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1 Introduction

The entirety of the observational evidence for Dark Matter (DM) rests on its gravitational
effects. While it is interesting to include non-gravitational interactions between DM and
the Standard Model (SM), and certainly attractive to construct predictive models that
can be tested directly, observational evidence increasingly indicates the existence of such
couplings may be to a large extent wishful thinking. It is thus of utmost importance to
establish and explore the most compelling scenarios of gravitationally coupled DM, in order
to understand whether any testable prediction might be extracted.

At first sight obtaining predictions from a completely dark sector seems a daunting
task, and one might have the impression that any model at all would reproduce observa-
tions. In this note we will focus on the simplest scenarios where gravitational interactions
are responsible for the population of the dark sector, assuming that the sector is not re-
heated by inflaton decay. Within these minimal assumptions the scenarios turn out to be
rather predictive. We will consider approximately conformal sectors such as gauge theo-
ries or strongly coupled CFTs, showing that the production is determined only by the SM
reheating temperature and the central charge of the dark sector. Gravitational production
has been explored starting with [1], see also [2–7], mostly focusing on free theories. We
will reproduce some known results, generalizing to interacting theories and showing the
relevance of interactions for the abundance in these sectors.
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The dark sector under discussion can only be produced from the SM plasma via gravi-
ton exchange.1 Let us note that even though the process happens at tree level, gravitational
production relies on the quantum nature of gravity. The dark sector is populated by the
freeze-in mechanism [15] from the hot SM plasma, which itself is well approximated by
a thermal CFT. Due to the non-renormalizable nature of gravitational interactions, par-
ticle production is most effective at high temperatures. If the reheating temperature of
the visible sector is sufficiently large, this dark sector can provide the entirety of the DM
abundance. In recent literature there has often been a focus on dark sectors produced
gravitationally but without additional self-interactions (see however [10, 16–18]). In this
work, we discuss in contrast interacting approximately conformal field theories (CFTs) cou-
pled through gravity showing that, in many cases, self-interactions allow the dark sector to
reach thermal equilibrium with a temperature much lower from that of the visible sector.

We focus on two simple examples. In the first we consider a pure gauge Yang-Mills
theory decoupled from the SM. Before confinement, the theory is approximately scale-
invariant and enjoys Weyl symmetry. Upon confinement at a first order phase transition,
the theory develops a mass gap and the lightest states are spin-0 dark glueballs. We discuss
the gravitational production in the deconfined regime, then explore the dark QCD sector’s
evolution towards thermal equilibrium, in particular how the latter is affected by the phase
transition. We find that, thanks to the gravitational production, it is possible to realize a
viable scenario of glueball DM, overcoming the overproduction of DM that typically hinders
this scenario.

Next we consider the case of a strongly coupled CFT, where the DM is the dilaton
associated to the spontaneous breaking of conformal invariance in the dark sector. In
this context, we find that the confinement/deconfinement phase transition differs from the
standard picture in light of the different temperatures of the visible and dark sectors - this
has a calculable impact on the DM abundance. We also find in this case that the dark
dilaton can be a good DM candidate.

We wish to highlight the main novelties of this work. In section 2 we derive in full
generality the abundance of a gravitationally coupled dark sector using conformal field
theory techniques and unitarity. This elegantly reproduces known results for weakly cou-
pled theories allowing to also study strongly coupled sectors where conventional methods
are not applicable. In section 3 we study for the first time the gravitational production
of pure glue dark sector where the lightest glueball is DM. When the gluons thermalize
this connects to previous works on glueball DM [19–24], explaining why the dark sector
temperature is lower than the visible one as demanded on phenomenological grounds. We
also study the novel possibility that the dark sector does not thermalize leading to out
of equilibrium phase transitions. In section 4 we study the analogous problems at strong
coupling focusing on the scenario where DM is a dark dilaton coupled to the SM only

1For a conformally coupled sector production through inflationary and post-inflationary fluctuations [8]
is strongly suppressed. We also do not consider the possibility that the dark sector arises from evaporation
of primordial black holes [9, 10] as this requires additional inputs. That mechanism would provide a different
initial condition for conformal sectors that could then be studied along the lines this work. Several works also
studied CFTs connected to the SM through other mediators or effective operators see for example [11–14].
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through gravitational interactions. In both cases we discuss the phases of the theory and
the DM abundance and constraints. We summarize our results and outline future direc-
tions in section 5. In the appendix A we provide a general derivation for the gravitational
production of CFTs and provide the solution of the Boltzmann equation that determines
the phase space distribution at production.

2 Gravitational production of dark sectors

The universality of gravitational interactions provides an unavoidable source of DM. Two
mechanisms have been proposed in the literature: production from the SM plasma through
tree-level graviton exchange [1] and production through quantum fluctuations in an ex-
panding background [8]. Here we will focus on the first production mechanism as the
latter requires explicit breaking of conformal invariance that is very suppressed in our
models. Indeed in the relativistic regime breaking of conformal invariance is in fact non
generic. In particular, massless gauge theories and fermions are automatically conformally
invariant. Moreover tree-level gravitational production is very predictive being determined
by the reheating temperature.

