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1 Introduction

Symmetries lie at the core of every quantum field theory (QFT). They restrict possible
interactions and thereby shape the physical properties of QFTs. For example, in effective
theories for solid state physics, a plethora of global symmetries is realized. Here, the
interplay of continuous and discrete symmetries contributes to the rich phenomenology on
these scales. Zooming in towards more microscopic scales, this picture changes. At particle
physics scales, continuous symmetries which can be gauged are predominant. In particular,
the Standard Model (SM) of particle physics does not realize discrete internal symmetries
beyond simple reflections. This observation triggers the immediate question, whether there
is a fundamental mechanism that prohibits discrete internal symmetries.

One possible answer could come from the interplay of the SM with quantum gravity.
This interplay shapes the properties of nature at the most fundamental level: the structures
of the SM arise from — or at least are constrained by — the consistency of a microscopic
matter-gravity model. Within an approach to quantum gravity, one could hence aim to
identify which symmetries are permitted.

One example of this idea is given by recent progress on asymptotically safe gravity-
matter models, where the constraining power of asymptotic safety might narrow down
the allowed field content [1–8], values of couplings [9–13], and masses [13–19] as well as
dimensionality [20], see [21–25] for reviews. Another prominent example is the swampland
program in string theory that aims at delineating the boundary between theories that
could arise from a string theory and those that could not, see [26] for a review. Within
this context, arguments against the existence of global continuous symmetries exist [27–30]
and have been substantiated to some degree [31–33] in AdS/CFT. In their simplest form,
these arguments rely on the incompatibility of the conservation of a global charge and a
complete Hawking evaporation of black-hole solutions that would follow by an extension of
semi-classical arguments into the quantum-gravity regime. Along a similar line, arguments
related to a finite lifetime of a de Sitter geometry have been invoked to argue against the
realization of spontaneously broken discrete symmetries [34].

In this paper, we explore whether discrete symmetries could be part of a quantum-field
theoretic and ultraviolet (UV) complete description of nature within the asymptotic-safety
paradigm. Asymptotic safety is the realization of quantum scale symmetry in the UV,
a.k.a. an interacting fixed point of the Renormalization Group (RG) flow. In contrast to
classical scale symmetry, quantum scale symmetry [35] holds in the presence of quantum
fluctuations, which naturally induce a scale dependence in the dynamics, expressed in
scale-dependent couplings. Realizing quantum scale symmetry therefore requires a delicate
balance between various interactions that constrains the UV regime. Even once a non-
vanishing RG flow sets in, the microscopically realized quantum scale symmetry leaves its
imprints and leads to predictive power for the infrared (IR) regime. For instance, there are
several known examples where quantum scale symmetry at microscopic scales prohibits a
non-vanishing value for a specific coupling in the IR, e.g., [14, 36–38]. These IR constraints
on interaction structures are like the Cheshire cat’s smile of asymptotic safety or quantum
scale symmetry: in the IR, the symmetry is no longer realized, but it leaves its imprints
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through constraints on the values of couplings. This gives rise to the constraints on matter
content, masses, couplings, and potentially even dimensionality, as mentioned above. Here,
we expand these results by exploring whether and why fundamental QFTs might prefer
continuous symmetries over discrete ones.

To do so, we focus on a particular subclass, namely Zn symmetric interactions and
investigate two questions:

1) Can an interacting fixed point feature a global Zn symmetry in the presence of quan-
tum gravity?

2) Can Zn symmetric interactions appear along the RG flow as relevant perturbations
of a gravity-matter fixed point with a larger (continuous) symmetry group?

Answering these allows to decide whether or not a discrete symmetry can be realized in
the IR in a model that is asymptotically safe in the UV.

Within the scenario that we consider here, we work with a complex scalar field that
naturally features a U(1) global symmetry if all Zn symmetric interactions are set to zero.
We first consider a purely scalar system and then extend this system by a fermion charged
under the global U(1) to explore the impact of fermionic fluctuations on our results. The
spontaneous breaking of the U(1) symmetry is associated with an energy scale which sets
the mass scale for the massive mode. In order to separate this mass scale from the cutoff
scale of the theory, i.e., the scale of new physics, a fine-tuning of the initial conditions for
the RG flow of the mass parameter is required. The explicit breaking of the U(1) to a Zn
sets a second mass scale, associated with a mass for the pseudo-Goldstone mode. A large
hierarchy between these two scales arises “naturally” without any additional fine-tuning
in this setting [39]. We will discuss this mechanism in more detail in section 5 and will
explore its embedding into a UV completion to answer the question

3) Can Zn symmetric interactions lead to a large separation of energy scales in an
asymptotically safe and approximately U(1)-symmetric theory?

To tackle these three questions, we apply the functional renormalization group (FRG) that
we review in section 2. Additionally, we discuss symmetries in this context. In section 3 we
then introduce quantum gravitational effects into the RG flow. With these preconditions
we first study discrete symmetries within asymptotic safety in section 4. We then proceed
to explore the generation of mass hierarchies in more general effective-field theory settings
in section 5.

2 Setup and method

2.1 Functional renormalization group

Using the FRG, we integrate out quantum fluctuations momentum shell by momentum
shell. On the one hand, this allows to construct the effective dynamics from a given
underlying microscopic dynamics. On the other hand, it allows to search for points in the
space of couplings where the integration of momentum shells does not trigger a change
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in the couplings, i.e., RG fixed points. This is implemented by considering the scale-
dependent effective action Γk, a generalization of the effective action that takes into account
all quantum fluctuations with momenta q2 > k2. The scale-dependent effective action is
obtained by introducing a mass-like regulator Rk that suppresses fluctuations with q2 < k2.
The scale dependence of Γk is given by the flow equation [40–42]

∂tΓk = 1
2 Tr

(
∂tRk

(
Γ(2)
k +Rk

)−1
)
, (2.1)

with t = log(k/k0) and k0 a reference scale. Here, Γ(2)
k is the second variation of Γk with

respect to the fluctuating fields. The trace symbolizes a trace in field space, as well as
in momentum space and over spacetime and any internal indices. For Grassmann-valued
fields it acquires an additional minus sign. For k → 0, all fluctuations are integrated out
and one obtains the effective action, Γ = Γk→0.

For gravity, the use of this framework has been pioneered in the seminal work of
M. Reuter [43], leading to substantial evidence for asymptotic safety in gravity, see,
e.g., [44–58], see [22–25, 59–62] for recent reviews and lecture notes.

While (2.1) is an exact equation, in practice one needs to truncate the effective action
Γk to a subset of all operators compatible with the symmetries. By projecting onto these
operators, one can extract the scale dependence of the couplings, i.e., their beta functions,
from (2.1). For reviews of the method in the context of various fields of physics, see [63–66].

Consider the beta function for a dimensionless coupling g = k−dḡ ḡ with ḡ the dimen-
sionful counterpart and dḡ its canonical scaling dimension. It can be written as

βg = −dḡ g + b(g), (2.2)

with b(g) a term induced by interactions that is typically of higher order in the couplings.
Neglecting this term, the scale dependence of dimensionless couplings is hence

g = g(k0)
(
k

k0

)−dḡ
. (2.3)

Accordingly, canonically relevant (irrelevant) couplings increase (decrease) towards the IR.
This is still true in a perturbative regime, where the scaling dimensions receive corrections
from quantum fluctuations, but the signs of quantum scaling dimensions typically agree
with the canonical dimension. This distinction will be key for the phenomenological im-
plications in section 5. Finally, for canonically marginal couplings with dḡ = 0, quantum
fluctuations can render them marginally relevant or marginally irrelevant.

2.2 Implementation of asymptotic safety

Asymptotic safety provides well-defined initial conditions in the microscopic limit, i.e., as
k → ∞. These are provided by a fixed point g∗, βg|g=g∗ = 0. Towards the IR, deviations
from the fixed point can either grow or shrink. They grow/shrink if the critical exponent

θi = −Eigi
(
∂βgj
∂gl

)
(2.4)
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is positive/negative. The corresponding eigendirection is called a relevant/irrelevant di-
rection. The value of every irrelevant superposition of couplings1 is fixed when flowing
towards the IR. Along such directions, quantum fluctuations act to restore quantum scale
symmetry. Conversely, quantum fluctuations act to increase the breaking of quantum scale
symmetry along the relevant directions, for which the deviation from the fixed-point value
can in principle grow large. Thus, the values of relevant couplings need to be fixed by
measuring them at a reference scale k0.

