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1 Introduction

Recent studies of scattering amplitudes revealed a wealth of mathematical structures that
initiated a fruitful crosstalk between particle phenomenology, string theory, algebraic ge-
ometry and number theory. Iterated integrals such as multiple polylogarithms and mul-
tiple zeta values (MZVs) became a common theme of Feynman integrals and low-energy
expansions of string amplitudes. In a broad spectrum of physical settings, dramatic sim-
plifications and striking connections between seemingly unrelated theories have been found
on the basis of the Hopf-algebra structures of polylogarithms and MZVs.

Most prominently, amplitudes in a variety of theories were observed to exhibit universal
stability properties under the motivic Galois coaction of polylogarithms [1, 2]. These
observations support the coaction conjecture or coaction principle [3–6] which states that
certain classes of amplitude building blocks close under the motivic Galois coaction. So
far, the coaction principle was found to apply to disk integrals in open-string tree-level
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amplitudes [7], periods in φ4 theory [5], the anomalous magnetic moment of the electron [6],
six-point amplitudes in N = 4 super Yang-Mills theory [8], various families of Feynman
integrals [9–14] and related hypergeometric functions [15, 16].

The primary goal of this work is to extend the coaction principle in string tree-level
amplitudes to more general configuration-space integrals at genus zero where not all of the
punctures on the Riemann sphere are integrated over. This relates to the incarnation of the
coaction principle in generalized hypergeometric functions through the similarity of their
representations as Euler-type integrals amenable to the formalism of [17]. In the context
of both string scattering [18, 19] and hypergeometric integrals (see for instance [20, 21]
for earlier work on their connections), the underlying generalized disk integrals are dual
pairings of twisted homologies and cohomologies. For a given homology representative γ
and cohomology representative ω in these spaces, the coaction of the dual pairing given by
the integral

∫
γ ω is conjectured to take the form [11, 12]

∆
∫
γ
ω =

d∑
a,b=1

cab

∫
γ
ωa ⊗

∫
γb

ω , (1.1)

where the {ωa} and {γb} respectively generate the twisted (co-)homology group of dimen-
sion d. The coefficients cab are rational functions fixed by the choice of bases. In this
paper, we will present a natural construction of such bases in the case of the generalized
disk integrals associated to tree-level string scattering, with the nice property that the
coefficients cab form the identity matrix.

The master formula (1.1) can be viewed as a generating function of coaction identi-
ties for polylogarithms and MZVs. In the string-theory incarnation of these integrals, the
coaction acts order by order in the expansion with respect to the inverse string tension
α′, or more precisely with respect to the dimensionless quantities 2α′ki · kj with light-
like momenta ki. For hypergeometric functions associated to dimensionally-regularized
Feynman integrals, however, the analogous expansion is with respect to the dimensional-
regularization parameter ε. The formal analogy between α′ and ε has already been noticed
by comparing differential equations of Feynman integrals and configuration-space integrals
of string amplitudes at genus zero [22, 23] and at genus one [24–26], as well as in the context
of twisted cohomology [27–33]. The discussion of this work only applies to the genus-zero
case while leaving important extensions to non-polylogarithmic integrals to the future.

The main results in this work are:

• To give explicit pairs of orthonormal bases {γa} and {ωb} in (1.1) for generalized disk
integrals over any number of punctures, while leaving an arbitrary number of additional
punctures unintegrated.

• To describe systematic methods of generating the uniformly transcendental α′- or ε-
expansions of the basis integrals

∫
γa
ωb in terms of multiple polylogarithms and MZVs.

• To organize the multiple polylogarithms and MZVs contributing to the d × d matrix
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∫
γa
ωb into matrix products

∫
γa
ωb(z1,z2, . . . ,z`) =

d∑
c1,c2,...,c`=1

G(1)ac1G(z`)c1c2G(z`−1)c2c3 . . .G(z2)c`−1c`G(z1)c`b (1.2)

Each factor of G(zj) is by itself a matrix-valued series in α′ or ε, with polylogarithms
at the same argument zj in its coefficients (such that G(1) is a series of MZVs similar
to those in open-string tree amplitudes [7]) and letters to be spelt out below.

• To refine the coaction formula (1.1) to the individual factors in (1.2),

∆G(zj) = G(zj)× adL
(
G(1)G(z`)G(z`−1) . . .G(zj+1)

)
G(zj) (1.3)

where the operation adL will be defined below and the contributions from MZVs obey
the particularly simple special case ∆G(1) = G(1)⊗G(1).

• To explore the analytic continuation between configurations changing the order of un-
integrated punctures on the real axis. Such deformations can be compactly described
by braid matrices acting on a vector of disk integrals and are relevant to the study of
monodromies and discontinuities of polylogarithmic Feynman integrals [9, 34–37].

Another place in physics where identical integrals appear is in the context of conformal
field theories in the Coulomb gas formalism [38, 39]. On the one hand, their conformal
blocks are integrals of the type

∫
γa
ωb, where a subset of punctures is fixed while the re-

maining ones are integrated. On the other hand, the full correlation functions are given
by sphere integrals, schematically

∫
C(n,p) ω̄aωb. The integration domain C(n,p) is the config-

uration space of p punctures on a sphere with n−p points removed.
We point out an interesting phenomenon in which correlation functions of (p, p′) min-

imal models in the p → ∞ limit (with p′ fixed and finite) behave as either the α′ → 0
or α′ → ∞ limit of string amplitudes, depending on whether charges of conformal pri-
mary operators decay or grow in this limit. For (p, 2) models specifically, we find examples
of correlation functions exhibiting the uniform-transcendentality principle in the large-p
expansion, familiar from the α′-expansion of superstring amplitudes and ε-expansion of
Feynman integrals.

The punctured sphere also naturally appears in the context of gauge-theory scattering.
In particular, in the multi-Regge limit of planar N = 4 super Yang-Mills theory, it arises
as a kinematic configuration space where the punctures are associated to the momenta of
external scattering states. Motivated by this observation, amplitudes for arbitrary number
of loops and legs are given in terms of single-valued multiple polylogarithms [40–42]. Similar
functional dependence can be seen in the high-energy limit of dijet scattering for generic
gauge theories [43, 44].

At this stage one may take inspiration from string theory, where the case of sphere
integrals with three unintegrated punctures form the backbone of closed-string tree-level
amplitudes. These sphere integrals are related to the disk integrals of open strings in two
complementary ways:

– 3 –



J
H
E
P
0
5
(
2
0
2
1
)
0
5
3

• By the Kawai-Lewellen-Tye (KLT) relations [45], the sphere integrals
∫
C(n,n−3) ω̄aωb boil

down to bilinears in disk integrals
∫
γc
ωa
∫
γd
ωb weighted by trigonometric functions of

α′ built from inverse intersection numbers [18].

• At the level of the MZVs in their α′-expansion, closed-string integrals
∫
C(n,n−3) ω̄aωb are

single-valued images [3, 46] of disk integrals [7, 47–51]
∫
γa
ωb of open strings with suitably

chosen integration contours γa.

Another key achievement of this work is to generalize both the KLT relations and the
single-valued map between disk and sphere integrals to C(n,p) with p < n−3, i.e. more than
three unintegrated punctures. In these cases, the coefficients in the α′-expansions augment
single-valued MZVs by single-valued polylogarithms in one variable [52] (p = n−4) or
multiple variables [41, 53] (p ≤ n−5). An independent approach to the generalized KLT
kernel at p = n−4 relating the momentum-kernel formalism [54] to the single-valued map
can be found in [50].

For any number of integrated punctures p and unintegrated ones n−p, we will spell out
the explicit form of the KLT-relations between C(n,p)-integrals and products of generalized
disk integrals and their complex conjugates. For a convenient choice of bases for the twisted
integration cycles of the disk integrals, we present an efficient recursion for the generalized
“KLT kernel” that determines the coefficients in their bilinears. The generalized KLT
kernel is again the inverse of an intersection matrix with trigonometric functions in its
entries which we derive from adjacency properties of Stasheff polytopes [55]. Our results
furnish an explicit realization of several of the general mathematical concepts relating
double copy, single-valued integration and string amplitudes [51, 56]. Many all-multiplicity
statements in this work are left as conjectures, and we hope that the ideas of the references
set the stage to find rigorous proofs.

This work is organized as follows: the basic definitions of the configuration-space inte-
grals under investigation and the explicit form of their orthonormal bases of cycles {γa} and
forms {ωb} are given in section 2. We then discuss the structure of and practical tools for
the α′-expansions of

∫
γa
ωb in section 3 and introduce their polylogarithmic building blocks

G(zj) in (1.2). In section 4, the coaction (1.1) of the integrals is translated into that of the
generating series G(zj) of polylogarithms, and we derive the operation adL in (1.3) in detail.
Section 5 is dedicated to the analytic continuation of

∫
γa
ωb in the unintegrated punctures.

In section 6, complex integrals
∫
C(n,p) ωaωb are discussed from the perspectives of the

single-valued map, intersection numbers and compact recursions for a KLT kernel. Finally,
the implications for correlation functions of minimal models in the Coulomb-gas formalism
can be found in section 7. Further details and examples of α′-expansions and analytic
continuations are relegated to two appendices.

2 Orthonormal bases of forms and cycles

In this section we introduce orthonormal bases of differential forms and integration cycles.
In order to do so, we start with reviewing the relevant notation and explaining why such
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bases are needed in the first place. We discuss the well-established case of a single inte-
gration variable to set the stage for our general formula and verify orthonormality using
intersection theory.

Let us consider a genus-zero Riemann surface, CP1 = C ∪ {∞}. The arena in which
the integrals of our interest are defined is the configuration space of p points on a sphere
with n−p punctures:

C(n,p) = Confp(CP1 − {n−p points}) . (2.1)

In other words, out of the total n punctures, p are dynamical and are allowed to be
moved/integrated, while n−p are frozen in their positions. This space has p complex
dimensions. We assume 1 ≤ p ≤ n−3 and denote the inhomogeneous coordinates of each
puncture by zi for i = 1, 2, . . . , n. As the integrals of our interest are conformally invariant,
we will work in the SL(2,C)-frame with

(z1, zn−1, zn) = (0, 1,∞) . (2.2)

We will use the convention in which z2, z3, . . . , zp+1 are the integrated punctures. In these
coordinates we can write explicitly

C(n,p) = {(z2, z3, . . . , zp+1) ∈ Cp | zi 6= z1, zi+1, zi+2, . . . , zn−1 for all i = 2, 3, . . . , p+1},
(2.3)

since we fixed one puncture to infinity. We next introduce the generalized Koba-Nielsen
factor

KN(n,p) =
∏

2≤i≤p+1

|z1i|s1i
∏

i<j≤n−1
|zij |sij


=

 p+1∏
2≤i<j

|zij |sij
p+1∏

`=2
|z`|s1` |1−z`|s`,n−1

p+1∏
k=2

n−2∏
m=p+2

|zkm|skm
 , (2.4)

where differences between positions of punctures are denoted by

zij = zi−zj (2.5)

and sij are real variables that might take different meanings depending on the physical
application. In the context of string perturbation theory at genus zero, for instance, we
can take them to be the dimensionless Mandelstam invariants

sij = 2α′ki · kj (2.6)

for light-like momenta ki and inverse string tension α′. The naming comes from the fact
that in the case p = n−3, where all but three punctures are integrated, (2.4) reduces to
the Koba-Nielsen factor in the integrand of string tree-level amplitudes. Note that our
definition (2.4) omits the zij for pairs of unintegrated punctures, i, j = 1, p+2, p+3, . . . , n,
since they could be universally pulled out of all the integrals at fixed n, p. We also assume
that sij are generic real numbers or formal variables.
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2.1 Main ingredient: disk integrals

We are interested in the matrices of contour integrals F (n,p)
ab , defined by

F
(n,p)
ab = 〈γ(n,p)

a |ω(n,p)
b 〉 =

∫
γ

(n,p)
a

KN(n,p) ω
(n,p)
b , (2.7)

where γ(n,p)
a and ω(n,p)

b denote integration cycles and holomorphic p-forms corresponding to
bases of twisted homology and cohomology groups, respectively, for the twist 1-form given
by d log KN(n,p). Through γ

(n,p)
a and ω

(n,p)
b , the integrals F (n,p)

ab depend on punctures or
cross-ratios zp+2, . . . , zn−2 and the Mandelstam invariants (2.6). The integrals in (2.7) are
of the form exhibited in the coaction formula (1.1), where in the integrand we have now
explicitly separated the twist factor KN(n,p), and the remaining single-valued form is now
denoted by ω(n,p)

b .
The indices a, b in (2.7) run from 1 to the dimensions d(n,p) of the associated twisted

(co-)homologies [19, 57]1

d(n,p) = (n−3)!
(n−3−p)! , (2.8)

which, up to a sign, are the Euler characteristics of the configuration spaces C(n,p).
The twisted cycles γ(n,p)

a can be taken to be regions of the real section of C(n,p), whose
boundaries are contained in the union of hyperplanes {zij = 0} appearing in the Koba-
Nielsen factor KN(n,p). The unintegrated punctures z1, zp+2, zp+3, . . . , zn−1 can be assigned
a fixed order on the real axis. We will always take

0 = z1 < zp+2 < zp+3 < · · · < zn−2 < zn−1 = 1 , (2.9)

except for the discussions of analytic continuations in section 5.
Twisted cohomologies give a geometric description of the equivalence classes of inte-

grands ω(n,p)
b , up to total derivative terms:

ω
(n,p)
b

∼= ω
(n,p)
b + (d + d log KN(n,p)∧)ξ (2.10)

for any (p−1)-form ξ. Both sides of (2.10) integrate to the same result, since boundary
terms as zi → zj are suppressed by the Koba-Nielsen factor, and can hence be treated as
being equivalent. The representatives of the twisted cohomology classes are holomorphic
p-forms with poles only at zi = zj . We will often strip the overall differential, so that the
differential forms in (2.7) are written as

ω
(n,p)
b = ϕ

(n,p)
b

p+1∏
k=2

dzk , (2.11)

1More generally, the Poincaré polynomial of C(n,p) is given by P(n,p)(t) =
∏n−2
k=n−p−1(1 + kt), which

follows from a simple extension of the arguments given in [58]. The dimension of the only non-trivial p-th
twisted cohomology is equal to (−1)pP(n,p)(−1) = (n−3)!

(n−3−p)! , which is smaller than that of the ordinary
(untwisted) p-th cohomology, 1

p!∂
p
t P(n,p)(0) = (n−2)!

(n−2−p)! , which in turn is even smaller than the total number
of possible real cycles (chambers in the real slice of C(n,p)) [59] given by P(n,p)(1) = (n−1)!

(n−1−p)! .
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where the functions ϕ(n,p)
b are Laurent polynomials in the variables zij . Let us see how the

equivalence relations (2.10) translate to these functions. The simplest case would be to
consider any closed form ξ (dξ = 0), which can be written generally as

ξ =
p+1∑
i=2

ξ̂i

p+1∏
k=2
k 6=i

dzk with ∂iξ̂i = 0 ∀ i = 2, 3, . . . , p+1 . (2.12)

Here we introduced the short-hand notation ∂i = ∂/∂zi. Together with (2.10), it implies
that any ϕ(n,p)

b can be shifted by terms of the form

(∂i log KN(n,p)) ξ̂i =

n−1∑
j=1
j 6=i

sij
zij

 ξ̂i (2.13)

for any i. Throughout this work the symbol ∼= will denote equality up to such equivalence
relations (relations with dξ 6= 0 will not be needed in our applications).

We would like to choose bases of cycles γ(n,p)
a and cocycles ω(n,p)

b , for 1 ≤ a, b ≤ d(n,p),
to yield orthonormal field-theory limits

lim
α′→0

F
(n,p)
ab = δab . (2.14)

If the condition (2.14) is satisfied, a coaction formula of the following form is claimed [16, 60]:

∆F (n,p)
ab =

d(n,p)∑
c=1

F (n,p)
ac ⊗ F (n,p)

cb , (2.15)

consistent with the coaction of terms in the α′-expansion. At p = n−3, this specializes
to the results of [7, 61] on the α′-expansion of open-string tree-level amplitudes. As a
practical advantage of orthonormal field-theory limits (2.14), they minimize the number of
terms in the coaction: one can identify (2.15) as a special case of the master formula (1.1)
with cab = δab and therefore d(n,p) in place of the (d(n,p))2 summands that would arise for
generic bases of γ(n,p)

a and ω
(n,p)
b . Moreover, the (factorially growing) numbers of terms

in the expressions below for ω(n,p)
b are tailored to remove kinematic poles from the entire

α′-expansion of F (n,p)
ab and to simplify the expressions at each order. With this motivation

in mind, we now propose a pair of bases at general n and p satisfying the condition (2.14).

2.2 One integrated puncture

As a warm-up, consider first the case of p = 1 with a single integration variable, z2, and
we have d(n,1) = n−3. The integrals F (n,1)

ab are then closely related2 to Lauricella functions
Fn−4
D , for which a coaction was given in [15, 16]. By the ordering (2.9) of the unintegrated

2The difference is the absence of gamma-function prefactors in this work. The coaction for gamma
functions can easily be incorporated as desired according to the treatment in [16].
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punctures on the real line, it is thus natural to choose the following basis of integration
contours for z2, which are simply the intervals bounded by consecutive finite punctures,

γ
(n,1)
1 = {0 < z2 < z3} , γ

(n,1)
n−3 = {zn−2 < z2 < 1} , (2.16)

γ(n,1)
a = {za+1 < z2 < za+2} for 2 ≤ a ≤ n−4 .

Now we would like to identify a set of forms ω(n,1)
b = dz2ϕ

(n,1)
b that are Laurent polynomials

in the variables z2i and satisfy the duality condition (2.14) with this set of contours. The
functions ϕ(n,1)

b can be chosen to have only simple poles, as follows.

ϕ
(n,1)
1 = s21

z21
, ϕ

(n,1)
n−3 = s21

z21
+
n−2∑
j=3

s2j
z2j

, (2.17)

ϕ
(n,1)
b = s21

z21
+
b+1∑
j=3

s2j
z2j

for 2 ≤ b ≤ n−4 .

From the pole structure of these ω(n,1)
b , it is now easy to see that they are dual to the set of

contours in (2.16). Contributions to the α′ → 0 limit of the integral F (n,1)
ab arise only when

the poles coincide with the endpoints of integration. The logarithmic divergence at such
an endpoint, say zi, is regulated by the Koba-Nielsen factor, resulting in a contribution
of s−1

2i , cancelling the numerators in the differential forms. Thus the contributions from
the poles are either absent or cancel pairwise except when a = b. Adding a Koba-Nielsen
derivative to (2.17) yields an alternative set of cohomology representatives,

ϕ
(n,1)
1

∼=
n−1∑
j=3

sj2
zj2

, ϕ
(n,1)
n−3

∼=
sn−1,2
zn−1,2

, (2.18)

ϕ
(n,1)
b

∼=
n−1∑
j=b+2

sj2
zj2

for 2 ≤ b ≤ n−4 ,

which we will sometimes find more convenient in specific calculations below.

2.3 The general case

For the general case (n, p) of (2.7), we select the basis of twisted cycles to correspond to
regions labeled by distinct real orderings of the p integrated variables zi1 , zi2 , . . . , zip among
the (n−p) unintegrated variables in their fixed order (2.9). We write

γ
(n,p)
~A,~i

= (1, A1, i1, A2, i2, A3, . . . , Ap, ip, Ap+1, n−1, n) , (2.19)

where ~A = (A1, A2, . . . , Ap+1) represents a partition of the ordered list of unintegrated
variables zp+2, . . . , zn−2 into possibly empty parts Aj . Each sequence . . . , Ak, ik, Ak+1, . . .

in (2.19) with Ak = (ak1, ak2, . . . , ak`k) translates into the range zak`k < zik < zak+1,1 for the
associated integration variable zik (with zik−1 < zik and zik < zik+1 in case of Ak = ∅ and
Ak+1 = ∅, respectively). Thus there are

(n−3
p

)
values of ~A and p! values of~i = (i1, i2, . . . , ip)
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corresponding to permutations of (2, 3, . . . , p+1). These cycles correspond to the bounded
chambers of the hyperplane arrangement defined by {zij = 0}.

The dual cocycle satisfying the condition of orthonormal field-theory limits (2.14),
which can be understood as a recursive application of the case with p = 1 to successive
integration variables, reads

ϕ
(n,p)
~A,~i

=
∑

j1∈{1,A1}

si1,j1
zi1,j1

∑
j2∈{1,A1,i1,A2}

si2,j2
zi2,j2

. . .
∑

jp∈{1,A1,i1,A2,...
...,Ap−1,ip−1,Ap}

sip,jp
zip,jp

. (2.20)

As in the p = 1 case, it is clear that the divergences contributed from endpoint singularities
of the integral result in the orthonormality required for the condition (2.14). Similar
to (2.18), one can attain alternative cohomology representatives of (2.20) by adding Koba-
Nielsen derivatives. The following p+1 choices without double poles follow from adding
derivatives in zik+1 , . . . , zip with k = 0, 1, . . . , p:

ϕ
(n,p)
~A,~i
∼=

∑
j1∈{1,A1}

si1,j1
zi1,j1

∑
j2∈{1,A1,i1,A2}

si2,j2
zi2,j2

. . .
∑

jk∈{1,A1,i1,A2,...
...,Ak−1,ik−1,Ak}

sik,jk
zik,jk

×
∑

jk+1∈{Ak+2,ik+2,Ak+3,...
...,Ap,ip,Ap+1,n−1}

sjk+1,ik+1

zjk+1,ik+1

. . .
∑

jp∈{Ap+1,n−1}

sjp,ip
zjp,ip

. (2.21)

In case of double-integrals p = 2, the twisted cycles (2.19) and the dual functions (2.20)
become

γ
(n,2)
(A1,A2,A3),(i1,i2) = (1, A1, i1, A2, i2, A3, n−1, n)

ϕ
(n,2)
(A1,A2,A3),(i1,i2) =

∑
j1∈{1,A1}

si1,j1
zi1,j1

∑
j2∈{1,A1,i1,A2}

si2,j2
zi2,j2

(2.22)

∼=
∑

j1∈{1,A1}

si1,j1
zi1,j1

∑
j2∈{A3,n−1}

sj2,i2
zj2,i2

∼=
∑

j1∈{A2,i2,A3,n−1}

sj1,i1
zj1,i1

∑
j2∈{A3,n−1}

sj2,i2
zj2,i2

,

where the last two lines contain the alternative representatives (2.21) with k = 0, 1.

2.4 Verification via intersection numbers

More systematically, we can verify orthonormality (2.14) with the above cocycles using
intersection numbers. The α′ → 0 limit of F (n,p)

ab is computed by intersection numbers of
twisted cocycles,

lim
α′→0

F
(n,p)
~A,~i; ~B,~j

= lim
α′→0

∫
γ

(n,p)
~A,~i

KN(n,p) ω
(n,p)
~B,~j

= 〈ν(n,p)
~A,~i
|ω(n,p)

~B,~j
〉 , (2.23)

since the forms constructed from the ϕ(n,p)
~B,~j

in (2.20) are logarithmic. Here the ν(n,p)
~A,~i

form

a basis of dual cocycles that correspond to γ(n,p)
~A,~i

from (2.19), in the sense that each ν(n,p)
~A,~i
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has logarithmic singularities with unit residues along the boundaries of γ(n,p)
~A,~i

. In the

terminology of [62], the ν(n,p)
~A,~i

are the canonical forms associated to the positive geometries

described by γ(n,p)
~A,~i

, and indeed any region bounded by hyperplanes is a positive geometry
for which a canonical form exists. We can write out the latter as

γ
(n,p)
~A,~i

= {zbi1 < zi1 < zci1} × {zbi2 < zi2 < zci2} × · · · × {zbip < zip < zcip} , (2.24)

such that ∫
γ

(n,p)
~A,~i

p+1∏
k=2

dzk

 =
∫ zci1

zbi1

dzi1
∫ zci2

zbi2

dzi2 . . .
∫ zcip

zbip

dzip , (2.25)

i.e. for each integrated puncture zik , the indices bik and cik label the variables adjacent to
it in the ordering (2.19).3 This gives a natural cocycle counterpart:

ν
(n,p)
~A,~i

= ν̂
(n,p)
~A,~i

p+1∏
k=2

dzk (2.26)

ν̂
(n,p)
~A,~i

=
(

1
zi1,bi1

− 1
zi1,ci1

)(
1

zi2,bi2
− 1
zi2,ci2

)
· · ·
(

1
zip,bip

− 1
zip,cip

)
.

Since both bases ν(n,p)
~A,~i

and ω(n,p)
~A,~i

are logarithmic, the evaluation of intersection numbers
can be carried out on the support of critical points of KN(n,p) [63] given by solutions of the
equations:

∂k log KN(n,p) =
n−1∑
j=1
j 6=k

skj
zkj

= 0 , for k = 2, 3, . . . , p+1 . (2.27)

For generic values of the kinematic variables, the equations (2.27) have exactly d(n,p)

solutions [19, 57]. Let us denote the a-th solution by (z(a)
2 , z

(a)
3 , . . . , z

(a)
p+1) with a =

1, 2, . . . , d(n,p). The right-hand side of (2.23) can then be computed as

〈ν(n,p)
~A,~i
|ω(n,p)

~B,~j
〉 = (−1)p

d(n,p)∑
a=1

ν̂
(n,p)
~A,~i

ω̂
(n,p)
~B,~j

det J (n,p)

∣∣∣∣
zk=z(a)

k

, (2.28)

where J (n,p)
kl is a Hessian matrix with entries

J
(n,p)
kl = ∂k∂l log KN(n,p) =



skl
z2
kl

for k 6= l ,

−
n−1∑
j=1
j 6=k

skj
z2
kj

for k = l ,
(2.29)

3Note that in case of adjacent integration variables z2, z3 bounded by zb < z2 < z3 < zc, only one of
z2, z3 appears among the integration limits zbi , zci , i.e.∫

zb<z2<z3<zc

dz2 dz3 =
∫ zc

zb

dz3

∫ z3

zb

dz2 =
∫ zc

zb

dz2

∫ zc

z2

dz3 .

Hence, the choice of zbi , zci is in general not unique, but each parametrization of simplices such as zb <
z2 < z3 < zc lead to the same expression for the forms ν(n,p)

~A,~i
in (2.26) related by partial fraction.
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for k, l = 2, 3, . . . , p+1. We stress that this formula can be only used for logarithmic forms,
as otherwise it is valid only asymptotically in the α′ → ∞ limit [31, 63]. We checked
numerically for all values of (n, p) up to and including (10, 7) that this formula gives rise
to the identity matrix, i.e.,

〈ν(n,p)
~A,~i
|ω(n,p)

~B,~j
〉 = δ( ~A,~i),( ~B,~j) , (2.30)

which confirms (2.14). The largest checks required summing over d(10,7) = 5040 critical
points for each entry of the 5040 × 5040 matrix 〈ν(10,7)

a |ω(10,7)
b 〉. This high-multiplicity

computation was made possible by following [64] to interpret log KN(n,p) as a log-likelihood
function in algebraic statistics and extremizing it according to (2.27) using the Julia
package HomotopyContinuation.jl [65].

2.5 String amplitudes from many integrated punctures

For the maximum number p = n−3 of integrations, the integrals in (2.7) agree with the
basis of disk integrals in open-superstring amplitudes obtained in [66] (with permutations
ρa, ρb acting on 2, 3, . . . , n−2, i.e. a, b = 1, 2, . . . , (n−3)!),

F
(n,n−3)
ab =

∫
γ

(n,n−3)
a

n−2∏
j=2

dzj

 n−1∏
1≤i<j

|zij |sij ϕ(n,n−3)
b

γ(n,n−3)
a = {0<zρa(2)<zρa(3)< . . .<zρa(n−2)<1} , ρa ∈ Sn−3 (2.31)

ϕ
(n,n−3)
b =

s1ρb(2)
zρb(2),1

(
s1ρb(3)
zρb(3),1

+
sρb(2),ρb(3)
zρb(3),ρb(2)

)
· · ·

· · · ×
(
s1ρb(n−2)
zρb(n−2),1

+ . . .+
sρb(n−3)ρb(n−2)
zρb(n−2),ρb(n−3)

)
, ρb ∈ Sn−3 .

As pointed out in [67], this representation of the integrand for open superstrings can be
readily exported to ambitwistor string theories, and the equations (2.27) are known in this
case as the scattering equations [68]. The conjectural patterns among the MZVs in the
α′-expansion [7] to be reviewed below imply the coaction formula (2.15) [61].