2.1 Tree level production

Gravitational interactions are too weak to establish thermal equilibrium between the dark
sector and the SM. Nevertheless, particles in a dark sector are inevitably produced through
gravitational interactions at tree level, thanks to the exchange of a graviton in the s-
channel. We assume for simplicity that the visible sector is reheated (instantaneously)
to a temperature TR, and the Hubble rate is dominated by contributions from the SM
thermal bath.2

Pairs of SM particles can annihilate into dark sector states via the exchange of a
graviton, and the amplitude for this transition reads in general

A = 1
M2

Pls

(
T SM
µν T

DM
αβ ηµαηνβ − 1

2T
SMTDM

)
. (2.1)

In the case of a dark conformal sector, with TDM = 0, only the first term inside the
brackets contributes. The rate is suppressed by the gravitational coupling, here MPl =
2.4× 1018GeV, so that in order to populate the dark sector one needs to rely on very high
reheating temperatures. The Boltzmann equation for the yield YD = nD/s is given by3

dYD
dT

= 〈σv〉s(T )
HT

(Y 2
D − Y 2

eq) , Yeq = gD
g∗

45
2π4 (2.2)

2The assumption of instantaneous reheating allows us also to relate initial conditions in terms of the
Hubble scale during inflation, HI , being 3H2

IM
2
Pl = π2g∗T

4
R/30. Using the latest results from PLANCK

and BICEP2, the bound on the scalar to tensor ratio r < 0.07 implies HI < 7× 1013 GeV. This translates
into an upper bound TR . 0.7× 1016 GeV.

3We neglect quantum statistics for the dark sector, allowing us to derive analytical formulas for the
energy distribution. The relevant dynamics takes place at temperatures larger than 100GeV so that we
take g∗ = 106.75 throughout.
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where 〈σv〉 is the thermally averaged annihilation cross-section of DM summed over SM
final states:

〈σv〉 = 4〈σ0v〉+ 45〈σ1/2v〉+ 12〈σ1v〉. (2.3)

Assuming a negligible initial density the Boltzmann equation has the following approx-
imate solution at late times:

YD(0) =
∫ TR

0

dT

T

〈σv〉s
H

Y 2
eq . (2.4)

valid as long YD � Yeq, which as we will show is always be satisfied. In the above formula
there are a couple of assumptions. As previously stated, we consider an instantaneous
reheating that allows us to neglect the details of the inflaton sector above TR. Second, since
the interactions are non-renormalizable, we integrate down to T = 0 without introducing
errors given that the production is strongly dominated by the highest temperature.

The exact expression for 〈σv〉 will depend on the details of the dark sector theory
considered. However, for a conformally-invariant dark sector and for TR much above the
electroweak scale, the cross-section can be written as

〈σiv〉 = cicD
g2
D

3
1280π

T 2

M4
Pl
. (2.5)

Here cD and ci are the central charges of the dark sector and of the SM particle and gD the
number of degrees of freedom of the species. This formula is completely general and can
be applied to the gravitational production of any CFT state.4 Integrating (2.2) we find

YD = aSM cD

(
TR
MPl

)3
, aSM = 27

√
5/2

256π8g
3/2
∗
×
∑
i

ci . (2.6)

For a real scalar, Weyl fermion and massless gauge field the values of the central charges
are [25]

c0 = 4
3 , c1/2 = 4 , c1 = 16 . (2.7)

Numerically one finds aSM = 6×10−6. From these results we can derive the deviation from
thermal equilibrium in the dark sector,

nD
neq
≈ 0.0028 cD

gD

(
TR
MPl

)3
. (2.8)

Gravitational production gives rise to a dark sector underpopulated compared to ther-
mal equilibrium. The typical energy of the dark quanta produced are however of order of the
temperature of the visible sector so that the energy density is of order ρD ≈ cDT 4T 3

R/M
3
Pl.

We can also perform a more refined computation by solving the Boltzmann equation for
4Let us note that this formula even applies to production of gravitons. If the initial states are conformally

coupled the yield is given by eq. (2.6) with an effective central charge c2 = 28. The only exception to this
formula comes from the special case where initial and final states are not conformally coupled. For scalars
with couplings to curvature ξ/2φ2R, the cross-section receives extra contribution 3/(4π)(ξi − 1/6)2(ξD −
1/6)2T 2/M4

Pl.
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the phase distribution of DM particles. This computation can be found in appendix A.
Neglecting small corrections from quantum statistics, one finds

fD(T, p) ≈ 2π4g∗
135 YD

p e−p/T

T
. (2.9)

As expected, since the cross-section grows with energy, the distribution slightly favours
higher energies compared to the Boltzmann distribution. From eq. (2.9) we can derive the
energy density which can be cast in the following form

ρD = κ
π2

30gDT
4 nD
neq

, (2.10)

where the coefficient κ = 120/π4 ≈ 1.23.
It is useful to introduce the ratio of the energy densities of the visible and dark sectors,

r ≡ ρD
ρSM

= κ
gD
g∗

nD
neq
≈ 0.0035cD

g∗

(
TR
MPl

)3
. (2.11)

This quantity is conserved as long as the system is relativistic and decreases as 1/a
when the dark sector becomes non-relativistic. It has a similar physical meaning to the
ratio of entropies of dark and visible sectors that however strictly cannot be defined out
of equilibrium.

2.2 Dynamics after production

What happens next depends on the interactions in the dark sector.

No interactions: this is the scenario studied in [1, 3]. If the interactions are sufficiently
weak, i.e. the rate of the relevant processes Γ ∼ nDσv � H, YD remains approximately
constant after production, we use eq. (2.6) to obtain the DM abundance

Ωh2

0.12 = YDM

0.4 eV ≈
cDM

106 GeV

(
TR

1015 GeV

)3
, (2.12)

where in this context the DM mass M arises via a spontaneous breaking of scale invariance
or from other mechanisms such as confinement. The main assumption is that it plays no
role in the gravitational production at temperature TR �M .