If an eigendirection is approximately aligned with a coupling g and interactions are
negligible, then the corresponding critical exponent is determined by the canonical scal-
ing dimension of g, as apparent from (2.2). Accordingly, as long as the system is in a
near-perturbative regime, the canonical scaling dimension of operators provides guidance
on how to set up robust truncations. Within the context of asymptotically safe gravity-
matter systems, the assumption of near-perturbativity is supported by numerous results
in the purely gravitational sector [50, 55, 67–70], as well as in the interplay of gravity
and matter [10, 38, 71–74]. In particular, in gravity-matter systems, the coupling of suf-
ficiently many fermion and vector fields could drive the system into a more perturbative
regime [1, 73].

2.3 RG flow and symmetries

The space of all couplings corresponding to all possible interactions, unrestricted by any
global symmetries, constitutes the most general theory space. Each global symmetry de-
fines a hypersurface in theory space. Unless an explicit breaking of the symmetry is in-
troduced by the regulator, the flow preserves the global symmetry and therefore remains
in the symmetric hypersurface, once it starts within that surface.2 This follows, as the
most symmetric form of the propagator (Γ(2)

k +Rk)−1 which drives the flow, see eq. (2.1),
exhibits all symmetries of the kinetic term.

One may break the symmetries of the kinetic term by means of additional interactions,
i.e., by allowing initial conditions for the RG flow outside the symmetry-enhanced hyper-
surface. Consider the additional couplings g′i, g′j , . . . corresponding to a group G′ which is a
subgroup of the symmetry group G of the kinetic term.3 In other words, the corresponding
interactions break the original symmetry group G down to one of its subgroups. For in-
stance, the propagator for a complex scalar field respects a global U(1) symmetry, which is
not respected by the coupling of a Z3 symmetric interaction φ3 +(φ∗)3. The corresponding
beta function for g′i necessarily vanishes if all g′i, g′j , . . . are set to zero, i.e., the flow does
not break the global symmetry G. Thus the flow of symmetry-breaking couplings can only
be nonzero if at least one symmetry-breaking coupling is nonzero.

1At an interacting fixed point, the eigenvectors of the stability matrix
∂βgj

∂gl
are typically not aligned with

the original couplings gi, instead it is typically superpositions of couplings which are relevant/irrelevant.
As long as the fixed point is near-perturbative in nature, this mixing is typically negligible.

2Local symmetries differ in that they are typically violated by the introduction of the regulator, thereby
the flow does not remain in the symmetric hypersurface and symmetry identities have to be imposed, see,
e.g., [24, 64].

3Here, we assume that no additional kinetic terms are compatible with G′. This is the case for the
Zn, n ≥ 3 symmetries we consider below.
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A nontrivial zero of the flow could arise at finite values of the couplings g′i, g′j , . . . .
Such an additional fixed point would feature the reduced symmetry G′. A simple example
of such a case for a scalar field would be a fixed point at finite φ4 coupling, breaking
the shift symmetry of the kinetic term. If such an interacting fixed point does not exist,
this prevents G′ from being realized (in a non-trivial way) in the UV. The only remaining
fixed-point will be the Gaußian fixed point of G′, g′i = g′j = · · · = 0.

For the RG flow towards the IR, there are two possibilities: i) If there is a relevant
coupling associated to deviations from that fixed point, the theory could still exhibit the
smaller symmetry G′ in the IR instead of the full symmetry G. ii) If the Gaussian fixed
point only features irrelevant directions outside the hypersurface defined by G, even the
IR theory is prevented from exhibiting the symmetry G′ within an asymptotically safe
theory. This would put the symmetry into the “asymptotically-safe swampland”, as it
cannot emerge from an asymptotically safe UV fixed point.

3 Quantum gravitational effects

We will now focus on the case of a complex scalar field φ, which features a global U(1)
symmetry. All U(1) symmetric interactions are denoted by λ̄i, and their dimensionless
counterparts by λi. Additionally, we consider interactions which explicitly break the global
U(1) symmetry to a global Zn symmetry. These interactions are parameterized by the
couplings z̄i and their dimensionless counterparts zi. To explore the impact of fermionic
fluctuations on the scalar potential, we also consider a Dirac fermion coupled to the complex
scalar via a Yukawa coupling y.

Within asymptotic safety, the breaking of a global U(1) symmetry to a global Zn
symmetry in the UV would require an interacting fixed point for the couplings in the Zn
sector. A breaking of the global U(1) to a global Zn symmetry in the IR is compatible with
a non-interacting fixed point, but only if a Zn symmetric coupling is associated to a relevant
direction. To study whether any of these two scenarios can arise at trans-Planckian scales,
one needs to take into account gravitational fluctuations. In the following, we discuss the
contributions of these fluctuations to the beta functions of scalar couplings.

3.1 Structure of gravitational contributions

The three generic gravitational contributions to the beta function of a momentum-
independent scalar n-point coupling zn are depicted in figure 1. All of them are pro-
portional to zn. This is a direct consequence of the one-loop structure of the flow equation,
together with the fact that the flow equation preserves global symmetries. They can hence
be accounted for by introducing a term4

∆βzn = −fs(Λ, g)zn, (3.1)

into the beta function for zn. Thus,

βgrav
zn = βw/o grav

zn + ∆βzn , (3.2)
4Note that different conventions for the sign of this gravitational contribution are also chosen in the

literature.
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Figure 1. We show the three diagrams involving gravitational fluctuations (curly lines) that form
the dominant gravitational contributions to the beta function of an n-point scalar coupling. The
second and third diagram also come in the form where the regulator insertion sits on the internal
scalar lines.

is the full beta function including gravitational fluctuations. The gravitational contribution
effectively acts as a gravity-induced anomalous dimension fs(Λ, g) which depends on the
fixed-point values of the dimensionless version of the cosmological constant Λ and the
Newton coupling g and further gravitational couplings.

In a heuristic picture, one can think of quantum fluctuations of spacetime as changing
the “effective” spacetime dimensionality that matter fields “experience”. In the simplest
approximation, fs is independent of additional couplings in the matter sector. The term
fs does not depend on n nor the symmetry structure of the coupling, i.e., it is the same
for a U(1)-breaking coupling zn and a U(1) symmetric coupling λn. This is a consequence
of the fact that the gravitational field is “blind” to the internal symmetries that matter
fields exhibit. In fact, the same gravitational contribution is at the heart of a proposed
mechanism that makes the ratio of the Higgs mass to the electroweak scale calculable from
first principles in asymptotic safety [14].

In each sector defined by its own symmetry G′, eq. (3.1) holds for the coupling of
the lowest-order interaction. For higher-order couplings, additional gravitational contribu-
tions arise which are proportional to the lower-order couplings in the G′-sector. For our
argument, it is sufficient to focus on the lowest-order couplings.

We neglect non-minimal couplings to gravity, such as ξφφ∗R, with R the Ricci scalar.
This does not affect our main argument regarding Zn symmetric couplings. More specifi-
cally, in the absence of fermionic fluctuations, such non-minimal couplings feature a van-
ishing fixed-point value, see, e.g., [38, 75]. In the presence of fermionic fluctuations and
finite Yukawa couplings, such a non-minimal coupling can be present, but does not affect
the sign of fs [38]. Additionally, non-minimal couplings that respect the Zn symmetry
vanish, as long as we focus on fixed points at which the U(1) symmetry is unbroken at the
fixed point, as we do for the main body of the paper. For the studies in the appendix, it is
important to note that such non-minimal couplings are of canonically higher order (even
compared to the zn-coupling) and could therefore be expected to be subleading, at least
at near-perturbative fixed points.

Similarly, we parameterize the contribution of gravitational fluctuations to the beta
function of Yukawa couplings by a factor fy. The beta function for the Yukawa coupling
then reads [10, 15, 76–80]

βy = 1
4π2 y

3 − fy(λ, g)y. (3.3)

The part cubic in the Yukawa is the universal one-loop result.
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The contributions fy and fs are typically obtained in Euclidean signature. While one
can relate these results to the Lorentzian ones via an analytical continuation on a fixed
background with an appropriate Killing vector, in the context of gravity this procedure is
more subtle, see, e.g., [81]. We assume that the Euclidean computations can be applied to
obtain a qualitative understanding of the Lorentzian theory.

3.2 Effect of gravitational contributions

The two quantities fs and fy parameterize the influence of gravitational fluctuations on
matter couplings. Within asymptotic safety both depend on the fixed-point values for
the gravitational couplings. In turn, the fixed-point values for (Λ, g) and higher-order
gravitational couplings depend on the matter content of the theory [1–5, 7, 73, 82, 83].
Additionally, in current state-of-the-art computations, they depend on a variety of technical
choices, see, e.g., [84–86] that leave a relatively large theoretical uncertainty on fs and
fy, see, e.g., [78]. We do not assume specific values here. Instead we vary fs and fy
to parameterize the impact of gravitational fluctuations and explore which dynamics is
accessible in the quantum-gravity regime.