In the case of p = n−4 integrations, the integrals (2.7) are relabellings of the auxiliary
functions F̂ σν studied in [23] to extract open-string α′-expansions from the Drinfeld asso-
ciator (also see [61, 69, 70]) and in [50] to identify closed-string integrals as single-valued
correlation functions.

3 Structure of the α′-expansion

This section is dedicated to the α′-expansion of the integrals F (n,p)
ab in (2.7) which is used

to test the coaction property (2.15) order by order in α′. We will focus on the situation
where the unintegrated punctures are ordered on the real axis according to

0 = z1 < zp+2 < zp+3 < . . . < zn−2 < zn−1 = 1 (3.1)

and discuss the analytic continuation to different regions in section 5. As will be de-
tailed below, the coefficients in the Taylor expansion of F (n,p)

ab with respect to the sij
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are Q-linear combinations of MZVs and multiple polylogarithms in zp+2, . . . , zn−2, defined
respectively by

ζn1,n2,...,nr =
∞∑

0<k1<k2<...<kr

k−n1
1 k−n2

2 . . . k−nrr , (3.2)

G(a1, a2, . . . , aw; z) =
∫ z

0

dt
t− a1

G(a2, . . . , aw; t) , (3.3)

where nj ∈ N, nr ≥ 2 and aj , z ∈ C, and the recursive definition of polylogarithms
starts with G(∅; z) = 1. MZVs and polylogarithms are assigned (transcendental) weight
n1 +n2 + . . .+nr and w, respectively, and r in (3.2) is referred to as the depth of an MZV.
The endpoint divergences of G(. . . , 0; z) are shuffle-regularized with the assignment

G(0, 0, . . . , 0︸ ︷︷ ︸
n

; z) = 1
n! (log z)n . (3.4)

For instance, shuffle regularization can be used to reduce depth-one polylogarithms
G(0, . . . , 0, 1, 0, . . . , 0; z) to linear combinations of

G(1; z) = log(1−z) , G(0, 0, . . . , 0︸ ︷︷ ︸
p−1

, 1; z) = −Lip(z) , p ≥ 2 (3.5)

multiplying powers of log z. The appearance of MZVs in the α′-expansion of F (n,p)
ab will be

traced back to the case p = n−3 relevant to string amplitudes: the polynomial structure of
F

(n,n−3)
ab in the sij at any multiplicity n can be generated from the Drinfeld associator [23,

70] or Berends-Giele recursions [71] (also see [20, 21, 72, 73] for relations to hypergeometric
functions at n ≤ 7 points). The polylogarithms in turn are determined by the KZ equations
of the F (n,p)

ab which take the schematic form [19, 57, 69]

∂jF
(n,p)
ab =

d(n,p)∑
c=1

(e(n,p)
j1 )bc
zj1

+
(e(n,p)
j,n−1)bc
zj,n−1

+
n−2∑
m=p+2
m 6=j

(e(n,p)
jm )bc
zjm

F (n,p)
ac , (3.6)

where j = p+2, p+3, . . . , n−2 and ∂j = ∂
∂zj

. The entries of the d(n,p)×d(n,p) braid matrices
e

(n,p)
jm are linear in sij which will allow us to solve (3.6) perturbatively in α′. The linear
appearance of α′ on the right-hand side of (3.6) is analogous to the ε-form of the differential
equation for dimensionally regulated Feynman integrals [22, 24].

Given the ordering (3.1) of the unintegrated punctures, it will be convenient to
solve (3.6) with the following choice of fibration bases for the polylogarithms in the α′-
expansion: the labels in a factor of G(a1, a2, . . . , aw; zj) with p+2 ≤ j ≤ n−2 are taken
from ak ∈ {0, 1, zj+1, . . . , zn−2}. For example, in the case of (n, p) = (6, 1), the inte-
gral F (6,1)

ab will feature products of MZVs, G(ak∈{0, 1}; z4) and G(ak∈{0, 1, z4}; z3). As
previewed in (1.2), these polylogarithms turn out to enter the α′-expansions through cer-
tain matrix-valued generating series that will be specified below, denoted by G(6,1)

{0,1}(z4),
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G(6,1)
{0,1,z4}(z3), and more generally G(n,p)

{0,1,zj+1,zj+2,...,zn−2}(zj). The main result of this section
is a factorized form of the α′-expansion,

F (n,p)(zp+2, zp+3, . . . , zn−2) = P(n,p)M(n,p)G(n,p)
{0,1}(zn−2)G(n,p)

{0,1,zn−2}(zn−3) . . . (3.7)

×G(n,p)
{0,1,zp+4,...,zn−2}(zp+3)G(n,p)

{0,1,zp+3,zp+4,...,zn−2}(zp+2) ,

where P(n,p), M(n,p) are constant series involving MZVs. We suppress the indices a, b of
F

(n,p)
ab and the d(n,p) × d(n,p) matrices on the right-hand side, with matrix-multiplication

between neighboring factors P(n,p),M(n,p) and G(n,p).

3.1 MZVs in string amplitudes and general genus-zero integrals

The n-point integrals (2.31) seen in string amplitudes with p = n−3 integrated punctures
solely involve MZVs in their α′-expansion [69, 74] without any polylogarithms at argument
z 6= 1. The factorized form (3.7) of the α′-expansion then reduces to [7]

F (n,n−3) = P(n)M(n) , P(n) = P(n,n−3) , M(n) = M(n,n−3) , (3.8)

where P(n) and M(n) comprise different types of MZVs and decompose as follows [7],

P(n) = 1 + ζ2P
(n)
2 + ζ2

2P
(n)
4 + ζ3

2P
(n)
6 + ζ4

2P
(n)
8 +O(s10

ij ) , (3.9)

M(n) = 1 + ζ3M
(n)
3 + ζ5M

(n)
5 + 1

2ζ
2
3M

(n)
3 M

(n)
3 + ζ7M

(n)
7

+ ζ3ζ5M
(n)
5 M

(n)
3 + 1

5ζ3,5[M (n)
5 ,M

(n)
3 ] +O(s9

ij) . (3.10)

The entries of the (n−3)! × (n−3)! matrices P (n)
w = P

(n,n−3)
w and M

(n)
w = M

(n,n−3)
w are

degree-w polynomials in the sij with rational coefficients, and the leading term 1 stands
for the (n−3)!×(n−3)! unit matrix, reflecting the orthonormal field-theory limits of (2.31).
The decomposition (3.8)–(3.10) determines the coefficients of arbitrary MZVs in terms of
matrix products of those of the primitives, i.e. ζ2k+1M

(n)
2k+1 and ζk2P

(n)
2k . For example, we find

F (n,n−3)
∣∣∣
ζ2ζ3

= P
(n)
2 M

(n)
3 , F (n,n−3)

∣∣∣
ζ3,5

= 1
5[M (n)

5 ,M
(n)
3 ] . (3.11)

We are employing the conjectural Q-bases of [75] for MZVs, see e.g. [76, 77] for a general
account of the relations and various other aspects of MZVs. The non-intuitive prefactor
1
5 in the coefficient of ζ3,5 can be understood by passing to the f -alphabet description of
MZVs [78] (or strictly speaking, of motivic MZVs [2, 79]): based on a non-canonical iso-
morphism φ, (motivic) MZVs can be mapped to a comodule with commuting generator f2
and non-commuting generators f3, f5, f7, . . . such that4

φ(ζ2) = f2 , φ(ζ2k+1) = f2k+1 , φ(ζ3,5) = −5f3f5 , etc. (3.12)
4We will informally omit the superscript of motivic MZVs ζmn1,...,nr

in (3.12) and below. Examples of
φ(ζn1,n2,...,nr ) at higher weight can be found in [7, 78], but the conventions in the references differ from ours
by a swap A⊗B → B⊗A and therefore by a reversal f2k1+1f2k2+1 . . . f2kr+1 7→ f2kr+1 . . . f2k2+1f2k1+1. The
conventions for ordering the entries of the coaction in this work follow for instance those of [2, 11, 12, 80].
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The isomorphism φ is constructed such that the product of MZVs is mapped to a shuffle
of the non-commutative f2k+1, and the coaction of (motivic) MZVs translates into decon-
catenation,

φ(ζAζB) = φ(ζA)� φ(ζB) (3.13)

∆fN2 f2k1+1f2k2+1 . . . f2kr+1 =
r∑
j=0

fN2 f2k1+1f2k2+1 . . . f2kj+1 ⊗ f2kj+1+1 . . . f2kr+1 . (3.14)

In this setup, the all-order structure of the matrices in (3.8) was proposed to be [7]

P(n) = 1 + φ−1
∞∑
k=1

fk2P
(n)
2k (3.15)

M(n) = φ−1
∞∑
r=0

∞∑
k1,k2,...,kr=1

f2k1+1f2k2+1 . . . f2kr+1M
(n)
2k1+1M

(n)
2k2+1 . . .M

(n)
2kr+1 (3.16)

which by (3.14) implies the coaction formula (2.15) at p = n−3 [61].
As a necessary condition for (2.15) to carry over to general p ≤ n−3, the same state-

ments are claimed to carry over to the MZV-dependent parts P(n,p) and M(n,p) of (3.7).
We propose that

P(n,p) = 1 + φ−1
∞∑
k=1

fk2P
(n,p)
2k , (3.17)

M(n,p) = φ−1
∞∑
r=0

∞∑
k1,k2,...,kr=1

f2k1+1f2k2+1 . . . f2kr+1M
(n,p)
2k1+1M

(n,p)
2k2+1 . . .M

(n,p)
2kr+1 , (3.18)

where the entries of the d(n,p) × d(n,p) matrices P (n,p)
w and M (n,p)

w are again degree-w poly-
nomials in the sij with rational coefficients. Note that (3.17)–(3.18) is equivalent to

∆P(n,p) = P(n,p) ⊗ 1 , ∆M(n,p) = M(n,p) ⊗M(n,p) . (3.19)

In the following, we will spell out examples of the P (n,p)
w , M (n,p)

w at p 6= n−3 and describe
methods to compute them in general cases. Explicit results for the P (n)

w , M (n)
w at n ≤ 7 are

available for download on the website [81], and code for generating all-multiplicity results
can be obtained from [82].

Note that the image of MZVs of depth r ≥ 2 under the φ-map in (3.18) depends on a
choice of reference basis. We follow the conventions of [7, 78] to assign vanishing coefficients
of fw to the φ-image of those higher-depth MZVs at weight w in the (conjectural) Q-bases
of [75] (say ζ3,5, ζ3,7, ζ3,3,5, . . .). Still, the form of (3.15) to (3.18) does not depend on these
choices, only the sij-dependence in the entries of P (n,p)

w andM (n,p)
w depends on the reference

bases for MZVs at weight w.

3.2 Warm-up example (n, p) = (5, 1)

In order to illustrate the origin of (3.7) and exemplify the explicit form of the series
G(n,p)
{0,1,...}(zj), we shall now give a detailed derivation of the α′-expansion of F (5,1)

ab . The
two-dimensional bases of cocycles (2.17) and cycles (2.19) are

γ
(5,1)
1 = {0 < z2 < z3} , γ

(5,1)
2 = {z3 < z2 < 1} , (3.20)
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as well as
ϕ

(5,1)
1 = s21

z21
∼=
s32
z32

+ s42
z42

, ϕ
(5,1)
2 = s21

z21
+ s23
z23
∼=
s42
z42

. (3.21)

We have discarded Koba-Nielsen derivatives ∂2KN(5,1) = ( s12
z21

+ s23
z23

+ s24
z24

)KN(5,1) in passing
between different representations of ϕ(5,1)

b in the twisted cohomology. The same integration-
by-parts identities allow us to determine the 2× 2 braid matrices5

e
(5,1)
31 =

(
s12+s23 −s12

0 0

)
, e

(5,1)
34 =

(
0 0
−s24 s24+s23

)
, (3.22)

in the KZ equation (3.6)

∂3F
(5,1)
ab =

2∑
c=1

{(e(5,1)
31 )bc
z31

+ (e(5,1)
34 )bc
z34

}
F (5,1)
ac . (3.23)

One can solve (3.23) through the generating series of polylogarithms G(ak ∈ {0, 1}; z3)

G(5,1)
{0,1}(z3) = 1 +

∑
a1∈{0,1}

G(a1; z3)E(5,1)
a1,z3 +

∑
a1,a2∈{0,1}

G(a2, a1; z3)E(5,1)
a1,z3E

(5,1)
a2,z3 +O(s3

ij)

=
∞∑
r=0

∑
a1,a2,...

...,ar∈{0,1}

G(ar, . . . , a2, a1; z3)E(5,1)
a1,z3E

(5,1)
a2,z3 . . . E

(5,1)
ar,z3 , (3.24)

with the transpose of the braid matrices (3.22)

E
(5,1)
0,z3 = (e(5,1)

31 )t =
(
s12+s23 0
−s12 0

)
, E

(5,1)
1,z3 = (e(5,1)

34 )t =
(

0 −s24
0 s23+s24

)
, (3.25)

which may multiply arbitrary z3-independent matrices from the right. In order to tailor
these constant matrices to the target integrals F (5,1)

ab , we determine their asymptotics6 as
z3 → 0 and z3 → 1,

F
(5,1)
1b (z3 → 0) = δb,1|z3|s12+s23 Γ(1+s12)Γ(1+s23)

Γ(1+s12+s23) , (3.26)

F
(5,1)
2b (z3 → 1) = δb,2|1−z3|s23+s24 Γ(1+s23)Γ(1+s24)

Γ(1+s23+s24) . (3.27)

Finally, it remains to expand the F (5,1)
2b associated with the integration domain z2∈(z3, 1)

around z3 → 0 in order to expand the entire 2×2 matrix of F (5,1)
ab in terms of polylogarithms

with the same basepoint. In presence of the pole z−1
21 of ϕ1, the α′-expansion of F (5,1)

21 does
not commute with the limit z3 → 0. Hence, as detailed in appendix A.1, we instead infer

5Note that the soft limit s23 → 0 of e(5,1)
31 = e

(5,1)
0 and e(5,1)

34 = e
(5,1)
1 followed by relabelling s24 → s23

reproduces the four-point instances of the arguments of the 2× 2 Drinfeld associator in [23]. See [70] for a
discussion of this method in the framework of twisted de Rham theory. The z3-derivatives of F (5,1)

ab have
been simplified using partial fractions and integration by parts in order to attain the form on the right-hand
side of (3.23) and to identify the expressions (3.22) for the braid matrices.

6While (3.26) follows from the rescaling z2 = xz3 of the integration variable with x ∈ (0, 1), one needs
an additional change of variables z2 → 1−z2 in the derivation of (3.27).
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the α′-expansion via monodromy relations [83, 84] involving cycles where the α′-expansions
commute with the limit z3 → 0 and obtain

P(5,1)M(5,1) =

 Γ(1+s12)Γ(1+s23)
Γ(1+s12+s23) 0

s12
s12+s23

{
Γ(1+s24)Γ(1+s12+s23)

Γ(1+s12+s23+s24) − Γ(1+s23)Γ(1−s12−s23)
Γ(1−s12)

}
Γ(1+s12+s23)Γ(1+s24)

Γ(1+s12+s23+s24)

 .

(3.28)
Note that the factor of (s12+s23)−1 in the (2, 1)-entry is cancelled by the difference of Euler
beta functions, and we obtain a regular Taylor expansion around α′ = 0,

s12
s12+s23

{Γ(1+s24)Γ(1+s12+s23)
Γ(1+s12+s23+s24) − Γ(1+s23)Γ(1−s12−s23)

Γ(1−s12)

}
(3.29)

= −ζ2s12(s23+s24) + ζ3s12(s2
24+s23s24+s12s24−s12s23) +O(s4

ij) ,

which is consistent with the z3 → 1 limit (3.27). Taking (3.28) as a formal initial value
z3 → 0, the α′-expansion of F (5,1)

ab at generic z3 ∈ (0, 1) is obtained by right-multiplication
with the series (3.24) in polylogarithms

F (5,1)(z3) = P(5,1)M(5,1)G(5,1)
{0,1}(z3) (3.30)

with matrix multiplication between the three factors. The individual P (5,1)
2k ,M

(5,1)
2k+1 may be

obtained from (3.28) by extracting the coefficients of ζk2 , ζ2k+1 in the Taylor expansion of

F (4,1)(s12,s23) = Γ(1+s12)Γ(1+s23)
Γ(1+s12+s23) = exp

( ∞∑
k=2

ζk
k

(−1)k
[
sk12+sk23−(s12+s23)k

])
, (3.31)

i.e. they are determined by the single four-point integral (d(4,1) = 1). In (3.28) and later
expressions for initial values of F (n,p), we already incorporate a central conjecture on the
structure of the α′-expansion by writing the left-hand side as a matrix product of P(5,1)

and M(5,1). Like this, the appearance of ζ2 is claimed to follow the expansions in (3.17)
and (3.18) which we have verified order by order in α′. It would be interesting to find an
all-order argument based on the right-hand side of (3.28).

Given that MZVs are recovered from polylogarithms at unit argument via

ζn1,n2,...,nr = (−1)rG(0, 0, . . . , 0︸ ︷︷ ︸
nr−1

, 1, 0, . . . , 0︸ ︷︷ ︸
nr−1−1

, 1, . . . , 0, . . . , 0︸ ︷︷ ︸
n1−1

, 1; 1) , (3.32)

one can check that (3.30) is consistent with both (3.26) and (3.27), validating our procedure
to determine the formal initial value of z3 = 0 from monodromy relations. The coaction
properties of (3.30) extending our conjecture (3.19) for ∆P(n,p),∆M(n,p) are discussed in
the later section 4, and the explicit form of the α′≤2-orders can be found in appendix A.2.

3.3 Warm-up example (n, p) = (6, 1)

We shall now illustrate the selection of fibration bases for polylogarithms in two variables
by analyzing and solving the differential equations of F (6,1)

ab . The bases of master contours

γ
(6,1)
1 = {0 < z2 < z3} , γ

(6,1)
2 = {z3 < z2 < z4} , γ

(6,1)
3 = {z4 < z2 < 1} (3.33)
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and dual cocycles (see (2.17))

ϕ
(6,1)
1 = s21

z21
∼=
s32
z32

+ s42
z42

+ s52
z52

ϕ
(6,1)
2 = s21

z21
+ s23
z23
∼=
s42
z42

+ s52
z52

(3.34)

ϕ
(6,1)
3 = s21

z21
+ s23
z23

+ s24
z24
∼=
s52
z52

give rise to the following 3× 3 braid matrices

e
(6,1)
31 =

 s12+s23 −s12 0
0 0 0
0 0 0

 , e
(6,1)
41 =

 s24 s12 −s12
s24 s12 −s12
0 0 0



e
(6,1)
35 =

 0 0 0
−s25 s25 s23
−s25 s25 s23

 , e
(6,1)
45 =

 0 0 0
0 0 0
0 −s25 s24+s25

 (3.35)

e
(6,1)
34 =

 0 0 0
−s24 s24+s23 −s23

0 0 0


in the KZ equations (3.6)

∂3F
(6,1)
ab =

3∑
c=1

{
(e(6,1)

31 )bc
z31

+ (e(6,1)
35 )bc
z35

+ (e(6,1)
34 )bc
z34

}
F (6,1)
ac (3.36)

∂4F
(6,1)
ab =

3∑
c=1

{
(e(6,1)

41 )bc
z41

+ (e(6,1)
45 )bc
z45

+ (e(6,1)
34 )bc
z43

}
F (6,1)
ac . (3.37)

A convenient strategy is to focus on the differential equation (3.36) in z3 and to solve it in
terms of polylogarithms G(aj ∈ {0, 1, z4}; z3),

G(6,1)
{0,1,z4}(z3) =

∞∑
r=0

∑
a1,a2,...,ar
∈{0,1,z4}

G(ar, . . . , a2, a1; z3)E(6,1)
a1,z3E

(6,1)
a2,z3 . . . E

(6,1)
ar,z3 . (3.38)

The formal initial value with respect to z3 = 0 multiplying G(6,1)
{0,1,z4}(z3) from the left is

still a function of z4 which obeys the differential equation (3.37). The latter at z3 = 0 is
solved by

G(6,1)
{0,1}(z4) =

∞∑
r=0

∑
a1,a2,...

...,ar∈{0,1}

G(ar, . . . , a2, a1; z4)E(6,1)
a1,z4E

(6,1)
a2,z4 . . . E

(6,1)
ar,z4 (3.39)

with a left-multiplicative factor that does not depend on z3 or z4. Hence, the dependence
of F (6,1)

ab on z3, z4 stems from G(6,1)
{0,1}(z4)G(6,1)

{0,1,z4}(z3) multiplying a formal z3, z4→0 limit
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from the right, and the combinations of braid matrices in (3.38) and (3.39) are

E
(6,1)
0,z4 = (e(6,1)

41 +e(6,1)
34 )t =

 s24 0 0
s12 s12+s23+s24 0
−s12 −s12−s23 0

 (3.40)

E
(6,1)
1,z4 = (e(6,1)

45 )t =

 0 0 0
0 0 −s25
0 0 s24+s25

 , E
(6,1)
0,z3 = (e(6,1)

31 )t =

 s12+s23 0 0
−s12 0 0

0 0 0



E(6,1)
z4,z3 = (e(6,1)

34 )t =

 0 −s24 0
0 s23+s24 0
0 −s23 0

 , E
(6,1)
1,z3 = (e(6,1)

35 )t =

 0 −s25 −s25
0 s25 s25
0 s23 s23

 .

The initial values are determined by the asymptotics

F
(6,1)
1b (z3 → 0, z4) = δb,1|z4|s24 Γ(1+s12)Γ(1+s23)

Γ(1+s12+s23)

F
(6,1)
2b (z3, z4 → z3) = δb,2|z3|s12 |1−z3|s25 Γ(1+s23)Γ(1+s24)

Γ(1+s23+s24) (3.41)

F
(6,1)
3b (z3, z4 → 1) = δb,3|1−z3|s23 Γ(1+s24)Γ(1+s25)

Γ(1+s24+s25) ,

and one can again use monodromy relations as explained in appendix A.1 to also infer the
z3 → 0 asymptotics of F (6,1)

2b and F
(6,1)
3b (contours different from (3.33) are necessary in

intermediate steps whose limits z3 → 0 commute with their α′-expansions). One arrives at
the formal limit

F
(6,1)
ab (z3 → 0, z4) =


|z4|s24 Γ(1+s12)Γ(1+s23)

Γ(1+s12+s23) 0 0
s12F̂

(5,1)
11

s12+s23
−K(6,1) F̂

(5,1)
11 F̂

(5,1)
12

s12F̂
(5,1)
21

s12+s23
F̂

(5,1)
21 F̂

(5,1)
22


ab

, (3.42)

where the hat notation on the right-hand side stands for changes of arguments,

F̂
(5,1)
ab = F

(5,1)
ab (z4)

∣∣∣ s12→s12+s23
s23→s24
s24→s25

, (3.43)

and the (a, b) = (2, 1) entry of (3.42) involves

K(6,1) = sin(πs12)
sin(π(s12+s23)) |z4|s24 Γ(1+s12)Γ(1+s23)

Γ(1+s12+s23)

= |z4|s24 s12
s12+s23

Γ(1+s23)Γ(1−s12−s23)
Γ(1−s12) . (3.44)

By importing the formal z4 → 0 limit of F̂ (5,1)
ab from (3.28) with the above replacement

rules for the sij , we arrive at

P(6,1)M(6,1) =


Γ(1+s12)Γ(1+s23)

Γ(1+s12+s23) 0 0
K̂

(6,1)
21

Γ(1+s12+s23)Γ(1+s24)
Γ(1+s12+s23+s24) 0

K̂
(6,1)
31 K̂

(6,1)
32

Γ(1+s12+s23+s24)Γ(1+s25)
Γ(1+s12+s23+s24+s25)

 (3.45)
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with (cf. (A.16))

K̂
(6,1)
21 = s12

s12+s23

{Γ(1+s24)Γ(1+s12+s23)
Γ(1+s12+s23+s24) − Γ(1+s23)Γ(1−s12−s23)

Γ(1−s12)

}
, (3.46)

K̂
(6,1)
31 = s12

s12+s23+s24

{Γ(1+s25)Γ(1+s12+s23+s24)
Γ(1+s12+s23+s24+s25) − Γ(1+s24)Γ(1−s12−s23−s24)

Γ(1−s12−s23)

}
,

K̂
(6,1)
32 = s12+s23

s12+s23+s24

{Γ(1+s25)Γ(1+s12+s23+s24)
Γ(1+s12+s23+s24+s25) − Γ(1+s24)Γ(1−s12−s23−s24)

Γ(1−s12−s23)

}
,

i.e. the 3× 3 matrices P (6,1)
2k ,M

(6,1)
2k+1 are again determined by the four-point integral (3.31).

The factor of |z4|s24 in (3.42) has been replaced by 1 in the formal z4 → 0 limit since all
the regularized polylogarithms in

|z4|s24 = 1 +
∞∑
w=1

sw24G(0, 0, . . . , 0︸ ︷︷ ︸
w

; z4) (3.47)

are later on generated by (3.39). The denominators (s12+s23)−1 and (s12+s23+s24)−1 on
the right-hand side of (3.46) are cancelled by the differences of Euler beta functions as
in (3.29) such that all entries of the matrices P (6,1)

2k ,M
(6,1)
2k+1 determined from (3.45) are

indeed polynomials in sij .
By the above arguments, the α′-expansion of F (6,1)

ab exhibits a matrix multiplicative
structure

F (6,1)(z3, z4) = P(6,1)M(6,1)G(6,1)
{0,1}(z4)G(6,1)

{0,1,z4}(z3) (3.48)

similar to (3.30), where the building blocks are given by (3.38), (3.39), (3.45) and (3.46).
This representation realizes the integration of the KZ form Ω(6,1) in dF (6,1) = Ω(6,1)F (6,1)

along the path (0, 0) → (0, z4) → (z3, z4), and the alternative choice of path (0, 0) →
(z3, 0)→ (z3, z4) is discussed in section 5.

3.4 General result

The structural results (3.30) and (3.48) on the α′-expansion of F (5,1) and F (6,1) can be
readily generalized to higher multiplicity: the KZ equations (3.6) can be solved by the
matrix product (3.7), where the zj-dependent building blocks

G(n,p)
{0,1,zj+1,zj+2,...,zn−2}(zj) =

∞∑
r=0

∑
a1,a2,...,ar

∈{0,1,zj+1,zj+2,...,zn−2}

G(ar, . . . , a2, a1; zj)E(n,p)
a1,zjE

(n,p)
a2,zj . . . E

(n,p)
ar,zj

(3.49)
involve the following combinations of braid matrices

E(n,p)
zk,zj

= (e(n,p)
jk )t ∀ k 6= 1 , E

(n,p)
0,zj = (e(n,p)

j1 )t +
j−1∑
i=p+2

(e(n,p)
ij )t . (3.50)

The choice of fibration basis is adapted to the arrangement (3.1) of the unintegrated punc-
tures zp+2, . . . , zn−2 on the real line and amounts to integrating the KZ form Ω(n,p) in
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dF (n,p) = Ω(n,p)F (n,p) along the path

(0, 0, . . . , 0)→ (0, . . . , 0, zn−2)→ (0, . . . , 0, zn−3, zn−2)→ . . . (3.51)
→ . . .→ (0, zp+3, . . . , zn−2)→ (zp+2, zp+3, . . . , zn−2) .

The series (3.49) in polylogarithms act by right-multiplication on the zj-independent ma-
trices P(n,p),M(n,p) in (3.7) that are claimed to carry the MZVs according to (3.18). As
exemplified by (3.28), (3.46) and (A.18) for p = 1 and appendix A.4 for (n, p) = (6, 2), the
entries of P(n,p),M(n,p) are expected to be expressible in terms of the disk integrals F (k+3,k)

in string amplitudes with k ≤ p. Their compositions can be determined via monodromy
relations from the initial values zp+2, . . . , zn−2 → 0 in a basis of contours where these limits
for the punctures commute with α′-expansions.

4 Coaction properties of F (n,p)
ab and their building blocks

The goal of this section is to investigate the coaction formula (2.15) of the F (n,p)
ab at the

level of their factorized α′-expansion (3.7). We will identify conjectural coaction properties
of the building blocks G(n,p)

{0,1,zj+1,zj+2,...,zn−2}(zj) in (3.49) which imply (2.15) and mix dif-
ferent braid matrices and the matrices M (n,p)

2k+1 accompanying the MZVs. The subsequent
expressions for ∆G(n,p) are generating functions for coactions of polylogarithms: each con-
tribution is already cast into a fibration basis, and they drastically simplify order-by-order
tests of (2.15).