Kinetic and chemical equilibrium: we introduce interactions in the dark sector.
Naively at weak coupling the first interactions that become relevant are 2 → 2 processes.
These transitions do not change the number density in the dark sector but allow the system
to approach kinetic equilibrium. If kinetic equilibrium is reached, the phase distribution
develops a chemical potential that can be determined using number density and energy
density conservation. Neglecting for simplicity quantum statistics one finds

f = e
−E−µ

TD −→ TD = 4
3T , e

µ
T ≈ 27

64
nD
neq

. (2.13)

When number-changing processes such us 2 → 3 become relevant the system can
reach full chemical equilibrium. It is found in fact that due to collinear singularities such

– 5 –



J
H
E
P
0
5
(
2
0
2
1
)
0
1
0

processes might be even faster [16] than elastic ones, leading to faster thermalization. For
simplicity we parametrize the cross-section in the massless limit as σ2→3 = α3

eff/T
2 so the

rate Γ = nDσ2→3 exceeds the Hubble rate for visible sector temperatures

T ∗ ≈ 8 · 10−5(cDα3
eff)

(
TR
MPl

)3
MPl ≈ 1.4× 104 GeV(cDα3

eff)
(

TR
1015 GeV

)3
(2.14)

When this happens we can directly compute the dark sector temperature from the
conservation of the energy density in the dark sector, eq. (2.11):

TD
T

=
(
g∗r

gD

) 1
4
≈ 0.25

(
cD
gD

) 1
4
(
TR
MPl

) 3
4
, (2.15)

so that the dark sector thermalises at temperature

T ∗D ≈ 10 GeV cDα
3
eff

(
cD
gD

) 1
4
(

TR
1015 GeV

) 15
4
. (2.16)

Consistency requires that the mass scale is smaller than T ∗D to justify the relativistic com-
putation. After thermalisation the yield becomes

Yth = 2ζ(3)gD
45π4g∗

(
TD
T

)3
≈ 8 · 10−8gD

(
cD
gD

) 3
4
(
TR
MPl

) 9
4
. (2.17)

Using eq. (2.6) we can see that the yield is increased by a factor
10−2(gD/cD)

1
4 (Mp/TR)

3
4 compared to the free case.

When the dark sector thermalises it acquires a much lower temperature than the
SM and starts its own thermal history. Observable quantities are thus rescaled by the
ratio TD/T .

Out-of-equilibrium dynamics: if the interactions are not sufficiently strong, T ∗D < M

and the system does not reach thermal equilibrium in the relativistic regime. In this case
the interactions can still modify the abundance. Moreover, if the system undergoes a
phase transition such as confinement, very unconventional dynamics are realized. In our
case we expect the phase transition to take place when the correlation length becomes
comparable to the dynamical scale, nD ∼ Λ3. At this point the quanta in the deconfined
phase have an energy E � Λ. The situation looks similar to that occurring in collider
physics, where energetic gluons and quarks move in the confined vacuum and hadronize.
This significantly modifies the abundance since each perturbative state generates a large
number of DM particles. In light of the enhanced number density, interactions might
still be able to thermalise the sector in the confined phase, giving rise to cannibalistic
effects [26–28].

In what follows we present explicit examples of the above in strongly gauge-coupled
conformal sectors based on the AdS/CFT correspondence.
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3 Dark glueballs

The simplest dark sector conformally coupled to gravity is a theory of pure Yang-Mills
in the perturbative regime. This sector confines at a scale ΛDC, forming color singlet
glueballs. The lightest glueball is stable except for decays to gravitons and thus provides
an attractive DM candidate [19–24]. This scenario however requires the temperature of
the dark sector, if ever in thermal equilibrium, to be much smaller than that of the SM.
This condition might appear unnatural but in fact we will show that it is automatically
realized through gravitational production. Moreover the non-perturbative interactions of
gluons and glueballs are crucial to determine the DM abundance.

For concreteness, we consider a pure glue theory with gauge symmetry SU(N). If TR �
Λ, the sector is relativistic at production and consists of a theory of perturbative gluons.
The gravitational production from the SM plasma can be computed using eq. (2.6), where

cD = 16(N2 − 1) . (3.1)

After production in the perturbative regime the gluon energy and density redshifts due
to the expansion and interactions unavoidably become relevant, leading eventually to color
confinement. If the system thermalises in the relativistic regime the phase transition is the
standard thermal phase transition of strongly couple gauge theories but it is also possible
that the phase transition takes place out of equilibrium. In this case the transition occurs
when the system has a number density smaller than Λ3, i.e. the particles are separated by a
distance larger than 1/Λ. After the phase transition physical states are glueballs. Glueball
interactions, in particular number changing processes, are again important in the region
where the DM abundance is reproduced.

We now discuss in detail the scenario where the confinement phase transition takes
place in or out of thermal equilibrium. We will focus for simplicity on SU(N) gauge theories
with 3 colors (cD = 128) where a wealth of lattice results are available. In figure 1 we show
a cartoon of the phase diagram of theory in the plane and the values of (Λ, TR) where the
DM abundance is reproduced.