While the magnitude of fs depends on the gravitational fixed-point val-
ues [36–38, 87, 88], see also [75, 79, 89–91] for works which evaluate it at a given grav-
itational fixed point, its sign is generally found to be negative. Evaluated at the Gaußian
fixed point for matter couplings, the resulting positive linear contribution (3.1) drives
scalar couplings towards irrelevance. Beyond the Gaußian matter fixed point at finite
gravitational but vanishing matter couplings, no other fixed points have been found in
pure scalar-gravity systems [36, 37, 75, 87, 89–92].

In an appropriate regime of the quantum gravitational parameter space, fy > 0 might
be realized [10, 38, 78, 87], triggering the emergence of an interacting fixed point in the
Yukawa coupling, cf. eq. (3.3). At this interacting fixed point, y is irrelevant. This struc-
ture might even allow for a computation of the top mass within the asymptotic-safety
framework [10, 15, 16, 93]. In turn, the non-vanishing value of the Yukawa coupling breaks
the shift symmetry associated with the Gaußian fixed point and induces a nontrivial scalar
potential [12, 13, 38].

Consequently, there are two scenarios: (i) if all Zn-symmetric matter-couplings vanish
in the UV, only relevant couplings can trigger deviations from the U(1) symmetry in the
IR. (ii) Alternatively the Zn-symmetric sector itself might feature an interacting fixed point
that breaks shift symmetry. We will discuss both scenarios in the following.

4 Discrete symmetries in asymptotic safety

We first focus on models that contain a single complex scalar field φ and then explore
how our conclusions are affected in models with more than one scalar field. We consider a
complex scalar field φ with the (scale-dependent) effective action

ΓU(1)
k =

∫
d4x
√
g (Zφgµν∂µφ∗∂νφ+ V (φ, φ∗)) . (4.1)
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The potential
V (φ, φ∗) = VU(1)(φφ∗) + VZn(φ, φ∗), (4.2)

is split into a U(1) invariant part VU(1) and a part VZn that implements the discrete sym-
metry [39, 94–99]. We additionally introduce a Dirac fermion ψ with the effective action

Γferm
k =

∫
d4x
√
g
(
iψ̄ /∇ψ + y

(
φ∗ψ̄RψL−φψ̄LψR

))
, (4.3)

where the subscripts R and L mark the right- and left-handed part ψL/R = PL/Rψ and
PL/R = 1

2 (1± γ5). For more details on our conventions in the fermionic sector, see,
e.g., [100, 101]. While fermionic fluctuations are not key for the arguments presented
in this section, due to the negative sign of their contribution in the beta function for the
scalar mass, they drive the scalar potential towards a symmetry-broken regime under the
RG flow to the IR, as is well known also from the Standard Model [102]. This will become
important in the analysis of phenomenological consequences of discrete symmetries in sec-
tion 5. For this reason we choose to include the Yukawa coupling whenever we present
explicit results in this section and the appendix.

We expand the U(1) invariant part of V (φφ∗) in terms of the U(1) invariant φφ∗ as

VU(1) (φφ∗) =
imax∑
i=1

λ2i
i! (φφ∗)i. (4.4)

The additional interaction that we introduce breaks the global U(1) symmetry to a Zn
symmetry

VZn(φ, φ∗) = z̄n (φn + (φ∗)n) , (4.5)

with z̄n a dimensionful coupling and canonical dimension

[z̄n] = d− n . (4.6)

In addition, we consider a wave-function renormalization Zφ, leading to contributions from
the anomalous dimension ηφ = −∂t lnZφ in the beta functions. The corresponding con-
tributions to the beta function βzn have the form ηφzn and are hence important to decide
whether or not a coupling is relevant at the free fixed point. Let us make a technical remark
regarding ηφ: we do not take into account the contributions from regulator derivatives in
the numerator of the flow equation. These correspond to higher-order corrections and are
expected to be negligible in the near-perturbative setting we explore.

As indicated before, the canonical relevance or irrelevance of the leading Zn-symmetric
coupling zn is of central importance. We hence consider the canonically relevant case n = 3,
the marginal case n = 4, and the irrelevant case n > 4 separately. Before we go into more
depth regarding the argument in each case, we briefly summarize our results.

For each case we first study the UV structure, i.e., whether it features an interact-
ing fixed point and whether this fixed point is near-perturbative. The latter requirement
means that canonical scaling dimensions and quantum scaling dimensions are in approxi-
mate agreement. This is key for our truncation of the effective action to reliably capture
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the dynamics. We then determine the (ir-)relevance of the corresponding couplings, and
whether a generation of the Zn symmetric interaction is possible along the RG flow.

We find that for Z3, an interacting fixed-point might exist beyond the near-perturbative
regime. In addition, the corresponding coupling is relevant at the Gaussian fixed point in a
significant part of the gravitational parameter space. The case n = 4 is more constrained;
whether it features a near-perturbative interacting fixed point is discussed in appendix A.
It generically does not generate Z4 symmetric interactions towards the IR, starting from
the free fixed point. The case n > 4 neither features an interacting near-perturbative fixed
point, nor relevant directions to depart from the Gaußian fixed point. While this result
holds in truncations, we will argue that it persists under an extension of the truncation.

For the fixed-point search, we will exclusively focus on the symmetric regime and work
under the assumption that a fixed point in the symmetry-broken regime should show up
in our truncations as a fixed point with negative mass parameter.

4.1 General case: Zn with n > 4

To explore whether there is an interacting fixed point, we study the beta function for
a coupling zn in the Zn symmetric sector. We focus on the near-perturbative case and
comment on the general case in appendix A. Our argument relies on the following three
observations:

i) Already the lowest-order coupling zn in a given Zn symmetric sector corresponds to
an interaction that has n external legs; therefore there cannot be a contribution z2

n

in the beta function βzn for n > 4 due to the one-loop structure of the flow equation.
In fact, all couplings in a Zn symmetric sector with n > 4 only occur linearly in their
beta functions.5

ii) The lowest-order coupling zn in a given Zn symmetric sector has negative canonical
dimensionality for n > 4, i.e., it is canonically irrelevant.

iii) Quantum gravitational contributions act like an anomalous scaling dimension for a
given lowest-order Zn-symmetric coupling, i.e., they contribute linearly to the beta
function of that coupling.6 That scaling dimension is negative, i.e., shifting couplings
towards irrelevance, cf. also section 3.2.

Let us first provide a simple argument that focuses only on zn and neglects higher or-
der couplings and then in a second step discuss how it generalizes beyond that simple
approximation.

5A diagram contributing to βzn needs to have n external legs. The identity L = I − V + 1 with L, I
and V the number of loops, internal legs and vertices, respectively, reduces to I = V for L = 1, which is
the flow-equation case. Accordingly, by adding one vertex, one also adds an internal line. Thus, an n-point
vertex contributes n − 2 external legs (notice that each internal line is connected to two vertices). For a
diagram containing i vertices proportional to zn we hence end up with (a minimum of) (n− 2) · i external
legs. But we require (n − 2) · i ≤ n. This can be rewritten as n ≤ 2i

i−1 . For i ≥ 2 this requires n ≤ 4. In
particular βzn does not contain any term quadratic or higher in zn for n > 4. A similar argument applies
for the anomalous dimension.

6For higher-order couplings zi in a given Zn-symmetric sector, gravitational contributions proportional
to (powers of) lower dimensional couplings contribute, if the corresponding couplings exist.
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Due to points i) and iii), the beta function for zn is linear in zn, i.e.,

βzn = −dz̄n zn − fs zn, (4.7)

with the canonical dimension dz̄n < 0, since zn is canonically irrelevant. The only fixed-
point solution is

zn ∗ = 0. (4.8)

Canonically, zn is irrelevant at that fixed point, expressed in the negative critical exponent

θw/o grav = dz̄n < 0. (4.9)

This cannot be changed under the impact of quantum gravity, since the full critical expo-
nent is

θ = dz̄n + fs < 0, (4.10)

since fs < 0 and dz̄n < 0. Therefore, zn is not just zero at the UV fixed point, but has to
remain zero at all scales.