4.1 Coaction of multiple polylogarithms

The structures to be described in this section originate from the coproduct in the Hopf
algebra of multiple polylogarithms taken modulo their branch cuts, or equivalently modulo
iπ [1, 2],

∆I(a0; a1, . . . , an; an+1) (4.1)

=
∑

0=i0<i1<···<ik<ik+1=n+1
I(a0; ai1 , . . . , aik ; an+1)⊗

k∏
p=0

I(aip ; aip+1, . . . , aip+1−1; aip+1) ,

where the iterated integrals I are defined as

I(a0; a1, . . . , an; an+1) =
∫ an+1

a0

dt
t− an

I(a0; a1, . . . , an−1; t) , (4.2)

and are thus related to the multiple polylogarithms defined in (3.3) by a shift of base point,

I(0; a1, . . . , an; an+1) = G(an, . . . , a1; an+1) . (4.3)

It is thus possible to convert any integral I with general arguments into combinations of
the integrals G (see [80] for examples), but the coproduct is more neatly expressed in terms
of the former, as seen in (4.1).
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The coproduct can be lifted to a coaction [78, 80] that reincorporates iπ with the
additional definition

∆(iπ) = iπ ⊗ 1 , (4.4)

which implies
∆(ζn) = ζn ⊗ 1 , for n even , (4.5)

for even zeta values, in addition to the straightforward operation on odd zeta values,

∆(ζn) = ζn ⊗ 1 + 1⊗ ζn , for n odd . (4.6)

Strictly speaking, the coaction is only defined for motivic MZVs ζmn1,...,nr , and we informally
omit their superscripts in (4.5), (4.6) and similar equations below. Moreover, the second
entries of the coaction feature de Rham periods associated with the respective motivic
MZVs. See for instance [85] for their distinction which is implicit in our notation. The
absence of 1⊗ζn in (4.5) can be understood from the vanishing of the de Rham version of ζ2.

As a consequence of (4.1) and (4.3), the coaction always includes a particularly simple
collection of terms

∆G(u1, u2, . . . , uw; z) =
w∑
j=0

G(uj+1, uj+2, . . . , uw; z)⊗G(u1, u2, . . . , uj ; z) + · · · (4.7)

that arise from deconcatenations of the labels ~u = (u1, u2, . . . , uw). The terms in the ellipsis
in turn still involve polylogarithms of the form G(. . . ; z) in the first entry, but the second
entry carries at least one unit of transcendental weight via polylogarithms G(. . . ;uj) that
do not depend on z and may reduce to MZVs. In other words, the deconcatenation terms
in (4.7) make all terms contributing to ∆G(~u; z) explicit that take the form G(. . . ; z) ⊗
G(. . . ; z) with the same original argument z in both entries. This property is perhaps most
easily understood from the representation of the terms of the coproduct (4.1) as polygons
inscribed in a semicircle [2, 80].

For generating series of the form in (3.49), the deconcatenation terms in (4.7) translate
into matrix products: we shall illustrate this in the one-variable case with an abstract
version of (3.24)

G{0,1}(z) =
∑

~u∈{0,1}×
G(~ut; z)Eu1Eu2 . . . Euw , (4.8)

where E0, E1 are unspecified matrices without any relations prescribed among their prod-
ucts. Here and below, ~ut = (uw, . . . , u2, u1) denotes the reversal of ~u = (u1, u2, . . . , uw), and
we write ~u ∈ {0, 1, z, . . .}× when all words (u1, u2, . . . , uw) of arbitrary length w = 0, 1, 2, . . .
in the alphabet ui ∈ {0, 1, z, . . .} are summed over. With row and column indices a, b, . . .
for E0 and E1 as well as Einstein summation for repeated indices, we have

∆G{0,1}(z)ab = G{0,1}(z)ac ⊗G{0,1}(z)cb (4.9)
+

∑
~u∈{0,1}×

G(~u; z)⊗
∑

~k∈(2N+1)×
φ−1(fk1fk2 . . . fk`)W (~u|~k)acG{0,1}(z)cb ,

where the MZVs arising from the terms in the ellipsis of (4.7) have been translated into the
f -alphabet (the second entry of the coaction does not admit any f2). The objects W (~u|~k)
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are products of E0, E1 with rational coefficients whose composition is determined by (4.1).
Finally, the right-multiplicative generating series G{0,1}(z)cb in the second entry of (4.9)
ensures the property that the z-derivatives operate in the second entry [80],

∆∂zG{0,1}(z) = (id⊗ ∂z)∆G{0,1}(z) . (4.10)

The fact that each term in the ellipsis of (4.7) carries at least one unit of weight in polylog-
arithms independent on z translates into W (~u|∅) = 0 in (4.9), i.e. each term in the second
line involves MZVs with at least one letter fki .

As a simple example of non-vanishing W (~u|~k)ac in (4.9), we rewrite

∆G(0, 0, 1, 1; z) = 1⊗G(0, 0, 1, 1; z) +G(1; z)⊗G(0, 0, 1; z) +G(1, 1; z)⊗G(0, 0; z)
+G(0, 1, 1; z)⊗G(0; z) +G(0, 0, 1, 1; z)⊗ 1 +G(1; z)⊗ ζ3 (4.11)

and similar weight-four coactions in generating-function form. Since 1⊗ζ3 is always accom-
panied by G(1; z)⊗ 1 rather than G(0; z)⊗ 1 in any ∆G(u1, u2, u3, u4; z) with ui ∈ {0, 1},
we have W (0|3) = 0 and

W (1|3) = −E0E0E1E1 + 2E0E1E0E1 − 2E1E0E1E0 + E1E1E0E0

+ E0E1E1E1 − 3E1E0E1E1 + 3E1E1E0E1 − E1E1E1E0 (4.12)
= [[[E0, E1], E0], E1] + [[[E0, E1], E1], E1] .

In the remainder of this section, we specialize the abstract E0, E1 to the braid matrices of
various F (n,p) as for instance in (3.25) and find relations involving commutators of matrices
and M (n,p)

k .

4.2 Coaction of F (n,p) with p = n−4

In this section, we explore the consequences of the coaction property at p = n−4, i.e. for
functions in factorized form (3.7) that depend on one puncture z = zn−2

F (n,n−4)(z)ad = P(n,n−4)
ab M(n,n−4)

bc G(n,n−4)
{0,1} (z)cd , (4.13)

see (3.17) and (3.18) for the structure of P(n,n−4) and M(n,n−4). We will find recursive
relations among the coefficients W (~u|~k) of the coaction in the second line of (4.9), and
their solution can be resummed in terms of repeated adjoint actions in the generating
functions in (4.13).

The conjectural coaction property for the full disk integrals is

∆F (n,n−4)(z)ac = F (n,n−4)(z)ab ⊗ F (n,n−4)(z)bc , (4.14)

and we start by investigating the regularized z → 0 limit that sets G(n,n−4)
{0,1} (z) → 1 and

relates the contributions involving MZVs via

∆
(
P(n,n−4)
ab M(n,n−4)

bd

)
= P(n,n−4)

ab M(n,n−4)
bc ⊗M(n,n−4)

cd . (4.15)

This z → 0 limit of (4.14) is implied by the assumptions (3.19) on P(n,n−4) and M(n,n−4)

which in turn follow from the expansion (3.17) and (3.18) in terms of matrices P (n,n−4)
w ,
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M
(n,n−4)
w of fixed polynomial degree w in sij . In order for (4.14) to hold at nonzero z, the

series M(n,n−4) and G(n,n−4)
{0,1} (z) need to be interrelated through the coaction,

∆
(
M(n,n−4)
ac G(n,n−4)

{0,1} (z)ce
)

= M(n,n−4)
ab G(n,n−4)

{0,1} (z)bc ⊗M(n,n−4)
cd G(n,n−4)

{0,1} (z)de . (4.16)

With the property ∆M(n,n−4)
ac = M(n,n−4)

ab ⊗M(n,n−4)
bc assumed in (3.19) and the ansatz (4.9)

for the coaction of G(n,n−4)
{0,1} (z), the desired property (4.16) implies

G(n,n−4)
{0,1} (z)ab ⊗M(n,n−4)

bc −G(n,n−4)
{0,1} (z)bc ⊗M(n,n−4)

ab (4.17)

=
∑

~u∈{0,1}×
G(~u; z)⊗M(n,n−4)

ab �

∑
~k∈(2N+1)×

φ−1(fk1fk2 . . . fk`)W (~u|~k)bc

upon left- and right-multiplication with the inverses of M(n,n−4) and G{0,1}(z). The shuffle
symbol in the second entry acts on the combinations of fk that are explicit in the second
line of (4.17) and those in the expansion of M(n,n−4). The row- and column indices a, b, . . .
are spelt out since the order of matrix multiplication does not always line up with the
sequence of entries in the coaction as for instance for the term G(n,n−4)

{0,1} (z)bc ⊗M(n,n−4)
ab on

the left-hand side.
By isolating the coefficients of various G(~u; z) ⊗ fk1fk2 . . . fk` in (4.17), one obtains a

recursion that relates W (~u|k1, k2, . . . , k`) associated with different numbers ` of letters fk.
With the shorthand notation

E(~u) = E(n,n−4)
uw . . . E(n,n−4)

u2 E(n,n−4)
u1 (4.18)

for the matrix product accompanying G(u1, u2, . . . , uw; z) in (4.8) and suppressing the
superscripts of M (n,n−4)

k , the coefficient equations at ` = 0, 1, 2 read

E(~u)ab1bc − E(~u)bc1ab = W (~u|∅)ac
E(~u)ab(Mk1)bc − E(~u)bc(Mk1)ab = W (~u|k1)ac + (Mk1)abW (~u|∅)bc , (4.19)

E(~u)ab(Mk1Mk2)bc − E(~u)bc(Mk1Mk2)ab = W (~u|k1, k2)ac + (Mk1)abW (~u|k2)bc ,
+ (Mk2)abW (~u|k1)bc + (Mk1Mk2)abW (~u|∅)bc .

It is easy to see from (4.17) that the generalization to coefficients of G(~u; z)⊗ fk1fk2 . . . fk`
at arbitrary ` is captured by the deshuffle ∑

~p�~q=~k on the right-hand side. The latter
instructs to sum over all pairs ~p = (p1, p2, . . . , pi) and ~q = (q1, q2, . . . , qj) of ordered sets
such that a given ~k = (k1, k2, . . . , k`) with ` = i+j occurs in their shuffle product:[

E(~u) , Mk1Mk2 . . .Mk`

]
ac

=
∑

~p�~q=~k

(Mp1Mp2 . . .Mpi)abW (~u|~q)bc . (4.20)

The recursion for the W (~u|k1, k2, . . . , k`) in (4.19) and (4.20) can be straightforwardly
solved in terms of nested matrix commutators such as

W (~u|∅) = 0 ,
W (~u|k1) = [E(~u),Mk1 ] , (4.21)

W (~u|k1, k2) = [[E(~u),Mk1 ],Mk2 ] ,
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and more generally

W (~u|k1, k2, . . . , k`) = [[. . . [[E(~u),Mk1 ],Mk2 ], . . . ,Mk`−1 ],Mk` ] . (4.22)

For words ~u of length one, (4.21) relates the commutators [E0,M2k+1] and [E1,M2k+1] to
products of braid matrices. One can for instance find

[E0,M3] = 0 , [E0,M5] = 0
[E1,M3] = [[[E0, E1], E0], E1] + [[[E0, E1], E1], E1]

[E1,M5] = [[[[[E0, E1], E0], E0], E0], E1] + 3
2[[[[[E0, E1], E0], E0], E1], E1] (4.23)

+ 1
2[[[[[E0, E1], E0], E1], E0], E1] + 1

2[[[[[E0, E1], E1], E0], E1], E1]

+ 3
2[[[[[E0, E1], E1], E1], E0], E1] + [[[[[E0, E1], E1], E1], E1], E1] ,

based on W (0|3) = W (0|5) = 0, and W (1|3) in (4.12) (with a similar expression for
W (1|5)). Up to the outermost bracket with E1, the right-hand sides of (4.23) match the
coefficients of ζ3 and ζ5 in the Drinfeld associator Φ(E0, E1) (when reducing the MZVs
to the standard conjectural Q-bases), see (5.6) below. Multiples of these expressions also
feature as the nested brackets that define the elements Df3 and Df5 in the stable derivation
algebra [86, 87].7

Given that each W (~u|~k) in (4.22) involves the matrix product E(~u) in (4.18), the
sum over ∑~u∈{0,1}× G(~u; z)W (~u|~k) in (4.9) is expressible in terms of the generating series
G{0,1}(z) in (4.8): the coaction property (4.16) along with the ansatz (4.9) are equivalent to

∆G(n,p)
{0,1}(z) =G(n,p)

{0,1}(z)⊗G(n,p)
{0,1}(z)+

∑
k1∈2N+1

[
G(n,p)
{0,1}(z) , M (n,p)

k1

]
⊗φ−1(fk1)G(n,p)

{0,1}(z)

+
∑

k1,k2∈2N+1

[[
G(n,p)
{0,1}(z) , M (n,p)

k1

]
, M

(n,p)
k2

]
⊗φ−1(fk1fk2)G(n,p)

{0,1}(z)

+
∑

k1,k2,k3∈2N+1

[[[
G(n,p)
{0,1}(z) , M (n,p)

k1

]
, M

(n,p)
k2

]
, M

(n,p)
k3

]
⊗φ−1(fk1fk2fk3)G(n,p)

{0,1}(z)+. . .

=
∑

~k∈(2N+1)×

[[
. . .
[[
G(n,p)
{0,1}(z),M (n,p)

k1

]
,M

(n,p)
k2

]
. . . ,M

(n,p)
k`−1

]
,M

(n,p)
k`

]
⊗φ−1(fk1 . . .fk`)G

(n,p)
{0,1}(z)

(4.24)

with terms involving four or more fk in the ellipsis in the third line. In fact, this derivation
of (4.24) not only applies to p = n−4 but also to general values of p: one imposes the
coaction properties of F (n,p) to hold for the matrix product (3.7) at generic z = zn−2 and

7For any element f(x, y) in a free Lie algebra with generators x, y, the derivation Df is defined by
proposition 2 of [86]. The cases of f(x, y) relevant to (4.23) are [87]

f3 = −[[x, y], x]− [[x, y], y]
f5 = −2[[[[x, y], x], x], x]− 3[[[[x, y], x], x], y]− [[[[x, y], x], y], x]

− [[[[x, y], y], x], y]− 3[[[[x, y], y], y], x]− 2[[[[x, y], y], y], y]

with x→ E0 and y → E1 which are not to be confused with the f -alphabet description of MZVs.
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vanishing zn−3, zn−4, . . . , zp+2. Note that the pattern of fki and Mki in (4.24) amounts to
translating the matrix products in the expansion (3.18) of M(n,p) to the adjoint represen-
tation: by introducing the formal operation

X ⊗ adL
(
φ−1(fk1fk2 . . . fkr)Mk1Mk2 . . .Mkr

)
Y (4.25)

=
[[
. . . [[X,Mk1 ] ,Mk2 ] , . . . ,Mkr−1

]
,Mkr

]
⊗ φ−1(fk1fk2 . . . fkr)Y

that converts matrix products to nested commutators in the appropriate order and acts
linearly adL(P +Q) = adL(P ) + adL(Q), one can compactly rewrite (4.24) as

∆G(n,p)
{0,1}(z) = G(n,p)

{0,1}(z)⊗ adL
(
M(n,p)

)
G(n,p)
{0,1}(z) . (4.26)

We emphasize that (4.24) is still conjectural and can be thought of as an economic refor-
mulation of the coaction conjecture (2.15) for F (n,p): we have started to decompose the
coaction relation involving all the contributions G(. . . ; zn−2), . . . , G(. . . ; zp+2) and MZVs to
the α′-expansion of F (n,p) into simpler coaction formulae for the building blocks in (3.7). In
the next section, this decomposition will be extended to polylogarithms in several variables.

We have tested (4.24) and (4.26) order by order in the α′-expansion, namely up to and
including α′11 for (n, p) = (5, 1) and α′10 for (n, p) = (6, 2). The relevant braid matrices
and M

(n,p)
2k+1 can be found in (3.25) and (3.28) for (n, p) = (5, 1) as well as appendix A.4

for (n, p) = (6, 2). Note in particular that the α′≥9-orders at (n, p) = (6, 2) are sensitive
to the commutator structure of

[
[G(n,p)
{0,1}(z),M (n,p)

k1
],M (n,p)

k2

]
⊗ fk1fk2 along with ζ3,5; see

appendix A.4.3 for details. These checks go beyond the reach of (n, p) = (5, 1) since
[M (5,1)

3 ,M
(5,1)
5 ] = 0 and therefore

[
[G(5,1)
{0,1}(z),M (5,1)

3 ],M (5,1)
5

]
=
[
[G(5,1)
{0,1}(z),M (5,1)

5 ],M (5,1)
3

]
.

4.3 The general case

In preparation for the multivariable generalization of the expression (4.26) for ∆G(n,p)
{0,1}(z),

we briefly repeat the analysis of the previous section in the two-variable case p = n−5 with
z = zn−3 and y = zn−2,

F (n,n−5)(z, y)ae = P(n,n−5)
ab M(n,n−5)

bc G(n,n−5)
{0,1} (y)cdG(n,n−5)

{0,1,y} (z)de (4.27)

and study the coaction of G(n,n−5)
{0,1,y} (z)de. We will arrive at a compact form of the generating

function for coactions (4.7) of polylogarithms G(~u; z) with labels ui in the three-letter
alphabet {0, 1, y}. Again, the general coaction formula (4.1) leads to the simple class of
terms from deconcatenation of ~u that are explicit in (4.7), and we will elaborate on the
additional terms in the ellipsis with some G(. . . ;ui), ui ∈ {0, 1, y} in their second entry.
In terms of generating functions

G{0,1,y}(z) =
∑

~u∈{0,1,y}×
G(~ut; z)Eu1,zEu2,z . . . Euw,z (4.28)
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with unspecified matrices E0,z, E1,z, Ey,z, it remains to determine theW (~u|~k|~m) comprising
products of matrices with rational coefficients in

∆G{0,1,y}(z)ab = G{0,1,y}(z)ac ⊗G{0,1,y}(z)cb +
∑

~u∈{0,1,y}×
G(~u; z) (4.29)

⊗
∑

~k∈(2N+1)×
φ−1(fk1fk2 . . . fk`)

∑
~m∈{0,1}×

G(~m; y)W (~u|~k|~m)acG{0,1,y}(z)cb .

From coactions at weight two with G(. . . ; y) in their second entry such as

∆G(1, y; z) = 1⊗G(1, y; z) +G(y; z)⊗G(1; z) +G(1, y; z)⊗ 1 (4.30)
−G(1; z)⊗G(0; y) +G(1; z)⊗G(1; y)−G(y; z)⊗G(1; y) ,

one can for instance read off

W (0|∅|0) = W (0|∅|1) = 0
W (y|∅|0) = [E0,z, Ey,z] (4.31)
W (1|∅|0) = −W (1|∅|1) = W (y|∅|1) = [E1,z, Ey,z] .

The matrix productsW (~u|~k|~m) in the coaction can again be determined by imposing (4.27)
and furthermore assuming that ∆P(n,n−5) = P(n,n−5)⊗1 and that (4.16) holds for M(n,n−5)

and G(n,n−5)
{0,1} . In this setting, the ansatz (4.29) for the coaction of interest has to satisfy

G(n,n−5)
{0,1,y} (z)ab ⊗M(n,n−5)

bc G(n,n−5)
{0,1} (y)cd −G(n,n−5)

{0,1,y} (z)cd ⊗M(n,n−5)
ab G(n,n−5)

{0,1} (y)bc (4.32)

=
∑

~u∈{0,1,y}×
G(~u; z)⊗M(n,n−5)

ab G(n,n−5)
{0,1} (y)bc �

∑
~k∈(2N+1)×
~m∈{0,1}×

φ−1(fk1fk2 . . . fk`)G(~m; y)W (~u|~k|~m)cd .

By isolating the coefficients of G(~u; z)⊗ fk1 . . . fk`G(m1, . . . ,mj ; y), we obtain a recursion
for W (~u|~k|~m) in the total number of letters in ~k and ~m. With the shorthand notation

Ez(~u) = Euw,z . . . Eu2,zEu1,z (4.33)

and an expansion of G(n,n−5)
{0,1} (y) in terms of G(~m; y)Emj ,y . . . Em2,yEm1,y, the simplest

examples are

[Ez(~u),1]ac = W (~u|∅|∅)ac
[Ez(~u),Mk1 ]ac = W (~u|k1|∅)ac + (Mk1)abW (~u|∅|∅)bc

[Ez(~u), Em1,y]ac = W (~u|∅|m1)ac + (Em1,y)abW (~u|∅|∅)bc
[Ez(~u),Mk1Mk2 ]ac = W (~u|k1, k2|∅)ac + (Mk1)abW (~u|k2|∅)bc

+ (Mk2)abW (~u|k1|∅)bc + (Mk1Mk2)abW (~u|∅|∅)bc (4.34)
[Ez(~u), Em2Em1 ]ac = W (~u|∅|m1,m2)ac + (Em1,y)abW (~u|∅|m2)bc

+ (Em2,y)abW (~u|∅|m1)bc + (Em2,yEm1,y)abW (~u|∅|∅)bc
[Ez(~u),Mk1Em1 ]ac = W (~u|k1|m1)ac + (Em1,y)abW (~u|k1|∅)bc

+ (Mk1)abW (~u|∅|m1)bc + (Mk1Em1,y)abW (~u|∅|∅)bc .
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The general formula can again be written in terms of deshuffles similar to (4.20). Note that
the extraction of these identities from (4.32) hinges on the fact that all polylogarithms are
already in a fibration basis.

Similar to (4.21) and (4.22), the solution to the recursion furnished by (4.34) and
higher-weight generalizations features nested commutators, starting with

W (~u|∅|∅) = 0 , W (~u|k1, k2|∅) = [[Ez(~u),Mk1 ],Mk2 ]
W (~u|k1|∅) = [Ez(~u),Mk1 ] , W (~u|∅|m1,m2) = [[Ez(~u), Em2,y], Em1,y] (4.35)
W (~u|∅|m1) = [Ez(~u), Em1,y] , W (~u|k1|m1) = [[Ez(~u),Mk1 ], Em1,y]

and more generally (note the reversal of the commutators of the Emi,y)

W (~u|k1, k2, . . . , k`|m1,m2, . . . ,mj) (4.36)
= [[. . . [[. . . [[Ez(~u),Mk1 ],Mk2 ], . . . ,Mk` ], Emj ,y], . . . , Em2,y], Em1,y] .

As in the transition from (4.21) to (4.24), we recover the generating series G{0,1,y}(z) by
summing the combinations of Ez(~u) (defined in (4.33) and coming from W (~u|~k|~m)) and
G(~u; z) over ~u ∈ {0, 1, y}×. In the context of the F (n,p) with y = zn−2 and z = zn−3, this
yields

∆G(n,p)
{0,1,y}(z) = G(n,p)

{0,1,y}(z)⊗G(n,p)
{0,1,y}(z)

+
∑

k1∈2N+1

[
G(n,p)
{0,1,y}(z) , M (n,p)

k1

]
⊗ φ−1(fk1)G(n,p)

{0,1,y}(z)

+
∑

m1∈{0,1}

[
G(n,p)
{0,1,y}(z) , E(n,p)

m1,y

]
⊗G(m1; y)G(n,p)

{0,1,y}(z)

+
∑

k1,k2∈2N+1

[ [
G(n,p)
{0,1,y}(z) , M (n,p)

k1

]
, M

(n,p)
k2

]
⊗ φ−1(fk1fk2)G(n,p)

{0,1,y}(z)

+
∑

m1,m2∈{0,1}

[ [
G(n,p)
{0,1,y}(z) , E(n,p)

m2,y

]
, E(n,p)

m1,y

]
⊗G(m1,m2; y)G(n,p)

{0,1,y}(z)

+
∑

m1∈{0,1}
k1∈2N+1

[ [
G(n,p)
{0,1,y}(z) , M (n,p)

k1

]
, E(n,p)

m1,y

]
⊗ φ−1(fk1)G(m1; y)G(n,p)

{0,1,y}(z) + . . .

=
∑

~m∈{0,1}×
~k∈(2N+1)×

[[
. . .
[[
. . .
[[
G(n,p)
{0,1,y}(z),M (n,p)

k1

]
,M

(n,p)
k2

]
. . . ,M

(n,p)
k`

]
, E(n,p)

mj ,y

]
. . . , E(n,p)

m2,y

]
, E(n,p)

m1,y

]

⊗ φ−1(fk1fk2 . . . fk`)G(m1,m2, . . . ,mj ; y)G(n,p)
{0,1,y}(z) . (4.37)

The sum over ~m and ~k in the last line can be conveniently absorbed into a generalization
of the notation (4.25) to

X ⊗ adL
(
φ−1(fk1fk2 . . . fkr)Mk1Mk2 . . .MkrG(m1,m2, . . . ,mj ; y)Emj ,y . . . Em2,yEm1,y

)
Y

=
[[
. . .
[
[. . . [[X,Mk1 ] ,Mk2 ] , . . . ,Mkr ] , Emj ,y

]
, . . . Em2,y

]
, Em1,y

]
(4.38)

⊗ φ−1(fk1fk2 . . . fkr)G(m1,m2, . . . ,mj ; y)Y ,

namely
∆G(n,p)

{0,1,y}(z) = G(n,p)
{0,1,y}(z)⊗ adL

(
M(n,p)G(n,p)

{0,1}(y)
)
G(n,p)
{0,1,y}(z) . (4.39)
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We have explicitly verified this to be the case order by order in the α′-expansion, namely
up to and including α′6 for both (n, p) = (6, 1) and (n, p) = (7, 1).

The strategy of this section to obtain a conjectural coaction formula for the series G(n,p)

of polylogarithms in the F (n,p) can be inductively extended to any number of unintegrated
punctures. With the obvious generalization of (4.38) to several species of braid matrices
E

(n,p)
zk,zj in (3.50) and polylogarithms in the fibration bases specified below, our conjecture

for the coaction properties of the constituents of (3.7) is

∆G(n,p)
{0,1,zj+1,zj+2,...,zn−2}(zj) = G(n,p)

{0,1,zj+1,zj+2,...,zn−2}(zj) (4.40)

⊗ adL
(
M(n,p)G(n,p)

{0,1}(zn−2)G(n,p)
{0,1,zn−2}(zn−3) . . .

. . .G(n,p)
{0,1,zj+2,zj+3,...,zn−2}(zj+1)

)
G(n,p)
{0,1,zj+1,zj+2,...,zn−2}(zj) .

These coaction formulae at j = 3, 4, . . . , n−2 and (3.19) are necessary and sufficient condi-
tions for the factorized α′-expansion (3.7) to obey the coaction formula (2.15) of the F (n,p).
In an order-by-order check of the coaction properties of the α′-expansion, the individual
cases of (4.40) are considerably simpler to verify than dealing with the complete expres-
sions for F (n,p) at once. The simplest examples of (4.40) with j = n−2 and j = n−3 can
be found in (4.26) and (4.39), respectively. We have performed the order-by-order checks
for the cases with (n, p) = (5, 1), (6, 2), (6, 1) and (7, 1) to the orders of α′11, α′10, α′6 and
α′6, respectively.

5 Analytic continuation

In this section we study the analytic continuation of the functions F (n,p)
ab (zp+2, . . . , zn−2)

while keeping the orthonormal bases of forms and cycles fixed. Previously, we have defined
this family of functions with a specific branch choice in mind: the branch consistent with

0 = z1 < zp+2 < zp+3 < . . . < zn−2 < zn−1 = 1 (5.1)

when all the punctures sit on the real line.8 This branch choice is implicit in our selection
of cycles, γ(n,p)

a ; the regularized initial values for these functions, P(n,p)M(n,p); and explicit
in the order of path-ordered integration from these initial values — schematically shown
in (3.51) — which induces a fibration basis on the multiple polylogarithms appearing in
the α′-expansion of F (n,p)(zp+2, . . . , zn−2).