3.1 Thermal gluons

The thermalisation of pertubative gluons has been studied in detail for applications to
the quark gluon plasma in the SM. The main difference in our case is that there are no
quark degrees of freedom and that the plasma is initially very diluted. Due to the long-
range nature of the interactions the analysis in section 2.2 should be refined and, strictly
speaking, simply solving Boltzmann equations is not sufficient, see [29] for an elementary
introduction and [16] for a discussion in the context of abelian gauge theories. In cite [30]
the thermalization of a non-abelian gluon gas in the perturbative regime was studied using
kinetic theory. In [31] the thermalization of a diluted perturbative gas was also studied
using numerical methods. In our scenario the details of thermalization are not important
as long as the process completes in the relativistic regime. The boundary of thermalization
is determined by the non-perturbative region where the results above are not directly
applicable. Because of this we simply estimated the critical value of the temperature by

– 7 –
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unstable glueballs
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HI > 7 10
13GeV

Figure 1. Phase diagram of gravitationally produced glueball DM. DM abundance is reproduced
on the black and brown lines. In the lower right region below the dashed grey line gluons thermalise
in the relativistic regime and then undergo cannibalism, reducing their numerical abundance. In
the middle region between dashed lines gluons confine before thermalisation but glueballs then
thermalise. In the upper left region above the dashed lines the system never thermalises and the
abundance depends on NDG (black and brown lines). The grey regions are excluded by DM self-
interaction, scale of inflation and lifetime of glueballs where we use the estimate τDG ∼M4

Pl/M
5
DG.

taking αeff = 1. We emphasize that our rough estimate σ2→3 ∼ 1/T 2 of number changing
processes carries a large, possibly parametric, uncertainty that could change significantly
the minimum temperature where the dark sector thermalizes. The study of thermalization
of the dark gauge sector would deserve a separate study.

For what concerns the critical temperature, given that it is determined by conservation
of energy the details of transient are not important so that the estimate in eq. (2.15) is reli-
able. Using the simple parametrization in eq. (2.14), for N = 3 we find the thermalisation
temperatures

T ∗ ≈ 106 GeVα3
eff

(
TR

1015 GeV

)3
T ∗D ≈ 103 GeVα3

eff

(
TR

1015 GeV

)15/4
. (3.2)

Thermalisation in the relativistic regime is realized if Λ < T ∗D where we can take αeff ∼ 1
as the maximum value.

Confinement phase transition: when the system reaches thermal equilibrium before
the phase transition, the results will be the same as those of glueball DM, with the striking
difference that the glueballs are now much colder than the SM sector. In order to determine
the abundance of glueballs we can use lattice results for SU(3) pure glue gauge theory
(similar results apply for small N). The mass of the lightest glueball and the latent heat
of the phase transition are roughly [32–34]

MDG
Λ ≈ 5.5 , Lh

Λ4 ≈ 1.4 , (3.3)

– 8 –
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where Λ is the critical temperature of the dark sector. Since the glueballs are rather
heavy compared to the critical temperature they will be produced non-relativistically. Two
possibilities arise in this case, depending on whether self-interactions of glueballs allow
number-changing processes with a fast rate.

Free glueballs: if number-changing processes were not efficient, the number density of
glueballs could be simply calculated from the energy released during the phase transition.
For confining gauge theories the latter is expected to be rapid so the nucleation temperature
Tn will be similar the critical temperature Λ [35]. Assuming that the transition completes
instantaneously from energy conservation we obtain,

YDG = ρth(T ) + Lh
MDG s(T )

∣∣∣∣
Tn

≈ 0.01 Λ
MDG

(
TR
MPl

)9/4
, (3.4)

where we estimated the energy density of gluon plasma in terms of free gluons and
used (2.15). From this we derive the DM abundance:

Ωh2

0.12 ≈
MDG

10 GeV

(
TR

1015 GeV

)9/4
. (3.5)

Note that DM relic abundance is achieved for much lower values of M compared to the
non-interacting case. In practise however we find that in the region where DM abundance
is reproduced number changing processes are relevant.

Cannibalism: if number-changing processes are important, the yield can be modified
from eq. (3.4). In a theory of pure glueballs, the leading processes that change the number
density are 3 → 2. These reactions have a cross section 〈σ3→2v〉 ≡ α3

DG/M
5
DG, and just

after the phase transition they are faster than Hubble if α3
DG(MPl/MDG)

√
r � 1. If this

condition is met, the glueballs maintain thermal equilibrium for a while, despite being
non-relativistic, see for example [22].

These interactions reduce the number density of glueballs and increase their tempera-
ture, which only marginally drops due to the expansion. This behaviour is due to the fact
that we are considering a non-relativistic plasma in thermal equilibrium at fixed entropy.
The mechanism is often dubbed ‘cannibalism’ [26], since DM ‘eats’ itself in order to warm
up. To estimate the effect of cannibalism we follow the standard approach to consider
3→ 2 interactions, see [19–24, 26–28]. The Boltzmann equation for the abundance reads

T

Yeq

dY

dT
=
〈σ3→2v〉n2

eq
H

[
Y 3

Y 3
eq
− Y 2

Y 2
eq

]
, (3.6)

where neq is the (non-relativistic) equilibrium distribution at a temperature TD. This
equation has to be complemented with one governing the behaviour of TD(T ). At the phase
transition the temperature of the new confined phased is determined by conservation of
energy (assuming instantaneous thermalisation). This implies that the ratio of entropies
of dark and visible sector is,

ρ(T ∗D) = ρth(Tn) + Lh −→ q ≡ sd
s

= ρ(T ∗D)
T ∗D s

. (3.7)

– 9 –
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After the completion of the phase transition, the dark sector entropy is conserved. This
allows to determine the evolution of the temperature of glueballs [26]

q = MDG
TD

neq(TD)
2π2g∗

45 T 3
, → TD

MDG
= 2
W
[
(T0/T )6] T0 ≡ 0.59 MDG

g
1/3
∗ q1/3

. (3.8)

where W (z) is the solution of WeW = z. At small temperatures the approximate solution
is simply TD/MDG ≈ 1/(3 log(T0/T )). The logarithmic redshift of the dark sector temper-
ature is related to the fact that the system maintains thermal equilibrium despite being
non-relativistic. In fact the equilibrium yield is now given Yeq = q TD/MDG, which does
not drop exponentially.

