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1 Introduction

The four dimensional supersymmetric Dirac-Born-Infeld (SDBI) action describes the ef-

fective field theory of a D3-brane and breaks half of the supersymmetries of the bulk,

which are non-linearly realized on the D-brane world-volume. In the physically interesting

case the bulk has N = 2 supersymmetry, obtained for instance upon compactification of

the ten-dimensional type II superstrings on a Calabi-Yau threefold. The goldstino of the

N = 2→ N = 1 partial breaking belongs to a vector multiplet of the linear supersymmetry

that has non-trivial self-interactions due to the non-linear supersymmetry. The SDBI ac-

tion can be obtained from the N = 2 quadratic action by imposing a non-linear constraint

that eliminates the N = 1 chiral superfield in terms of the U(1) vector-goldstino superfield

that form together the N = 2 vector multiplet [1, 2]. This constraint takes a very simple

nilpotent form in terms of the deformed N = 2 vector superfield which incorporates a

deformation in the transformations of one (the would be non-linear) supersymmetry [3–5].

Note that the deformation cannot be interpreted as an expectation value of an auxiliary

field. The resulting action depends on one parameter, the goldstino decay constant κ, or

equivalently the D3-brane tension.

After solving the constraint, the SDBI action can be written as an integral over the

N = 1 superspace of an expression involving the gauge-field strength superfield where
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non-linear supersymmetry is not manifest [3]. In terms of components, upon superspace

integration, the bosonic part of the action can be written in a closed form, while it is not

the case for the part involving the U(1) gauginos. On the other hand, an explicit form

of the whole action was given within the formalism of non-linear supersymmetry, using

variables where manifest linear supersymmetry is lost [6, 7]. The two actions are of course

equivalent on-shell, related through field redefinitions.

The goal of this note is to study the uniqueness of the SDBI action which is an inter-

esting open problem that has not yet been settled. Indeed, in the case of N = 1 non-linear

supersymmetry, the Volkov-Akulov (VA) action [8] was shown to be unique up to field

redefinitions that do not change the theory on-shell (see e.g. [9]). In this work, we address

this problem for the SDBI action within effective field theory, following a similar strategy.

Of course, a natural arena of studying this action and its uniqueness is within string theory.

A comparison of SDBI with the corresponding amplitudes in string theory was done

in [10, 11] at the level of mass dimension-8 interactions involving four bosons, four fermions,

two bosons and two fermions, i.e. F 4, (λ∂λ̄)2 and (λ∂λ̄)F 2, schematically. Actually,

dimension-6 interactions involving two fermions and one boson also appear in the form

(λ∂λ̄)F . Nevertheless, these terms vanish on-shell and can be eliminated by field redef-

initions, giving rise to extra contributions in dimension 8. It turns out however that

dimension-8 operators involving fermions are completely determined by N = 1 non-linear

supersymmetry alone and do not provide any non-trivial test of string theory. Indeed, the

coefficient of (λ∂λ̄)2 is fixed by the standard N = 1 non-linear VA action, while (λ∂λ̄)F 2 is

uniquely fixed by the universal goldstino coupling through the energy-momentum tensor,

using the same decay constant [12], dictated by the low-energy theorem of spontaneous

supersymmetry breaking [13, 14]. On the other hand, the bosonic F 4 operator follows

from the expansion of the DBI action which is completely determined from the combina-

tion of linear and non-linear supersymmetries [1, 2]. It is therefore necessary to go beyond

dimension-8 operators in order to make a non-trivial test of the fermionic dependence of

the D-brane action and its comparison with the SDBI form.

In order to get a better understanding of the uniqueness of the SDBI action, one can

consider deformations that do not change the form of the action bosonic part. This can be

achieved by adding Fayet-Iliopoulos (FI) D-terms and their generalisations. The generation

mechanisms and the effect of such terms constitute an interesting open problem related

to supersymmetry breaking, that becomes more restrictive in supergravity and even more

in extended supersymmetric theories. New FI terms, that do not require gauging the R-

symmetry when coupled to supergravity, were written recently within N = 1 [15–18] and

N = 2 [19] supersymmetry; their bosonic part is identical to an ordinary constant FI term,

while their fermionic dependence is highly non-trivial. The first step of these studies is

obviously the analysis of the effects of the standard FI term added to the SDBI action,

that we discuss in this work.

In the absence of matter, a constant FI term can be added in the SDBI action since

it is invariant under both supersymmetries. Its presence drives the D auxiliary field of the

U(1) vector multiplet to get a non-vanishing vacuum expectation value (VEV), breaking

spontaneously apparently the linear supersymmetry. However, after elimination of the
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auxiliary field, the bosonic part of the action acquires again the SDBI form by redefining

κ, and thus the D-brane tension [3, 20]. Nevertheless possible differences could come from

fermionic contributions. Indeed, it was recently argued that in the non-linear formulation

where fermion dependence can be written explicitly, there is an extra term proportional

to the FI parameter [7]. This term involves an odd number of bosons, in contrast to the

standard SDBI action which involves only even numbers, upon elimination of the auxiliary

field. It is therefore interesting to study the effect of the new term on physical amplitudes

and eventually compare them with corresponding string amplitudes. Also, more recently,

another kind of an FI D-term was constructed by considering the most general N = 2

deformation and imposing the nilpotent constraint on the corresponding N = 2 vector

superfield, in the presence of a non-vanishing θ angle in the action [5]. The advantage of

this mechanism is that a constant FI D-term is not added by hand but is induced from

an action which is manifestly gauge invariant (and not just up to a total derivative, which

usually makes it difficult to couple it to supergravity). The relevant deformation amounts

to add an imaginary part γ to the D auxiliary field.

