(gD)2v2
u

gM1 Λ
= 26.95432 meV , βu/αu = 43.07455 , γu,1/αu = 634.51584 ,

γu,2/αu = 5.16218× 104 , βd/αd = 232.29418 , γd,1/αd = 0.99699 ,

γd,2/αd = −14.39314 , αuvu = 0.00569 GeV, αdvd = 0.00412 GeV .

(6.15)
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The values of the masses and mixing parameters of leptons and quarks at the above best
fit point are determined to be

sin2 θl12 = 0.31123 , sin2 θl13 = 0.02230 , sin2 θl23 = 0.56132 , δlCP = 1.47812 π ,

α21 = 0.05237 π , α31 = 0.82489 π , me/mµ = 0.00474 , mµ/mτ = 0.05857 ,

∆m2
21

∆m2
31

= 0.02921 , m1 = 12.08684 meV , m2 = 14.83212 meV ,

m3 = 51.72936 meV ,
∑
i

mi = 89.64832 meV , mββ = 13.65139 meV ,

θq12 = 0.22736 , θq13 = 0.00348 , θq23 = 0.04119 , δqCP = 0.38606 π ,

mu/mc = 0.00193 , mc/mt = 0.00282 , md/ms = 0.05057 , ms/mb = 0.01824 ,
(6.16)

which are in the experimentally favored 3σ regions. In figure 3, we show the correlations
among the input free parameters, neutrino masses and mixing parameters predicted in the
unified model L8–Q10. It is notable that the lepton Dirac CP phase δlCP is close to maximal
violation value 1.5π in this model.

7 Conclusion

In this paper, we have performed a systematical analysis of Γ3 ∼= A4 modular flavor models
for leptons and quarks with gCP. We intend to understand how the minimal modular sym-
metry A4 can help to understand the flavor structure of quarks and leptons, and we aim to
find out the minimal models. It has been established that the CP transformation consistent
with modular symmetry acts on the modulus as τ → −τ∗. The representation matrices of
the generators S and T are unitary and symmetric in our working basis, therefore the CP
symmetry is exactly the canonical one and all the coupling constants are constrained to
be real. In this setup, both modular symmetry and gCP are spontaneously broken by the
vacuum expectation value of the complex modulus τ . In particular, all weak CP violation
phases arise from the real part of τ .

The left-handed charged fermions are assumed to transform as triplet of A4, and the
right-handed charged fermions are assigned to singlets under A4. Here the charged fermions
refer to charged leptons, up-type quarks and down-type quarks. We find out the most
general form of charged lepton and quark mass matrices given by eq. (4.10) and eq. (5.3)
respectively. The three generations of right-handed charged fermions are distinguished
from each other by the weight and representation assignments, then we can obtain 220
possible structures of charged fermion mass matrices if the weights of involved modular
forms are less than 9. Moreover, we consider the Weinberg operator and the type-I seesaw
mechanism to generate neutrino masses. In type-I seesaw mechanism, the right-handed
neutrinos are assigned to be a A4 triplet as well. The most general form of neutrino mass
matrix is given in eqs. (4.20), (4.22). Requiring the number of coupling constants in the
effective light neutrino mass matrix is less than 4, we can obtain 3 Weinberg operator
models W1,2,3 and 5 seesaw models S1,2,3,4,5, they are summarized in table 3. We perform
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Figure 3. The predictions for the correlations among the input free parameters, neutrino mixing
angles, CP violation phases and neutrino masses of the unified model L8–Q10. We adopt the same
convention as figure 2.

a χ2 analysis to estimate the goodness-of-fit of a A4 modular model to the data. We
find the minimal phenomenologically viable models for leptons have 7 real free parameters
including the real and imaginary parts of τ . The best fit values of the input parameters
and the corresponding predictions for neutrino masses and mixing parameters are given in
table 5. For the next-to-minimal models with 8 real input parameters, we find 360 models
which can explain the observed masses and mixings of leptons, and the numerical results
of some typical models are presented in table 7.

In quark sector, we have systematically classified the A4 modular quark models based
on the number of free parameters. All the quark models with 8, 9, 10 and 11 input

– 29 –



J
H
E
P
0
5
(
2
0
2
1
)
1
0
2

parameters are discussed. There are no viable quark models with 8 or 9 parameters.
However, we find thousands of quark models which can accommodate the experimental
data of quark masses and CKMmixing matrix with 10 or 11 parameters. They can combine
with the lepton models to give a unified description of both quarks and leptons. We give two
predictive examples of quark-lepton unification models in which the 22 mass and mixing
parameters of quarks and leptons are described in terms of 14 free real coupling constants
and a common complex modulus τ .

Because the weights and representations of the matter fields are not subject to any
constraint in the modular invariance approach, many possible models could be constructed,
as explicit shown for the A4 modular symmetry. We expect this drawback could possibly
be overcame in the appealing framework of eclectic flavor groups which is a maximal ex-
tension of the traditional flavor group by finite discrete modular symmetries [61, 62]. The
scheme of eclectic flavor symmetry can severely restrict the possible group representations
and modular weights of matter fields. Thus the structure of both Kähler potential and
superpotential is under control. It would be much desirable that only few models in the
bottom-up approach would survive in view of the eclectic flavor symmetry. In summary,
the finite modular group A4 provides a simple and economical framework to understand
the flavor structures of the quarks and leptons.
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