The freeze-out of cannibalism occurs when Γ ≈ σ3→2n
2
eq drops below Hubble at the

temperature (inserting eq. (3.8))

Tf = 2a−1/4
√
W (a3/8T

3/2
0 /4) , a ≡ 2.32α

3g
3/2
∗

M4
DG

MPl
MDG

q2 . (3.9)

Approximately,

TD
MDG

∣∣∣∣
Tf

≈ 1
3 logQ , Q ≡ 0.08

(
g∗

106.75

)1/24 ( α

0.1

)3/4
q1/6

(
MPl
MDG

)1/4
. (3.10)

The resulting yield after cannibalism is then given by

Ycannibal ≈
1

3 logQ
gD
g∗

(3
4 + 1.4× 45

2π2gD

) Λ
T ∗D

∣∣∣∣
Tn

(
g∗
gD

) 3
4
r

3
4 , (3.11)

that is directly proportional to the ratio of entropy densities [26].
This is the typical behaviour of the energy density of a non-relativistic plasma in equi-

librium with conserved entropy, ρDG ∼ (a3 log a)−1. The cannibalism therefore prevents a
larger redshift of the energy density and leaves the yield in eq. (3.4) essentially unaffected
save for a small logarithmic correction. We note that the mass scale MDG does not play a
large role in the determination of Ycannibal.

As shown in figure 1 due to cannibalism the DM abundance can be reproduced even
for masses below GeV. In this regime self-interactions of glueballs become relevant. We
estimate the elastic cross-section among glueballs to be geometric, σel = π/M2

DG. The
bullet cluster bound on self interactions σel/MDG < 2 · 103 GeV−3 implies the estimate
MDG > 0.1GeV. Lattice results in SU(2) give Λ > 50MeV [36].

3.2 Out-of-equilibrium gluons

If the confinement scale Λ > T ∗D in eq. (2.16), the system undergoes confinement before
thermalisation. In such a case we expect the transition to take place when the typical
distance between quarks is of order Λ,5 which occurs at the visible sector temperature TΛ

5We assume here that H < Λ so that the curvature of space does not play role. In the opposite regime
the fast expansion of the universe forbids the transition.
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determined by nD(T ) = YDs(T ) ∼ Λ3

TΛ ≈ Λ
(
π2

gDr

) 1
3
∼ ΛMPl

TR
. (3.12)

Note that, since the system failed thermalise, TΛ is also the typical energy of gluons
at the onset of the phase transition - the gluons have typical energy larger than thermal
distribution by a factor Mp/TR. This leads cosmological collider physics: each high energy
gluon moving in the confined vacuum will hadronize, producing jets of color-singlet glue-
balls. If each gluon produces on average NDG dark glueballs the yield of glueballs after the
phase transition is

YDG(TΛ) = NDGYD , YD = 0.0008
(
TR
MPl

)3
. (3.13)

The DM abundance is thus increased by NDG compared to (2.12). The number of
glueballs is difficult to estimate but will scale with TΛ/Λ which in light of eq. (3.12) is
expected to be constant for a given reheating temperature. For example, at the LHC a
1TeV jet can contain O(100) hadrons. Note that in this case the energy released in the
phase transition is negligible compared to the energy of the gluons.

However this is not the end of the story, since the glueballs undergo number changing
processes and can themselves thermalise. In this scenario, the glueballs are relativistic right
after the phase transition, with a typical energy of the type E ∼ T/NDG, so that the cross-
section of number changing processes scales as σ ∼ N2

DGα
3
DG/T

2 if they are relativistic.
Because the temperature dependence is identical to that in section (2.2) we can simply
rescale the formulae to take into account NDG. Thermalisation of dark glueballs takes
place at visible and dark sector temperatures given by eq. (3.2) multiplied by N3

DG. This
shows that even if the gluons do not thermalise before confinement, the glueballs may do so
afterwards provided they are relativistic T/NDG > Λ. This translates to an upper bound
on the confinement scale:

Λ . 106 GeVα3
DGN

2
DG

(
TR

1015 GeV

)3
. (3.14)

When Λ satisfies this constraint the glueballs thermalize while relativistic. This, as
in the case of gluons discussed in section 3.1, is accompanied by an increase in number
density and a suppression of the dark sector temperature. The ratio of dark sector and
visible temperature is again given by eq. (2.15), with gD here replaced by the multiplicity
of lightest glueballs. Once the system thermalizes the computation of the relic density
follow the one of the previous section. In particular if number changing processes remain
in equilibrium when the glueballs become non-relativistic a phase of cannibalism is realized
also in this case. If instead the glueballs do not thermalise their abundance is roughly given
by (3.13).

The different regions of gravitationally produced glueball DM are shown in figure 1.

4 Dark CFT

In this section we investigate the possibility that the dark sector is a strongly-coupled
conformal field theory with a relevant or irrelevant deformation. We assume that the latter
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creates a mass gap Λ in the infrared and that the lightest state, accidentally stable, is
the DM.

The formulae in section 2 can be directly applied to this scenario if TR � Λ as they
rely only on the central charge of the CFT, see appendix A. In general gD ∼ cD but
it is not obvious how to precisely define the number of degrees of freedom of the CFT.
Fortunately however gD drops out of the relevant formulae for energy and number density
that are needed to determine the DM abundance. In contrast to weakly coupled theories,
for general CFTs what is being produced are not conventional particles but ‘CFT shell
states’ of a given energy. Because the phase space distribution is similar to the one of a
fractional number of particles this is also known as ‘unparticle production’ [37] (see [38]
for an application to DM).