In this note we compute for the first time non-trivial higher dimensional physical

vertices corresponding to fermionic contributions in the SDBI action, in the presence of a

standard or induced FI D-term. As mentioned above, such terms being linear in the N = 1

vector multiplet, they generate interactions containing an odd number of gauge fields. As

these terms are not present in the standard SDBI action, we expect that they show the

difference between the SDBI action and SDBI coupled to FI terms in appropriate on-shell

physical operators.

The first possible appearance of an odd number of gauge fields is at dimension-6

level, through terms containing two gauginos and one field strength. Nevertheless, as

we mentioned above, these terms are not physical and can be eliminated by means of field

redefinitions. The dimension-8 terms are either fully bosonic with four field strengths, fully

fermionic with four gauginos, or mixed with two gauginos and two gauge field strengths.

The fully bosonic term follows from the standard bosonic part of the SDBI action with

a redefined tension that takes into account the coefficient of the FI D-term (or the γ-

deformation and θ-angle in the induced case). On the other hand, the fully fermionic term

follows from the Volkov-Akulov action describing the dynamics of the gaugino field, which is

the goldstino of partial supersymmetry breaking, with a decay constant fixed by the brane

tension due to the linear supersymmetry. Eventually, the only non-trivial term is the

mixed gaugino — gauge field strength one, which is however completely determined by the

standard goldstino coupling to energy-momentum tensor, fixed by the low-energy theorems

of supersymmetry breaking. There is no other dimension-8 operator involving gauge fields

coupled to the goldstino, unlike other operators involving scalars or extra fermions [12].

The above considerations motivate our present work to compute dimension-10 physical

mixed operators involving gauginos and gauge fields — either four gauginos and two gauge

bosons, or two gauginos and three gauge fields — in both cases of the SDBI action with

a standard or induced FI term, referred in the following to as SDBI+FI or SDBI+γ, θ,

respectively. In the first case of SDBI+FI, we use both the non-linear formalism and

the standard constrained superfield one with manifest linear supersymmetry, while in the
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second case of SDBI+γ, θ we use only the constrained superfield method. We find that

all dimension-10 operators can be eliminated by field redefinitions in both cases, strongly

suggesting that the presence of FI terms does not break the linear supersymmetry but just

modifies the goldstino decay constant. Actually, in the SDBI+FI case, using the formalism

of non-linear supersymmetry, we also compute a class of dimension-12 mixed operators

with two gauginos and four bosons, of the form (λ∂λ̄)F 4, and show further support to

the above statement. In the context of string theory, this implies that FI terms rotate

the D3-brane, and thus the directions of linear and non-linear supersymmetry in the bulk

without breaking them [5, 20]. Breaking of supersymmetry is expected to occur when an

extra reference brane is inserted without FI term, or in the presence of charged matter like

in intersecting brane configurations [5].

Let us stress that although the final result has a simple interpretation within string

theory, it was not apriori obvious without explicit computation. Moreover, the possibility

of deforming the SDBI action by new FI D-terms remains open, as well as their possible

generation in string theory. Such terms are expected to modify (on-shell) the fermionic

dependence of higher than dimension-8 operators, motivating corresponding computations

in string theory.

Our paper is organized as follows. In section 2 we start with the non-linear super-

symmetry representation of the SDBI+FI action and compute the physical on-shell action

by means of field redefinitions. Especially, we show the absence of the dimension-6 and

dimension-10 terms, and compute the dimension-12 terms of the form (λ∂λ̄)F 4. In section 3

we consider the SDBI+γ, θ action in the formalism with manifest linear supersymmetry

and use field redefinitions to compute its physical on-shell action up to dimension 10. In

a specific limit, we also obtain the on-shell action of SDBI+FI which agrees with the one

obtained from non-linear supersymmetry formalism. We conclude in section 4. To simplify

presentation of our technical analysis, we include two appendices. Appendix A contains

our conventions and some useful identities, and appendix B contains some technical details

including relevant superfield expansions.

2 SDBI action with standard FI term

The goal of this section is to compute the physical on-shell Lagrangian of the SDBI model

with a standard Fayet-Iliopoulos term, which will be referred to as SDBI+FI Lagrangian

in the following. The SDBI action can be constructed by deforming an N = 2 vector

multiplet and imposing nilpotent constraints, as we will briefly review in the next section.

The resulting SDBI action then possesses a manifest N = 1 linear supersymmetry as well

as a hidden non-linear N = 1 supersymmetry.

As a starting point, here, we will use the SDBI+FI action expressed in the non-

linear formalism, where the complete action can be written explicitly in terms of variables

appropriate for the non-linear supersymmetry but at the cost of losing manifest invariance

under linear supersymmetry [7]. We will first expand it in components in section 2.1 and

then use field redefinitions to spell out the on-shell physical interactions with dimension

less than 12, as well as all dimension-12 operators of the form (λ∂λ̄)F 4 in section 2.2.
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The result suggests that on-shell the FI term plays a trivial role and can be absorbed by

redefining the brane tension.