Going beyond the simplest approximation for the Zn symmetric sector, higher-order
couplings exist which can feed back into βzn (see, e.g., the coupling z4,2 in eq. (4.12)
below). As zn itself can appear in those beta functions, we can mimick their effect by
higher-order zαn , α ≥ 2 terms in βzn . Once such terms exist, a nontrivial zero of βzn can
arise as a consequence, depending on the sign of the higher-order term. Yet, such a zero
can only exist if it was already present without the impact of quantum gravity, i.e., if four-
dimensional scalar field theory on its own was asymptotically safe with an appropriate Zn
symmetric term. As we discuss in appendix A, we find no indications for the existence of
such a fixed-point.

The argument presented above holds in d ≥ 4 spacetime dimensions, as long as fs < 0
holds in d ≥ 4 (see, e.g., appendix C of [89]), since dz̄n = d+ n− d · n/2. Accordingly, for
d = 4, the case of Z4 is the case with a canonically marginal coupling; for all n > 4, the
above argument holds. For d = 6 and fs < 0, not only the leading Z4-symmetric interaction,
but even the leading Z3 symmetric interaction are already canonically irrelevant.

4.2 The Z3-symmetric case

4.2.1 UV fixed point

In the Z3-symmetric case, we first focus on the fixed point at which z3 ∗ = 0, which is guar-
anteed to exist. As the gravitational sector is interacting, the critical exponents associated
to the matter sector are not the canonical scaling dimensions, but acquire additional con-
tributions from the interacting gravity sector. Specifically, the critical exponent associated
to z3 at z3 ∗ = 0 is

θz3 = 1 + fs, (4.11)

since ηφ = 0 at that fixed point within our truncation. For fs > −1, the coupling remains
relevant. Accordingly, nonzero values of this coupling can be reached in the IR by the
RG flow starting from a joint gravity-matter fixed point. In the region of gravitational
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parameter space in which fs > −1, the existence of Z3 symmetric interactions is compatible
with asymptotically safe gravity within our truncation.

Additionally, a fixed point at z3 ∗ 6= 0 is not a priori excluded. However, if it exists,
it cannot be near-perturbative. We do not consider such a fixed point in the main text
and refer to appendix B for a brief discussion of this scenario where a fixed-point candi-
date is identified and the deviations of the scaling spectrum from perturbative scaling are
calculated.

4.2.2 Flow towards the IR

The presence of a Z3 symmetric coupling could lead to an intriguing IR phenomenology,
which we briefly highlight here. If the U(1) symmetry is broken spontaneously in the
absence of a Z3 coupling, a massless Goldstone boson is present. In the presence of a Z3
coupling, it acquires a mass proportional to the z3 coupling. In the spirit of the mechanism
presented in detail in section 5, one could expect that in this case an inverted mass hierarchy
might be realized, with the pseudo-Goldstone boson becoming more massive than the other
massive mode. The underlying mechanism relies on canonical power counting: the coupling
z3 is canonically relevant. Thus, it grows towards the IR. If the vacuum expectation value
is tuned towards criticality, such that the ratio between the Planck scale and the vev is
large, then naively one would expect the mass ratio between pseudo-Goldstone mode and
massive mode to become large. However, this scenario is not realized in our truncation: as
long as one only accounts for the coupling z3, the mass ratio in the corresponding potential
is bounded Mlong/Mtrans > 1/3, with Mlong/trans the two mass eigenvalues.

In this respect, the scenario we consider here differs from the one considered in [97].
In our case, the bounded mass ratio arises because z3 contributes to both, the transversal
as well as the longitudinal mass. In [97] the effective potential is constructed in field-
space coordinates adapted to keep the minimum fixed in radial direction. This requires
the inclusion of a non-analytic term (φφ∗)3/2. Such terms then might allow to generate an
inverted mass hierarchy.

Finally, we point out that if the addition of a Z3-symmetric coupling z3 circumvented
the triviality problem of φ4 theory, z3 would be irrelevant, see appendix B and the mass
ratio between longitudinal and transverse modes would become calculable.

4.3 The case Z4

In the case n = 4, we focus on the beta function for the coupling z4 in the near-perturbative
regime; for a discussion of the non-perturbative regime see appendix A. The beta function
for z4 reads

βz4 = (2ηφ − fs)z4 + (6− ηφ)λ4z4
8π2(1 + λ2)3 −

5(6− ηφ)z4,2
96π2(1 + λ2)2 . (4.12)

Here, z4,2 is the coupling belonging to an interaction (φφ∗)(φ4 +(φ∗)4). Neglecting gravita-
tional corrections, fs = 0, the coefficient of the term linear in z4 remains positive as long as
λ4 remains positive. A near-perturbative fixed point could arise if z4 would become relevant
at the (potentially shifted) Gaußian fixed point, or correspondingly the linear coefficient
would change sign. We find that this is not the case:
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(i) Without gravitational corrections, we do not discover a near-perturbative interacting
fixed point, see appendix A.

(ii) Gravitational corrections are known to shift scalar couplings towards irrelevance,
fs < 0. They hence strengthen the irrelevance of the coupling z4 at the free fixed
point.

Hence, it is impossible to generate a finite z4 by flowing towards the IR. Therefore, our
results indicate that in the IR a Z4 symmetry is not realized in an asymptotically safe
theory in the near-perturbative regime and instead, the larger U(1) symmetry remains
unbroken.

4.4 Extension to two-field models

One can extend the results from the previous subsections to the case with more than one
field. If each of the fields is charged with a charge of one under the Zn group, the discussion
of the previous subsections apply.

If various fields are charged differently, more elaborate constructions are possible. In
appendix C we discuss an example, that implements the following simple idea: consider
a Z6 symmetry and a scalar φ with charge 1 under that symmetry. If one adds a second
scalar χ, charged with charge −2 under this symmetry, the second scalar is also charged
under the Z3 subgroup of the Z6. By the arguments of the last section, all couplings in the
φ sector vanish at a fixed point, as long as the two sectors are not coupled.

The situation changes if one introduces a portal from the φ to the χ sector. Non-
vanishing coupling values in the χ sector can generate interactions in the φ sector. In
particular, this induces the Z6 symmetry in the φ sector. More generally, this mechanism
bypasses some of the results of the last section by transferring the explicit U(1) violation in
terms of an effective Z3 symmetry from the χ sector to a Z3q sector by means of a portal,
where q is the charge of the scalar χ. We highlight that the corresponding interacting
fixed point is likely not of near-perturbative nature as it features deviations in the critical
exponents from the canonical scaling dimension that are O(1) (cf. eq. (C.4)).

Due to the significant technical complexity, we do not compute the beta functions in
the symmetry broken regime and do not explore the flow towards the IR, but merely point
out that multi-field scenarios could provide a possible mechanism to circumvent the results
in the single-field case we have presented in the last subsections.

5 Discrete symmetries in the effective-field-theory approach to quantum
gravity

Let us now broaden our point of view beyond asymptotic safety. In fact, any predictive UV
completion could leave a testable imprint in the IR by fixing the initial conditions for the
RG flow in the UV, and thereby the value of IR parameters. Generically, this happens in
two steps: beyond a momentum scale kUV, physics is governed by the UV completion, and
may not necessarily be formulated as a local quantum field theory. Below kUV, a quantum
field theoretic regime must set in. This is necessary in order to connect the UV completion
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to known physics in the IR, given that all experimental data on particle physics are well-
describable within a quantum field theory. The initial conditions for the RG flow of the
couplings in the QFT at the scale kUV are determined by the UV completion. Depending
on how predictive the UV completion is, there might be a range of initial conditions or just
a single value that is compatible with the UV completion. The mapping from kUV into the
IR then proceeds via the standard RG flow.

In this section we remain agnostic about the particular UV completion. Instead, we
take an effective field theory point of view and explore which phenomenology can arise from
given initial conditions at kUV. We choose kUV ≥ MPlanck. Motivated by the conjecture
that quantum gravitational effects could break global symmetries, at least in some selected
quantum-gravity approaches, we assume that the U(1) symmetry is not protected in the
quantum gravitational regime. Accordingly, we assume finite values of the Zn symmetric
interactions at kUV and explore the resulting phenomenology. In short, the scaling (2.3) can
induce large mass hierarchies in a natural way. In this section, we discuss this mechanism
and (i) study the structure of the relevant effective potential, (ii) explore how the RG flow
generates a mass hierarchy in a natural way and (iii) investigate how quantum gravitational
fluctuations impact the Zn symmetric couplings which lie at the heart of the hierarchy-
generating mechanism. Lastly, we provide a specific example to illustrate this mechanism.