The key nontrivial example to keep in mind for this section is F (6,1)(zp+2, zn−2) =
F (6,1)(z3, z4), where we have assumed 0 < z3 < z4 < 1 as discussed in section 3.3. The
analytic continuation of this function into the branch {z4 < z3} has to be seen not as a
permutation of z3 and z4 but rather as a braiding of these punctures. Fortunately, the
theory of the KZ equations provides a representation of the braid group acting on certain
solutions to these equations [88]. In what follows and in appendix B, we spell out how
this representation furnishes a group action on the solution space in which our functions
F (n,p)(zp+2, . . . , zn−2) live.

8This is the usual branch choice for the polylogarithms appearing in F (n,p)(zp+2, . . . , zn−2).
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5.1 Warm-up example: monodromies of F (5,1)(z3)

A monodromy is, of course, an example of analytic continuation. Because all the
F (n,p)(zp+2, . . . , zn−2) are themselves defined to be holomorphic functions, the solutions
of our KZ equations have certain prescribed monodromies.9

In the case of F (5,1)(z3) = P(5,1)M(5,1)G(5,1)
{0,1}(z3), the monodromy is determined solely

from the generating series of polylogarithms G(5,1)
{0,1}(z3) in (3.24). For example, the mon-

odromies for z3 going anticlockwise around 0 and 1 are given by

M0,z3G
(5,1)
{0,1}(z3) = exp

(
2πiE(5,1)

31

)
G(5,1)
{0,1}(z3) (5.2)

M1,z3G
(5,1)
{0,1}(z3) = Φ

(
E

(5,1)
31 , E

(5,1)
34

)
exp

(
2πiE(5,1)

34

)
Φ
(
E

(5,1)
31 , E

(5,1)
34

)−1
G(5,1)
{0,1}(z3) ,

where the exponentials generalize the weight-one identities

M0,z3G(0; z3) = G(0; z3) + 2πi , M1,z3G(1; z3) = G(1; z3) + 2πi . (5.3)

Throughout this section, we shall use the shorthand

E
(n,p)
ij =

(
e

(n,p)
ij

)t
(5.4)

for transposed braid matrices, not to be confused with the special combinations E(n,p)
i,zj

or
E

(n,p)
zi,zj in (3.40) with z-variables appearing in the subscript. In the second line of (5.2), the

expression
Φ
(
E

(5,1)
31 , E

(5,1)
34

)
= G(5,1)

{0,1}(z3=1) (5.5)

is a special case of the Drinfeld associator whose expansion in terms of MZVs and arbitrary
non-commutative indeterminates E0, E1 is given by [89]

Φ(E0, E1) =
∞∑
r=0

∑
a1,a2,...

...,ar∈{0,1}

G(ar, . . . , a2, a1; 1)Ea1Ea2 . . . Ear

= 1 + ζ2[E0, E1]− ζ3[E0+E1, [E0, E1]] + . . . , (5.6)

in lines with (3.24). Its inverse can be written in two different ways:

Φ(E0, E1)−1 =
∞∑
r=0

(−1)r
∑

a1,a2,...
...,ar∈{0,1}

G(a1, a2, . . . , ar; 1)Ea1Ea2 . . . Ear

= Φ(E1, E0) . (5.7)

Thus, the monodromy of F (5,1)(z3) is given by [74]

M0,z3P(5,1)M(5,1)G(5,1)
{0,1}(z3) = P(5,1)M(5,1) exp

(
2πiE(5,1)

31

)
G(5,1)
{0,1}(z3) , (5.8)

9One can build solutions to the KZ equations with no monodromy, by using certain non-holomorphic
initial values, see the discussion of sphere integrals and single-valued polylogarithms in section 6 and for
instance [41, 46].
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Re(zi)

Im(zi)

•
z1=0

•
z3

•
z4

•
z5=1

σ3,4

Figure 1. The elementary braid operation σ3,4 braids puncture z4 counterclockwise around z3.

with a similar expression forM1,z3P(5,1)M(5,1)G(5,1)
{0,1}(z3). Also for F (n,p)(zp+2, . . . , zn−2) at

more general n, p, the monodromies are clearly determined by the generating series of poly-
logarithms, i.e. the G(n,p) in (3.49). The monodromies of generating functions of multiple
polylogarithms, as studied in this work, have already been spelled out in detail in [74]. From
now on we will focus on the analytic continuation of the functions F (n,p)(zp+2, . . . , zn−2)
from zi < zi+1 to branches with zi+1 < zi, which are not monodromies.

5.2 Warm-up example: analytic continuation of F (6,1)(z3, z4)

We shall now study the analytic continuation of F (n,p)(zp+2, . . . , zn−2) from 0 < zp+2 <

zp+3 < . . . < zn−2 < 1 to different arrangements of the unintegrated punctures zj with
j = p+2, . . . , n−2 in the unit interval. These analytic continuations are implemented via
braid-group generators σj,j+1 involving unintegrated punctures zj , zj+1 which have not
been SL2-fixed to (0, 1,∞). More details on braid groups and examples involving (0, 1,∞)
can be found in appendix B.

The formula for the monodromy of F (5,1)(z3) in (5.8) suggests that to understand the
analytic continuation of F (6,1)(z3, z4) into {z4 < z3}, we need to focus on the analytic
continuation of its generating series of polylogarithms, G(6,1)

{0,1}(z4)G(6,1)
{0,1,z4}(z3). There is

only one element of the braid group we will consider, which is σ3,4, which braids punctures
z3 and z4 around each other, with z4 going around z3 counterclockwise. This choice of
orientation of the braiding is depicted in figure 1 and determines the phase in

log(z3−z4) = log
(
eiπ(z4−z3)

)
= log(z4−z3) + iπ (5.9)

or equivalently in

G(z3; z4) = G(z4; z3) +G(0; z4)−G(0; z3) + iπ . (5.10)

Similarly, our choice of σ3,4 fixes the prescription to perform a change of fibration basis
from arbitrary G(aj ∈ {0, 1, z4}; z3) to G(aj ∈ {0, 1, z3}; z4). One can view (5.10) as the
braiding analogue of the weight-one monodromies (5.3). In the same way as the latter have
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a compact uplift to generating functions in (5.2), the generalizations of (5.10) to higher
weight are most conveniently given at the level of the generating function G(6,1)

{0,1,z4}(z3),
see (5.20) below. More precisely, we will study the σ3,4 action on the combination

G(6,1)(z3, z4) := G(6,1)
{0,1}(z4)G(6,1)

{0,1,z4}(z3) (5.11)

entering the α′-expansion of F (6,1)(z3, z4) = P(6,1)M(6,1)G(6,1)(z3, z4) in (3.48). As discussed
in section 3.3, the matrix product G(6,1)(z3, z4) is a solution of the KZ equations (3.36)
and (3.37) obtained from integrating the form Ω(6,1) in dF (6,1) = Ω(6,1)F (6,1) along the
path (0, 0) → (0, z4) → (z3, z4). The braid-group generator σ3,4 maps (5.11) to another
solution G̃(6,1)(z4, z3) of the same KZ equation where the form Ω(6,1) is now integrated
along the alternative path

(0, 0)→ (z3, 0)→ (z3, z4) (5.12)

adapted to the branch choice after braiding, i.e.

0 = z1 < z4 < z3 < z5 = 1 . (5.13)

By the arguments in section 3.3, the solution G̃(6,1)(z4, z3) due to (5.12) is composed of

G̃(6,1)(z4, z3) = G̃(6,1)
{0,1}(z3)G̃(6,1)

{0,1,z3}(z4) , (5.14)

where the form of G̃(6,1)
{0,1}(z3) and G̃(6,1)

{0,1,z3}(z4) follows from the way we perform the path-
ordered integration, namely

G̃(6,1)
{0,1}(z3) =

∞∑
r=0

∑
a1,a2,...,ar
∈{0,1}

G(ar, . . . , a2, a1; z3)Ẽ(6,1)
a1,z3Ẽ

(6,1)
a2,z3 . . . Ẽ

(6,1)
ar,z3 , (5.15)

G̃(6,1)
{0,1,z3}(z4) =

∞∑
r=0

∑
a1,a2,...,ar
∈{0,1,z3}

G(ar, . . . , a2, a1; z4)Ẽ(6,1)
a1,z4Ẽ

(6,1)
a2,z4 . . . Ẽ

(6,1)
ar,z4 . (5.16)

The Ẽ(6,1)
ar,zj matrices are also determined by the integration order in (5.12),

Ẽ
(6,1)
0,z3 =

(
e

(6,1)
31 +e(6,1)

34

)t
=

 s12+s13 −s24 0
−s12 s23+s24 0

0 −s23 0

 , (5.17)

Ẽ
(6,1)
1,z3 =

(
e

(6,1)
35

)t
=

 0 −s25 −s25
0 s25 s25
0 s23 s23

 , Ẽ
(6,1)
0,z4 =

(
e

(6,1)
41

)t
=

 s24 s24 0
s12 s12 0
−s12 −s12 0

 ,

Ẽ(6,1)
z3,z4 =

(
e

(6,1)
34

)t
=

 0 −s24 0
0 s23+s24 0
0 −s23 0

 , Ẽ
(6,1)
1,z4 =

(
e

(6,1)
45

)t
=

 0 0 0
0 0 −s25
0 0 s24+s25

 .

See (3.40) for the analogous braid matrices in G(6,1)
{0,1}(z4)G(6,1)

{0,1,z4}(z3) that arise from the
earlier choice of integration path (0, 0)→ (0, z4)→ (z3, z4).
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Since G(6,1)(z3, z4) and G̃(6,1)(z4, z3) solve the same KZ equations, they must be related
by a left-multiplicative constant series X(6,1),

G̃(6,1)(z4, z3) = σ3,4G(6,1)(z3, z4) = X(6,1) (σ3,4)G(6,1) (z3, z4) . (5.18)

Comparison of (5.11) and (5.14) with the phase of (5.10) in changing fibration basis com-
pletely determines the series X(6,1) to be

X(6,1) (σ3,4) = Φ
(
E

(6,1)
41 , E

(6,1)
34

)
exp

(
iπE

(6,1)
34

)
Φ
(
E

(6,1)
34 , E

(6,1)
31

)
. (5.19)

The composition of Drinfeld associators (5.6) with the exponential of a braid matrix re-
sembles the structure of theM1,z3 monodromy (5.2). However, the phase of exp(iπE(6,1)

34 )
in the braiding relation

G̃(6,1)
{0,1}(z3)G̃(6,1)

{0,1,z3}(z4) = Φ
(
E

(6,1)
41 ,E

(6,1)
34

)
exp

(
iπE

(6,1)
34

)
Φ
(
E

(6,1)
34 ,E

(6,1)
31

)
G(6,1)
{0,1}(z4)G(6,1)

{0,1,z4}(z3)
(5.20)

is half of the phase in the monodromies (5.2). We have used PolyLogTools [90] to perform
the changes of fibration basis to verify (5.20) order by order in the E(6,1)

ij or Mandelstam
invariants.

Note that the signs of the iπ-terms in (5.9) and (5.10) as well as the phases in the
generating-function identities (5.19) and (5.20) are reversed when changing the orienta-
tion of the braiding σ3,4. The analogous signs of iπ in the fibration-basis formulas re-
turned by computer packages are controlled by the sign of imaginary part of z3 in case
of HyperInt [91] and by the sign of arg(z3) − arg(z4) in case of PolyLogTools [90],
respectively.10

Going back to our original question about analytic continuation, we can now pinpoint
the behavior of our solution F (6,1)(z3, z4) = P(6,1)M(6,1)G(6,1)(z3, z4) in passing from z3 < z4
to z4 < z3 for real z3, z4. Instead of analytically continuing each polylogarithm in the α′-
expansion of F (6,1)(z3, z4), we have performed this analytic continuation at the level of the
generating function. With the constant matrix X(6,1)(σ3,4) in (5.19) and the composition
of the polylogarithmic series G̃(6,1)(z4, z3) in (5.14), we have

F (6,1)(z3, z4) = P(6,1)M(6,1)
[
X(6,1)(σ3,4)

]−1
G̃(6,1)(z4, z3) , (5.21)

in terms of functions naturally defined on the branch (5.12), or equivalently

σ3,4F
(6,1)(z3, z4) = P(6,1)M(6,1)G̃(6,1)(z4, z3) . (5.22)

While (5.21) is simply a rewriting of F (6,1)(z3, z4) = P(6,1)M(6,1)G(6,1)(z3, z4), the im-
age (5.22) under the braid group furnishes the analytic continuation of F (6,1)(z3, z4) into
the branch with 0 < z4 < z3 < 1. Further examples of analytic continuations to one of
z3, z4 being < 0 or > 1 follow the lines of the (n, p) = (5, 1) example in appendix B.2.

10In particular, (5.20) is consistent with the numerics of PolyLogTools if arg(z3) > arg(z4).
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5.3 Initial values of F (6,1) and their coaction

As a side effect of (5.21), it determines a formal initial value for F (6,1) adapted to path-
ordered integration in the order shown in (5.12). On top of the Q-linear combinations
of MZVs seen in the α′-expansion (3.17), (3.18) of the initial values P(6,1)M(6,1), the α′-
expansion of the initial value in (5.21) involves powers of iπ. Hence, we reorganize

P(6,1)M(6,1)
[
X(6,1)(σ3,4)

]−1
= P̃(6,1)M̃(6,1) (5.23)

with an expansion of P̃(6,1), M̃(6,1) in terms of alternative 3×3 matrices P̃ (6,1)
w , M̃

(6,1)
w whose

entries are still degree-w polynomials in sij with rational coefficients:

P̃(6,1) = 1 + iπP̃
(6,1)
1 + ζ2P̃

(6,1)
2 + iπζ2P̃

(6,1)
3 + ζ2

2 P̃
(6,1)
4 + iπζ2

2 P̃
(6,1)
5 + ζ3

2 P̃
(6,1)
6 +O(s7

ij)

= 1 +
∞∑
k=1

(
iπζk−1

2 P̃
(6,1)
2k−1 + ζk2 P̃

(6,1)
2k

)
, (5.24)

M̃(6,1) = φ−1
∞∑
r=0

∞∑
k1,k2,...,kr=1

f2k1+1f2k2+1 . . . f2kr+1M̃
(6,1)
2k1+1M̃

(6,1)
2k2+1 . . . M̃

(6,1)
2kr+1 .

The P̃ (6,1)
w -matrices associated with odd w do not have any counterparts in the expansion

of P(6,1). Moreover, the P̃ (6,1)
2k and M̃ (6,1)

2k+1 resulting from (5.23) differ from the P (6,1)
2k and

M
(6,1)
2k+1 determined by (3.45) and (3.46) as exemplified in appendix B.4.
Still, the coefficients of the MZVs and their products with iπ in (5.23) are expected to

be compatible with the coaction principle in the sense that

∆(P̃(6,1)
ab M̃(6,1)

bd ) = P̃(6,1)
ab M̃(6,1)

bc ⊗ M̃(6,1)
cd , (5.25)

which we have tested up to and including the order of α′8. At the level of the MZVs that
solely arise from words in f2k+1, the coaction (5.25) is again equivalent to an expansion

M̃(6,1) = 1 + ζ3M̃
(6,1)
3 + ζ5M̃

(6,1)
5 + 1

2ζ
2
3M̃

(6,1)
3 M̃

(6,1)
3 + ζ7M̃

(6,1)
7

+ ζ3ζ5M̃
(6,1)
5 M̃

(6,1)
3 + 1

5ζ3,5
[
M̃

(6,1)
5 , M̃

(6,1)
3

]
+O(s9

ij) (5.26)

as in (3.10), where the commutator [M̃ (6,1)
5 , M̃

(6,1)
3 ] vanishes just like [M (6,1)

5 ,M
(6,1)
3 ] = 0.

In other words, ζ3,5 drops out from M̃(6,1) in the same way as it does from M(6,1). In fact,
we have checked that all irreducible MZVs of depth ≥ 2 at weight ≤ 11 already cancel from
the individual Drinfeld associators in (5.19).

Moreover, already the matrix-multiplicative structure on the right-hand side of (5.23)
is not manifest on its left-hand side. Hence, the fact that the coefficients of iπζ3, iπζ5 and
iπζ2ζ3 in (5.23) are given by matrix products P̃ (6,1)

1 M̃
(6,1)
3 , P̃

(6,1)
1 M̃

(6,1)
5 and P̃

(6,1)
3 M̃

(6,1)
3 ,

respectively, can be viewed as non-trivial checks of the coaction principle.

5.4 Analytic continuation of F (n,p)

The examples in section 5.2 have set the stage to describe the analytic continuation of
F (n,p)(zp+2, zp+3, . . . , zn−2). The simplest analytic continuation of these functions was de-
scribed in (5.18) and (5.19) as a group action of certain generators σ3,4. The group in
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question is BN, the braid group of N strands, acting on the N = n−p unintegrated11 punc-
tures. The braid group BN can be defined as the non-commutative group with generators
σi := σi,i+1, where 1 ≤ i ≤ N−1, that satisfy the relations [92]

σiσj = σjσi for |i−j| ≥ 2 , (5.27)
σiσi+1σi = σi+1σiσi+1 for 1 ≤ i ≤ N−2 .

For convenience, we will label the generators according to the punctures, i.e. σi,i+1 denotes
the generator that interchanges punctures zi and zi+1 via braiding, with zi+1 going around
zi counterclockwise.

We will now describe the group action of a generator of the braid group σi,i+1 on
F (n,p)(zp+2, zp+3, . . . , zn−2). This corresponds to performing a change of branch from the
branch consistent with

0 = z1 < zp+2 < zp+3 < · · · < zi < zi+1 < · · · < zn−2 < zn−1 = 1 (5.28)

when all the punctures lie on the real line, into a branch consistent with

0 = z1 < zp+2 < zp+3 < · · · < zi+1 < zi < · · · < zn−2 < zn−1 = 1 . (5.29)

Now, the analytic continuation of F (n,p) = P(n,p)M(n,p)G(n,p)(zp+2, . . . , zi, zi+1, . . . , zn−2)
with G(n,p)(. . .) comprising all the factors of G(n,p) in (3.7) is given by a matrix acting on
the generating series of polylogarithms,12

σi,i+1F
(n,p) = P(n,p)M(n,p)X(n,p)(σi,i+1)G(n,p)(zp+2, . . . , zi, zi+1, . . . , zn−2) (5.30)

=: P(n,p)M(n,p)G̃(n,p)(zp+2, . . . , zi+1, zi, . . . , zn−2) ,

where X(n,p)(σi,i+1) is given as follows in terms of transposed braid matrices (5.4)

X(n,p) (σi,i+1) = Φ

E(n,p)
1,i+1 +

i−1∑
j=p+2

E
(n,p)
j,i+1, E

(n,p)
i,i+1

 exp
(
iπE

(n,p)
i,i+1

)

× Φ

E(n,p)
i,i+1, E

(n,p)
1,i +

i−1∑
j=p+2

E
(n,p)
j,i

 . (5.31)

The (n, p) = (6, 1) cases of these expressions for σi,i+1F
(n,p) and X(n,p) (σi,i+1) can be

found in (5.22) and (5.19), respectively. Before the analytic continuation in (5.30), one can
translate the rewriting F (n,p) = P(n,p)M(n,p)[X(n,p)(σi,i+1)]−1G̃(n,p) into a modified initial
value

P̃(n,p)M̃(n,p) = P(n,p)M(n,p)[X(n,p)(σi,i+1)]−1 (5.32)
11Doing a complete turn around SL(2,C)-fixed punctures performs a monodromy as for instance in (5.2).

These operations can also be described as part of a braid group. See appendix B for more details.
12While this is a known formula in the literature, it is not usually written down explicitly. An explicit

version of it can be found in Proposition 5.1 of [93] for the genus 1 case, which apparently has the same
formula.
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as done in section 5.3 at (n, p) = (6, 1). We expect P̃(n,p)M̃(n,p) to inherit the coaction
properties of F (n,p), i.e. to generalize (5.25) to arbitrary n and p. Accordingly, the α′-
expansion of M̃(n,p) will share the structure of the leading-order terms in (5.26), and the
α′-expansion of P̃(n,p) will involve odd powers of iπ as in (5.24).

The image G̃(n,p)(zp+2, . . . , zi+1, zi, . . . , zn−2) under σi,i+1 describes the path-ordered
integration of the KZ form Ω(n,p) in dF (n,p) = Ω(n,p)F (n,p), with an initial value equal to
the identity, and along the path where zi is moved to nonzero values before zi+1,

(0, 0, . . . , 0)→ (0, . . . , 0, zn−2)→ (0, . . . , 0, zn−3, zn−2)
→ . . .→ (0, . . . , 0, 0, zi+2, . . . , zn−2)
→ (0, . . . , 0, zi, 0, zi+2, . . . , zn−2) (5.33)
→ (0, . . . , 0, zi, zi+1, zi+2, . . . , zn−2)
→ (0, . . . , 0, zi−1,zi, zi+1, zi+2, . . . , zn−2)
→ . . .→ (zp+2, zp+1, . . . zn−2) .

Both the matrices that enter the definition of G̃(n,p)(zp+2, . . . , zi+1, zi, . . . , zn−2) and the fi-
bration basis of its component polylogarithms respect this integration order above. Equiv-
alently, we can define G̃(n,p)(zp+2, . . . , zi+1, zi, . . . , zn−2) to be given by

G̃(n,p)(zp+2, . . . , zi+1, zi, . . . , zn−2) = G(n,p)(zp+2, . . . , zi, zi+1, . . . , zn−2)
∣∣
i↔i+1 , (5.34)

where i ↔ i+1 instructs to interchange zi with zi+1 and Ei,j with Ei+1,j everywhere, but
without modifying the Mandelstam variables in their entries. In the case of (n, p) = (6, 1),
this procedure converts the series (5.11) to (5.14) and the braid matrices in (3.40) to those
in (5.17).

We have explicitly verified the (n, p) = (7, 1) cases of (5.30) and (5.31) for σ3,4 and σ4,5
up to and including α′5. For these explicit checks, changes of fibration bases were performed
via PolyLogTools [90], with the sign of iπ as in the last term of (5.10) and the analogous
identity with (z3, z4)→ (z4, z5) to take the orientation of the braiding into account.

In conclusion, the key achievement in this section is to spell out the action of the
elementary braid σi,i+1 involving neighboring punctures on F (n,p). Since the braid group
of N strands, BN, is generated by these σi,i+1, the results of this section determine the
analytic continuation due to arbitrary braiding of the punctures. Further examples of
analytic continuation can be found in appendix B.

6 Sphere integrals

This section is dedicated to sphere integrals over the forms ω(n,p)
a of section 2 and their

complex conjugates. When interpreting the F (n,p)
ab as open-string integrals with a subset

of the vertex-operator insertions integrated out, the sphere integrals in this section can
be viewed are their closed-string counterparts. Moreover, they are directly applicable to
computations of correlation functions in two-dimensional conformal field theories as will
be further elaborated on in section 7.
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We will express the α′-expansion of the sphere integrals in this section both as single-
valued maps of the F (n,p)

ab and as Kawai-Lewellen-Tye (KLT) formulae involving products of
open-string integrals and their complex conjugates. We will propose two prescriptions for
computing the entries of the KLT matrix and its inverse. The latter will be given in terms of
combinatorial rules describing adjacency properties of Stasheff polytopes associated to each
integration cycle, while the former will be an explicit expression in terms of polynomials
of trigonometric functions.

6.1 General formulae

The sphere integrals of interest in this section take the form

∫
C(n,p)

p+1∏
k=2

d2zk

 |KN(n,p)|2 ω̂(n,p)
a ω̂

(n,p)
b , (6.1)

where d2z = i
2dz ∧ dz̄ and a, b = 1, 2, . . . , d(n,p) independently run over the bases of forms

ω
(n,p)
a = ω̂

(n,p)
a

∏p+1
j=2 dzj specified in section 2.3. For p = n−3, we recover the sphere inte-

grals of closed-string amplitudes which are known to be single-valued maps of open-string
integrals F (n,n−3)

ab if ω̂(n,p)
a are replaced by suitably chosen Parke-Taylor forms [7, 47–51, 56]:

svF (n,n−3)
ab = 1

πn−3

∫
C(n,n−3)

(
n−2∏
k=2

d2zk

)
|KN(n,n−3)|2 ν̂(n,n−3)

a ω̂
(n,n−3)
b , (6.2)

with

ν̂
(n,n−3)
a = (−1)n−3 z1,n−1

ρa(z1,2 z2,3 . . . zn−3,n−2 zn−2,n−1) . (6.3)

The ν̂(n,n−3)
a are SL(2,C)-fixed antiholomorphic Parke-Taylor factors, furnish the Betti-de

Rham duals [56, 94, 95] to disk orderings of the F (n,n−3)
ab and are indexed by permutations

ρa ∈ Sn−3 of the labels {2, 3, . . . , n−2} in lexicographic ordering.
One of the goals of this section is to extend (6.2) to generic p, i.e., to spell out the

forms ν̂(n,p)
a that generalize (6.3) to the Betti-de Rham dual of the cycles γ(n,p)

a with an
arbitrary number of integrated and unintegrated punctures. For each collection of adjacent
integrated punctures zi1 , zi2 , . . . , zik located between unintegrated ones zb, zc, the forms
ν̂

(n,p)
a pick up a factor as on the right-hand side of (6.3), i.e.,

{zb < zi1 < zi2 < . . . < zik < zc} ↔ (−1)k zb,c
zb,i1 zi1,i2 zi2,i3 . . . zik−1,ik zik,c

. (6.4)

After combining the contributions from all integrated and unintegrated punctures, one
obtains the basis of ν(n,p)

a given in (2.26) which reduces to (6.3) in the special case of
p = n−3. This will be further illustrated through the examples at various (n, p) in the
next subsections.
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Given the d(n,p)-element basis of forms ν(n,p)
a defined in this way, we claim that a basis

of sphere integrals (6.1) can be computed from the single-valued map acting on the MZVs
and polylogarithms in the α′-expansion of F (n,p)

ab :13

svF (n,p)
ab = 1

πp

∫
C(n,p)

p+1∏
k=2

d2zk

 |KN(n,p)|2 ν̂(n,p)
a ω̂

(n,p)
b = 〈ν(n,p)

a |ω(n,p)
b 〉 . (6.5)

The single-valued map is compatible with the product of MZVs and polylogarithms and
can be evaluated separately for each factor in the α′-expansion of F (n,p)

ab in (3.7).
For example, single-valued MZVs relevant for svP(n,p) = 1 and svM(n,p) have been

introduced in [3, 46]: their simplest cases include14

sv ζ2k+1 = 2ζ2k+1 , sv ζ2k = 0 , sv ζ3,5 = −10ζ3ζ5 , (6.6)

and the f -alphabet admits the closed formula (with i1, . . . , ir ∈ 2N+1)15

sv fN2 fi1fi2 . . . fir = δN,0

r∑
j=0

fij . . . fi2fi1 � fij+1fij+2 . . . fir . (6.7)

The expansion coefficients of svG(n,p)
{0,1}(zn−2) are single-valued polylogarithms in one vari-

able [52] that include

svG(0; z) = sv log z = log |z|2 , (6.8)
svG(1; z) = sv log(1−z) = log |1−z|2 ,

as well as

svG(0, 1; z) = −sv Li2(z)
= G(0, 1; z) +G(0; z)G(1; z) +G(1, 0; z)
= −Li2(z) + Li2(z̄) + log(1−z̄) log |z|2 (6.9)

svG(1, 0; z) = svG(0; z) svG(1; z)− svG(0, 1; z)

svG(a, a; z) = 1
2svG(a; z)2 ,

and

svG(0, 0, 1, 1; z) = G(0, 0, 1, 1; z) +G(0, 0, 1; z)G(1; z) +G(0, 0; z)G(1, 1; z) (6.10)
+G(0; z)G(1, 1, 0; z) +G(1, 1, 0, 0; z) + 2ζ3G(1; z) .

13The notation 〈ν|ω〉 with an antiholomorphic form ν will always refer to (6.5) as opposed to the right-
hand side of (2.23), which takes two holomorphic forms instead.

14Strictly speaking, the single-valued map is only well-defined in the setting of motivic MZVs. We will
informally drop the superscript of ζmn1,n2,...,nr

in (6.6) and use the same notation sv for the single-valued
map of motivic MZVs and their images in the f -alphabet in (6.7).