2.1 SDBI+FI from non-linear supersymmetry formalism

The non-linear supersymmetry formalism was systematically developed in [7]. Applying

the formalism to the SDBI+FI model, the Lagrangian can be expressed as1

LSDBI+FI = − 1

8κ2g2
detA

(
1 +

√
1 + 16g4κ2ξ2

√
1 + 4κ2F2 + 4κ4(FF̃)2

)
+ 2
√

2i κ2ξ detAεabcd[(A−1) ν
a ∂νλ]σb[(A

−1) ρ
c ∂ρλ̄](A−1) µ

d uµ , (2.1)

where λ is the goldstino in the non-linear superymmetry formalism which is also the gaugino

in the linear one through field redefinition;2 uµ is the gauge boson; and the composite gauge

field strength Fab is defined by

Fab = (A−1)µa(A−1)νbFµν , Fµν = ∂µuν − ∂νuµ , F2 ≡ FabFab , FF̃ ≡ FabF̃ab , (2.2)

where A is the vielbein matrix

Aa
µ = δaµ + iκ2λσa∂µλ̄− iκ2∂µλσ

aλ̄ . (2.3)

As shown in appendix B.1, the Lagrangian (2.1) can be further rewritten in a manifestly

gauge invariant way as

LSDBI+FI = − 1

8κ2g2
detA

(
1 +

√
1 + 16g4κ2ξ2

√
1 + 4κ2F2 + 4κ4(FF̃)2

)
− 2
√

2κ2ξ λσγ∂ρλ̄ F̃
γρ . (2.4)

We are going now to expand the Lagrangian in operators of increasing mass dimension.

Let us first recall the mass dimensions of various fields and couplings

[u] = 1 , [F ] = 2 , [λ] =
3

2
, [κ] = −2 , [g] = 0 , [ξ] = 2 . (2.5)

We then expand in components each part of this Lagrangian, up to terms of dimension 12

— except for dimension-12 terms of the form (λ∂λ̄)2F 2 which are more involved. In the

following, all equalities are written up to total derivatives, or terms with mass dimension

higher than 12, or (λ∂λ̄)2F 2 terms.

For spinors, we follow the conventions in [14]. Some useful relations used for the

computations can be found in appendix A.

1The two terms in the parenthesis have the same sign, in agreement with [6] but in contrast to the

opposite sign in [7]. The coupling constants are related to those of [7] as follows: κ = 1/(2
√

2m) and

g2 = m/β. The dual tensor F̃ is defined as in (A.4) with a factor of i.
2We use the same symbol λ to denote both the goldstino in this section and the gaugino in the section 3

for simplicity of notation.
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The detA part of (2.1) is related to the Volkov-Akulov action [8] describing goldstino

dynamics

LVA = − 1

2κ2
detA (2.6)

= − 1

2κ2

(
1 + κ2iλ/∂λ̄+ κ2iλ̄/̄∂λ− 2κ4

(
(λ/∂λ̄)(λ̄/̄∂λ) + λσµ∂ν λ̄∂µλσ

ν λ̄
))

+O(λ6)

= − 1

2κ2
− i

2
λ/∂λ̄− i

2
λ̄/̄∂λ− κ2

2

(
−(λ/∂λ̄)(λ̄/̄∂λ)− 2(λ/∂λ̄)2 − 2(λ̄/̄∂λ)2 + ∂µ(λ2)∂µ(λ̄2)

+ λ̄2λ�λ+ λ2λ̄�λ̄
)

+O(λ6) + total derivatives .

Here and in the rest of the paper, we use the following conventions

λ/∂χ̄ ≡ λσµ∂µχ̄, λ̄σ̄µ∂µχ ≡ λ̄/̄∂χ, (λ/∂χ̄)∗ = −λ̄/̄∂χ . (2.7)

When expanding F2 in (2.1), one finds the gauge boson kinetic term and higher order

interactions

F2 = ηacηbdFabFcd = ηacηbd(A−1)µa(A−1)νb (A−1)ρc(A
−1)σdFµνFρσ

= ηacηbdFµνFρσδ
µ
a δ

ν
b δ
ρ
c δ
σ
d + 4κ2ηacηbdFµνFρσ(−iλσµ∂aλ̄+ i∂aλσ

µλ̄)δνb δ
ρ
c δ
σ
d + · · ·

= F 2 + 4κ2(iλσµ∂ρλ̄− i∂ρλσµλ̄)FµνF
νρ + · · · . (2.8)

The same computation for (FF̃)2 gives

(FF̃)2 =
(
FF̃ + 4κ2(iλσµ∂ρλ̄− i∂ρλσµλ̄)FµνF̃

νρ +O((λ∂λ̄)2F 2)
)2

=
(
FF̃ − κ2(iλ/∂λ̄+ iλ̄/̄∂λ)FF̃ +O((λ∂λ̄)2F 2)

)2

= (FF̃ )2 − 2κ2(iλ/∂λ̄+ iλ̄/̄∂λ)(FF̃ )2 +O((λ∂λ̄)2F 2
)
. (2.9)

The same expansion is also obtained directly by noticing that FF̃ = detA−1FF̃ .