5.1 Classical analysis

In order to understand the vacuum structure of the effective scalar potential, we first neglect
the Zn interaction and consider a purely U(1) invariant potential in the spontaneously
symmetry-broken regime, where we employ an expansion of the effective potential around
a non-vanishing minimum κ̄, i.e.,

VU(1)(φφ∗) = λ4
2 (φφ∗ − κ̄)2 . (5.1)

In general, quantum fluctuations also generate higher-order terms in the effective potential.
For simplicity, we only consider the lowest-order term here which suffices for our analysis.
This potential is sketched in the left panel of figure 2. Excitations around the minimum in
the radial direction acquire a finite mass

Mlong =
√

2κ̄λ4 . (5.2)

In contrast, excitations in the transversal (angular) direction remain massless, Mtrans = 0,
corresponding to the Goldstone mode.

U(1)-breaking Zn-symmetric interactions, cf. eq. (4.5), destroy the flatness of the po-
tential along the angular direction. In consequence, the explicit U(1) symmetry breaking
by the Zn symmetric interaction turns the Goldstone boson into a pseudo-Goldstone boson.
Its mass is set by the symmetry-breaking coupling. To derive the mass, we redefine the Zn
symmetric interaction introduced in eq. (4.5) as

VZn(φ, φ∗) = z̄n
(
− [φn + (φ∗)n] + 2(−1)n(φφ∗)

n
2
)
. (5.3)
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z6 = 0 z6 ≠ 0

ϕ1 ϕ1

ϕ2ϕ2

Figure 2. Potential with vanishing/non-vanishing Z6 coupling z6 on the left/right. The massless
U(1) Goldstone mode acquires a mass, once the U(1) symmetry is broken to a Z6 symmetry. We
plot the potential for φ1, φ2 with φ = 1√

2 (φ1 + iφ2).

This redefinition introduces non-analyticities for odd n. In the following, we exclusively
consider the case of even n, with n > 4. The full effective potential with the U(1) breaking
term from eq. (5.3) acquires n degenerate minima, cf. right panel in figure 2. In the limit
zn → 0, or also n → ∞, these merge to form the familiar U(1)-manifold of degenerate
minima.

The redefinition of the potential according to eq. (5.3) by adding the term ∝ (φφ∗)
n
2

implies that the position of the minimum along the φ1 direction is located at φ1 |min = ±
√

2κ̄
as in the U(1) case, cf. eq. (5.1). Without loss of generality we focus on the minimum
at (φ1, φ2) = (−

√
2κ̄ , 0) in the following. This redefinition is convenient as it allows to

disentangle the effect of the zn coupling onto to the two massive modes, as also done in [97].
To obtain the masses, we diagonalize the mass matrix, i.e., the matrix of second deriva-

tives of the action with respect to the two fields, evaluated at constant field values, around
that minimum. The masses are given by

M2
long = 2κ̄λ4 , (5.4)

M2
trans = n2z̄nκ̄

n
2−1 , (5.5)

M2
ferm = y2κ̄. (5.6)

The transversal mass is proportional to z̄n and, hence, it does not vanish anymore, once z̄n is
finite. Note that due to the parametrization chosen in eq. (5.3), the form of the longitudinal
mass does not change as compared to the U(1) case,7 cf. eq. (5.2). The (dimensionless)
ratio of the scalar masses is

γ ≡ M2
trans

M2
long

= n2z̄nκ̄
n
2−2

2λ4
= n2znκ

n
2−2

2λ4
, (5.7)

where we converted to dimensionless quantities in the last step. In the next subsection we
will illustrate how the RG flow can render this quantity small.

7This is easiest to see by rewriting φ = φ1 + iφ2, with φ1,2 real fields. For example, for the case of
n = 6, the redefined potential in eq. (5.3) is then simply a rotation by π/12 in φ1,2 of VZ6 (φ1, φ2) =
z̄6(φ1 − φ2)2 (φ2

1 + 4φ1φ2 + φ2
2
)2 used in [39].
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5.2 Mass hierarchy due to RG running

To exemplify the generation of a mass hierarchy, we use the numerical values describing the
Standard Model Higgs field. We note, however, that the mechanism we explore here cannot
straightforwardly be extended to a Higgs field that carries charge under a gauge group as
opposed to a global symmetry. We comment on potential phenomenological applications
of our study in the conclusions.

As our model contains both bosonic as well as fermionic quantum fluctuations, initial
conditions for the RG flow can be chosen such that the scalar potential is driven into a
symmetry-broken regime. In particular, the mass parameter for the Higgs field which sets
the electroweak scale is a relevant parameter.8 Its smallness with respect to MPl signals
the near-criticality of the Standard Model; one needs to fine-tune the UV value of the
Higgs mass parameter at kUV such that over 16 orders of magnitude one stays sufficiently
close to the critical value κcrit.9 While this does not constitute a problem of consistency,
discontent with this enormous tuning is commonly expressed as the “hierarchy problem”
of the Standard Model.

Within our model we do not tackle this issue, but take such a tuning as given and
instead focus on the natural emergence of a second hierarchy: once κ is tuned close to
criticality, an additional hierarchy between Mlong and Mtrans follows automatically, as ex-
plained in the following. We comment on the case kUV > MPlanck below and focus on
kUV = MPlanck first. Based on its canonical dimensionality, the Higgs mass parameter, or
equivalently, κ, generically increases with k2 under the RG flow to the IR. This results in
a Higgs mass close to the Planck scale, if the dimensionless mass is chosen of order 1 at
the cutoff scale, in contradiction with observations. To accommodate the observed Higgs
mass, M2

long/M
2
Planck ∼ 10−34, the initial condition for the RG flow of κ must be tuned very

closely to the critical point at which its flow vanishes. Thus, the dominant scaling over a
large range of scales is

κ− κcrit = δκ ∼
(
kUV
k

)2
, (5.8)

where κcrit is the critical value. The critical value itself is comparably large, cf. figure 3.
Therefore, it is a good approximation to set κ ∼ const. over a large range of scales, until

the deviation from criticality has become appreciable. We obtain figure 3 and the following
figures by fixing the initial conditions y(MPlanck) = 0.4, λ4(MPlanck) = 0.001, z6(MPlanck) =
0.1 as exemplary values. κ(MPlanck) is fine-tuned such that κ̄ = (246GeV)2 in the IR, we
do not provide all digits of the expression here.

Quantum corrections to the scaling of zn can largely be neglected, and it scales ac-
cording to

zn ∼
(

k

kUV

)n−4
. (5.9)

8This holds below the Planck scale. In the quantum gravitational regime the situation can change, if
quantum gravitational fluctuations are strong enough, see, e.g., [36–38, 91].

9We argue in terms of κ here, which is of course negative in the symmetric regime, where the RG flow is
typically expressed in terms of a coupling λ2 instead. For the sake of our argument, this technical difference
does not play a role.
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Figure 3. Running of the mass parameter κ with RG scale k for n = 6. For large energies κ is
dominated by κcrit, for small energies the deviation from the critical hyper-surface dominates. The
dashed vertical line marks the onset of the symmetry-broken regime. The initial conditions chosen
here are those described in the caption of figure 6.

Due to their vanishing canonical dimensionality, λ4 and y only depend logarithmically on
k, i.e., compared to zn, they are essentially constant.

Accordingly, all quantities except zn are approximately constant in the mass ratio γ,
cf. eq. (5.7). The kn−4 scaling of zn ensures that γ is driven to tiny values with a power
law, i.e.,

γ ∼ zn (κcrit + δκ)
n
2−2 . (5.10)

We thus encounter two regimes: i) as long as κcrit � δκ, γ ∼ kn−4 due to the scaling of
zn; ii) once δκ ≥ κcrit, γ ∼ const. Comparing figure 3 to figure 4, the transition between
both regimes10 is clearly visible in κ and consequently γ.

The IR value of γ is smaller, the longer the above scaling holds, i.e., the longer κ
does not transition to its “natural” scaling with k−2, where γ becomes constant. Thus, a
tiny value of γ emerges naturally without any further tuning, once κ is tuned to ensure a
small ratio M2

long/M
2
Planck ∼ 10−34. The ratio M2

trans/M
2
long ∼ (Mlong/MPlanck)n−4 follows

automatically.
In summary, the presence of the discrete Zn symmetry gives rise to an additional mass

hierarchy: if one fine-tunes the UV value of κ such that Mlong � kUV, no further fine-
tunging of zn is required to realize Mtrans � Mlong in the IR. Instead the second mass
hierarchy follows as a direct consequence of the RG running of zn.