15The conventions of this work differ from those of [3, 46] by A⊗B → B⊗A and therefore by a reversal
f2k1+1f2k2+1 . . . f2kr+1 7→ f2kr+1 . . . f2k2+1f2k1+1. Accordingly, (6.7) features a reversal in the first part
fij . . . fi2fi1 of the deconcatenated word fi1fi2 . . . fir on the right-hand side and not in the second part
fij+1fij+2 . . . fir as seen in the references.
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Single-valued polylogarithms in multiple variables that enter the remaining svG(n,p)
... can

be found in [41, 53].
It should be possible to derive (6.5) from the inductive techniques of [49, section 3.3].

However, this is not a fully rigorous proof since the use of the single-valued map relies on
transcendentality conjectures on MZVs. The techniques of Brown and Dupont [51, 56] in
turn should allow for a proof without any such assumptions.

6.2 First look at KLT formulae

An second goal of this section is to write the sphere integrals (6.5) as bilinears in the
open-string integrals F (n,p)

ab and their complex conjugates, following the Kawai-Lewellen-
Tye (KLT) formula for the case p = n−3 [45] and its generalization to p = n−4 [50]. Since
the integrand of (6.5) is already holomorphically factorized, it can be easily written down
as a double sum over pairs of all (n−1)!/(n−p−1)! real cycles in C(n,p), including those
outside of the d(n,p) basis. To be precise, introducing

J
(n,p)
ab =

∫
γ

(n,p)
a

p+1∏
k=2

dzk

 KN(n,p) ν̂
(n,p)
b , (6.11)

we have

svF (n,p)
ab =

(−1
2πi

)p (n−1)!
(n−p−1)!∑
c,d=1

eiπφcd J
(n,p)
da F

(n,p)
cb . (6.12)

Both of c, d run over the (n−1)!
(n−p−1)! cycles γ(n,p)

c that impose the ordering (2.9) of the un-
integrated punctures z1, zp+2, . . . , zn−1 but allow the integrated ones z2, z3, . . . , zp+1 to be
in (−∞, 0) or (1,+∞) besides the standard interval (0, 1) of the d(n,p)-element basis. The
only subtlety in (6.12) comes from the fact that each integral on the right-hand side comes
with a specific phase of the Koba-Nielsen factor prescribed in (2.4). This is corrected by
the explicit phase factor eiπφcd , where

φcd =
∑

1≤i<j≤n−1
θijcd with θijcd =

{
sij if (ρ−1

c (i)−ρ−1
c (j))(ρ−1

d (i)−ρ−1
d (j)) < 0,

0 otherwise.
(6.13)

Here ρ−1
c (i) denotes the position of the label i in ρc. In other words, φcd is the sum of all

Mandelstam invariants sij for which i and j appear in reversed order in ρc than in ρd (recall
that we always fix zn = ∞). Thus the phase can be computed easily using the graphical
rules illustrated in figure 2. For p = n−3 this formula was given in [45, 96], where the sum
in (6.12) is over [(n−1)!/2]2 terms.

For practical purposes it is beneficial to eliminate redundant terms from (6.12) to
involve only a sum over the minimal d(n,p) basis. To this end we construct dual cycles
β

(n,p)
a such that

I
(n,p)
ab =

∫
β

(n,p)
a

p+1∏
k=2

dzk

 KN(n,p) ν̂
(n,p)
b (6.14)
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1 2 3 4 5

1 3 54 2

(a)

ρa =

ρb =

(b)

∼=

i j k

k j i k j i

i j k

Figure 2. (a) Example graphical computation of the phase φab = s23 + s24, where the two
Mandelstam invariants contribute because of the crossing of lines associated to labels (2, 3) and
(2, 4). The final label, here n = 5, is always held fixed. (b) Illustration of the independence of
the phase (in this case sij + sjk + sik) on the way of drawing straight lines, as long as they only
intersect pairwise.

reduce to δab in the α′ → 0 limit. One can always expand the I(n,p)
ab in a basis of J̃ (n,p)

cb ,
which are the integrals from (6.11) but with a shifted basis of cycles γ̃(n,p)

a (defined below
in (6.19)) instead of γ(n,p)

a :

I
(n,p)
ab =

d(n,p)∑
c=1

Sα′(ρa|ρc) J̃ (n,p)
cb , (6.15)

for example by the use of monodromy relations. We will describe two distinct prescriptions
for deriving the coefficients Sα′(ρa|ρc), which we will refer to as the generalized KLT ker-
nel.16 As is known from the p = n−3, the inverse of the matrix Sα′(ρa|ρc) are intersection
numbers of cycles γ(n,p)

a [18, 98, 99]. In fact, this is a general feature of complex integrals
(see [100] and [101, section 6]), which allows us to extend this prescription to all other val-
ues of p. Intersection numbers are given by combinatorial rules describing how the cycles
γ

(n,p)
a intersect one another in the moduli space. Based on this computation and direct

manipulations using monodromy relations, we propose an explicit recursive expression for
the KLT matrix Sα′(ρa|ρc) and verify its correctness up to n = 8 with any p.

Putting everything together, the resulting expression is the second major claim of this
section:

svF (n,p)
ab = 1

πp

d(n,p)∑
c=1

I
(n,p)
ca F

(n,p)
cb (6.16)

= 1
πp

d(n,p)∑
c,d=1

J̃
(n,p)
da Sα′(ρc|ρd)F (n,p)

cb ,

which is the generalization of the KLT formula to arbitrary (n, p).
16Our terminology is not to be confused with the generalized KLT kernel in [97]. This reference gener-

alizes the field-theory version of the KLT kernel at p = n−3 to a (n−2)! × (n−2)! matrix (instead of the
conventional (n−3)!× (n−3)! format) and generates its entries from a Lie-bracket based on the S-map. Our
generalization of the KLT kernel concerns the cases with p 6= n−3, and it would be interesting to also derive
the recursion relations (6.62) for its entries from the S-bracket of [97]. We would like to thank Carlos Mafra
for discussions on this point.
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1

2 k

k+1

k+2n

k

2
1

k+1

k+2n

c cflip←→

Figure 3. Example of an admissible flip by a chord c between n-gons labelled by
(1, 2, . . . , k, k+1, k+2, . . . , n) and (k, . . . , 2, 1, k+1, k+2, . . . , n). Edges corresponding to uninte-
grated punctures are indicated in red. Flipped side of the n-gon contains only one red edge,
which makes the flip admissible.

6.3 Intersection numbers of Stasheff polytopes

In this subsection we describe combinatorial rules for computing the intersection numbers
of twisted cycles

H
(n,p)
ab = 〈γ(n,p)

a |γ(n,p)
b 〉 (6.17)

in terms of adjacency properties of Stasheff polytopes (or associahedra) [55] tiling the real
slice of the configuration space Re C(n,p). In fact, it will prove rewarding to construct the
d(n,p) × d(n,p) matrix

H̃
(n,p)
ab = 〈γ(n,p)

a |γ̃(n,p)
b 〉 (6.18)

with an alternative basis of cycles γ̃(n,p)
b in the second entry, where some of the punctures

ji are integrated over subsets of (−∞, 0),

γ̃
(n,p)
~B,~j

↔ ρ ~B,~j = (B1, j1, B2, j2, . . . , Bp, jp, Bp+1, n−2, n−1, n) . (6.19)

In this setup, the KLT matrix in (6.16) is given by

Sα′(ρa|ρb) = (H̃(n,p))−1
ba . (6.20)

For a given (n, p), the cycles γ(n,p)
a are in bijection to n-gons with edges labelled

according to the given ordering ρa of labels {1, 2, . . . , n}. We will consider all possible
permutations ρa where the unintegrated (fixed) labels (1, p+2, p+3, . . . , n) always appear
in this specific order. By an extension of the combinatorics describing the moduli space
M0,n [74, 102], adjacency properties on Re C(n,p) can be described by drawing tessellations
of decorated n-gons. A flip move corresponds to drawing a single chord c and reflecting one
side of the chord as illustrated in figure 3. A given chord is admissible only if the result of
the flip leaves the fixed labels (1, p+2, p+3, . . . , n) in the same order. In other words, the
side of the n-gon we flip has to have exactly 0 or 1 edges corresponding to fixed punctures.
(In particular, for p = n−3 all chords are admissible.) To every chord c we associate the
Mandelstam variable

sc = α′

∑
i∈Fc

ki

2

, (6.21)
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where Fc is the set of edges being flipped (2 ≤ |Fc| ≤ n−2). In the example of figure 3 we
have sc = s12...k. If a chord is admissible, it labels an element of the boundary17 of γ(n,p)

a ,
and the whole boundary structure is governed by how these chords fit into tessellations. The
cycles γ(n,p)

a are combinatorially isomorphic to Stasheff polytopes and their direct products.

6.3.1 Self-intersection numbers

A given tessellation Ta associated to γ
(n,p)
a is admissible if it includes only admissible

chords {c`}`=1,2,...,|Ta| ∈ Ta, where |Ta| ∈ {0, 1, . . . , p} is the number of chords used, and
one imposes that these chords do not cross. Following [104, 105] we find the following
formula for self-intersection numbers:

〈γ(n,p)
a |γ(n,p)

a 〉 = (2i)p
∑
Ta

∏
c`∈Ta

1
e2πisc` − 1

, (6.22)

where the sum goes over all admissible tessellations (for |Ta| = 0 the set of chords is empty
and the term contributing to the sum is 1) and we introduce the following shorthand

tij... = e2πisij... − 1 . (6.23)

The geometric understanding of this formula is that a given tessellation Ta with |Ta| chords
labels the codimension-|Ta| boundary of γ(n,p)

a . For example, the terms with maximum
number of chords, max |Ta|, label its vertices, and those with a single chord label its facets.
Tessellations describe the combinatorics of how these elements of the boundary fit together.

For example, at p = 1:

〈γ(n,1)
123···n|γ

(n,1)
123···n〉 = 2i

(
1 + 1

t12
+ 1
t23

)
= sin(π(s12+s23))

sin(πs12) sin(πs23) . (6.24)

Here and below, to make the connection with n-gons easier to follow, we label the cycles
γ

(n,p)
a directly by their permutation ρa and underline the integrated (unfixed) labels. For
p = 2 the answer depends on the number of fixed punctures separating the two unfixed ones:

〈γ(n,2)
1234···n|γ

(n,2)
1234···n〉 = −4

(
1 + 1

t12
+ 1
t23

+ 1
t34

+ 1
t123

+ 1
t234

(6.25)

+ 1
t12t34

+ 1
t12t123

+ 1
t23t123

+ 1
t23t234

+ 1
t34t234

)
,

〈γ(n,2)
12435···n|γ

(n,2)
12435···n〉 = −4

(
1 + 1

t12
+ 1
t24

+ 1
t34

+ 1
t35

+ 1
t234

(6.26)

+ 1
t12t34

+ 1
t12t35

+ 1
t24t35

+ 1
t24t234

+ 1
t34t234

)
,

and
〈γ(n,2)

124...k3k+1···n|γ
(n,2)
124536···n〉 = −4

(
1 + 1

t12
+ 1
t24

)(
1 + 1

t3k
+ 1
t3,k+1

)
(6.27)

17More precisely, here and in the following, whenever we talk about boundaries of cycles, we mean
∂π−1((γ(n,p)

a )o), the boundary of the closure of the interior of γ(n,p)
a after the resolution of exceptional

divisors of the configuration space C(n,p) by a blowup map π−1 (see [103]).
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c1

flips←→

3 4

5

6

c2

3

1

c1

2 4

5

6

c2

(a) (b)

1

2

3 4

5

6

c1 c2

Figure 4. (a) Example of the tessellation Tab by admissible chords c1, c2 for γ(6,2)
123456 and γ(6,2)

312456.
We have sc1 = s12 and sc2 = s123. (b) The set of chords can be determined, following [98, 106],
by embedding the second n-gon (blue) inside the first one by connecting midpoints of its edges in
the order ρb. Provided this can be done without self-overlaps, the chords are determined by places
where the second n-gon folds over (admissibility criteria need to be checked separately).

for k ≥ 5. Factorization of the final example reflects the fact that the corresponding cham-
ber is combinatorially a square (a product of two one-dimensional Stasheff polytopes),
while the first two were two-dimensional Stasheff polytopes, combinatorially pentagons.

6.3.2 Generic intersection numbers

A more interesting case is the intersection number of distinct cycles, which geometrically
describes the boundary of their intersection in the moduli space. If two n-gons cannot be
transformed into one another with a series of admissible flips, their intersection number
is zero. Otherwise, associated to γ(n,p)

a and γ(n,p)
b , there exists a unique set of chords Tab

that flips one into another in the minimal number of steps, as illustrated in figure 4. The
resulting n-gon is tessellated into a number of smaller polygons Pab. For each Pab we can
define the set of admissible tessellations TPab that have chords only within Pab (admissibility
is determined with respect to the original n-gon). The formula for the intersection number
becomes

〈γ(n,p)
a |γ(n,p)

b 〉 = (−1)w(ρa|ρb)+1

 ∏
c`∈Tab

1
sin(πsc`)

∏
Pab

(2i)max |TPab |
∑
TPab

∏
c`∈TPab

1
e2πisc` − 1

,

(6.28)
where w(ρa|ρb) is the relative winding number of the two permutations as defined in [98,
appendix A]. The proof of this formula is analogous to those in [18, 104]. The definition
collapses to (6.22) when a = b because Tab is the empty set and Pab is simply the original
n-gon, so TPab = Tab and max |TPab | = p.

For example, let us compute the intersection number of γ(6,2)
123456 and γ(6,2)

312456, which we
already know is non-zero from figure 4. We found two chords defining Tab, which dissects
the original 6-gon into three polygons we will call {P1, P2, P3} 3 Pab below. For each
polygon we find that there is exactly one admissible tessellation, see figure 5. In this case
the winding number is w(123456|312456) = 2. This leaves us with the final answer:

〈γ(6,2)
123456|γ

(6,2)
312456〉 = (−1)2+1

sin(πs12) sin(πs123) × 1× 1× 1 . (6.29)
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1

2
P1

3 4

5

6

P2
P3

TP1
= TP2

=

TP3
= , ,

Figure 5. Example polygon decomposition needed for the computation of the intersection number
in (6.29). Out of the three polygons, P1 and P2 are triangles and hence admit only one admissible
tessellation. The last one, P3, has three possible tessellation, but the last two are not admissible as
they separate two red edges on either side of the additional chord.

As another example, we can consider the intersection of γ(6,3)
123456 and γ

(6,3)
312456, which only

differs from (6.29) by the fact that the label 4 is now integrated. Hence, all the computations
are identical, except for the fact that the final two tessellations in TP3 of figure 5 are now
admissible. We therefore find

〈γ(6,3)
123456|γ

(6,3)
312456〉 = (−1)2+1

sin(πs12) sin(πs123) × 1× 1× 2i
(

1 + 1
t45

+ 1
t56

)
= − sin(π(s45+s56))

sin(πs12) sin(πs123) sin(πs45) sin(πs56) . (6.30)

Another way of stating this result is that the intersection of the two cycles is a one-
dimensional Stasheff polytope, while in (6.29) it was a zero-dimensional one (a point).

We will provide more examples in the following subsections. Alternative prescriptions
for computing intersection numbers 〈γ(n,p)

a |γ(n,p)
b 〉 were given in [107, 108]. The advantage

of our approach is that it provides combinatorial insight in terms of tessellations of n-gons
(or equivalently planar trees).

6.4 Case p = 1

Let us start with an instructive case of p = 1, which will inspire the choice of bases of cycles
for the p > 1 cases as well. Recall that d(n,1) = n−3 and the canonical basis of cycles we
use is

γ
(n,1)
1 = {z2 ∈ R | z1 < z2 < z3 < · · · < zn} , (6.31)
γ(n,1)
a = {z2 ∈ R | z1 < · · · < za+1 < z2 < za+2 < · · · < zn} for 2 ≤ a ≤ n−3 ,

or in the notation introduced above

γ(n,1)
a =

(
γ

(n,1)
1234...n, γ

(n,1)
1324...n, . . . , γ

(n,1)
134...n−2,2,n−1,n

)
a
. (6.32)

6.4.1 Symmetric bases

Let us compute the intersection matrix H(n,1)
ab in (6.17) explicitly. For the n-gon associated

to γ(n,1)
...j2k..., only two chords csj2 , cs2k are admissible: precisely those corresponding to the

Mandelstam invariants sj2, s2k. Hence, we conclude that elements in the basis (6.32) which
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are more than one element apart have no common chords and thereby zero intersection
number.

It remains to consider the other two cases. For the self-intersection number, we al-
ready computed the answer in (6.24), which after relabeling and expressing in terms of
trigonometric functions gives

〈γ(n,1)
...j2k...|γ

(n,1)
...j2k...〉 = sin(π(sj2+s2k))

sin(πsj2) sin(πs2k)
= cot(πsj2) + cot(πs2k) . (6.33)

Two adjacent cycles γ(n,1)
...j2k,k+1,... and γ

(n,1)
...jk2,k+1,... share a single chord cs2k , which decomposes

the n-gon into a triangle P1 and an (n−1)-gon P2. Both of these have only one admissible
empty tessellation, which is given by the polytope itself, TPi = Pi. Together with the fact
that the relative winding number of the two permutations is 2, we have

〈γ(n,1)
...j2k,k+1,...|γ

(n,1)
...jk2,k+1,...〉 = − 1

sin(πs2k)
= − csc(πs2k) (6.34)

and the same result for 〈γ(n,1)
...jk2,k+1,...|γ

(n,1)
...j2k,k+1,...〉 by hermitian symmetry of the intersection

product. Organizing these results into an (n−3)× (n−3) symmetric tridiagonal matrix we
obtain

H(n,1) =


cot(πs12)+cot(πs23) −csc(πs23) 0 · · ·

−csc(πs23) cot(πs23)+cot(πs24) −csc(πs24) · · ·
0 −csc(πs24) cot(πs24)+cot(πs25) · · ·
...

...
... . . .

 . (6.35)

We find that these matrices have the inverse with entries (recall that sii = 0):

(H(n,1))−1
ab =

sin(π∑min(a,b)+1
i=1 s2i) sin(π∑n−1

i=max(a,b)+2 s2i)
sin(π∑n−1

i=1 s2i)
. (6.36)

6.4.2 Alternative bases

In spite of the appeal of a symmetric basis choice for the entries of H̃(n,p)
ab , we found a more

convenient choice of bases that simplifies the entries of the KLT matrix. Let us denote the
corresponding intersection matrix by

H̃
(n,1)
ab = 〈γ(n,1)

a |γ̃(n,1)
b 〉 , (6.37)

where the right basis is now taken to be

γ̃(n,1)
a =

(
γ

(n,1)
2134...n, γ

(n,1)
1234...n, . . . , γ

(n,1)
134...n−3,2,n−2,n−1,n

)
a
. (6.38)

We simply “shifted” the position of 2 by one slot to the left compared to (6.32) which
effectively moves the diagonals of the intersection matrix and leads to the new form

H̃(n,1) =


− csc(πs12) cot(πs12)+ cot(πs23) − csc(πs23) · · ·

0 − csc(πs23) cot(πs23)+ cot(πs24) · · ·
0 0 − csc(πs24) · · ·
...

...
... . . .

 . (6.39)
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This fact is crucial in simplifying the computation of the inverse, which can easily be seen
to take the upper-triangular form

(H̃(n,1))−1 = −


sin(πs12) sin(π(s12+s23)) sin(π(s12+s23+s24)) · · ·

0 sin(πs23) sin(π(s23+s24)) · · ·
0 0 sin(πs24) · · ·
...

...
... . . .

 , (6.40)

or more explicitly

(H̃(n,1))−1
ab = − sin

π b+1∑
i=a+1−δa1

s2i

 . (6.41)

The entries vanish for b < a and are polynomial in terms of the sines, i.e. do not have
any analogue of the denominator in (6.36). This choice of bases will inform the choices for
general (n, p).

The matrix entries in (6.41) can be used to compute β(n,1)
a cycles in terms of the basis

γ̃
(n,1)
a needed in the definition of the integrals I(n,1)

ab given in (6.14). Using (6.15) and (6.20)
we have, for instance,

β
(4,1)
1 = − sin(πs12)γ(4,1)

2134 , (6.42)

as well as

β
(5,1)
1 = − sin(πs12)γ(5,1)

21345 ,

β
(5,1)
2 = − sin(π(s12+s23))γ(5,1)

21345 − sin(πs23)γ(5,1)
12345 , (6.43)

and

β
(6,1)
1 = − sin(πs12)γ(6,1)

213456 ,

β
(6,1)
2 = − sin(π(s12+s23))γ(6,1)

213456 − sin(πs23)γ(6,1)
123456 , (6.44)

β
(6,1)
3 = − sin(π(s12+s23+s24))γ(6,1)

213456 − sin(π(s23+s24))γ(6,1)
123456 − sin(πs24)γ(6,1)

132456 .

6.4.3 Overcomplete form of KLT relations

Before looking at p = 2 examples, let us see how the same results could have been obtained
from the overcomplete (but extremely simple) form of the KLT relations from (6.12). We
can write them with an (n−1) × (n−1) kernel matrix Φ with entries Φab = i

2e
iπφab given

by (6.13). More explicitly, we have

Φ = i

2



1 eiπs12 eiπ(s12+s23) · · · eiπ
∑n−1

i=1 s2i

eiπs12 1 eiπs23 · · · eiπ
∑n−1

i=3 s2i

eiπ(s12+s23) eiπs23 1 · · · eiπ
∑n−1

i=4 s2i

...
...

... . . . ...
eiπ
∑n−1

i=1 s2i eiπ
∑n−1

i=3 s2i eiπ
∑n−1

i=4 s2i · · · 1


, (6.45)
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where the columns and rows are labelled by all cycles in R \ {z2 = zj},

Γ =
(
γ

(n,1)
2134...n, γ

(n,1)
1234...n, . . . , γ

(n,1)
134...n−1,2,n

)t
. (6.46)

In order to reduce this to the (n−3)× (n−3) form, one makes use of the fact that only n−3
cycles in (6.46) are linearly dependent. They satisfy a pair of monodromy relations [83,
84, 109]:  1 eiπs12 eiπ(s12+s23) · · · eiπ

∑n−1
i=1 s2i

1 e−iπs12 e−iπ(s12+s23) · · · e−iπ
∑n−1

i=1 s2i

Γ =
(

0
0

)
, (6.47)

where s22 = 0 and the first (second) row comes from considering a contour right above
(below) the real z2-axis and deforming it to a point in the upper-half (lower-half) plane,
also see appendix A.1. Let us invert these relations to construct projectors onto the two
bases (6.32), (6.38) we considered in this subsection. We can write (Γ1,Γn−1)P = Γ with

P = −

 1 eiπ
∑n−1

i=1 s2i

1 e−iπ
∑n−1

i=1 s2i

−1 eiπs12 eiπ(s12+s23) · · · eiπ
∑n−2

i=1 s2i

e−iπs12 e−iπ(s12+s23) · · · e−iπ
∑n−2

i=1 s2i


= 1

sin(πs2n)

(
sin(π∑n−1

i=3 s2i) sin(π∑n−1
i=4 s2i) · · · sin(πs2,n−1)

sin(πs12) sin(π(s12+s23)) · · · sin(π∑n−2
i=1 s2i)

)
, (6.48)

which expresses the first and last elements of Γ in terms of the basis γ(n,1)
a . Similarly,

eliminating the second-last and last elements we have a projector onto the γ̃(n,1)
a basis:

P̃ =−

 eiπ
∑n−2

i=1 s2i eiπ
∑n−1

i=1 s2i

e−iπ
∑n−2

i=1 s2i e−iπ
∑n−1

i=1 s2i

−1 1 eiπs12 eiπ(s12+s23) · · · eiπ
∑n−3

i=1 s2i

1 e−iπs12 e−iπ(s12+s23) · · · e−iπ
∑n−3

i=1 s2i

 (6.49)

= 1
sin(πs2,n−1)

(
−sin(π∑n−1

i=1 s2i) −sin(π∑n−1
i=3 s2i) · · · −sin(π(s2,n−2+s2,n−1))

sin(π∑n−2
i=1 s2i) sin(π∑n−2

i=3 s2i) · · · sin(πs2,n−2)

)
.

With these computations in place, we can simply apply the projectors to the relevant
columns and rows of the overcomplete KLT matrix to obtain: P1

1n−3
P2


t

Φ

 P1
1n−3
P2

 = (H(n,1))−1 ,

1n−3
P̃1
P̃2


t

Φ

 P1
1n−3
P2

 = (H̃(n,1))−1 , (6.50)

reproducing the results from (6.36) and (6.41).

6.5 Case p = 2

Recall that for p = 2 the basis γ(n,2)
a consists of all cycles where z1 < z4 < z5 < · · · < zn =

∞ are fixed in this order and z2, z3 are placed between z1 = 0 and zn−1 = 1, for the total
of d(n,2) = (n−3)(n−4) elements in the basis.

Motivated by the simplicity of the results for p = 1, we will also introduce a second
basis γ̃(n,2)

a where z2, z3 are placed between zn = −∞ and zn−2 (or z1 for p = n−3). To
make the notation a bit more clear and recognize a pattern, let us compute the KLT kernel
for the examples n = 5, 6.
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6.5.1 Example (n, p) = (5, 2)

The two bases are given by

γ(5,2)
a =

(
γ

(5,2)
12345, γ

(5,2)
13245

)
a
, γ̃

(5,2)
b =

(
γ

(5,2)
23145, γ

(5,2)
32145

)
b
. (6.51)

Computing the intersection matrix according to the above combinatorial rules we find

H̃(5,2) = csc(πs123)
(

− csc(πs23) cot(πs12) + cot(πs23)
cot(πs13) + cot(πs23) − csc(πs23)

)
, (6.52)

where the tilde refers to the asymmetric basis choice H̃
(5,2)
ab = 〈γ(5,2)

a |γ̃(5,2)
b 〉 analogous

to (6.37). Inverting the matrix we obtain the well-known result for the local KLT matrix

(H̃(5,2))−1 =
(

sin(πs12) sin(πs13) sin(πs13) sin(π(s12+s23))
sin(πs12) sin(π(s13+s23)) sin(πs12) sin(πs13)

)
, (6.53)

in agreement with momentum-kernel techniques [54]. With this result the basis cycles β(5,2)
a

in (6.14) and (6.16) read as follows,

β
(5,2)
1 = sin(πs12)

(
sin(πs13)γ(5,2)

23145 + sin(π(s13+s23))γ(5,2)
32145

)
,

β
(5,2)
2 = sin(πs13)

(
sin(π(s12+s23))γ(5,2)

23145 + sin(πs12)γ(5,2)
32145

)
. (6.54)

6.5.2 Example (n, p) = (6, 2)

In this case the two bases are given by

γ(6,2)
a =

(
γ

(6,2)
123456, γ

(6,2)
124356, γ

(6,2)
132456, γ

(6,2)
134256, γ

(6,2)
142356, γ

(6,2)
143256

)
a
, (6.55)

γ̃
(6,2)
b =

(
γ

(6,2)
231456, γ

(6,2)
213456, γ

(6,2)
123456, γ

(6,2)
321456, γ

(6,2)
312456, γ

(6,2)
132456

)
b
. (6.56)

Among the intersection numbers H̃(6,2)
ab = 〈γ(6,2)

a |γ̃(6,2)
b 〉 in the asymmetric basis choice, we

already computed one example in the entry H̃(6,2)
15 in (6.29). Due to space limitations we do

not present the full intersection matrix here. Its 6× 6 inverse, however, takes a relatively
compact form:

(H̃(6,2))−1 =



sin(πs12) sin(πs13) sin(πs12) sin(πs14,3) sin(πs13) sin(πs13,2)
0 sin(πs12) sin(πs34) 0
0 0 0

sin(πs12) sin(πs12,3) sin(πs12) sin(πs124,3) sin(πs12) sin(πs13)
0 0 0
0 0 0

(6.57)

sin(πs13) sin(πs134,2) sin(πs14,2) sin(πs14,3) sin(πs14,3) sin(πs134,2)
0 sin(πs34) sin(πs14,2) sin(πs34) sin(πs134,2)
0 sin(πs24) sin(πs34) sin(πs34) sin(πs34,2)

sin(πs13) sin(πs14,2) sin(πs14,2) sin(πs124,3) sin(πs14,2) sin(πs14,3)
sin(πs13) sin(πs24) sin(πs24) sin(πs124,3) sin(πs24) sin(πs14,3)

0 sin(πs24) sin(πs24,3) sin(πs24) sin(πs34)


,
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where we use the notation si1i2...,j = si1j+si2j+· · · . In terms of the β(6,2)
a cycles from (6.14),

this translates to

β
(6,2)
1 = sin(πs12)

(
sin(πs13)γ(6,2)

231456 + sin(πs12,3)γ(6,2)
321456

)
,

β
(6,2)
2 = sin(πs12)

(
sin(πs14,3)γ(6,2)

231456 + sin(πs34)γ(6,2)
213456 + sin(πs124,3)γ(6,2)

321456

)
,

β
(6,2)
3 = sin(πs13)

(
sin(πs13,2)γ(6,2)

231456 + sin(πs12)γ(6,2)
321456

)
, (6.58)

β
(6,2)
4 = sin(πs13)

(
sin(πs134,2)γ(6,2)

231456 + sin(πs14,2)γ(6,2)
321456 + sin(πs24)γ(6,2)

312456

)
,

β
(6,2)
5 = sin(πs14,2)

(
sin(πs14,3)γ(6,2)

231456 + sin(πs34)γ(6,2)
213456 + sin(πs124,3)γ(6,2)

321456

)
+ sin(πs24)

(
sin(πs34)γ(6,2)

123456 + sin(πs124,3)γ(6,2)
312456 + sin(πs24,3)γ(6,2)

132456

)
,

β
(6,2)
6 = sin(πs34)

(
sin(πs134,2)γ(6,2)

213456 + sin(πs34,2)γ(6,2)
123456 + sin(πs24)γ(6,2)

132456

)
+ sin(πs14,3)

(
sin(πs134,2)γ(6,2)

231456 + sin(πs14,2)γ(6,2)
321456 + sin(πs24)γ(6,2)

312456

)
.