Let us also mention that for elementary scalars an ambiguity exists in the coupling to
gravity. This is due to the fact that φ2R is a dimension 4 operator so that it can be added
to the action to leading order. In interacting CFTs this is not expected to happen as, at
least in supersymmetric cases, no scalar operator of dimension 2 exists. This implies that
the coupling to gravity is uniquely determined. A related fact is that the dark sector is not
populated through quantum fluctuations because Tµµ = 0.

If the system is strongly coupled there will also be an analogue of the notion of cross-
section relevant for thermalisation which by large-N counting scales as σ ∼ 1/(NT )2. The
estimates for glueball DM in section 3 are thus also valid for strongly coupled CFTs on the
appropriate identification of the parameters.

We will focus in what follows on holographic realizations of CFTs.

4.1 Randall-Sundrum theories

As is well known, a geometric realization of strongly coupled CFTs can be obtained through
the AdS/CFT correspondence. At large N , the CFT has a dual description in terms of
a weakly-coupled 5D gravity theory in AdS space of radius L. Coupling to 4D gravity is
obtained introducing a UV brane that explicitly breaks conformal invariance. This is just
the Randall-Sundrum 2 scenario [39], see [40, 41] for the holographic interpretation. In this
setup the coupling to gravity is uniquely determined. As explained above this corresponds
to the fact that the minimal theory does not contain dimension 2 operators. Through the
AdS/CFT dictionary ∆ = 2±

√
4 +M2L2 a dimension 2 operator would correspond to a

bulk scalar of mass M2 = −4/L2 at the Freedman-Breitenloner unitarity bound.
From the RS point of view the production of CFT states corresponds to the emission

of 5D gravitons into the fifth dimension. The inclusive cross-section can be conveniently
computed from the central charge of the dual CFT [42]:

cRS = 320π2M3
5L

3 , M2
Pl = M3

5L

2 +M2
0 , (4.1)

where M2
0 is the UV contribution to the graviton kinetic term. The 5D picture also allows

us to discuss thermalisation effects that correspond to gravitational interactions in 5D. The
effective coupling αRS ∝ 1/cRS is suppressed in the regime where gravity is weakly coupled.
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Since we are ultimately interested in a theory with a mass gap we also introduce
an IR brane so that the spectrum of excitations is discrete. This can be realized with
the Golberger-Wise stabilization mechanism [43]. This corresponds to the addition of
a close-to-marginal deformation to the CFT, [O] = 4 + ε, dual to a scalar in 5D with
mass m � 1/L. The potential energy of the scalar naturally drives the IR to a large
separation from the UV, generating a hierarchy of scales very similar to the Coleman-
Weinberg mechanism of radiative symmetry breaking [44]. The lightest state is a scalar,
the radion, that corresponds in the 4D picture to the dilaton, the Nambu-Goldstone boson
of spontaneously broken conformal invariance, see [45–49] for alternative realizations of
DM in holographic models.

Confined phase: the low energy effective action is essentially fixed by the symmetries
and can be cast in the following form [50]

L = N2

16π2 [(∂ϕ)2 − V̂ (ϕ)] + V0 , V̂ (ϕ) = λ0ϕ
4
[
1− 4

4 + ε

(
ϕ

f

)ε]
+O(λ2

0) , (4.2)

where V0 = − N2

64π2
ε

1+ε/4λ0f
4 cancels the cosmological constant in the true vacuum. Above

we introduce the effective number of degrees of freedom related to the central charge
cRS ∼ N2. Expanding around the minimum ϕ = f and going to canonical normalization
we find

L = (∂χ)2 + λ0εf
4
[
2χ

2

f2 + 40π
N

χ3

f3 + 88π2

3N2
χ4

f4 + 64π3

5N3
χ5

f5 + . . .

]
. (4.3)

The main difference from the glueball effective theory is that the potential is suppressed
by the small parameter λ0ε. The interactions moreover are suppressed in the large N limit,
so that number-changing interactions are inefficient in the confined phase. If the system
reaches thermal equilibrium in the deconfined phase we can compute the abundance as
in eq. (3.4) with Lh = V0 and neglecting the energy of the thermal bath since the phase
transition occurs with some amount of supercooling. One finds

Yχ = Lh/M

s(T )

∣∣∣∣
Tn

=
√
ελ0

N2

64π2
45

2π2g∗

(
f

Tn

)3
= 0.016

√
ελ0

N2

64π2
45

2π2g∗

(
TR
Mp

)9/4 (
f

TDn

)3
,

(4.4)
so that

Ωh2

0.12 ≈
ελ0f

GeV

(
N

5

)2 ( TR
1015 GeV

)9/4 ( f

10TDn

)3
. (4.5)

Phase transition: the final abundance depends on the details of the phase transition
through the amount of supercooling Tn/f . In this setup the phase transition is as fol-
lows [52]: at high temperature the system is in the “deconfined” phase whose holographic
description corresponds to an AdS black hole.6 At low temperatures the configuration
with IR brane has a lower free energy and becomes favoured. The two phases are sep-
arated by a first order phase transition. The free energy of the decofined phase can be

6The gravitational production of the CFT leads to a system out of thermal equilibrium. The process of
thermalisation corresponds to the formation of a black hole in the 5D geometry.
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TR=10
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λ0=0.5

N=3

f=10 GeV

f=1 GeV

f=0.1 GeV

Ωh2=0.12

3D action

Figure 2. Nucleation temperature in units of f as a function of the anomalous dimension of
the operator [O] = 4 + ε. Solid lines corresponds to tunnelling transitions computed with the 3d
euclidean action, that we find dominant in the region of interest. The main difference from ref. [51] is
due to the fact that the transition takes place during radiation domination with Hubble dominated
by the SM degrees of freedom. DM abundance is reproduced where dashed lines intersect the
nucleation curves. We neglect effects of cannibalism as they give small corrections. In the shaded
region the dark sector vacuum energy dominates the energy budget.

estimated with F ≈ −N2T 4, from which the critical temperature of the phase transition is
T 4
c /f

4 ≈ ελ0/
√

16π2. For the thermal CFT we consider a potential V = N2 (4ϕ3T + 3ϕ4),
as suggested in [52].