Collecting all the above terms, the SDBI+FI Lagrangian becomes

LSDBI+FI =A
[
1+κ2iλ/∂λ̄+κ2iλ̄/̄∂λ−κ4(λ/∂λ̄)(λ̄/̄∂λ)−2κ4(λ/∂λ̄)2−2κ4(λ̄/̄∂λ)2

+κ4λ̄2λ�λ+κ4λ2λ̄�λ̄+κ4∂µ(λ2)∂µ(λ̄2)
]

+2Bκ4(iλ/∂λ̄+ iλ̄/̄∂λ)F 2

+8Bκ4
(
iλσµ∂ρλ̄− i∂ρλσµλ̄

)
FµνF

νρ−16Bκ6
(
iλσµ∂ρλ̄− i∂ρλσµλ̄

)
FµνF

νρF 2

+2Bκ2
(
F 2 +κ2(FF̃ )2−κ2F 4

)
+Cκ2λσµ∂ν λ̄ F̃µν + · · · . (2.10)

The constants A,B and C are defined as

A ≡ − 1

8κ2g2

(
1 +

√
1 + 16g4κ2ξ2

)
,

B ≡ − 1

8κ2g2

√
1 + 16g4κ2ξ2 , (2.11)

C ≡ −2
√

2ξ ,

and have mass dimensions [A] = [B] = 4 and [C] = 2.
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2.2 Physical action with standard FI term

Our goal is to get the physical on-shell Lagrangian. The main strategy is to use field

redefinitions to eliminate various on-shell vanishing unphysical terms and get the physical

on-shell higher dimensional operators. The S-matrix is invariant under field redefinitions.

Thus, to eliminate an unphysical term of certain dimension, we use a specific field redef-

inition and act it on terms of lower dimension. However, the field redefinition also acts

on other terms in the Lagrangian giving rise to many extra higher dimensional terms.

Repeating this procedure allows us to eliminate all unphysical terms and get the on-shell

Lagrangian. In general, this process is complicated and tedious.

Before performing the computations, it is worth pointing out a big simplification. At

any step, we will only be interested in the physical Lagrangian up to some dimension,

say dimension `, and thus will always neglect terms with dimension higher than `. The

simplification occurs if the term O under consideration is proportional to an equation of

motion of the free theory. In such a case, we must be able to eliminate O through certain

field redefinition acting on the free kinetic terms. If the dimension of O is close to `,

acting the field redefinition on other terms of the Lagrangian may only generate terms

with dimension strictly higher than `. If this is indeed the case, we do not need to work

out the field redefinition explicitly and can simply discard the term O. This circumstance

brings us a big simplification.

To obtain the physical SDBI+FI action we proceed as follows: we first eliminate the

lowest dimensional non-physical operators, namely the dimension-6 ones, by means of field

redefinitions acting on kinetic terms. We then compute the higher dimensional contribu-

tions coming from the field redefinitions acting on the other terms in the Lagrangian. We

repeat this procedure for operators with higher and higher dimensions.

In the computations, we will make full use of the identities given in appendix A. In

all equalities thereafter, ellipses “· · · ” should be understood as total derivatives or higher

dimensional terms which we are not interested in.

Field redefinition 1©. To eliminate the dimension-6 term contained in the last line

of (2.10) we apply the following field redefinition

1© λα → λα + ia(σµνλ)αFµν , a =
C

4A
∈ R, [a] = −2. (2.12)

Note that due to the equality σργ = i
2ε
ργµνσµν , this field transformation is equivalent to

the one with Fµν replaced by F̃µν . The fermion kinetic terms transform as

iλ/∂λ̄+ c.c. −→
(2.12)

iλ/∂λ̄+ c.c.− 4aλσµ∂ν λ̄F̃µν − 2aλσµλ̄∂νFνµ + 2a2iλσµλ̄F̃νµ∂ρF
ρν

+

(
2a2iλσµ∂ν λ̄FµρF

ρ
ν +

a2

2
iλ/∂λ̄F 2 + c.c.

)
+ total derivatives , (2.13)
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and they indeed cancel the dimension-6 terms of (2.10) with the chosen parameter a. The

dimension-6 term itself transforms as

λσµ∂ν λ̄F̃µν −→
(2.12)

1

2
λσµ∂ν λ̄F̃µν−iaλσµ∂ν λ̄FµρF ρν−

a

2
iλ/∂λ̄F 2− a

4
iλ/∂λ̄F F̃

+
a2

4
λσµ∂ν λ̄

(
F̃µνF

2−FµνFF̃+F̃µνFF̃−FµνF 2
)

+c.c.+· · · . (2.14)

Other terms in the Lagrangian transform as

iλσµ∂ν λ̄FµρF
ρν+c.c. −→

(2.12)
iλσµ∂ν λ̄FµρF

ρν−aλσµλ̄FανF νρ∂ρFαµ+
a

2
λσµ∂ν λ̄FµνFF̃

−ia
2

4
λσµλ̄F 2∂µ(FF̃ )− a2

2
iλσµ∂ν λ̄FµρF

ρνF 2+c.c.+· · · , (2.15)

λ̄2λ�λ+c.c. −→
(2.12)

λ̄2λ�λ+2iaλ̄2λσµν∂ρλ ∂
ρFµν+c.c.+· · · . (2.16)