5.2.1 Gravitational enhancement of the mass hierarchy

Let us investigate the situation in which kUV > MPlanck. In that case, the quantum field
theoretic, effective description contains quantum gravitational degrees of freedom. They
should be understood as effective degrees of freedom that are applicable between kUV and
MPlanck and encode the gravitational microphysics that holds beyond kUV.

10Within a perturbative scheme in which κcrit = 0, the first regime is absent. Instead, γ is roughly
constant and assumes its tiny value γ � 1 already at the Planck scale.
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Figure 4. Running of the mass ratio γ (cf. (5.7)) as a function of the RG scale k for n = 6. In
the symmetry-broken regime γ corresponds to the ratio of the transversal and longitudinal masses.
Towards the IR a tiny mass ratio emerges. In the symmetric regime γ is negative (dashed). The
initial conditions chosen here are those described in the caption of figure 6.

In that situation, an anomalous scaling exponent determines the RG flow of the cou-
pling zn. Instead of eq. (5.9), in this range of scales, the following scaling holds:

zn ∼
(

k

kUV

)n−4−fs
. (5.11)

In order to obtain the separation between Mlong and MPlanck, κ now has to be fine-tuned
at kUV and a similar behavior to that discussed in the previous subsection holds. Without
gravitational corrections, the scaling γ ∼ kn−4 holds. With gravitational corrections, the
enhanced scaling γ ∼ kn−4−fs holds. Accordingly, quantum gravity enhances the resulting
mass hierarchy even more, as can be seen in figure 5. This can also be understood within
the framework of effective asymptotic safety, where a quantitative measure of predictivity
has been defined in [103].

In figure 5, we set n = 6 and artificially lower the Planck scale to M̃Pl = 1014 GeV sim-
ply for purposes of illustration, such that gravitational fluctuations to the flow contribute
for k > M̃Pl. We then parameterize the gravitational contributions by varying fs < 0.
We keep z6

(
k = MPlanck ∼ 1018GeV

)
constant and additionally keep all other couplings at

M̃Pl = 1014 GeV constant. The resulting mass ratio below M̃Pl becomes smaller due to
the impact of gravitational fluctuations, when |fs| is increased. Gravitational fluctuations
qualitatively act to enhance the mass hierarchy. As long as |fs| � n, their quantitative
influence is minor.

Figure 5 also highlights that quantum gravity fluctuations drive the Zn symmetric
couplings towards zero. As kUV → ∞, zn(MPlanck) → 0, resulting in the exclusion of Zn
(n > 4) symmetric interactions in asymptotically safe gravity.
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Figure 5. Difference ∆γ
γ = γ(fs)−γ(fs=0)

γ(fs=0) in the mass ratio that arises due to the effect of gravita-
tional quantum fluctuations, parameterized by fs for the case n = 6. Motivated by ref. [15], this
plot uses a fiducial value of fy = 0.004.
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Figure 6. Masses of the transversal mode (Mtrans), the longitudinal mode (Mlong) and the fermion
(Mferm) as a function of the RG scale k. In the IR a huge mass ratio is generated naturally. The
UV initial conditions are y(MPlanck) = 0.4, λ4(MPlanck) = 0.001, zn(MPlanck) = 0.1 and κ(MPlanck)
tuned such that κ̄ = (246GeV)2 in the IR.

5.2.2 Concrete example: Z6 symmetry and hierarchy-generation

For a concrete example of this mechanism, we set n = 6, and assume that kUV is the
Planck scale. We choose initial conditions for the couplings at kUV to obtain the observed
Higgs vacuum expectation value(vev) and a fermion mass of the order of the top mass. The
corresponding FRG flow equations for the symmetric and the symmetry-broken regime can
be found in appendix D. The resulting flows for the couplings are displayed in figures 3, 4
and 6. As is apparent from these figures, zn flows towards tiny values in the IR, while κ
freezes out to the tuned vev, κ̄ � MPlanck. Figure 6 illustrates that this generates large
mass ratios as a result of the RG flow. In contrast, if κ is not fine-tuned at kUV = MPlanck,
a vev of order of the Planck scale is generated. In this case, one can still obtain a mass that
is significantly smaller than the cutoff-scale, by tuning the Z6-symmetric coupling zn, such
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Figure 7. Masses of the transversal and the longitudinal mode as a function of the RG scale k.
Here the UV initial condition for κ is adjusted such that Mtrans is of the order of the Higgs mass.
The other initial conditions are the same ones as in figure 6.

that the transverse mass satisfies Mtrans/MPlanck ∼ 10−17. We highlight that the tuning of
zn required to obtain Mtrans/MPlanck ∼ 10−17 is significantly less than the tuning of κ to
obtain Mlong/MPlanck ∼ 10−17, cf. figure 7.

6 Conclusions

Symmetries determine our world, both at micro- and macroscales, yet, their fundamental
origin remains a mystery. In this paper, we have focused on two aspects of symmetries in
fundamental physics.

First, we have explored the compatibility of global discrete Zn symmetries with quan-
tum gravity. We have found that quantum-gravity effects drive the corresponding couplings
towards zero for n ≥ 4. The effect is most pronounced in asymptotically safe gravity, where
in a near-perturbative regime finite values of Zn-symmetric interactions cannot be achieved.
The effect is less pronounced in an effective-field-theory setting for quantum gravity, where
gravitational effects decrease the Zn symmetric interactions, but nonzero values of the cor-
responding couplings can be achieved at and below the Planck scale, if the fundamental
gravity theory features a breaking of continuous global symmetries.

Second, we have explored the phenomenological implications of such a setting. As pro-
posed in [39], the presence of a Zn, n > 4 symmetric term in an otherwise U(1) symmetric
theory can naturally generate a mass hierarchy in the spontaneously symmetry-broken
regime. Here, we explore this idea for the first time in a four-dimensional Yukawa model
and under the impact of quantum-gravity fluctuations. We discover that a transplanckian
quantum-gravity regime with a finite UV cutoff can give rise to an RG flow that enters
the symmetry-broken regime in the IR. There, the pseudo-Goldstone mode acquires a mass
determined by the Zn symmetric interaction. Since the latter is canonically irrelevant, that
mass term is tiny compared to the mass of the standard massive mode. This mechanism
is clearly highly interesting for phenomenology and model building beyond the Standard
Model. It cannot be applied to scalars that interact via a gauge symmetry, as the latter
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would be violated explicitly by the Zn-symmetric interaction. Thus, it is not applicable to
the Standard Model. On the other hand, beyond-Standard-Model sectors, e.g., dark sec-
tors as well as extensions of the electroweak sector could feature mass hierarchies that find
a natural explanation in the presence of a Zn symmetry. For instance, a recent example in
which a large mass hierarchy is required for a proposed solution to the Hubble tension, is
given by [104].

Our work paves the ground for future investigations targeted at the following questions:

1) Does the gravity-less, Z3-symmetric setting feature an interacting fixed point (cf.
appendix B), thereby circumventing the triviality problem of a φ4 scalar field theory
in d = 4?

2) Does an asymptotically safe gravity-matter system give rise to an “inverted” hier-
archy, with the mass of the pseudo-Goldstone boson exceeding that of the standard
massive mode within a Z3 symmetric setting?

3) Does the interplay of two distinct scalar fields, charged differently under a global
Zn symmetry, provide a potential loophole to our no-go-hypothesis that excludes
asymptotically safe models with Zn, n ≥ 4 in the near-perturbative regime?

4) Can the realization of discrete symmetries with n ≥ 4 in asymptotically safe grav-
ity also be excluded in the non-perturbative regime, or is the absence of discrete
symmetries a consequence of the near-perturbative nature that asymptotically safe
matter-gravity systems likely exhibit?

Last but not least, an extension to a Standard-Model like setting, where the scalar field is
charged under a gauge group, is of interest. In this case, the discrete symmetry cannot be
imposed directly, as it is in conflict with gauge invariance. However, it might be available
as the remaining symmetry of a larger, spontaneously broken gauge group, see, e.g., [105].

In summary, in constructing QFTs, one a priori has a large amount of freedom in
choosing the fundamental symmetries. In this paper we explore whether the interplay with
quantum gravity can restrict this freedom. Specifically, asymptotic safety could allow to
severely constrain the space of possible matter theories. Its enhanced predictive power
could fix coupling values within a single theory. Going beyond the values of interactions,
asymptotic safety could even restrict the allowed symmetry structures by dividing them
into a set of symmetries that feature non-trivial IR phenomenology and those that do
not and can thus not be realized as fundamental symmetries. In delineating the boundary
between these two regions, our results indicate that some discrete symmetries remain trivial
under the impact of quantum gravity.