Since the dark sector is in thermal equilibrium, the vacuum decay rate is Γ ∼
T 4
D exp(−SE), where SE stands either for the O(4) symmetric bounce action or the O(3)

symmetric finite temperature Euclidean action. The nucleation temperature is obtained
by solving Γ = H4. In contrast to typical holographic phase transitions, in our model the
Hubble rate is dominated by the visible sector because the dark sector is always a small
fraction of the total energy budget. In particular, the transition takes place during radi-
ation domination when the Hubble parameter is dominated by the degrees of freedom in
the visible sector. The nucleation temperature is thus determined by

SE(TD) = 4 log MPl
TD
− 8 log T

TD
+ κ ≈ 4 log MPl

TD
− 6 log MPl

TR
, (4.6)

where κ is an order 1 number encoding various uncertainties, and in the second step we have
used the relation T ≈ (MPl/TR)3/4TD. This means that the transition requires a smaller
Euclidean action, effectively delaying it compared to the standard scenario. Moreover, in
our case, since the scale invariance is only broken slightly by the scaling dimension ε, the
bounce action (at low temperatures) has the approximate form7

SE(T ) = A

logM/T
. (4.7)

7At weak coupling this is precisely the value of zero temperature and finite temperature Euclidean
actions. At strong coupling the bounce action has a slightly different form that however does not change
the qualitative behaviour discussed here. More details can be found in [51].
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The slow logarithmic decrease of the action signals a transition with a potentially sizeable
amount of supercooling, as expected in theories that are approximately conformal [52–56].
The dark nucleation temperature is

TnD =
√
MMPl

(
TR
MPl

) 3
4
e
− 1

4

√
4A+log2 M2MPl

T3
R . (4.8)

If A is negligible, the transition takes place when TnD ≈ M , i.e. as soon as the mass
scale is reached. Note that in this case the latent heat of the transition is much smaller than
the energy density. If A is large, the temperature of the dark sector drops to very small
values and the thermal energy becomes subdominant compared to the vacuum energy.

If figure 2 we present an example of the nucleation temperature following [51]. In
order to reproduce the abundance of DM the phase transition must be fast, requiring a
significant deviation from conformality.

4.2 Holographic confining gauge theories

A different realization of the same idea is the holographic dual of a confining gauge theory
as introduced in [57]. In particular, due to supersymmetry it is possible to control the
dynamics and have an explicit realization of the CFT, N = 4 super-Yang-Mills in the
simplest case. The main difference from the previous discussion is that the deformation is
strongly relevant, growing rapidly in the IR. Because the explicit breaking of conformal
invariance is large, it is not possible to identify a dilaton-like particle. This model at finite
temperature was studied in [58]. As in the Randall-Sundrum model, the high-temperature
regime is described by a 5D geometry with a black-hole or black brane. As the system
evolves to lower temperatures, the confining phase becomes favoured. Due to the absence
of a light dilaton it is not possible to compute the transition rate within effective field
theory control. Nevertheless, since the deformation is strongly relevant, we expect the rate
to be fast as in QCD-like theories so that Tn ∼ Tc.

5 Conclusions

The possibility that DM interacts with the SM only through gravitational interactions is
both compelling and concerning. A truly dark sector naturally contains cosmologically
stable DM candidates and would automatically escape any laboratory experimental bound
unless the mass were exceedingly small. While the observational prospects of DM look
very dim in this case, one might nevertheless seek to identify the most plausible scenarios.
In light of that, it is interesting to consider the minimal production mechanism due to the
coupling to gravity that unavoidably populates the dark sector. One firm prediction is
that the abundance of DM requires a large reheating temperature that in turn implies an
inflationary scale not very far from the current bound. Therefore discovering a large scale
of inflation through gravity waves would lend credence to this scenario.

In this work we investigated the population of the dark sector in the relativistic regime
where the results become model independent: with the notable exception of elementary
scalars and gravitons, due to approximate conformal invariance, production through quan-
tum fluctuations is suppressed and the abundance of the dark sector particles is determined
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by the central charge of the dark sector, roughly a measure of the number of degrees of free-
dom. Gravitational production leads to a dark sector plasma strongly out of equilibrium
with small numerical density compared to the typical energy. Depending on interactions
very different dynamics take place that modify the nature of DM and its abundance. In
particular when the interactions are strong and the mass is light the system thermalises at
a temperature much lower than the SM and begins its own thermal history.

Gravitational production appears particularly attractive for the DM glueball scenario.
Such a situation requires the temperature of the dark sector to be much smaller than that of
the SM to escape experimental constraints. This requirement is automatically satisfied with
gravitational production because the dark sector is underabundant. The dynamics lead to
interesting effects such as out-of-equilibrium phase transitions and cannibalism. Similar
effects can be studied in strongly coupled CFTs and their holographic dual theories where
for example the DM is a light dilaton from spontaneous breaking of conformal invariance.

There are several questions that we are planning to pursue in future work. As we have
argued, production through quantum fluctuations is suppressed in our scenarios. It will
nevertheless be productive to investigate the contribution to the abundance from small
deviations from conformality. Gravitational production is also relevant for other sectors
such as baryon-like DM. Finally it is interesting to note that gravitons are also produced
with a yield and distribution determined in this paper.
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A CFT production

In this appendix we derive the relevant formulas for the thermal production of CFT states.
All the results depend solely on the central charge of the CFT.