Field redefinition 2©. Although the field redefinition (2.10) eliminates the original

dimension-6 term in (2.10), it introduces another dimension-6 operator in (2.13). Hence, we

must combine the field redefinition (2.10) with another field redefinition on the gauge boson

2© uµ → uµ + bλσµλ̄ , b = − C

16B
∈ R, [b] = −2 . (2.17)

This is equivalent to the following field-strength redefinition

Fµν → Fµν + b∂µ(λσν λ̄)− b∂ν(λσµλ̄) ≡ Fµν + 2b∂[µ(λσν]λ̄) . (2.18)

The gauge boson kinetic term transforms as

F 2 −→
(2.17)

F 2 − 4bλσν λ̄∂µFµν + 4b2
[
λ̄2λ�λ+ λ2λ̄�λ̄ (2.19)

+
1

2
∂µ(λ2)∂µ(λ̄2) + (λ/∂λ̄)(λ̄/̄∂λ)− 1

2

(
(λ/∂λ̄)2 + (λ̄/̄∂λ)2

)]
+ total derivatives,

and cancels the dimension-6 operator coming from (2.13). This field redefinition acts on

other terms in the Lagrangian as follows

F 4 −→
(2.17)

F 4+2b∂ν(λσµλ̄)FνµF
2+· · · , (2.20)

(FF̃ )2 −→
(2.17)

(FF̃ )2+2b∂ν(λσµλ̄)F̃νµFF̃+· · · , (2.21)

λσµλ̄∂νFνµ −→
(2.17)

λσµλ̄∂νFνµ−b∂ρ(λ2)∂ρ(λ̄2)−b∂µ(λσµλ̄)∂ρ(λσ
ρλ̄)+· · · , (2.22)

iλσµλ̄F̃νµ∂ρF
ρν −→

(2.17)
iλσµλ̄F̃νµ∂ρF

ρν+
(
biλ̄2λσab∂ρλ∂

ρFab+c.c.
)

+· · · , (2.23)

iλσµ∂ρλ̄FµνF
νρ+c.c. −→

(2.17)
iλσµ∂ρλ̄FµνF

νρ+ibλ̄2λσab∂µλ∂µFab+c.c.+· · · . (2.24)
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After applying the field redefinitions 1© and 2©, the dimension-6 terms are eliminated

completely and the Lagrangian becomes

LSDBI+FI→A
(

1+κ2iλ/∂λ̄+κ2iλ̄/̄∂λ
)

+

(
Aκ4+4Bb2κ2+

C

2
bκ2

)
∂µ(λ2)∂µ(λ̄2)

+#κ2(λ/∂λ̄)(λ̄/̄∂λ)−#κ2(λ/∂λ̄)2−#κ2(λ̄/̄∂λ)2+#κ2λ̄2λ�λ+#κ2λ2λ̄�λ̄

+2Aa2κ2 iλσµλ̄F̃ νµ∂ρF
ρν+2Bκ2

(
F 2+κ2(FF̃ )2−κ2F 4

)
+

(
2Bκ2+

Aa2

2
−Ca

2

)
κ2iλ/∂λ̄F 2−Ca

4
κ2iλ/∂λ̄F F̃+c.c. (2.25)

+

(
8Bκ2−C

2

8A

)
κ2iλσµ∂ρλ̄FµνF

νρ+c.c.

+8Bbκ4λσµ∂ν λ̄
(
F̃µνF

2+FµνF
2−F̃µνFF̃−FµνFF̃

)
+c.c. .

−16Bκ6(iλσµ∂ρλ̄−i∂ρλσµλ̄)FµνF
νρF 2+4Ba2κ4iλσµλ̄F 2∂µ(FF̃ )+· · · .

Note that the four-fermion/one-gauge-boson dimension-10 terms coming from (2.16), (2.23)

and (2.24) cancel each other. They are thus absent in Lagrangian (2.25).

Field redefinition 3©. The second line of (2.25) contains goldstino self interactions

whose coefficients are not shown explicitly. They can actually be removed completely by

applying the field redefinition3

3© λα → λα +mλα(λ/∂λ̄)− nλα(λ̄/̄∂λ) + pλσµλ̄∂µλα , [m] = [n] = [p] = 4 , (2.26)

under which kinetic terms transform as

iλ/∂λ̄+iλ̄/̄∂λ −→
(2.26)

iλ/∂λ̄+iλ̄/̄∂λ+2i(m−p)(λ/∂λ̄)2−2i(m̄−p̄)(λ̄/̄∂λ)2+ipλ2λ̄�λ̄−ip̄λ̄2λ�λ

−2i(n−n̄−p+p̄)(λ/∂λ̄)(λ̄/̄∂λ)+total derivatives+O(λ6). (2.27)

We see that there are enough parameters in (2.27) to cancel all four-fermion terms except

for ∂µ(λ̄2)∂µ(λ2) which is thus the only physical dimension-8 contribution to the Volkov-

Akulov Lagrangian. Under field redefinition 3©, other terms in the Lagrangian generate

dimension-12 terms of the form ∂2λ4F 2, or terms with dimension higher than 12.