This example already illustrates the general rule: for each integrated puncture i ∈ {2, 3}
we have a sine factor in the generalized KLT kernel Sα′ in (6.20). The arguments of the
sine functions are given by the overlap between labels to the left of i in γ

(6,2)
a which are

also to the right of i in γ̃(6,2)
b . We make this observation more concrete in the following.

6.6 Recursion for general (n, p)

The goal of this subsection is to find the explicit form of the cycles β(n,p) in (6.14) which
need to be field-theory orthonormal with respect to the forms ν(n,p) that are the Betti-de
Rham duals of the integration cycles

γ
(n,p)
~A,~i

↔ ρ ~A,~i = (1, A1, i1, A2, i2, . . . , Ap, ip, Ap+1, n−1, n) (6.59)

in order to avoid inconsistency in the α′ → 0 limit of (6.16).
As in section 2.3, we gather the unintegrated punctures different from (z1, zn−1, zn) =

(0, 1,∞) in a vector ~A of words A1, A2, . . . each of which gathers (possibly zero) adjacent
unintegrated punctures. The i1, i2, . . . , ip in turn are a permutation of the p integrated
punctures z2, z3, . . . , zp+1.

The examples of the β(n,p) in the earlier subsections have orthonormal intersection
numbers with the γ(n,p) in (6.59) in the sense that

〈γ(n,p)
~A,~i
|β(n,p)
~B,~j
〉 = δ ~A, ~Bδ~i,~j . (6.60)

At general n and p, the β(n,p) with this property are conjecturally given by

β
(n,p)
~A,~i

=
∑
~B,~j

Sα′(1, ~A,~i | ~B,~j, n−2) γ̃(n,p)
~B,~j

, (6.61)

where we employ the alternative basis (6.19) of d(n,p) cycles γ̃(n,p)
~B,~j

instead of (6.59), in
order to obtain a local expression for the generalized KLT kernel Sα′ . Since the final
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two labels are always the same, we suppress them in (6.61) and below for clarity, i.e.,
Sα′(X|Y ) = Sα′(X,n−1, n|Y, n−1, n). The latter is claimed to obey the following recursion
in the number of integrated punctures ik

Sα′(1, A1, i1, A2, . . . , Ap, ip, Ap+1|X, ip, Y ) (6.62)

= − sin(2πα′kip ·
∑
`∈Y ∩(1,A1,i1,...,ip−1,Ap) k`)Sα′(1, A1, i1, A2, . . . , ip−1, Ap, Ap+1|X,Y ) .

This step may only be applied to remove the rightmost integrated puncture ip in the first
entry, and the recursion terminates with

Sα′(1, ~A | ~B, n−2) = δ(1, ~A),( ~B,n−2) (6.63)

when there are no more integrated punctures left. This has been verified up to and including
n = 8 for any value of p ≤ n−4 by checking that Sα′ is indeed the inverse of H̃(n,p) obtained
with combinatorial rules of the previous subsections.18 More generally, the recursion (6.62)
can be rewritten as

Sα′(P, i,Q|X, i, Y ) = − sin(2πα′ki · kP∩Y )Sα′(P,Q|X,Y ) , (6.64)

where Q has no integrated punctures, i.e., the momenta in the sine functions are determined
by the punctures that appear on opposite sides of i in the two entries of Sα′(·|·). The
structure of the recursion (6.64) resonates with the momentum-kernel formalism [54] and
its generalization to the KLT formulae for p = n−4 [50].

With the expansion (6.61), the desired orthonormality property (6.60) takes the form
(with collective indices a, b, c taking the role of ~A,~i),

〈γ(n,p)
a |β(n,p)

b 〉 =
d(n,p)∑
c=1
〈γ(n,p)
a |γ̃(n,p)

c 〉(Sα′)bc = δab . (6.65)

In order to deduce the desired orthonormality of β(n,p)
a and ν(n,p)

b in the α′ → 0 limit, we
insert complete sets of cycles γ(n,p)

c and cocycles ω(n,p)
d ,

lim
α′→0
〈β(n,p)
a |ν(n,p)

b 〉 = lim
α′→0

d(n,p)∑
c,d=1
〈β(n,p)
a |γ(n,p)

c 〉 (F (n,p))−1
cd 〈ω

(n,p)
d |ν(n,p)

b 〉

=
d(n,p)∑
c,d=1

δacδcdδdb = δab , (6.66)

where F (n,p)
cd = 〈ω(n,p)

d |γ(n,p)
c 〉 = 〈γ(n,p)

c |ω(n,p)
d 〉 as in (2.7). The final two Kronecker deltas in

passing to the last line stem from the fact that the ω(n,p)
d are engineered to be field-theory

18Throughout this subsection we have assumed that p 6= n−3: otherwise, the basis (6.19) of γ̃(n,p) would
be of the form (. . . , 1, n−1, n) rather than (. . . , n−2, n−1, n) when maintaining the recursion for Sα′ . Since
local representations of the KLT formula for p = n−3 are well explored in the literature [54, 110], there is
no loss of generality in demanding p < n−3 here.
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orthonormal to both γ(n,p)
c and ν(n,p)

b . The first Kronecker delta arises from the conjectural
orthonormality (6.65).19 It would be interesting to find a rigorous all-multiplicity proof
that (6.61) together with the recursion (6.62) indeed leads to orthonormal intersection
numbers.

7 Implications for minimal models

In this section we give an interpretation of our results in terms of correlation functions in
two-dimensional conformal field theories (CFTs). We will focus on the family of theories
known as the minimal models whose spectrum can been completely classified and solved
in terms of irreducible representations of the Virasoro algebra.20 We start with a lightning
review of these models, where we focus only on the parts necessary to make connections with
the rest of this paper. For more comprehensive expositions we refer the reader to [111–113].

7.1 Lightning review of the Coulomb gas formalism

Our starting point is the action of a free boson φ(x) coupled linearly to the scalar curvature
R of the genus-zero surface:

Sp,p′ =
∫
CP1

d2x
√
g

(1
2∂µφ∂

µφ+ i√
2
Qp,p′φR

)
. (7.1)

Here the strength of the coupling is given by the background charge Qp,p′ , which makes
the U(1) symmetry anomalous. Since the action is complex, it does not automatically give
rise to a unitary theory. In fact, families of unitary models written in this way are heavily
constrained and can be classified by a pair of co-prime integers (p, p′), in terms of which

Qp,p′ = p− p′√
pp′

. (7.2)

The central charge is cp,p′ = 1 − 6Q2
p,p′ , and we take p > p′ by convention. These are the

minimal models. For example (p, p′) = (4, 3) gives the critical Ising model with Q4,3 = 1
2
√

3
and c4,3 = 1

2 , while (p, p′) = (5, 2) is the Yang-Lee edge singularity with Q5,2 = 3√
10 and

c5,2 = −22
5 .

Conformal primary operators Oq(r,s) in the (p, p′) minimal model are classified by two
integers (r, s) such that

1 ≤ r ≤ p′−1, 1 ≤ s ≤ p−1 . (7.3)

Charges q(r,s) and conformal dimensions h(r,s) of these operators are given by

q(r,s) = p(1−r)− p′(1−s)
2
√
pp′

, h(r,s) = (rp−sp′)2 − (p−p′)2

4pp′ . (7.4)

19In general, intersection numbers satisfy 〈γ|γ̃〉 = 〈γ̃|γ〉, but in our normalizations they are purely real,
which is why the equality (6.65) also implies 〈β(n,p)

a |γ(n,p)
c 〉 = δac.

20Saying that minimal models are solved by no means implies that their correlation functions have been
computed, or are easy to compute, in general.
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Notice that operators Oq and OQp,p′−q share the same conformal dimension and they are
indistinguishable at the level of correlation functions. In other words, we can identify
operators with (r, s) and (p′−r, p−s). For instance, in the case of the critical Ising model
with (p, p′) = (4, 3) we have the following Kac table:

s = 1 s = 2 s = 3

r = 1 O0 = 1 O√3
4

= σ O√3
2

= ε

r = 2 O− 1√
3

= ε O− 1
4
√

3
= σ O 1

2
√

3
= 1

(7.5)

Here 1, σ, and ε are the usual identity, spin, and energy operators of conformal weight 0,
1
16 and 1

2 , respectively.
We will be interested in computing the correlation function of N such operators. For

readability we will simply label the j-th vertex operator Oqj (xj) = ei
√

2qjφ(xj) by its
charge qj :

〈Oq1(x1)Oq2(x2) · · · OqN(xN)〉p,p′ . (7.6)

Such a computation might not seem approachable, because we deal with a strongly-
interacting system. However, one can simplify this problem conceptually using the Coulomb
gas formalism [38, 39], which is the idea that correlation functions in interacting theories
with background charge can be equivalently represented as those in a free theory with inser-
tions of p charged operators integrated over the whole surface. As a result, the correlation
functions (7.6) can be represented as

∫
(CP1)p

p+1∏
i=2

d2zi 〈Oq1(x1)Oq2(x2) · · · OqN(xN)
p+1∏
i=2
Oq±(zi)〉free (7.7)

up to a constant. The additional operators are called screening charges, and their charges
can only take two values, q+ and q−, given by

q+ =
√
p/p′ , q− = −

√
p′/p , (7.8)

such that q+ +q− = Qp,p′ . We will denote the number of screening charges Oq± by p±, such
that p+ + p− = p. These numbers can be determined by imposing the neutrality condition
(Ward identity), i.e. requiring that the sum of charges equals to the background charge,

N∑
i=1

qi + p+q+ + p−q− = Qp,p′ . (7.9)

As a heuristic, for sufficiently generic (p, p′), reading off the coefficients of the irrational
numbers

√
p/p′ and

√
p′/p translates to the following condition for the integers (ri, si)

labeling every operator:

p+ = 1
2

( N∑
i=1

ri −N + 2
)
, p− = 1

2

( N∑
i=1

si −N + 2
)
. (7.10)
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For instance, the four-point correlation function of O = Oq(2,1) operators requires p+ = 3
and p− = 1 and hence can be written as

〈O(x1)O(x2)O(x3)O(x4)〉p,p′ =
∫

(CP1)4

5∏
i=2

d2zi 〈O(x1)O(x2)O(x3)O(x4) (7.11)
Oq+(z2)Oq+(z3)Oq+(z4)Oq−(z5)〉free

since in this case the neutrality condition reads

4q(2,1) + 3q+ + q− = Qp,p′ . (7.12)

However, this representation is not unique. For example, since we can dually represent one
of O as Õ = OQp,p′−q(2,1) , we find a simpler representation

〈O(x1)O(x2)O(x3)Õ(x4)〉p,p′ =
∫
CP1

d2z2 〈O(x1)O(x2)O(x3)Õ(x4)Oq+(z2)〉free , (7.13)

given that
3q(2,1) + (Qp,p′ − q(2,1)) + q+ = Qp,p′ . (7.14)

We will return to this example in section 7.5 once we establish the connection to the results
of this paper. (Note that when we use the dual description Õ, (r4, s4) = (p′ − 2, p− 1) are
p, p′-dependent and we can no longer use (7.10), which would otherwise predict p± ≥ 1.
The neutrality condition (7.9) always holds.)

Of course, the free-theory correlator inside of the integrand of (7.7) can be written
down explicitly, giving us the explicit formula

〈Oq1(x1)Oq2(x2) · · · OqN(xN)〉p,p′ =
∫

(CP1)p

p+1∏
i=2

d2zi e
W+W , (7.15)

where

W = 2
N∑

1≤i<j
qiqj log(xi−xj) + 2

N∑
i=1

p+1∑
j=2

qiQj log(xi−zj) + 2
p+1∑

2≤i<j
QiQj log(zi−zj) (7.16)

is (the holomorphic part of) the potential for interacting charges on a genus-zero surface.
Here the screening charges Qj with j = 2, 3, . . . , p+1 are given by q+ or q− as determined
by the rules explained above.

At this stage, one sees that the computation of correlation functions in minimal models
involves complex integrals that are structurally identical to those considered in section 6.
This relationship is rather well-known [107, 112] and was previously exploited in the case
p = n−4 in the context of the single-valued map in string perturbation theory [50, 114].
We follow with a summary of implications of our results for such correlation functions.

7.2 Translation of notation

Correlation functions in the Coulomb gas formalism involve a total of N+p punctures, out
of which p are integrated. In the notation of this paper it means

n = N+p , (7.17)

– 52 –



J
H
E
P
0
5
(
2
0
2
1
)
0
5
3

together with
(z1, zp+2, zp+3, . . . , zn) = (x1, x2, x3, . . . , xN) (7.18)

and gauge fixing (x1, xN−1, xN) = (0, 1,∞). Moreover, the Mandelstam invariants are
identified according to

sij = 2q̃iq̃j , si1i2...im = 2
∑

1≤j<k≤m
q̃ij q̃ik , (7.19)

where

(q̃1, q̃2, q̃3, . . . , q̃p+1, q̃p+2, q̃p+3, . . . , q̃n) = (q1, Q2, Q3, . . . , Qp+1, q2, q3, . . . , qN) . (7.20)

In terms of the Koba-Nielsen factor defined in (2.4) we have

lim
xN→∞

|xN|4qN(qN−Qp,p′ )

πp

N−1∏
1≤i<j

|xi−xj |−4qiqj 〈Oq1(x1)Oq2(x2) · · · OqN(xN)〉p,p′ (7.21)

= 1
πp

∫
C(N+p,p)

p+1∏
i=2

d2zi |KN(N+p,p)|2 ,

The right-hand side is in the class of integrals given in (6.5) as 〈∏p+1
i=2 dzi|

∏p+1
i=2 dzi〉. Here

C(N+p,p) is the configuration space of p points on an N-punctured sphere, as defined in (2.3).
We have inserted the factors of |xi−xj |−4qiqj on the left-hand side of (7.21) to compensate
for the analogous terms with opposite exponents in the correlator of Oj , and the inverse
factors of πp ensure that the right-hand side can be lined up with the sphere integrals (6.5).
Moreover, one needs to compensate with the correct power of |xN|2 before fixing the last
operator to xN → ∞. Notice that correlation functions of different operators, even in
distinct (p, p′) models, might have the same functional form once written in terms of formal
variables q̃i, as will be illustrated below.

7.3 Minimal bases for minimal models

Since correlation functions in CFTs have to be single-valued in the positions of operators
xi, we can always analytically continue them to the configurations in which all operators
are aligned along a circle in CP1, i.e., xi ∈ R in our chart (with xN =∞). From now on we
consider only such configurations. This restriction is consequential only in the intermediate
steps of the computation, but of course does not affect the correlation functions, which can
be freely continued away from such configurations once computed.

Following section 6.1 we can decompose any N-point correlator as a quadratic sum
over (N+p−1)!/(N−1)! contour integrals:

〈Oq1(x1)Oq2(x2) · · · OqN(xN)〉p,p′ =
(
i

2

)p (N+p−1)!
(N−1)!∑
a,b=1

eiπφab

∫
γ

(N+p,p)
a

p+1∏
i=2

dzi eW


×

∫
γ

(N+p,p)
b

p+1∏
i=2

dzi eW
 , (7.22)
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where the sums runs over all ways of distributing screening charges among the vertex
operators Oqi . It splits into holomorphic and anti-holomorphic integrals, which we will
loosely call conformal blocks (in particular, they are not Virasoro conformal blocks). They
are multi-valued in xi’s. The phase of the potentials W is defined such that each block
is real and the overall phase is stripped away as eiπφcd . It is defined in (6.13), which
is essentially a product of factors e2πiq̃iq̃j for every time the charge q̃i crosses q̃j when
transforming the c-th ordering to the d-th one, as in figure 2.

As emphasized in the previous section, individual conformal blocks are redundant and
one can reduce them to a minimal basis. The size of the basis is a topological invariant of
the configuration space C(N+p,p) (the absolute value of its Euler characteristic) and equal to

|χ(C(N+p,p))| = (N+p−3)!
(N−3)! =

(1
2
∑N
i=1(ri+si)− 1)!

(N−3)! , (7.23)

where in the second equality we used (7.10), which is valid for generic (p, p′). Here we
also assumed that one of the operators is fixed at infinity. The physical interpretation is
that the stronger the background charge Qp,p′ , the more screening charges are necessary to
neutralize it, which leads to more ways of sprinkling them among the operators. It might
sometimes occur that the combinations sij = 2q̃iq̃j or their sums si1i2...im are integers.
In those situations we say that the singularities of C(N+p,p) are no longer ramified (the
corresponding hyperplane arrangement is resonant), and the size of the basis might drop.

In this paper we introduced natural bases for both integration cycles and differential
forms. The cycles are given by disk integration domains

γ
(N+p,p)
~A,~i

introduced in (2.19) , (7.24)

as well as their duals
β

(N+p,p)
~A,~i

introduced in (6.61) . (7.25)
For the cocycles we have the Parke-Taylor-like basis

ν
(N+p,p)
~A,~i

introduced in (2.26) , (7.26)

and their duals
ω

(N+p,p)
~A,~i

introduced in (2.20) . (7.27)

For example, in the bases of cycles, the KLT-like formula (7.22) simplifies to

〈Oq1(x1)Oq2(x2) · · · OqN(xN)〉p,p′ =

(N+p−3)!
(N−3)!∑
a=1

∫
γ

(N+p,p)
a

p+1∏
i=2

dzi eW
∫

β
(N+p,p)
a

p+1∏
i=2

dzi eW
 ,

(7.28)
which can be written in terms of the KLT matrix Sα′(ρa|ρb) given in section 6.6 or in terms
of intersection numbers of cycles according to the prescription in section 6.3.

In order to be able to refer to (7.22) and (7.28) as true “double-copy” formulae, one
would like to give a physical interpretation to individual conformal blocks, so that one
set of observables is double-copied to another. One possible interpretation could be as
correlations functions of a boundary CFT in the Coulomb gas formalism, perhaps along
the lines of [115–117]. We leave this idea for future explorations.
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The advantage of using these bases is that they produce uniformly transcendental
functions. The original correlation functions can be always transformed into the minimal
bases via integration-by-parts identities or with intersection numbers of twisted cocycles:

〈Oq1(x1)Oq2(x2) · · ·OqN(xN)〉p,p′ =

(N+p−3)!
(N−3)!∑
a,b=1

〈ν(N+p,p)
a |

∏p+1
i=2 dzi〉〈ω(N+p,p)

b |
∏p+1
i=2 dzi〉

×
∫
C(N+p,p)

p+1∏
i=2

d2zi e
W+W ω̂(N+p,p)

a ν̂
(N+p,p)
b . (7.29)

However, note that one cannot use the formula (2.28) since not all forms involved are
logarithmic. Still, one can use recursion relations for intersection numbers as defined in [19,
section 3].21 In this way correlation functions can be expressed in terms of svF (N+p,p)

ab up
to proportionality constants given in (7.21). Applying this reduction together with the
KLT formula (7.28) expresses individual conformal blocks in terms of the contour integrals
F

(N+p,p)
cb and I(N+p,p)

ca , see (6.14) and (6.15) for the latter.

7.4 Transcendentality properties and the p→∞ limit

The bases of sphere and disk integrals which can be used to express correlation functions as
discussed above have particularly simple transcendentality properties in their α′-expansion.
However, under the identifications (7.19) of Mandelstam variables and charges, these tran-
scendentality properties only apply to a formal low-charge expansion around q̃i = 0. We
stress that in the applications to minimal models, the q̃i are always fixed real numbers,
as given in (7.4), and hence the expansion in q̃i generically can be understood only in a
formal sense.

However, there are situations where one might assign a physical meaning to the low-
charge limit. Let us consider the (p, 2) minimal models (with p odd). Vertex operators are
labeled by (1, si) with 1 ≤ si ≤ p−1 and hence their allowed charges are

q(1,si) = si − 1√
2p . (7.30)

In this situation the background and screening charges are given by

Qp,2 = p− 2√
2p , q+ =

√
p/2 , q− = −

√
2/p . (7.31)

Hence, if we can avoid using the screening charge q+, all the charge pairings q̃iq̃j would
scale as 1/p, and the correlation function in the limit p→∞ would be on the same footing
as string-theory amplitudes in the low-energy approximation, α′ → 0. This can certainly
be done. Let us consider an N-pt function of operators Oq(1,si)

and represent the N-th one
via its dual Oq(1,p−si)

, i.e.,

〈Oq(1,s1)(x1)Oq(1,s2)(x2) · · · Oq(1,sN−1)(xN−1)Oq(1,sN)(xN)〉p,2 (7.32)

= 〈Oq(1,s1)(x1)Oq(1,s2)(x2) · · · Oq(1,sN−1)(xN−1)Oq(1,p−sN)(xN)〉p,2 .
21The intersection numbers accessible from the infinite families of integration-by-parts identities in [118–

120] only apply to the N = 3 instances of (7.29). Still, the combinatorial techniques of these references
should have an echo at N ≥ 4.
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We use the second representation in the Coulomb gas formalism. Here the neutrality
condition is satisfied if

p+ = 0, p− = 1
2

(N−1∑
i=1

si − sN −N + 2
)
, (7.33)

and if p− is an integer. This leads to a potential W proportional to 1/p:

W = 1
p

( N−1∑
1≤i<j

(si−1)(sj−1) log(xi−xj) (7.34)

− 4
N−1∑
i=1

p−+1∑
j=2

(si−1) log(xi−zj) + 16
p−+1∑
2≤i<j

log(zi−zj)
)
,

provided that we fix xN =∞. The large-p limit of (p, 2) models coupled to Liouville theory
has been recently conjectured to be describing Jackiw-Teitelboim gravity [121], which adds
further physical motivation for studying such correlation functions.

The individual conformal blocks, once expressed in terms of F (N+p,p)
cb , satisfy all

the monodromy properties described in previous section as well as the coaction formula
from (2.15). In addition, once expressed in this basis, the correlation function can be
expressed as a single-valued map of a single conformal block:

lim
xN→∞

|xN|4qN(qN−Qp,p′ )

πp

N−1∏
1≤i<j

|xi−xj |−4qiqj
∫
C(N+p,p)

p+1∏
i=2

d2zi e
W+W ω̂(N+p,p)

a ν̂
(N+p,p)
b

= sv

 lim
xN→∞

|xN|2qN(qN−Qp,p′ )
N−1∏

1≤i<j
|xi−xj |−2qiqj

∫
γ

(N+p,p)
b

p+1∏
i=2

dzi eW ω̂(N+p,p)
a

 . (7.35)

We will return to this relationship in an example computation for (p, 2) minimal models in
the p→∞ limit below.

7.5 Example four-point correlators

In order to illustrate the above formulae on concrete examples we will consider the four-
point functions

G(x, x) = lim
x4→∞

|x4|4q4(q4−Qp,p′ )

πp
|x|−4q1q2 |1−x|−4q2q3〈Oq1(0)Oq2(x)Oq3(1)Oq4(x4)〉p,p′ ,

(7.36)
where to avoid clutter we expressed it in terms of the cross-ratio x. In the intermediate
steps we will restrict to x ∈ (0, 1). Let us consider two cases encountered before for four-
point functions of (2, 1) and (1, 2) operators, which both involve a single screening charge,
p = 1. In the case (7.13), we have a single screening charge q+ and

(I) : q1 = q2 = q3 = q(2,1) =−
√
p/p′

2 , q4 =Qp,p′−q(2,1) = 3p−2p′
2
√
pp′

, q+ =
√

p

p′
. (7.37)
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On the other hand, we can consider a special case of (7.32) with p′ = 2 and

(II) : q1 = q2 = q3 = q(1,2) =
√
p′/p

2 , q4 =Qp,p′−q(1,2) =−3p′−2p
2
√
pp′

, q−=−
√

p′

p
, (7.38)

as well as a single screening charge q−. This example of course can be considered also
for p′ 6= 2. We can compute these different correlation functions using the same formulae
provided that we treat q1, q2, q3, and q± as abstract variables and plug in their values only
at the end.

Explicitly, G(x, x) is given by the integral

G(x, x) = 1
π

∫
C\{0,x,1}

d2z |z|4q1q± |z − x|4q2q± |z − 1|4q3q± , (7.39)

which we can easily express in terms of the following contour integrals obtained by placing
the screening charge between the external operators in all possible ways:

F1(x)
F2(x)
F3(x)
F4(x)

 =



∫ 0

−∞
dz (−z)2q1q±(x− z)2q2q±(1− z)2q3q±∫ x

0
dz z2q1q±(x− z)2q2q±(1− z)2q3q±∫ 1

x

dz z2q1q±(z − x)2q2q±(1− z)2q3q±∫ ∞
1

dz z2q1q±(z − x)2q2q±(z − 1)2q3q±


, (7.40)

where the phase ofW is chosen such that each Fa is real and agrees with the convention with
absolute values for the Koba-Nielsen factor in (2.4). The overcomplete KLT relation (7.22)
then reads:

G(x, x) = i

2

F1(x)
F2(x)
F3(x)
F4(x)


t

1 e2πiq1q± e2πi(q1+q2)q± e2πi(q1+q2+q3)q±

e2πiq1q± 1 e2πiq2q± e2πi(q2+q3)q±

e2πi(q1+q2)q± e2πiq2q± 1 e2πiq3q±

e2πi(q1+q2+q3)q± e2πi(q2+q3)q± e2πiq3q± 1


F1(x)
F2(x)
F3(x)
F4(x)

 .

(7.41)
It is however beneficial to express it in terms of a minimal basis, which according to (7.23)
is |χ(C(5,1))| = 2.22 To minimize the number of computations let us pick F2 and F4 for
both holomorphic and antiholomorphic blocks. It leads to a simplification because the two
contours do not intersect and hence the intersection matrix is diagonal (another natural
choice would be F1 and F3), cf. (6.35). We therefore immediately get

G(x, x) = sin(2πq1q±) sin(2πq2q±)
sin(2π(q1+q2)q±) |F2(x)|2 + sin(2πq3q±) sin(2π(q1+q2+q3)q±)

sin(2π(q1+q2)q±) |F4(x)|2. (7.42)

22The case (7.37) with p′ = 3 is special because it leads to integrands which are not branched at infinity,
given that eW |(7.37),p

′=3 = [z(z − x)(z − 1)]−p/3 → z−p as z → ∞. Because of this fact the size of the
basis decreases to 1. It is the same problem as sitting on a factorization channel s25 = 0 in string theory
amplitudes, or considering Feynman integrals in integer dimensions, see [27, section 4]. In those situations
one needs to correct KLT relations using the framework of relative twisted cohomologies [122]. While in
this subsection we ignore this problem to retain generality, we will return to it in sections 7.5.1 and 7.5.2.
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Computation of the relevant conformal blocks explicitly gives

F2(x) = x1+2(q1+q2)q± B(1+2q1q±, 1+2q2q±) 2F1(−2q3q±, 1+2q1q±; 2+2(q1+q2)q±;x) ,

F4(x) = −2q3q± B(−2(q1+q2+q3)q±, 2q3q±)
1 + 2(q1+q2+q3)q±

(7.43)

× 2F1(−2q2q±,−1−2(q1+q2+q3)q±;−2(q1+q2)q±;x) ,

where B(a, b) = Γ(a)Γ(b)
Γ(a+b) is the Euler beta function. This result is in agreement with [38,

39, 50, 107].
Next we analyze the p → ∞ behavior of these correlation functions for p′ fixed and

finite. This limit can be qualitatively different, depending on whether charges become small,
such as in the case (7.38) where qiq− → 0, or large, as is the case in the example (7.37)
where qiq+ →∞ (recall that q4 does not enter the expressions directly). While the first case
is fairly easy to analyze and leads to interesting connections with transcendentality, the
second is more subtle due to the presence of Stokes phenomena similar to those appearing
in the α′ →∞ limit of the Veneziano amplitude [31]. We consider examples of these limits
below. Before doing so, we give an explicit example where correlation functions can be
expressed in terms of elementary functions. In order not to confuse the two cases (7.37)
and (7.38), we will label the correlation function and conformal blocks evaluated on the
two sets of charges with superscripts I and II, respectively.