In general a CFT is endowed with a traceless energy momentum tensor Tµν of di-
mension 4 so that the minimal coupling to gravity is just gµνTµν . In strongly interacting
CFTs, modulo the highly plausible assumption Tµµ = 0 [59], the leading coupling to gravity
is uniquely determined, hµνTµν .8 The 2-point function of Tµν is in turn fixed by conformal
invariance as

〈Tµν(x)Tρσ(0)〉 = 1
4π4Pµνσρ

c

x8 ,

Pµνσρ = 1
2(IµσIνρ + IµρIνσ)− 1

4ηµνησρ ,

Iµν = ηµν − 2xµxν
x2 , (A.1)

8Tracelessness of Tµν can be violated only if dimension 2 operators exist allowing for the marginal
coupling RO. As explained below this is realized in theories with weakly coupled scalars.
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where c is the central charge of the CFT, which roughly measures the number of degrees of
freedom of the theory. In momentum space the 2-point function has a dependence p4 log p.
More precisely with our normalizations [60],

〈Tµν(p)Tρσ(−p)〉 = c

7680π2 (2πµνπρσ − 3πµρπνσ − 3πµσπνρ) log(−p2) , (A.2)

where πµν = ηµνp
2 − pµpν . The tree level graviton propagator can be chosen as

〈hµν(p)hρσ(−p)〉 = Pµνρσ
i

p2 + iε
, Pµνρσ = 1

2(ηµρηνσ + ηµσηνρ − ηµνηρσ) . (A.3)

The 1-loop correction to the graviton propagator is thus

Pµναβ〈Tαβ(p)Tγδ(−p)〉P γδρσ = 1
M2

Pl

c

7680π2 (2πµνπρσ − 3πµρπνσ − 3πµσπµρ) log(−p2) .

(A.4)
It is now simple to extract the inclusive cross-section for tree-level production of CFT
states. To achieve this we can use the optical theorem so that the inclusive cross-section
is proportional to the imaginary part of the graviton propagator, i.e. to the central charge
cf appearing in the 2-point function of the energy momentum tensor of the CFT. The
opposite process of production of SM states is instead proportional to ci. One finds that
the annihilation cross-section, averaged over initial states, is given by9

σtot = cicf
g2
i

1
10240π

s

M4
p

, (A.5)

For production then the only difference between weak coupling and strong coupling is
the value of the central charge. For graviton production using the result in [61] we find that
the same formula applies with cD = 28, if produced from the conformally coupled states.

This zero temperature cross-section is the building block to determine the gravitational
production of the CFT.

Boltzmann equations: to compute the distribution function of the dark sector we fol-
low [62, 63]. In general the Boltzmann equation for the phase space distribution of particles
in the plasma reads

∂f

∂t
−H |~p|

2

E

∂f

∂E
= C[f ]

E
, (A.6)

where C[f ] is the collision term. For 2→ 2 processes this is given by

C(t, p)
E

= 1
2E

∫
Π3
i=1

d3pi
(2π)32Ei

(2π)4δ4(p1 + p2 + p3 + p)
∑
|M|2

× [f1(p1)f2(p2)(1± f3(p3))(1± f(p))− f3(p3)f(p)(1± f(p1))(1± f2(p2))] .
(A.7)

9We quote the cosmological cross-section entering Boltzmann equations that differs by a factor 2 for
Dirac particles compared to [4].
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We are interested in the thermal production of an underpopulated sector so that f1,2 =
feq and f3,4 ≈ 0. The exact solution of (A.6) is given by

f(t, p) =
∫ t

ti

dt
1
E
C

(
t,
a(t)
a(t′)p

)
. (A.8)

The collision term can be written as

C(t, p)
E

= 1
2E

∫
Π3
i=1

d3pi
(2π)32Ei

(2π)4δ4(p1 + p2 + p3 + p)
∑
|M|2× [feq(p1)feq(p2)] . (A.9)

Using the identity

feq(p1)feq(p2) = (1 + feq(p1))(1 + feq(p2))e−
E3+E4
T (A.10)

in the massless limit and neglecting the quantum statistics we obtain

C(t, p)
E

≈ e−p/T

512π3p2

∫
ds

∫ ∞
s

4p

dp3
2
s
e−p3/T 16πs σ(s) = T

e−p/T

16π2p2

∫
ds se−s/(4pT )σ(s) .

(A.11)
Inserting (A.5) we obtain

CSM+SM→CFT
E

= cicf
1280π3

T 4

M4
Pl
pe−p/T . (A.12)

From this we can compute the thermally averaged cross-section as

〈σv〉 = 1
n2
eq

∫
d3p

(2π)3
CSM+SM→CFT

E
= cicf

g2
i

3
1280π

T 2

M4
Pl
, (A.13)

where neq = giT
3/π2. This result agrees with the standard formula [64]. The only ap-

proximation made to compute the thermally averaged cross-section is the neglecting of
the quantum corrections which leads to O(10%) error in the relativistic regime. From
eq. (A.12) we derive the energy distributions as

f(T, p) =
∫ TR

T

dT ′

T ′H(T ′)
C(T ′, p T

′

T )
p

= cDcSM√
g∗

1
128
√

10π4

(
1− T 3

T 3
R

)
T 3
R

M3
Pl

p

T
e−p/T . (A.14)

From this we can finally compute the number and energy densities

n(T ) = 3
128
√

10π6
cDcSM√

g∗

(
1− T 3

T 3
R

)
T 3
R

M3
Pl
T 3 , ρ(T ) = 4Tn(T ) . (A.15)

in agreement with eq. (2.6).
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