Field redefinition 4©. The first term in the third line of (2.25) is proportional to the

equation of motion of a free gauge boson and thus can be eliminated. This is realized by

using the field redefinition of the gauge boson

4© uµ → uµ + fiλσρλ̄F̃µρ, f =
Aa2

4B
, [f ] = −4 , (2.28)

or equivalently the field redefinition of the gauge field strength

Fµν → Fµν + 2f∂[µ

(
iλσρλ̄F̃ν]ρ

)
. (2.29)

3Field redefinitions in the form of (2.26) were used in [9] to demonstrate in components the on-shell

equivalence of different goldstino Lagrangians.
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Under this redefinition the gauge boson kinetic term becomes

F 2 −→
(2.29)

F 2 − 4fiλσρλ̄F̃νρ∂µF
µν + · · · , (2.30)

and thus the second term cancels with the first term in the third line of (2.25). The field

redefinition (2.28) also acts on other terms

F 4 −→
(2.29)

F 4 + 2fiλσµλ̄F 2∂µ(FF̃ ) + · · · , (2.31)

(FF̃ )2 −→
(2.29)

(FF̃ )2 + 2fiλσµλ̄F 2∂µ(FF̃ )− 8fi∂µ(λσν λ̄)FµρFρνFF̃ + · · · . (2.32)

Hence after applying the field redefinitions 3© and 4©, the Lagrangian further reduces to

LSDBI+FI → A
(

1 + κ2iλ/∂λ̄+ κ2iλ̄/̄∂λ
)

+

(
Aκ4 + 4Bb2κ2 +

C

2
bκ2

)
∂µ(λ2)∂µ(λ̄2)

+ 2Bκ2
(
F 2 + κ2(FF̃ )2 − κ2F 4

)
+

(
8Bκ2 − C2

8A

)
κ2iλσµ∂ρλ̄FµνF

νρ + c.c.

+

(
2Bκ2 +

Aa2

2
− Ca

2

)
κ2iλ/∂λ̄F 2 + c.c.− Ca

4
κ2iλ/∂λ̄F F̃ + c.c.

− 16Bκ6iλσµ∂ρλ̄FµνF
νρF 2 + c.c.

+ 8Bbκ4λσµ∂ν λ̄
(
F̃µνF

2 + FµνF
2 − F̃µνFF̃ − FµνFF̃

)
+ c.c.

+
(
4Ba2 + 8Bf

)
κ4iλσµλ̄F 2∂µ(FF̃ )− 16fBκ4i∂ν(λσµλ̄)F νρFρµFF̃ + · · · .

(2.33)

Field redefinition 5©. The dimension-10 terms in the fifth line of (2.33) arrange in such

a way that they are eliminated through the field redefinition

5© λα → λα + (σµνλ)αh
(
FµνF

2 − FµνFF̃
)
, h = −i4Bb

A
κ2 ∈ iR, [h] = −6 .

(2.34)

Indeed, just like (2.12), one can replace Fµν with F̃µν in (2.34), due to the identity σργ =
i
2ε
ργµνσµν . The goldstino kinetic terms transform under (2.34) as

iλ/∂λ̄+ iλ̄/̄∂λ −→
(2.34)

iλ/∂λ̄+ iλ̄/̄∂λ− 2
(
ihλσµ∂ν λ̄− ih̄∂νλσµλ̄

) (
FµνF

2 − F̃µνFF̃
)

− 2
(
ihλσµ∂ν λ̄+ ih̄∂νλσµλ̄

) (
F̃µνF

2 − FµνFF̃
)
, (2.35)

and cancel exactly with the dimension-10 terms of (2.33). Acting (2.34) on other terms in

the Lagrangian, we only get dimension-14 or dimension-16 terms.

Therefore, no dimension-10 operator survives in the physical on-shell Lagrangian.

Field redefinition 6©. We are still left with the dimension-8 terms of the form λ/∂λ̄F F̃

and λ/∂λ̄F 2 in the third line of (2.33). The first can be eliminated through the field

redefinition

6© λα → λα + cλαFF̃ , c =
Ca

8A
∈ R , [c] = −4 , (2.36)
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which acts on the fermion kinetic terms as

iλ/∂λ̄+ c.c. −→
(2.36)

iλ/∂λ̄− ciλσµλ̄∂µ(FF̃ )− ic2λσµ∂µ(λFF̃ )FF̃ + c.c.

= iλ/∂λ̄+ 2ciλ/∂λ̄F F̃ + c.c.+ · · · , (2.37)

and thus eliminates the dimension-8 terms containing λ/∂λ̄F F̃ . The field redefinition (2.36)

also acts on other terms as

iλσµ∂ρλ̄FµνF
νρ + c.c. −→

(2.36)
iλσµ∂ρλ̄FµνF

νρ − icλσµλ̄∂ν(FF̃ )FµρF
ρν + c.c.+ · · · (2.38)

= iλσµ∂ρλ̄FµνF
νρ + ic∂ν(λσµλ̄)FF̃FµρF

ρν

+
ic

4
λσµλ̄F 2∂µ(FF̃ ) + c.c.+ · · · ,

iλ/∂λ̄F 2 + c.c. −→
(2.36)

iλ/∂λ̄F 2 − icλσµλ̄F 2∂µ(FF̃ ) + c.c.+ · · · , (2.39)

iλ/∂λ̄F F̃ + c.c. −→
(2.36)

iλ/∂λ̄F F̃ + c.c.+ · · · . (2.40)

To get to the last line of (2.38) we integrated by part, used Bianchi identities of F , as well

as its antisymmetry.