Acknowledgments

A. E. is supported by a research grant (29405) from VILLUM FONDEN. M. P. is sup-
ported by a scholarship of the German Academic Scholarship Foundation and gratefully
acknowledges the extended hospitality at CP3-Origins during various stages of this work.

– 21 –



J
H
E
P
0
5
(
2
0
2
1
)
0
3
6

A Non-perturbative regime for n > 3

In section 4 we presented arguments why no fixed point for a Zn symmetric regime ex-
ists in the near-perturbative regime. We focused on deformations of the Gaußian fixed
point. Here, we explore if more general fixed points exist for n > 3. We will first neglect
gravitational effects, fs = 0, and then discuss the more general case fs 6= 0.

The beta function for the coupling zn for n > 4 schematically reads

βzn = (−4 + n− fs + #λ4) zn + #zn,2. (A.1)

Here zn,2 is a coupling that belongs to a term with the structure φφ∗(φn + (φ∗)n) and
the various # represent various different numerical prefactors. A non-vanishing fixed point
value for zn could arise from two contributions: (i) The contribution proportional to zn,2 can
potentially shift the Gaussian fixed point. (ii) The interaction zn will induce a contribution
to λ2n−4, which (via various intermediate couplings in the U(1) sector) will feed back into
λ4, then inducing a higher order structure in zn.

We explore this possibility by computing the beta functions for a Zn symmetric the-
ory including all operators up to energy dimension 2n. We then study the zeros of beta
functions in these truncations. These zeros are only viable fixed-point candidates if the
deviation from canonical scaling is not too large, otherwise our truncation scheme is in-
validated. For n > 4 all zeros of the beta functions come with sizeable deviations from
canonical scaling. We express this deviation in terms of the quantity

∆2
θ = 1

N

N∑
i

(Re[θi]− di)2 , (A.2)

where θi is the critical exponent, di is the canonical dimension and the index i runs over
all couplings. Figure 8 illustrates that in a purely scalar system for n > 4 any zero of the
beta functions exhibits strong deviation from canonical scaling, indicating that it cannot
reliably be interpreted as fixed points within our truncation.

For n = 4 a zero of the beta functions with O(1) deviations from canonical scaling
appears. This is on the border to a non-perturbative regime and would require extended
studies to confirm that indeed a scalar field theory could evade the triviality problem due
to the existence of a Z4 symmetric interaction.

We conclude that without gravitational interactions within our truncations there is
no indication for a stable fixed point for n > 3. Gravitational contributions will shift zn
towards irrelevance and render all critical exponents smaller. This does not (significantly)
reduce the departure from perturbativity.

In the non-perturbative regime our truncation (based on canonical power-counting) is
expected to break down, our results are not self-consistent in that regime. Accordingly,
our results cannot rule out a fixed point in the strongly interacting regime.

B Interacting fixed point for n = 3

To understand if an interacting fixed point can arise in the Z3 symmetric case, we focus
on the beta function of z3. In βz3 , a contribution O

(
z3

3
)
could be expected to arise from
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Figure 8. The measure ∆θ for all zeros of the beta functions with non-vanishing zn at varying
n. For n > 4 the resulting zeros of the beta-functions strongly deviate from canonical scaling. For
n = 7 we do not find any zero with g7 6= 0.

Figure 9. Triangle diagram that could induce a cubic contribution to the beta function. Diagrams
with the regulator sitting on the other internal legs will also contribute.

the diagram depicted in figure 9. However, charge conservation at the vertex prevents this
contribution from being nonzero.

A second potential source for a cubic term in βz3 is the anomalous dimension. It reads

ηφ = 9z2
3

8π2(1 + λ2)4 , (B.1)

and enters the beta function for z3 as

βz3 = 3
2z3ηφ +O

(
z3

3

)
, (B.2)

hence inducing a cubic contribution in the beta function. This cubic contribution induces
additional zeros of the beta function at non-vanishing values of z3.

For fs = 0, these zeros come with large values for the quartic coupling λ4 ∼ O(20).
For non-vanishing gravitational contribution fs, various of these additional zeros collide at
fs ≈ −0.4. At fs = 0 the critical exponents in a system with the three couplings λ2, z3 and
λ4 are θ1 = 1.58, θ2/3 = −0.54± 1.58i.

In addition, for a small window in the vicinity of fs ≈ −1, a zero of the beta func-
tion exists. Indeed, in a truncation that considers all canonically relevant and marginal
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Figure 10. Gravitational contributions to the Yukawa coupling fy (color-coded) and scalar cou-
plings fs (dashed lines) as a function of the (dimensionless) cosmological constant Λ and Newton’s
constant g. Values of ∼ O(1) for fs are only obtainable for large g. The expressions for fs and fy
are taken from [15].

operators in the potential, for fy = 0.0025, fs = −0.995 we find the solution

y∗ = 0.23 λ2 ∗ = 0.007 (B.3)
λ4 ∗ = −0.01 z3 ∗ = 0.16, (B.4)

with a non-vanishing coupling z3 and critical exponents

θ1 = 1.02 θ2 = −0.0010 (B.5)
θ3 = −0.0078 θ4 = −0.93. (B.6)

Let us point out that the O(1) deviation of the three couplings in the scalar potential,
λ2, λ4 and z3 from their canonical scaling dimension is due to the gravity-induced anoma-
lous dimension fs ≈ −1. In contrast, the small gravity-induced anomalous dimension for
the Yukawa coupling, fy ≈ 0, results in the corresponding small shift of the correspond-
ing scaling exponent from 0. These values for fs and fy are chosen freely to allow for an
interacting fixed-point, irrespective of whether such values could be realized due to grav-
itational fluctuations. General studies of the gravitational parameter space indicate that
these values are unlikely to be realized simultaneously [10, 38, 87], see also figure 10.

To tentatively check if this zero is a genuine fixed point, we extend the truncation
and include the order-6-couplings λ6 and z6. Both the fixed-point values and the critical
exponents receive minor modifications under this extension of the truncation.

The relatively large shift in scaling dimensions due to fs causes z3 to become irrelevant
at this fixed point; the scalar mass remains as the only relevant parameter. Quite inter-
estingly, one can therefore obtain a prediction for the IR value of this canonically relevant
coupling.
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C Two fields

We consider the effective action

Γk =
∫

d4x
√
g
(
gµν∂µφ∂νφ

∗ + gµν∂µχ∂νχ
∗ +

3∑
i=0

3∑
j=0

1
i! j!λ2i 2j(φφ∗)i(χχ∗)jk4−2i−2j

+z03k
(
χ3 + (χ∗

)3
) + z21k

(
(φ∗)2χ∗ + φ2χ

)
+z22

(
φ2(χ∗)2 + (φ∗)2χ2

)
+z41k

−1
(
φ4χ∗ + (φ∗)4χ

)
+ z41ak

−1φφ∗
(
(φ∗)2χ∗ + φ2χ

)
+z23k

−1χχ∗
(
φ2χ+ (φ∗)2χ∗

)
+ z23ak

−1φφ∗
(
χ3 + (χ∗)3

)
+z60k

−2
(
φ6 + (φ∗)6

)
+ z42k

−2
(
φ2χ+ (φ∗)2χ∗

)2

+z24k
−2
(
φ2χ4 + (φ∗)2(χ∗)4

)
+ 1

2z06k
−2
(
χ3 + (χ∗)3

)2

+z42ak
−2φφ∗

(
φ2(χ∗)2 + (φ∗)2χ2

)
+ z24ak

−2χχ∗
(
φ2(χ∗)2 + (φ∗)2χ2

) )
(C.1)

that contains all momentum-independent dimension six operators for two scalar fields φ
and χ that are charged with charges 1 and −2 under a common Z6 symmetry. By pairing
up a field monomial and its complex conjugate, we ensure that the action remains real.
In addition, we include fermionic contributions of a Dirac fermion coupled to the φ field,

Γferm
k =

∫
d4x
√
g
(
iψ̄ /∇ψ + y

(
φ∗ψ̄RψL−φψ̄LψR

))
, (C.2)

following the conventions of [100, 101]. Upon inclusion of gravitational contributions fs =
−0.995 and fy = 0.0025,11 we find a fixed point

z03 = 0.15 z21 = 0.30 z06 = −5.0 · 10−7

z22 = −0.0026 z23 = 0.00025 z23a = 0.00017
z24 = −1.5 · 10−6 z24a = −0.0017 z41 = 2.1 · 10−5

z41a = 9.4 · 10−5 z42 = −7.7 · 10−7 z42a = −0.00097
z60 = −2.6 · 10−8 λ02 = 0.0077 λ04 = −0.012
λ06 = −0.0097 λ20 = 0.0052 λ22 = −0.011
λ24 = −0.012 λ40 = −0.0032 λ42 = −0.0064
λ60 = −0.0012 y = 0.24 (C.3)