7.5.1 Critical Ising model

Let us consider the example of the critical Ising model with (p, p′) = (4, 3). Of course, the
Coulomb gas formalism is a hugely wasteful way of computing correlators in this case, since
they can be obtained straightforwardly in the free-fermion formulation in a closed form,
see for instance [112, chapter 12]. Instead, we use it as a chance to briefly demonstrate
how these simple answers arise from the KLT formula (7.42).

We start with the four-point function of energy operators with (r, s) = (2, 1). Using
the values of charges from case I in (7.37) one can see that F I

4 does not contribute since
its prefactor in (7.42) is proportional to

sin(2π(q1+q2+q3)q±)
∣∣
(7.37) = − sin(3πp/p′)

∣∣
p′=3 = 0 . (7.44)

It is consistent with the size of the basis dropping to 1 in the case (7.37) with p′ = 3,
although the fact that the limit p′ → 3 of (7.42) was smooth is an accident coming from
our choice of bases. As a result we only need

F I
2(x) = x1−2p/p′ B(1−p/p′, 1−p/p′) 2F1(1−p/p′, p/p′; 2−2p/p′; x)

∣∣
(p,p′)=(4,3)

=
Γ(−1

3)2

Γ(−2
3)

(
x2 − x+ 1

)
(1− x)5/3x5/3 . (7.45)

Plugging back into (7.36) we find

lim
x4→∞

〈ε(0)ε(x)ε(1)ε(x4)〉Ising = c1
|x4|2

∣∣∣∣1x − 1
x−1 − 1

∣∣∣∣2 , (7.46)
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where c1 = −
√

3π
2 Γ(−1

3)4/Γ(−2
3)2. Restoring the original coordinates one finds

〈ε(x1)ε(x2)ε(x3)ε(x4)〉Ising = c1

∣∣∣∣∣Pf
(

1
xi − xj

)∣∣∣∣∣
2

, (7.47)

where Pf(· · · ) denotes the Pfaffian of the antisymmetric matrix with entries labelled by
i, j = 1, 2, 3, 4. This is the correct result.

Let us move on to the four-point function of spin operators with (r, s) = (1, 2). Using
the values of charges from case II in (7.38) we obtain

F II
2 (x) = x1−2p′/p B(1−p′/p, 1−p′/p) 2F1(p′/p, 1−p′/p; 2−2p′/p; x)

∣∣
(p,p′)=(4,3)

=
Γ(1

4)2
√

2π

√
1 +
√

1− x√
x(1− x)

, (7.48)

as well as

F II
4 (x) = p′

p− 3p′ B(3p′/p, −p′/p) 2F1(p′/p, 3p′/p−1; 2p′/p; x)
∣∣
(p,p′)=(4,3)

=
Γ(1

4)2
√

2π

√
1 +
√
x−

√
1−
√
x√

2x(1− x)
. (7.49)

Putting everything together according to (7.42) (with coefficients 1
2 in front of the two

factors) and restoring all the coordinates xi, one finds agreement with the free-fermion
computation(

〈σ(x1)σ(x2)σ(x3)σ(x4)〉Ising
)2 = c2

∑
ei=±1∑
i
ei=0

∏
1≤i<j≤4

|xi − xj |eiej/2 (7.50)

with c2 = −Γ(1
4)8/16 in the domain x ∈ (0, 1).

7.5.2 Large-p limit for (2, 1) four-point correlators

We now consider the p→∞ limit of the four-point functions of (2, 1) operators with charges
given in case I in (7.37) and p′ ≥ 3 finite and fixed. Here the situation is qualitatively
different to that from the previous subsection because charges blow up. As a consequence,
conformal blocks localize on the critical points of the potential W . (One cannot easily
apply saddle-point analysis directly to the correlator because it is not written in terms of
a holomorphic integrand.) There is a large number of critical points located on different
sheets of the Riemann surface of z.23 On the first sheet we have

∂zW (z∗) = 2q+

(
q1
z∗

+ q2
z∗ − x

+ q3
z∗ − 1

) ∣∣∣∣
(7.37)

= − p

p′
3z2
∗ − 2(1+x)z∗ + x

z∗(z∗ − x)(z∗ − 1) = 0 . (7.51)

23Since in this case we have
eW |(7.37) = [z(z − x)(z − 1)]−p/p′

with a finite p′ co-prime to p, the number of sheets is p′3. This is because the corresponding Riemann surface
of z is p′-branched around the three points 0, x, 1 (monodromies around infinity are not independent). Each
sheet can be labelled by a point in a Z3

p′ lattice counting how many times z winded around each of the
branch points. This situation is different to string theory, where sij are generic non-rational variables and
hence the numbers of sheets and critical points are infinite.
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Explicitly, it gives two solutions which we denote by z±∗ ,

z±∗ = 1
3
(
1 + x±

√
x2 − x+ 1

)
. (7.52)

It is clear that the positions of these critical points depend on the cross-ratio x. This is
the source of the Stokes phenomenon: the large-p asymptotics depends on the value of x.

Here we focus on the case x ∈ (0, 1), for which there is exactly one critical point
z−∗ ∈ (0, x) and exactly one z+

∗ ∈ (x, 1). This is not an accident. By the arguments of [123],
as long as all q̃iq̃j have the same sign and xi’s are ordered, the problem of computing critical
points is equivalent to that of finding stable configurations of mutually-repelling charges on
a line. There are exactly (N+p−3)!/(N−3)! such configurations corresponding to a single
critical point in each bounded chamber of the configuration space C(N+p,p).

While there might be a large number of critical points (with two per sheet), they
all give same-magnitude contributions to the large-p asymptotics and only differ in the
complex phase. These phases typically resum to trigonometric functions. We can exploit
the KLT formula with a judicious choice of bases to drastically simplify the computation.
In the example at hand, the contours (0, x) and (x, 1) are already paths of steepest descent
(also known as Lefschetz thimbles) for the potential W at x ∈ (0, 1) and critical points z−∗
and z+

∗ , respectively. Hence, using F I
2 and F I

3 as bases, we can compute the asymptotic
behavior with only two saddle points from the first sheet, one for each conformal block.
For p′ > 3, using the intersection numbers computed from (6.36) and plugging in (7.37),
we have

GI(x, x)
∣∣
p′>3 = − sin(πp/p′)2

sin(3πp/p′)

(
F I

2(x)F I
3(x) + F I

3(x)F I
2(x) (7.53)

+ 2 cos(πp/p′)
(
|F I

2(x)|2 + |F I
3(x)|2

))
.

Note that there are no poles or zeros due to the sine factors because p and p′ are co-prime
and p′ > 3. The case p′ = 3 is simpler for the same reason as in the case of the energy
correlator (7.47) in the critical Ising model. Namely, even in the basis F I

2, F I
3 the coefficient

of F I
3 is zero, as in (7.44), and hence we have a simplified result,

GI(x, x)
∣∣
p′=3 = − sin(πp/3)2

sin(2πp/3) |F
I
2(x)|2, (7.54)

which means it only receives contributions from the single critical point z−∗ . The physical
reason for this simplification is that four (2, 1) operators can only exchange an identity
operator when p′ = 3.

At any rate, the asymptotics of the blocks F I
2 and F I

3 can now be easily computed.
The Hessian evaluated at the two critical points is

J± = ∂2
zW (z±∗ ) = p

p′

(
1

(z±∗ )2 + 1
(z±∗ − x)2 + 1

(z±∗ − 1)2

)
(7.55)
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and is positive for x ∈ (0, 1). Therefore

lim
p→∞

F I
2(x) = 1√

2πJ−
[z−∗ (x− z−∗ )(1− z−∗ )]−p/p′ , (7.56)

lim
p→∞

F I
3(x) = 1√

2πJ+
[z+
∗ (z+
∗ − x)(1− z+

∗ )]−p/p′ . (7.57)

They together give the asymptotics of (7.53) and (7.54) in the case x ∈ (0, 1). The
correlator is exponentially suppressed as p→∞.

7.5.3 Large-p limit for (1, 2) four-point correlators

Let us consider the p→∞ limit of the four-point functions of (1, 2) operators with charges
given in case II in (7.38). While the case p′ = 2 is of most interest, we can study arbitrary
fixed p′ ≥ 2 as long as it remains finite (it is understood that p is always co-prime with p′).
Direct expansion of the result in (7.42) gives

GII(x, x) = −πp
′

3p
(
1 + |x|2 + |1−x|2

)
(7.58)

+ πp′2

p2

(
|x|2 log |x|2 + |1−x|2 log |1−x|2 − 2(1 + |x|2 + |1−x|2)

)
+O(1/p3) .

One can immediately see that assigning transcendentality weights T (p) = 1 and T (p′) =
T (x) = 0, the result is not uniformly transcendental. This fact can be fixed with a corrected
basis of conformal blocks.

To this end, we first recall the differential forms from section 2, which serve as building
blocks for the minimal basis. Specializing the Mandelstam variables s12, s23, s24 at (n, p) =
(5, 1) according to (7.38) we have:

ω
(5,1)
1 = −p′

p
d log z, ω

(5,1)
2 = p′

p
d log(1−z) , (7.59)

ν
(5,1)
1 = d log z

z − x
, ν

(5,1)
2 = d log z − x

z − 1 . (7.60)

In order to project GII(x, x) onto the basis of svF (5,1)
ab we only need to compute four inter-

section numbers of the above forms with dz, giving

〈ν(5,1)
1 |dz〉 = px

p− 3p′ , 〈ν(5,1)
2 |dz〉 = p(1− x)

p− 3p′ , (7.61)

〈ω(5,1)
1 |dz〉 = − p′(1 + x)

3(p− 3p′) , 〈ω(5,1)
2 |dz〉 = p′(x− 2)

3(p− 3p′) . (7.62)

Steps needed to reproduce these results were spelled out in [27, section 4B] in a very similar
case. Using the basis expansion formula (7.29) we therefore find

GII(x, x) = πpp′

3(p− 3p′)2

(
−(1+x)

(
x svF (5,1)

11 + (1−x) svF (5,1)
12

)
+(x−2)

(
x svF (5,1)

21 + (1−x) svF (5,1)
22

))
. (7.63)
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For completeness let us also give an expression for the basis of conformal blocks in terms
of F (5,1)

ab :

F II
a+1(x) =

2∑
b=1
〈ν(5,1)
b |dz〉F (5,1)

ab = p

p− 3p′
(
xF

(5,1)
a1 + (1−x)F (5,1)

a2

)
(7.64)

for a = 1, 2. (GII can be expressed in terms of F II
2 and F II

3 using the same formula as
in (7.53) with p↔ p′.) One can compute their 1/p-expansion using the formulae explained
in section 3.2 with

s = s12 = s23 = s24 = −p′/p , z3 = x . (7.65)
More precisely, with the α′-expansion of F (5,1)

ab in (3.30) (also see appendix A.2 for the
orders of α′≤2), the kinematic point (7.65) gives rise to the following leading orders of their
single-valued images

svF (5,1)
11 = 1 + 2sGsv(0;x) + 4s2Gsv(0, 0;x) + s2Gsv(0, 1;x) + 8s3Gsv(0, 0, 0;x)

+ 2s3Gsv(0, 0, 1;x) + 2s3Gsv(0, 1, 0;x) + 2s3Gsv(0, 1, 1;x) + 4s3ζ3 +O(s4) ,

svF (5,1)
12 = −sGsv(1;x)− 2s2Gsv(1, 0;x)− 2s2Gsv(1, 1;x)− 4s3Gsv(1, 0, 0;x)

− s3Gsv(1, 0, 1;x)− 4s3Gsv(1, 1, 0;x)− 4s3Gsv(1, 1, 1;x) +O(s4) , (7.66)

svF (5,1)
21 = −sGsv(0;x)− 2s2Gsv(0, 0;x)− 2s2Gsv(0, 1;x)− 4s3Gsv(0, 0, 0;x)

− 4s3Gsv(0, 0, 1;x)− s3Gsv(0, 1, 0;x)− 4s3Gsv(0, 1, 1;x) + 4s3ζ3 +O(s4) ,

svF (5,1)
22 = 1 + 2sGsv(1;x) + s2Gsv(1, 0;x) + 4s2Gsv(1, 1;x) + 2s3Gsv(1, 0, 0;x)

+ 2s3Gsv(1, 0, 1;x) + 2s3Gsv(1, 1, 0;x) + 8s3Gsv(1, 1, 1;x) + 12s3ζ3 +O(s4) .

To the weights shown, the single-valued polylogarithms Gsv(~a; z) = svG(~a; z) from Brown’s
construction [52] with ~a ∈ {0, 1}× are given by

Gsv(a1;x) = G(a1;x) +G(a1;x) ,
Gsv(a1, a2;x) = G(a1, a2;x) +G(a1;x)G(a2;x) +G(a2, a1;x) ,

Gsv(a1, a2, a3;x) = G(a1, a2, a3;x) +G(a1, a2;x)G(a3;x) (7.67)
+G(a1;x)G(a3, a2;x) +G(a3, a2, a1;x) ,

where the explicit expressions for single-valued polylogarithms are given in equations (6.8)
and (6.9), also see (6.10) for a weight-four example involving a zeta value. Upon insertion
into the correlation function (7.63) with s = − p′

p , we arrive at the following large-charge
expansion

GII(x, x) = − πpp′

3(p− 3p′)2

{
1 + |x|2 + |1−x|2

− 3p′
p

[
|x|2Gsv(0;x) + |1−x|2Gsv(1;x)

]
(7.68)

+ 3p′2
p2

[
2|x|2Gsv(0, 0;x) + x(x−1)Gsv(0, 1;x)

+ x(x−1)Gsv(1, 0;x) + 2|1−x|2Gsv(1, 1;x)
]

+O
( 1
p3

)}
.
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The decomposition (7.63) into uniformly transcendental sphere integrals F (5,1)
ab exemplifies

a key observation of this section: in a suitable normalization, certain four-point corre-
lation functions in minimal models furnish another family of physical quantities besides
amplitudes [22–24, 26, 124–127] and form factors [128, 129] that feature uniform transcen-
dentality. The natural normalization for (7.63) is to peel off the prefactor − πpp′

3(p−3p′)2 , and
uniform transcendentality then interlocks the transcendental weight of the polylogarithms
and MZVs in (7.68) with the order in 1/p in the large-charge expansion. It would be inter-
esting to investigate if more general four- and n-point correlation functions exhibit similar
transcendentality properties.

8 Summary and outlook

In this work we have investigated configuration-space integrals over punctured Riemann
spheres with an arbitrary number of integrated and unintegrated punctures zj . Similar to
the Koba-Nielsen factor in string tree-level amplitudes, the integrands feature products of
|zi−zj |sij , whose non-integer exponents lead to twisted homologies and cohomologies. The
exponents sij may be either identified with dimensionless Mandelstam invariants 2α′ki · kj
containing the inverse string tension α′, or with multiples of the dimensional-regularization
parameter of Feynman integrals in spacetime dimensions ∈ N−2ε.

In this setting, we have given explicit bases of twisted cycles γ(n,p)
a and cocycles ω(n,p)

b ,
such that the coaction of the period matrix 〈γ(n,p)

a |ω(n,p)
b 〉 lines up with the master for-

mula (1.1) with coefficients taken from the identity matrix. The coaction applies to the
MZVs and multiple polylogarithms in the Taylor expansion of the period-matrix entries
with respect to sij , and we have advanced their structural understanding by

• introducing a systematic method for obtaining an explicit form of the sij-expansions,

• decomposing 〈γ(n,p)
a |ω(n,p)

b 〉 into a matrix product which organizes MZVs and polyloga-
rithms at different arguments into separate factors,

• pinpointing refined coaction formulae for the individual factors, i.e. for generating series
of polylogarithms in different numbers of variables,

• spelling out the analytic continuations between different orderings of the unintegrated
punctures on the real axis.

The integrals 〈γ(n,p)
a |ω(n,p)

b 〉 over paths in the configuration space C(n,p) are related to
complex integrals of ω(n,p)

a ω
(n,p)
b over all of C(n,p). Specifically, these complex C(n,p)-integrals

are expressed both as single-valued versions or as complex bilinears in 〈γ(n,p)
a |ω(n,p)

b 〉. In
this way, we generalize the KLT formula and the single-valued map between open- and
closed-string tree amplitudes beyond p = n−3, i.e. to more general integrals with an
arbitrary number of unintegrated punctures. Moreover, our results for the complex C(n,p)-
integrals yield a new perspective on double-copy structures of correlation functions in
minimal models, generalizing earlier p = n−4 results on KLT relations, the single-valued
map and the momentum-kernel formalism [38, 39, 50].
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The discussion in this work calls for a generalization from the Riemann sphere to
higher-genus surfaces and elliptic flavors of MZVs and multiple polylogarithms. Following
the string-theory nomenclature, the associated twisted homologies are governed by the
loop-level monodromy relations [130–133] between integration cycles some but not all of
which are realized in open-string scattering. On the cohomology side, candidate bases for
integration-by-parts inequivalent forms of open-string integrals were proposed in [25, 26]
and [134, 135] for one and two unintegrated punctures, respectively. Their complex integrals
over punctured tori have been applied to yield differential equations and iterated-integral
representations of non-holomorphic modular forms [136, 137] and single-valued elliptic
polylogarithms [138–140].

It would be interesting to validate the conjectural bases of genus-one cohomologies by
a rigorous treatment in the framework of twisted de Rham theory. Based on the elliptic
symbol calculus [141], it remains to translate the KZB-type differential equations in the
references into coaction formulae, as for instance initiated in section 7.2 of [26] and sec-
tion 4.5 of [135]. It would furthermore be rewarding to identify echoes of the braid matrices
at genus zero [19] in the differential operators of these KZB equations, and to find their
general form for an arbitrary number of unintegrated punctures.

Relatedly, the interplay of the KLT double copy and the single-valued map at genus
zero raises a variety of questions at genus one and beyond including the following ones: is
there a KLT-type reformulation for the different approaches to single-valued elliptic MZVs
in [142–144] involving complex bilinears of open-string quantities? What is the single-
valued map of elliptic multiple polylogarithms in one or several variables, and how do these
structures arise in string amplitudes or Feynman integrals? What is the loop-level echo
of the connection between minimal-model correlators, closed-string Koba-Nielsen integrals
and their conformal-block decomposition at genus zero?

Finally, it would be rewarding to draw inspiration from string amplitudes beyond genus
one and Feynman integrals beyond elliptic polylogarithms to classify iterated integrals
on more general surfaces and to explore their differential and algebraic structures. In
particular, there is a variety of further interesting testing grounds for and applications of
the coaction principle in field-theory and string amplitudes — both within and outside the
current reach of genus-one integrals.
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A Further details on the α′-expansion

This appendix complements the discussion of section 3 on the α′-expansion of the integrals
F

(n,p)
ab .

A.1 Monodromy relations for F (5,1)

In this appendix, we infer the formal initial value at z3 = 0 for the five-point integrals F (5,1)
2a

with cycles and cocycles in (3.20) and (3.21) from monodromy relations [83, 84]. On the
integration contour γ(5,1)

2 = γ
(5,1)
13245 = {z3 < z2 < 1} for z2 under consideration, the limit

z3 → 0 does not commute with the α′-expansion. Hence, the goal of this appendix is to infer
the latter from integrals over γ(5,1)

1 = γ
(5,1)
12345 = {0 < z2 < z3} and γ(5,1)

13425 = {1 < z2 < ∞}
where these processes do commute.

Following the techniques in [83, 84, 109], we apply Cauchy’s theorem to exploit the
vanishing of the integrals

0 =
∮
C
(−z2)s12(z3−z2)s23(1−z2)s24ω(5,1)

a (A.1)

=
∫
γ

(5,1)
21345

KN(5,1)ω(5,1)
a + e±iπs12

∫
γ

(5,1)
12345

KN(5,1)ω(5,1)
a

+ e±iπ(s12+s23)
∫
γ

(5,1)
13245

KN(5,1)ω(5,1)
a + e±iπ(s12+s23+s24)

∫
γ

(5,1)
13425

KN(5,1)ω(5,1)
a .

The meromorphic but multivalued integrand in the first line is tailored to match the Koba-
Nielsen factor KN(5,1) = |z2|s12 |z3−z2|s23 |1−z2|s24 up to phase factors composed of e±iπsjk .
These phases arise from relating (−x)s = e±iπs|x|s for negative x and are therefore piecewise
constant on the components of the contour C = γ

(5,1)
21345 + γ

(5,1)
12345 + γ

(5,1)
13245 + γ

(5,1)
13425 depicted in

figure 6. The sign of the phases depends on the choice of branches, so we can view (A.1)
as comprising two monodromy relations. Their difference

0 = sin(πs12)F (5,1)
1a + sin

(
π(s12+s23)

)
F

(5,1)
2a + sin

(
π(s12+s23+s24)

) ∫
γ

(5,1)
13425

KN(5,1)ω(5,1)
a

(A.2)

involves the entries F (5,1)
1a and F

(5,1)
2a by the identifications of the contours in (3.20). For

the third integral with z3-independent integration limits in γ(5,1)
13425 = {1 < z2 <∞}, we can

commute the z3 → 0 limit with its α′-expansion and import (3.31) for the combination of
gamma functions in

lim
z3→0

∫
γ

(5,1)
13425

KN(5,1)ω(5,1)
a =

∫ ∞
1

dz2 |z2|s12+s23 |1−z2|s24

(
s12
z21

,
(s12+s23)

z21

)
a

(A.3)

= −(s12, s12+s23)a
s12+s23+s24

Γ(1−s12−s23−s24)Γ(1+s24)
Γ(1−s12−s23) .
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Re(z2)

Im(z2)

•
z1=0

•
z3

•
z4=1

•
+∞

•
−∞

γ
(5,1)
21345 γ

(5,1)
12345 γ

(5,1)
13245 γ

(5,1)
13425

Figure 6. The closed contour C relevant to the monodromy relations (A.1) at (n, p) = (5, 1) consists
of subsets γ(5,1)

21345, γ
(5,1)
12345, γ

(5,1)
13245, γ

(5,1)
13245 of the real line drawn in red while the dashed semicircle

simply indicates that z5 → ±∞ are identified on the Riemann sphere and does not contribute to
the integral (A.1).

By inserting (A.3) into the z3 → 0 limit of (A.2) and exploiting that

lim
z3→0

F
(5,1)
1a = (1, 0)a

Γ(1+s12)Γ(1+s23)
Γ(1+s12+s23) , sin(πx) = πx

Γ(1+x)Γ(1−x) , (A.4)

we can solve for the z3 → 0 limit of F (5,1)
2a :

lim
z3→0

F
(5,1)
2a = −

sin
(
π(s12+s23+s24)

)
sin
(
π(s12+s23)

) lim
z3→0

∫
γ

(5,1)
13425

KN(5,1)ω(5,1)
a − sin(πs12)

sin
(
π(s12+s23)

) lim
z3→0

F
(5,1)
1a

=
(

s12
s12+s23

, 1
)
a

Γ(1+s12+s23)Γ(1+s24)
Γ(1+s12+s23+s24) − s12(1, 0)a

s12+s23

Γ(1−s12−s23)Γ(1+s23)
Γ(1−s12)

(A.5)

This completes the derivation of the second line of (3.28).
The same type of arguments applies to the initial values of F (n,1)

ab with n ≥ 6. At
n = 6, for instance, the monodromy relation

0 = sin(πs12)F (6,1)
1a + sin

(
π(s12+s23)

)
F

(6,1)
2a + sin

(
π(s12+s23+s24)

)
F

(6,1)
3a

+ sin
(
π(s12+s23+s24+s25)

) ∫
γ

(6,1)
134526

KN(6,1)ω(6,1)
a (A.6)

involving one contour γ(6,1)
134526 = {1 < z2 <∞} outside the basis (3.33) can be used to infer

the z3 → 0 limit of F (6,1)
2a which does not commute with α′-expansion. The z3 → 0 limit

of the integrals γ(6,1)
134526 can be identified with the kinematic limits of F (5,1)

ab seen in (3.43)
and (3.42). In this way, we arrive at the initial values (3.45) and (3.46) as well as their
n-point generalizations to be given in appendix A.3.
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A.2 α′-expansion of F (5,1)

The method of section 3.2 to obtain the α′-expansion of F (5,1) via (3.30) gives rise to the
leading orders

F
(5,1)
11 = 1 + s12G(0; z3) + s23G(0; z3) + (s12+s23)2G(0, 0; z3)

+ s12s24G(0, 1; z3)− s12s23ζ2 +O(s3
ij)

F
(5,1)
12 = −s24G(1; z3)− s23s24G(1, 1; z3)− s2

24G(1, 1; z3)
− (s12+s23)s24G(1, 0; z3) +O(s3

ij) (A.7)

F
(5,1)
21 = −s12G(0; z3)− s2

12G(0, 0; z3)− s12s23G(0, 0; z3)− s12s23G(0, 1; z3)
− s12s24G(0, 1; z3)− s12s23ζ2 − s12s24ζ2 +O(s3

ij)

F
(5,1)
22 = 1 + (s23+s24)G(1; z3) + (s23+s24)2G(1, 1; z3)

+ s12s24G(1, 0; z3)− (s12+s23)s24ζ2 +O(s3
ij) .

A.3 The explicit form of P(n,1) and M(n,1)

The derivation of the z3 → 0 asymptotics of F (5,1)
ab and F

(6,1)
ab in (3.28) and (3.42) from

monodromy relations generalizes to

F
(7,1)
ab (z3 → 0, z4, z5) =


|z4|s24 |z5|s25F

(4,1)
11 0 0 0

s12F̂
(6,1)
11

s12+s23
−K(7,1) F̂

(6,1)
11 F̂

(6,1)
12 F̂

(6,1)
13

s12F̂
(6,1)
21

s12+s23
F̂

(6,1)
21 F̂

(6,1)
22 F̂

(6,1)
23

s12F̂
(6,1)
31

s12+s23
F̂

(6,1)
31 F̂

(6,1)
32 F̂

(6,1)
33

 (A.8)

and more generally

F
(n,1)
ab (z3 → 0, z4, . . . , zn−2) =



(∏n−2
k=4 |zk|s2k

)
F

(4,1)
11 0 0 . . . 0

s12F̂
(n−1,1)
11

s12+s23
−K(n,1) F̂

(n−1,1)
11 F̂

(n−1,1)
12 . . . F̂

(n−1,1)
1,n−4

s12F̂
(n−1,1)
21

s12+s23
F̂

(n−1,1)
21 F̂

(n−1,1)
22 . . . F̂

(n−1,1)
2,n−4

...
...

...
...

s12F̂
(n−1,1)
n−4,1

s12+s23
F̂

(n−1,1)
n−4,1 F̂

(n−1,1)
n−4,2 . . . F̂

(n−1,1)
n−4,n−4


,

(A.9)

where the (a, b) = (2, 1) entries involve

K(7,1) = sin(πs12)
sin(π(s12+s23)) |z4|s24 |z5|s25F (4,1) (A.10)

= |z4|s24 |z5|s25 s12
s12+s23

Γ(1+s23)Γ(1−s12−s23)
Γ(1−s12)

K(n,1) = sin(πs12)
sin(π(s12+s23))

(
n−2∏
k=4
|zk|s2k

)
F (4,1) (A.11)

=
(
n−2∏
k=4
|zk|s2k

)
s12

s12+s23

Γ(1+s23)Γ(1−s12−s23)
Γ(1−s12) .