Field redefinition 7©. The other dimension-8 operator λ/∂λ̄F 2 can be eliminated by the

following field redefinition

7© λα → λα + eλαF
2, e = −B

A
κ2 − a2

4
+
Ca

4A
∈ R , [e] = −4 . (2.41)

Indeed for e ∈ R, the fermion kinetic terms transform as

iλ/∂λ̄+ iλ̄/̄∂λ −→
(2.41)

iλ/∂λ̄+ iλ̄/̄∂λ+ 2e(iλ/∂λ̄+ iλ̄/̄∂λ)F 2 +
[
ie2λσµ∂µ(λF 2)F 2 + c.c.

]
= iλ/∂λ̄+ iλ̄/̄∂λ+ 2e(iλ/∂λ̄+ iλ̄/̄∂λ)F 2 + · · · , (2.42)

and implements the desired cancellation. The dimension-8 term itself transforms un-

der (2.41) as

iλσµ∂ρλ̄FµνF
νρ + c.c. −→

(2.41)
iλσµ∂ρλ̄FµνF

νρ + 2eiλσµ∂ρλ̄FµνF
νρF 2 + c.c.+ · · · . (2.43)

Therefore, under combined field redefinitions 5©, 6© and 7© in the Lagrangian (2.33), we

arrive at

LSDBI+FI→A+Aκ2(iλ/∂λ̄+iλ̄/̄∂λ)+

(
Aκ4+4Bb2κ2+

C

2
bκ2

)
∂µ(λ2)∂µ(λ̄2)

+2Bκ2
(
F 2+κ2(FF̃ )2−κ2F 4

)
+

(
8Bκ2−C

2

8A

)
κ2
(
iλσµ∂ρλ̄−i∂ρλσµλ̄

)
FµνF

νρ

−
(

16Bκ4+

(
8Bκ2−C

2

8A

)(
2B

A
κ2+

a2

2
−Ca

2A

))
κ2
(
iλσµ∂ρλ̄−i∂ρλσµλ̄

)
FµνF

νρF 2

+O(λ2F 6)+O(λ4F 2) . (2.44)
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Rescaling and final on-shell Lagrangian. We see that most of the dimension-12 terms

cancelled in the Lagrangian (2.44). Kinetic terms can be brought to standard normaliza-

tions through the following rescaling

λλ̄→ − λλ̄

2Aκ2g2
, (2.45)

F 2 → − F 2

8Bκ2g2
. (2.46)

Using expressions (2.12), (2.17) for a, b and (2.11) for A,B and C and defining the new

constant κ̄

κ̄2 ≡ κ2√
1 + 16g4κ2ξ2

, (2.47)

we can rewrite the Lagrangian (2.44) in a much simpler way4

LSDBI+FI = − 1

8κ2g2

(
1 +

κ2

κ̄2

)
− 1

2g2
(iλ/∂λ̄+ iλ̄/̄∂λ)− κ̄2

g2
∂µ(λ2)∂µ(λ̄2)

− F 2

4g2
− κ̄2

4g2

(
(FF̃ )2 − F 4

)
− 2κ̄2

g2

(
iλσµ∂ρλ̄− i∂ρλσµλ̄

)
FµνF

νρ

+
6κ̄4

g2

(
iλσµ∂ρλ̄− i∂ρλσµλ̄

)
FµνF

νρF 2 +O
(
(λ∂λ̄)2F 2

)
+O(dim 14). (2.48)

Below are a few comments on the dimension-8 operators present in (2.48). The four-fermion

term in the first line corresponds to the expansion of the Volkov-Akulov (VA) action with

the redefined decay constant κ̄. The F 4 in the second line corresponds to the expansion of

the bosonic DBI action with the same redefined tension. The two-fermion two-boson term

in the second line is a consequence of the low energy theorem for the goldstino coupling

to matter which to leading order is given by
(
iλσµ∂ν λ̄− i∂νλσµλ̄

)
Tµν . Here, the stress-

energy tensor of the bosonic DBI action is Tµν = FµλF νλ −
1
4η

µνF 2 + · · · . The trace part

ηµνF 2 vanishes on-shell, hence to leading order we are left with the dimension-8 operator

at the end of the second line in (2.48). The dimension-12 term in the third line can also be

explained in a similar way. Nevertheless, the relative coefficient between the bosonic DBI

action and the fermionic terms, as well as the value of κ̄ cannot be obtained from the low

energy theorem.

To summarize, by applying the following series of field redefinitions on (2.1),

λα −→
1© 3© 5© 6© 7©

√
− 1

2Ag2

(
λα + ia(σµνλ)αFµν +mλα(λ/∂λ̄)− nλα(λ̄/̄∂λ) + pλσµλ̄∂µλα

+ cλαFF̃ + eλαF
2 + h(σµνλ)α

(
FµνF

2 − FµνFF̃
))

, (2.49)

uµ −→
2© 4©
− 1

8κ2g2B

(
uµ + bλσµλ̄ + fλσρλ̄F̃µρ

)
, (2.50)

we arrive at the low energy on-shell Lagragian (2.48).