11Note that gravity distinguishes neither between the two scalars nor between the two fermions.
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with critical exponents

θ1 = 1.02 θ2 = 1.00 θ3 = −0.000611
θ4 = −0.00466 θ5 = −0.00786 θ6 = −0.924
θ7 = −0.946 θ8 = −0.975 θ9 = −1.00
θ10 = −1.93 θ11 = −1.96 θ12 = −1.99
θ13 = −2.00 θ14 = −2.85 θ15 = −2.87
θ16 = −2.91 θ17 = −2.95 θ18 = −2.96
θ19 = −3.00 θ20 = −3.00 θ21 = −3.00
θ22 = −3.01 θ23 = −3.01. (C.4)

In particular, that fixed point exhibits a finite fixed point value for both, the Z3 symmetric
coupling z03, as well as the portal coupling z21, transferring the U(1) violation from the χ
to the φ sector. In such a setting one can induce a finite fixed point value for the coupling
z60 in the Z6 symmetric φ sector via the effectively Z3 symmetric χ sector. Again the
critical exponents are shifted with respect to the couplings’ anomalous dimension by about
O(1) due to the gravitational contribution fs.

D FRG flow equations for Zn models

In the following, we present the FRG flow equations for the Zn-symmetric model in the
symmetric and in the symmetry-broken regime for n ≥ 6, and n even. Here, in both
regimes we project by taking derivatives with respect to the parametrization in section 5
ρ := φφ∗ and τ := −

(
φn/2 − (φ∗)n/2

)2
. This is a slightly different projection than the one

used in section 4, where in the symmetric regime we project by simply taking derivatives
with respect to φ and φ∗. In the symmetric regime the beta functions for the couplings
κ, λ4 and zn read

βκ = −(2 + ηφ)κ+ (6− ηφ)(1− 6κλ4)
48π2(1− κλ4)3 + 3zn(6− ηφ)κδ6,n

8π2λ4(1− κλ4)2 (D.1)

βλ4 = 2ηφλ4 + 5(6− ηφ)λ2
4

48π2(1− κλ4)3 −
3zn(6− ηφ)δ6,n
8π2(1− κλ4)2 (D.2)

βzn = (n− 4 + n

2 ηφ)zn + znn(n− 1)(6− ηφ)λ4
96π2(1− κλ4)3 . (D.3)

Here δ6,n is the Kronecker Delta. The corresponding term only contributes for n = 6. The
direct quantum contributions to the beta function for the Yukawa coupling vanish

βy =
(
ηψ + 1

2ηφ
)
y. (D.4)

In the symmetry-broken regime the corresponding expressions are

βκ =−(2 + ηφ)κ+ (6− ηφ)z2
nn

4κn

64π2(1 + 2κλ4)2(κ+ znn2κn/2)2 + (6− ηφ)κ2(1 + κλ4 + κ2λ2
4)

48π2(1 + 2κλ4)2(κ+ znn2κn/2)2

−(6− ηφ)znn2κn/2(2− 4κλ4 + 8κ2λ2
4 − n(1 + 2κλ4)2)

384π2λ4(1 + 2κλ4)2(κ+ znn2κn/2)2 (D.5)
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βλ4 = 2ηφλ4 + κ6λ5
4 (6− ηφ)

12π2 (1 + 2κλ4)3 (κ+ n2znκn/2
)3 + κ5λ4

4 (6− ηφ)
8π2 (1 + 2κλ4)3 (κ+ n2znκn/2

)3
+ κ4λ3

4 (6− ηφ)
16π2 (1 + 2κλ4)3 (κ+ n2znκn/2

)3 + 5κ3λ2
4 (6− ηφ)

48π2 (1 + 2κλ4)3 (κ+ n2znκn/2
)3

−n
2zn (6−ηφ)

(
16κ4λ4

4 + 32κ3λ3
4 − 3κ2λ2

4 + 8κλ4+1
)
κn/2

96π2 (1 + 2κλ4)3 (κ+ n2znκn/2
)3 + n6z2

n (6− ηφ)κn−1

768π2 (κ+ n2znκn/2
)3

+ 3λ2
4n

6z3
n (6− ηφ)κ

3n
2

32π2 (1+2κλ4)3 (κ+n2znκn/2
)3 − n5z2

n (6− ηφ)κn−1

384π2 (κ+ n2znκn/2
)3 − n4zn (6− ηφ)κn/2

768π2 (κ+n2znκn/2
)3

+ 9λ2
4n

4z2
n (6− ηφ)κn+1

32π2 (1 + 2κλ4)3 (κ+ n2znκn/2
)3 + n3zn (6− ηφ) (4κλ4 + 3)κn/2

384π2 (κ+ n2znκn/2
)3 (D.6)

βzn = (n− 4 + n

2 ηφ)zn + z2
n(6− ηφ)n2(n− 1)κn/2(n− 2 + 2(n− 1)κλ4)

192π2(1 + 2κλ4)2(κ+ znn2κn/2)2

+zn(6− ηφ)n(n− 1)κ2λ4(1 + κλ4)
96π2(1 + 2κλ4)2(κ+ znn2κn/2)2 + z3

n(6− ηφ)n4(n2 − 3n+ 2)κn−1

384π2(1 + 2κλ4)2(κ+ znn2κn/2)2 (D.7)

The Yukawa beta function reads

βy =
(
ηψ + ηφ

2

)
y − y3

32π2 (1 + κy2)2 (1 + 2κλ4)
+ y3

16π2 (1 + κy2)3 (1 + 2κλ4)

+ 3n2y3znλ4κ
n
2 +2

8π2 (1 + κy2)
(
κ+ n2znκn/2

)2 (1 + 2κλ4)2 −
y3κ

16π2 (1 + κy2)3 (κ+ n2znκn/2
)

+ 3y3λ4κ
3

8π2 (1 + κy2)
(
κ+ n2znκn/2

)2 (1 + 2κλ4)2 +
y3
(
(n− 2)n2znκ

n/2 + 2λ4κ
2
)
κ2

16π2 (1 + κy2)
(
κ+ n2znκn/2

)3
+

y5
(
n2znκ

n/2 + 2 (1 + κλ4)κ
)
κ2

32π2 (1 + κy2)2 (κ+ n2znκn/2
)2 (1 + 2κλ4)

− y5κ

16π2 (1 + κy2)3 (1 + 2κλ4)

+ y5κ2

16π2 (1 + κy2)3 (κ+ n2znκn/2
) − y3λ4

(
(n− 2)n2znκ

n/2 + 2λ4κ
2
)
κ2

8π2 (1 + κy2)
(
κ+ n2znκn/2

)2 (1 + 2κλ4)2

− 3y3λ4κ
2

8π2 (1 + κy2)
(
κ+ n2znκn/2

)
(1 + 2κλ4)2 +

y3
(
(n− 2)n2znκ

n/2 + 2λ4κ
2
)
κ

32π2 (1 + κy2)2 (κ+ n2znκn/2
)2

+
y3
(
(n− 2)n2znκ

n/2 + 2λ4κ
2
)
κ

16π2 (1 + κy2)
(
κ+ n2znκn/2

)2 (1 + 2κλ4)
+ y3κ

32π2 (1 + κy2)2 (κ+ n2znκn/2
)

−
y3
(
n2znκ

n/2 + 2 (κλ4 + 1)κ
)
κ

32π2 (1 + κy2)2 (κ+ n2znκn/2
)2 (1 + 2κλ4)

− 3y3λ4κ

16π2 (1 + κy2)2 (1 + 2κλ4)2

−
y5
(
n2znκ

n/2 + 2 (κλ4 + 1)κ
)
κ

32π2 (1 + κy2)2 (κ+ n2znκn/2
)

(1 + 2κλ4)2 −
3y3λ4κ

8π2 (1 + κy2) (1 + 2κλ4)3
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−
y3
(
(n− 2)n2znκ

n/2 + 2λ4κ
2
)
κ

16π2 (1 + κy2)
(
κ+ n2znκn/2

)2 (1 + 2κλ4)2

+
y3
(
n2znκ

n/2 + 2 (κλ4 + 1)κ
)

32π2 (1 + κy2)2 (κ+ n2znκn/2
)

(1 + 2κλ4)2 , (D.8)

where in the last expression we already dropped the anomalous dimensions in the numer-
ators.
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