– 67 –



J
H
E
P
0
5
(
2
0
2
1
)
0
5
3

The hat notation instructs to change the arguments of F (n−1,1)
ab to (cf. (3.43))

s12 → s12+s23 , s2,j → s2,j+1 , zk → zk+1 (A.12)

for j = 3, 4, . . . , n−2 and k = 3, 4, . . . , n−3. The four-point integral (d(4,1) = 1) yields the
standard Euler beta function (3.31). The formal zj → 0 limits (3.28), (3.46) and their
generalizations involve the following differences of beta functions,

W3(s12, s23, s24) = F (4,1)(s12+s23, s24)− F (4,1)(s23,−s12−s23)
s12+s23

= −(s23+s24)ζ2 +
[
(s12+s23+s24)s24 − s12s23

]
ζ3 +O(s3

ij)

W4(s12, s23, s24, s25) = F (4,1)(s12+s23+s24, s25)− F (4,1)(s24,−s12−s23−s24)
s12+s23+s24

= −(s24+s25)ζ2 + (s12+s23+s24+s25)s25ζ3 (A.13)
− (s12+s23)s24ζ3 +O(s3

ij)

W5(s12, s23, . . . , s26) = F (4,1)(s12+s23+s24+s25, s26)− F (4,1)(s25,−s12−s23−s24−s25)
s12+s23+s24+s25

= −(s25+s26)ζ2 + (s12+s23+s24+s25+s26)s26ζ3

− (s12+s23+s24)s25ζ3 +O(s3
ij) ,

and more generally

Wj(s12, s23, . . . , s2,j+1) = F (4,1)(s12+∑j
i=3 s2i, s2,j+1)− F (4,1)(s2j ,−s12−

∑j
i=3 s2i)

s12+s23+ . . .+s2j
.

(A.14)
This notation yields the compact representations:

lim
z3→0

F (5,1)(z3) =
(
F (4,1)(s12, s23) 0

s12W3 F (4,1)(s12+s23, s24)

)
, (A.15)

lim
z3,z4→0

F (6,1)(z3, z4) =

F
(4,1)(s12, s23) 0 0
s12W3 F (4,1)(s12+s23, s24) 0
s12W4 (s12+s23)W4 F (4,1)(s12+s23+s24, s25)

 ,

(A.16)
lim

z3,z4,z5→0
F (7,1)(z3, z4, z5) = (A.17)

F (4,1)(s12, s23) 0 0 0
s12W3 F (4,1)(s12+s23, s24) 0 0
s12W4 (s12+s23)W4 F (4,1)(s12+s23+s24, s25) 0
s12W5 (s12+s23)W5 (s12+s23+s24)W5 F (4,1)(s12+s23+s24+s25, s26)

 .

These expressions follow from the initial values (A.8) and generalize as follows to higher
multiplicity:

lim
zk→0

F
(n,1)
ab =


0 : b > a

F (4,1)
(
s12 +∑b+1

m=3 s2,m, s2,b+2
)

: b = a(
s12 +∑b+1

m=3 s2,m
)
Wa+1 : b < a

(A.18)
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A.4 The explicit form of P(6,2) and M(6,2)

We shall finally give the key steps towards the α′-expansion of the integrals F (6,2)
ab over the

basis forms

ω̂
(6,2)
1 = s12

z12

(
s13
z13

+ s23
z23

)
, ω̂

(6,2)
3 = s12

z12

(
s13
z13

+ s23
z23

+ s43
z43

)
ω̂

(6,2)
5 =

(
s12
z12

+ s42
z42

)(
s13
z13

+ s23
z23

+ s43
z43

)
, ω̂

(6,2)
2k = ω̂

(6,2)
2k−1

∣∣∣
2↔3

, k = 1, 2, 3 (A.19)

according to (2.22), with 2↔ 3 referring to the subscripts of both zij and sij . Again, the
basis of integration contours

γ
(6,2)
1 = {0 < z2 < z3 < z4} , γ

(6,2)
3 = {0 < z2 < z4 < z3 < 1}

γ
(6,2)
5 = {z4 < z2 < z3 < 1} , γ

(6,2)
2k = γ

(6,2)
2k−1

∣∣∣
2↔3

, k = 1, 2, 3 (A.20)

contains four cases γ(6,2)
j at j = 3, 4, 5, 6 where the α′-expansion does not commute with

the z4 → 0 limit. Similar to the strategy for the (n, p) = (5, 1) case in appendix A.1, we
use monodromy relations to relate these problematic contours to auxiliary ones

α
(6,2)
3 = {(z2, z3) ∈ R2 | 0 < z2 < z4 and 1 < z3 <∞}

α
(6,2)
5 = {(z2, z3) ∈ R2 | 1 < z2 < z3 <∞} (A.21)

α
(6,2)
4 = α

(6,2)
3

∣∣∣
2↔3

, α
(6,2)
6 = α

(6,2)
5

∣∣∣
2↔3

depicted in figure 7. These α(6,2)
j are engineered to have commutative limits z4 → 0 and

α′ → 0 and will therefore serve as a crucial tool to assemble the initial values P(6,2) and
M(6,2) in (3.7).

We will make use of the monodromy relations

γ
(6,2)
3 = −α

(6,2)
3 sin (π (s13+s23+s34+s35)) + γ

(6,2)
1 sin (π (s13+s23)) + γ

(6,2)
2 sin (πs13)

sin (π (s13+s23+s34)) ,

γ
(6,2)
5 = − sin (πs12) sin (πs34) γ(6,2)

1 + sin (πs13) sin (π (s12+s13+s23+s34)) γ(6,2)
2

sin (π (s13+s23+s34)) sin (π (s12+s13+s23+s24+s34))

+ sin (πs12) sin (π (s13+s23+s34+s35))α(6,2)
3

sin (π (s13+s23+s34)) sin (π (s12+s24)) (A.22)

+ sin (π (s13+s23+s34+s35)) sin (πs25)α(6,2)
5

sin (π (s12+s13+s23+s24+s34)) sin (π (s12+s24))

+ sin (π (s12+s23+s24+s25)) sin (π (s12+s13+s23+s24+s34+s35))α(6,2)
6

sin (π (s12+s13+s23+s24+s34)) sin (π (s12+s24))

and two similar relations for γ(6,2)
4 and γ(6,2)

6 that are obtained from relabelling the Man-
delstam invariants via 2 ↔ 3 and exchanging γ(6,2)

1 ↔ γ
(6,2)
2 as well as α(6,2)

3 ↔ α
(6,2)
4 and

α
(6,2)
5 ↔ α

(6,2)
6 on the right-hand sides of (A.22).
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Re(z2)

Re(z3)

z4 1

z4

1

γ
(6,2)
1

γ
(6,2)
2

×

×

α
(6,2)
5

α
(6,2)
6

× α
(6,2)
4

×

α
(6,2)
3 ×

×

Figure 7. We will determine the initial conditions for F (6,2)
ab from the depicted six-dimensional basis

of contours γ(6,2)
1 , γ

(6,2)
2 , α

(6,2)
3 , α

(6,2)
4 , α

(6,2)
5 , α

(6,2)
6 . For these contours, the z4 → 0 limit commutes

with the α′-expansion which is not the case for the contours marked with × such as γ(6,2)
j with

j = 3, 4, 5, 6 in (A.20).

A.4.1 z4 → 0 limits on the α(6,2)
i contours

The integrals F (6,2)
αi,b

= 〈α(6,2)
i |ω(6,2)

b 〉 with i = 3, 4, 5, 6 can be shown to have the z4 → 0
limits

lim
z4→0

F
(6,2)
α3,b

= − s13+s23+s34
s13+s23+s34+s35

Γ(1+s12)Γ(1+s24)
Γ(1+s12+s24)

Γ(1−s13−s23−s34−s35)Γ(1+s35)
Γ(1−s13−s23−s34)

×
(

s13+s23
s13+s23+s34

,
s13

s13+s23+s34
, 1, 0, 0, 0

)
b

(A.23)

lim
z4→0

F
(6,2)
α4,b

= − s12+s23+s24
s12+s23+s24+s25

Γ(1+s13)Γ(1+s34)
Γ(1+s13+s34)

Γ(1−s12−s23−s24−s25)Γ(1+s25)
Γ(1−s12−s23−s24)

×
(

s12
s12+s23+s24

,
s12+s23

s12+s23+s24
, 0, 1, 0, 0

)
b

(A.24)

as well as

lim
z4→0

F
(6,2)
α5,6,b

=
(
u11F̂

(5,2)
α5,6,1 + u12F̂

(5,2)
α5,6,2, u21F̂

(5,2)
α5,6,1 + u22F̂

(5,2)
α5,6,2,

s12
s12+s24

F̂
(5,2)
α5,6,1,

s13
s13+s34

F̂
(5,2)
α5,6,2, F̂

(5,2)
α5,6,1, F̂

(5,2)
α5,6,2

)
b

. (A.25)

The gamma functions in (A.24) stem from the unique component of F (4,1) in (3.31), and
the coefficients uij in (A.25) are given by

uij =

 s12(s123+s24)
(s12+s24)(s123+s24+s34)

−s12s34
(s13+s34)(s123+s24+s34)

−s13s24
(s12+s24)(s123+s24+s34)

s13(s123+s34)
(s13+s34)(s123+s24+s34)


ij

. (A.26)
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Furthermore, the integration contours of the F̂ (5,2)
α5,6,i

on the right-hand side of (A.25) can
be reduced to a basis of γ(5,2)

1,2 via monodromy relations

F̂
(5,2)
α5,i

=
sin(π(s13+s34)) sin(π(s123+s24+s34+s35))F̂ (5,2)

2,i − sin(πs35) sin(π(s12+s24))F̂ (5,2)
1,i

sin(π(s13+s23+s34+s35)) sin(π(s123+s24+s25+s34+s35))

F̂
(5,2)
α6,i

=
sin(π(s12+s24)) sin(π(s123+s24+s25+s34))F̂ (5,2)

1,i − sin(πs25) sin(π(s13+s34))F̂ (5,2)
2,i

sin(π(s12+s23+s24+s25)) sin(π(s123+s24+s25+s34+s35)) . (A.27)

Finally, the hat denotes the following replacement of the arguments of F (5,2),

F̂
(5,2)
ab (s12, s13, s23, s24, s34) = F

(5,2)
ab (s12+s24, s13+s34, s23, s25, s35) , (A.28)

which can be traced back to the z4 → 0 behavior of the Koba-Nielsen factor

lim
z4→0

KN(6,2) = |z2|s12+s24 |z3|s13+s34 |z23|s23 |1−z2|s25 |1−z3|s35 . (A.29)

A.4.2 Assembling the initial value

By combining the monodromy relations (A.22) with the z4 → 0 limits of F (6,2)
αi,b

(z4), we
arrive at the following initial values of F (6,2)

ab (z4) in the basis of (A.20):

P(6,2)M(6,2) = lim
z4→0

F (6,2) = (A.30)

F
(5,2)
11 F

(5,2)
12 0 0 0 0

F
(5,2)
21 F

(5,2)
22 0 0 0 0

H
(6,2)
11 H

(6,2)
12 F (4,1)(s12, s24)F (4,1)(s35, s13+s23+s34) 0 0 0

H
(6,2)
21 H

(6,2)
22 0 F (4,1)(s13, s34)F (4,1)(s25, s12+s23+s24) 0 0

J
(6,2)
11 J

(6,2)
12 K

(6,2)
11

s13
s13+s34

F̂
(5,2)
12 F̂

(5,2)
11 F̂

(5,2)
12

J
(6,2)
21 J

(6,2)
22

s12
s12+s24

F̂
(5,2)
21 K

(6,2)
22 F̂

(5,2)
21 F̂

(5,2)
22

 .

The entries H(6,2)
1j are given by

H
(6,2)
11 = s13+s23

s13+s23+s34
F (4,1)(s12, s24)F (4,1)(s35, s13+s23+s34) (A.31)

− sin(π(s13+s23))
sin(π(s13+s23+s34))F

(5,2)
11 − sin(πs13)

sin(π(s13+s23+s34))F
(5,2)
21

H
(6,2)
12 = s13

s13+s23+s34
F (4,1)(s12, s24)F (4,1)(s35, s13+s23+s34) (A.32)

− sin(π(s13+s23))
sin(π(s13+s23+s34))F

(5,2)
12 − sin(πs13)

sin(π(s13+s23+s34))F
(5,2)
22 ,

while the entries H(6,2)
2j can be obtained from H

(6,2)
1j by relabeling 2↔ 3 at the level of the

Mandelstam variables throughout and are thus given by

H
(6,2)
21 = s12

s12+s23+s24
F (4,1)(s13, s34)F (4,1)(s25, s12+s23+s24) (A.33)

− sin(π(s12+s23))
sin(π(s12+s23+s24))F

(5,2)
21 − sin(πs12)

sin(π(s12+s23+s24))F
(5,2)
11

H
(6,2)
22 = s12+s23

s12+s23+s24
F (4,1)(s13, s34)F (4,1)(s25, s12+s23+s24) (A.34)

− sin(π(s12+s23))
sin(π(s12+s23+s24))F

(5,2)
22 − sin(πs12)

sin(π(s12+s23+s24))F
(5,2)
12 .
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The entries J (6,2)
1j are given by

J
(6,2)
11 = u11F̂

(5,2)
11 + u12F̂

(5,2)
12 (A.35)

− sin(πs12)
sin(π(s12+s24))

s13+s23
s13+s23+s34

F (4,1)(s12, s24)F (4,1)(s35, s13+s23+s34)

+

[
− sin(πs12) sin(πs34)F (5,2)

11 + sin(πs13) sin(π(s123+s34))F (5,2)
21

]
sin(π(s13+s23+s34)) sin(π(s123+s24+s34))

J
(6,2)
12 = u21F̂

(5,2)
11 + u22F̂

(5,2)
12 (A.36)

− sin(πs12)
sin(π(s12+s24))

s13
s13+s23+s34

F (4,1)(s12, s24)F (4,1)(s35, s13+s23+s34)

+

[
− sin(πs12) sin(πs34)F (5,2)

12 + sin(πs13) sin(π(s123+s34))F (5,2)
22

]
sin(π(s13+s23+s34)) sin(π(s123+s24+s34)) ,

where the uij are defined in (A.26). The entries J (6,2)
2j can again be obtained from J

(6,2)
1j

by relabeling 2↔ 3:

J
(6,2)
21 = J

(6,2)
12

∣∣
(2↔3) = u12F̂

(5,2)
22 + u11F̂

(5,2)
21 (A.37)

− sin(πs13)
sin(π(s13+s34))

s12
s12+s23+s24

F (4,1)(s13, s34)F (4,1)(s25, s12+s23+s24)

+

[
− sin(πs13) sin(πs24)F (5,2)

21 + sin(πs12) sin(π(s123+s24))F (5,2)
11

]
sin(π(s12+s23+s24)) sin(π(s123+s24+s34))

J
(6,2)
22 = J

(6,2)
11

∣∣
(2↔3) = u22F̂

(5,2)
22 + u21F̂

(5,2)
21 (A.38)

− sin(πs13)
sin(π(s13+s34))

s12+s23
s12+s23+s24

F (4,1)(s13, s34)F (4,1)(s25, s12+s23+s24)

+

[
− sin(πs13) sin(πs24)F (5,2)

22 + sin(πs12) sin(π(s123+s24))F (5,2)
12

]
sin(π(s12+s23+s24)) sin(π(s123+s24+s34)) .

Lastly, the entries K(6,2)
ii related by 2↔ 3 are given by

K
(6,2)
11 = s12F̂

(5,2)
11

s12+s24
− sin(πs12)

sin(π(s12+s24))F
(4,1)(s12, s24)F (4,1)(s35, s13+s23+s34)

K
(6,2)
22 = s13F̂

(5,2)
22

s13+s34
− sin(πs13)

sin(π(s13+s34))F
(4,1)(s13, s34)F (4,1)(s25, s12+s23+s24) . (A.39)

With the known α′-expansions of the four- and five-point integrals F (4,1) and F (5,2)
ab in open-

string tree amplitudes, one can expand (A.30) to any desired order. While the expansion
of F (4,1) is given by (3.31), all-order results for F (5,2) can for instance be obtained from the
methods in [21, 23, 73], and certain orders are available for download from the website [81].

A.4.3 Further comments

Several entries of the initial value (A.30) feature spurious poles such as (s12+s24)−1 and
(s123+s24+s34)−1 within the individual terms of (A.35). It is a strong consistency check of
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both the assembly of the initial value and the α′-expansion of the F (5,2)
ab that each order of

limz4→0 F
(6,2) in α′ conspires to polynomials in sij . The coefficient of ζ2, for instance, has

the following entries in the first, third and fifth line,

(P (6,2)
2 )1a =

(
−s12s23−s12s24−s12s34−s13s34−s23s34, s13s24, 0, 0, 0, 0

)
a
,

(P (6,2)
2 )3a =

(
s12s23−s13s34−s23s34−s13s35−s23s35,−s13(s23+s34+s35),

− s12s24−s13s35−s23s35−s34s35, 0, 0, 0
)
a
, (A.40)

(P (6,2)
2 )5a =

(
− s12(s23+s24+s25+s34+s35), s13(s23+s24+s25+s34+s35),

− s12(s23+s24+s25+s35), s13s25,

− s12s23−s23s24−s12s25−s24s25−s12s35−s13s35−s234s35, s25(s13+s34)
)
a
,

while the remaining entries can be reconstructed from relabelling 2↔ 3. The explicit form
of the matrices P (6,2)

w ,M
(6,2)
w up to and including w = 9 and the braid matrices in (A.42)

below can be found in the supplementary material attached to this paper.
In contrast to the initial values (A.18) of the F (n,1)

ab which boil down to Riemann zeta
values ζk, the F (n,p)

ab with p ≥ 2 involve irreducible MZVs at depth ≥ 2 starting with ζ3,5.
The MZVs in the α′-expansion of F (5,2) known from string amplitudes [7, 145] propagate
to the initial value of F (6,2) as spelt out above. We have verified up to and including α′8
that the initial values (A.30) obey the coaction principle (3.19), e.g. that the coefficient
of ζ3,5 in P(6,2)M(6,2) is given by 1

5 [M (6,2)
5 ,M

(6,2)
3 ]. Moreover, the α′-expansion at finite z4

(cf. (4.13)),
F (6,2)(z4) = P(6,2)M(6,2)G(6,2)

{0,1}(z4) , (A.41)

involves the series in polylogarithms G(6,2)
{0,1}(z4) in (3.49) that depends on the transposes

E
(6,1)
0,z4 = (e(6,2)

41 )t and E(6,1)
1,z4 = (e(6,2)

45 )t of the braid matrices

e
(6,2)
41 =



s123+s24+s34 0 −s13−s23 −s12 −s12 s12
0 s123+s24+s34 −s13 −s12−s23 s13 −s13
0 0 s12+s24 0 −s12 0
0 0 0 s13+s34 0 −s13
0 0 0 0 0 0
0 0 0 0 0 0


,

e
(6,2)
45 =



0 0 0 0 0 0
0 0 0 0 0 0
−s35 0 s35+s34 0 0 0

0 −s25 0 s25+s24 0 0
−s35 s35 −s23−s25 −s35 s235+s24+s34 0
s25 −s25 −s25 −s23−s35 0 s235+s24+s34


. (A.42)

We have checked that the combination M(6,2)G(6,2)
{0,1}(z4) obeys the formulation (4.26) of the

coaction principle up to and including α′10. Moreover, since the F (6,2)
ab are the simplest
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instance where MZVs beyond depth one and polylogarithms coexist in the α′-expansion,we
highlight the following crosschecks at the α′9-order: the coefficients of G(1; z4) ⊗ ζ3ζ5
and G(1; z4) ⊗ ζ3,5 in ∆G(6,2)

{0,1}(z4) are indeed given by [[(e(6,2)
45 )t,M (6,2)

5 ],M (6,2)
3 ] and

1
5 [[M (6,2)

3 ,M
(6,2)
5 ], (e(6,2)

45 )t], respectively, in agreement with (4.24).
Finally, the F (5,2) in five-point string amplitudes exhibit a first dropout among the

MZVs at weight 18, which is due to the vanishing of [[M (5,2)
3 ,M

(5,2)
5 ], [M (5,2)

3 ,M
(5,2)
7 ]] [7, 61].

By their assembly from (n, p) = (4, 1), (5, 2) integrals in (A.30), the F (6,2) must share this
dropout, and we have cross-checked its consistency with the coaction principle by verifying
[[M (6,2)

3 ,M
(6,2)
5 ], [M (6,2)

3 ,M
(6,2)
7 ]] = 0.

Note that the soft limit s24, s34 → 0 of e(6,2)
41 , e

(6,2)
45 in (A.42) reproduces the five-point

instances of the arguments of the 6× 6 Drinfeld associator to assemble the α′-expansion of
F (5,2) [23, 70].

B Braid group, monodromies and analytic continuation

B.1 Obtaining X(n,p)(g) for any g ∈ Sn−p

In section 5 we have determined the analytic continuation of the F (n,p)-integrals from
zi < zi+1 to zi+1 < zi for unintegrated punctures i = p+2, . . . , n−2. The group action
of such braid operations σi,i+1 of neighboring punctures was explicitly given by matrices
X(σi,i+1) in (5.31). In this appendix we will discuss the composition of group operations
X(g1g2) for g1, g2 ∈ BN to reduce more general analytic continuations to the X(σi,i+1), and
mainly refer to [92] for facts about the braid group. This will also be relevant to show that
X is indeed compatible with the group structure and that we can recover monodromies by
doing the same braiding operation twice.

It is convenient to remember that there exists a canonical projection,

proj : BN → SN (B.1)

given by forgetting the details of how the punctures braid around each other.24 Let us call
gpr ∈ SN the image of an element g ∈ BN under this projection. Then, we can rewrite the
content of (5.30) as follows:

G̃(n,p)
(
σpr
i,i+1 (zp+2, . . . , zn−2)

)
= X(n,p)(σi,i+1)G(n,p) (zp+2, . . . , zn−2) , (B.2)

where the permutation σpr
i,i+1 acts on the indices of the punctures zi. In (B.2) we can

describe the braiding due to the element σ−1
i,i+1 by changing the sign in the exponential in

X(n,p)(σi,i+1). For g ∈ Bn−p, we can generalize (B.2) to

G̃(n,p) (gpr (zp+2, . . . , zn−2)) = X(n,p)(g)G(n,p) (zp+2, . . . , zn−2) , (B.3)

24One can also conveniently perform this map by replacing the generators of the braid group, σi,i+1 by
transpositions (i, i+1) ∈ SN.
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where we can define X(n,p)(g) recursively for the following formula for composing two group
elements, g1, g2 ∈ Bn−p:25

G̃(n,p)((gpr
1 g

pr
2 ) (zp+2, . . . , zn−2)

)
= G̃(n,p)(gpr

1 (gpr
2 (zp+2, . . . , zn−2))

)
(B.4)

= gpr
1

(
X(n,p)(g2)

)
X(n,p)(g1)G(n,p) (zp+2, . . . , zn−2) .

The permutation gpr
1 acts on the indices of the braid matrices in X(n,p)(g2), and not in any

way on the signs of the exponentials in this expression. From equation (B.4) we can read
off a formula for X(n,p)(g1g2):

X(n,p)(g1g2) = gpr
1

(
X(n,p)(g2)

)
X(n,p)(g1) . (B.5)

Because we can decompose any g ∈ Bn−p into generators σi,i+1 of the braid group, and we
know the form of X(n,p)(σi,i+1), we have obtained a prescription to compute any X(n,p)(g).

As a sanity check, we should verify that X(n,p) satisfies the equations of the presentation
of the braid group, (5.27). The first of these equations, exemplified in, X(n,p)(σ3,4σ5,6) =
X(n,p)(σ5,6σ3,4) follows easily from the algebra of braid matrices. We found the second of
these equations, exemplified by X(n,p)(σ3,4σ4,5σ3,4) = X(n,p)(σ4,5σ3,4σ4,5), harder to prove
in general, but checked explicitly that it holds for (n, p) = (7, 1) up to weight α′8.

B.2 Example: monodromies from braiding twice in (n, p) = (5, 1)

The monodromies of G(n,p) can be identified by the kernel of proj, which is a normal
subgroup of Bn−p, called the pure braid group, PBn−p. From our description of the gener-
ators of Bn−p, the simplest elements to describe in PBn−p are the squares of the generators,
σ2
i,i+1. Using X(5,1)(σ1,3) = exp(iπE(5,1)

3,1 ), the effect of braiding twice is described in a way
consistent with (5.2):26

X(5,1)(σ2
1,3) =M0,z3 . (B.6)

B.3 Example: analytic continuation from two braidings

For concreteness, we shall discuss an example with (n, p) = (7, 1) and suppress this super-
script. We will analytically continue from the integration domain 0 < z3 < z4 < z5 < 1 into
0 < z4 < z5 < z3 < 1 via two generators σi,i+1, where zi+1 is again taken counterclockwise
around zi in both cases. Expanding (B.4) for (g1, g2) = (σ3,4, σ4,5):

G̃(z4, z5, z3) = X(σ4,5)
∣∣
3↔4X(σ3,4)G(z3, z4, z5) (B.7)

= Φ(E51+E45, E35) exp (iπE35)Φ(E35, E31+E34)
× Φ(E41, E34) exp (iπE34)Φ(E34, E31)G(z3, z4, z5) .

25We are using a convention of composition of braidings and permutations consistent with σpr
34σ

pr
45 =

(34)(45) = (345).
26Note that in the (n, p) = (5, 1) case, there is no puncture z2 after integration, so punctures z1 = 0 and

z3 are neighbors. Furthermore, notice that we are braiding a puncture SL(2,C)-fixed to 0, which could
cause some problems due to regularization of terms G(~u; 0) with ~u ∈ {1, z}×. This is not a big problem if
the end result lies in PBn−p.
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We have checked this equation to be consistent with the conventions of PolyLogTools [90]
when the respective arguments obey arg(z3) > arg(z4) > arg(z5). We have performed such
checks for several terms up to and including α′5, i.e. for MPLs up to weight 5. One can
generate equations valid in other regions of {z3, z4, z5} by just changing the signs of the
exponentials in (B.7), or equivalently, by using the inverses of the braid operations, σ−1

3,4
or σ−1

4,5. For instance, the analogue of (B.7) for the braiding (σ−1
3,4, σ4,5) is consistent in the

region where arg(z4) > arg(z3) > arg(z5).

B.4 Initial values in an alternative fibration basis of polylogarithms

We shall here spell out examples of the modified initial conditions of the F (6,1) in section 5.3
that arise from a change of fibration basis for the polylogarithms in (5.21). More specifically,
the simplest instances of the matrices P̃ (6,1)

w and M̃ (6,1)
2k+1 in (5.24) read

P̃
(6,1)
1 =

 0 s24 0
0 −(s23+s24) 0
0 s23 0

 = −(e(6,1)
34 )t ,

P̃
(6,1)
2 =

 −s12(s23+2s24) −(2s12−s23−3s24)s24 0
s12(s23+s24) −3s2

23+s12s24−7s23s24−3s2
24 0

−s12(s23+s2,345) 3s2
23−s12s24+2s23s24−s13,2s25 −s134,2s25

 , (B.8)

P̃
(6,1)
3 =

 s12s24(s23+s24) (s12−s23−s24)s2
24 0

−s12(s23+s24)2 s2,34(s2
23−s12s24+3s23s24+s2

24) 0
s12s23(s23+s24) −s23(s23s2,34−s12s24) 0

 ,

M̃
(6,1)
3 =

 s12(s134,2s23+s2
24) s24(s12s24−s134,2s23) 0

s12(s12s24−s134,2s23) s24(s2
12+s134,2s23) 0

s12(s2
23+s1345,2s25−s12s24) s13,2s25s1345,2−(s2

12+s2
23)s24 s134,2s25s1345,2

 ,

where we use the shorthand sij...k,2 = si2+sj2+ . . .+sk2. Note that P̃ (6,1)
2 and M̃

(6,1)
3

evidently differ from the earlier P (6,1)
2 and M (6,1)

3

P
(6,1)
2 = −

 s12s23 0 0
s12(s23+s24) (s12+s23)s24 0
s12(s24+s25) (s12+s23)(s24+s25) (s12+s23+s24)s25

 , (B.9)

M
(6,1)
3 =

 s12s23(s12+s23) 0 0
s12(s134,2s24−s12s23) s13,2s24s134,2 0

s12(s1345,2s25 − s13,2s24) s13,2(s1345,2s25 − s13,2s24) s134,2s25s1345,2

 ,

which are extracted from the initial conditions (3.45) and tailored to an α′-expansion in
the fibration bases of (3.48).
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