4Changing the sign of the first term “1” in (2.1) and thus in the definition of A in (2.11), following ref. [7],

one gets the same on-shell action up to the order we consider, appart from the cosmological constant term

which has no role in global supersymmetry. However, in the limit ξ = 0 the field redefinitions (2.34)

and (2.41) become singular because A vanishes.
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The on-shell Lagrangian (2.48) has the same functional form whenever the FI param-

eter ξ is zero or not, except for the trivial constant piece. It follows that the FI parameter

ξ enters the on-shell Lagrangian only through the renormalization of the coupling constant

κ. This suggests that (2.1) is on-shell equivalent to

L′SDBI+FI = − 1

8κ2g2

(
1− κ2

κ̄2

)
− 1

8g2κ̄2
detA

(
1 +

√
1 + 4κ̄2F2 + 4κ̄4(FF̃)2

)
= − 1

8κ2g2

(
1− κ2

κ̄2

)
− 1

8g2κ̄2
detA

(
1 +

√
− det

(
ηµν + 2

√
2κ̄Fµν

))
. (2.51)

It is easy to verify that by setting λ = 0 and thus detA = 1, (2.51) agrees with the

bosonic truncation of the SDBI+FI model (2.1). In the purely fermionic case F = 0, (2.51)

is reduced to the VA action. This is also consistent with the well-known fact that the

VA action provides the low energy description of the supersymmetry breaking. Together

with our explicit computations, the above results provide strong evidence that (2.51) is

equivalent to (2.1) on-shell. So the standard FI term plays a trivial role in the SDBI action

by just redefining the coupling constant.

3 SDBI action with induced FI term from γ deformation

In the previous section, we started with the non-linear supersymmetry representation of

SDBI+FI model derived in [7], considered its low energy expansion and obtained the on-

shell physical Lagrangian with both bosons and fermions up to order of dimension 12 (the

latter operators involving two gauginos). The non-linear supersymmetry formalism makes

the non-linear supersymmetry of SDBI action explicit. However, the linear supersymmetry

is obscure and rather invisible.

In this section, we start with the linear supersymmetry representation of SDBI action

or its generalization SDBI+γ, θ with manifest N = 1 supersymmetry, and then compute

the on-shell physical Lagrangian by means of field redefinitions. The final result of our

computations confirms what we obtained in the previous section based on non-linear su-

persymmetry formalism.

Below, in section 3.1, we first review briefly the construction of SDBI+γ, θ action and

discuss how to recover the SDBI+FI as a particular limit. Then, we expand the action up

to operators of dimension 10 (included) in section 3.2 and compute the on-shell physical

Lagrangians of SDBI+γ, θ and SDBI+FI through field redefinitions in section 3.3.

3.1 SDBI +γ, θ action from a non-linear constraint

The SDBI action or its generalization SDBI+γ, θ can be obtained from the N = 2 vector

multiplet W, which consists of a vector multiplet W and a chiral multiplet X in N = 1

language. By deforming the N = 2 vector multiplet and imposing the nilpotent constraint

W2 = 0, the N = 2 supersymmetry is partially broken to N = 1 and the resulting model

leads to the SDBI or SDBI+γ, θ actions. For detailed construction, see [2, 3, 5].
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The constraint W2 = 0 can be solved [1]

X = κW 2 − κ3D
2

[
W 2W

2

1 +A+
√

1 + 2A− B2

]
. (3.1)

Here Wα is the usual N = 1 gauge field strength superfield contained in W

Wα = −iλα + θαD− i(σµνθ)αFµν + θθ(/∂λ̄)α. (3.2)

It is used to define two superfields

A =
κ2

2

(
D2W 2 +D

2
W

2
)

= Ā , B = i
κ2

2

(
D2W 2 −D2

W
2
)

= B̄ . (3.3)

The SDBI action is then given by the F auxiliary field of X which is invariant under

both supersymmetries (up to a total derivative), since any power of W vanishes by the

nilpotent constraint.

LSDBI =
1

8πκ
Im
(
τ

∫
d2θX

)
=

1

4g2κ

(∫
d2θX + c.c.

)
− i θ

32π2κ

(∫
d2θX − c.c.

)
,

(3.4)

where

τ =
4πi

g2
+

θ

2π
. (3.5)

Using the constraint solution (3.1), the chiral half-superspace integral of X reads

1

κ

∫
d2θX =

∫
d2θ

(
W 2 − κ2D

2

[
W 2W

2

1 +A+
√

1 + 2A− B2

])

=

∫
d2θW 2 + 4κ2

∫
d2θd2θ̄

W 2W
2

1 +A+
√

1 + 2A− B2

=

∫
d2θW 2 +

4

κ2

∫
d2θd2θ̄

W 2W
2

D2W 2D
2
W

2

(
1 +A−

√
1 + 2A− B2

)
(3.6)

where we used the definition (3.3).

For our computational convenience, we introduce the following chiral superfield Φ and

real superfield M

Φ ≡ W 2

D
2
W

2 , M≡ 1 +A−
√

1 + 2A− B2, Dα̇Φ = 0, M =M. (3.7)

The SDBI action can then be written as

LSDBI =
1

4g2

∫
d2θW 2 +

1

4g2

∫
d2θ̄ W

2
+

2

g2κ2

∫
d4θ ΦΦM . (3.8)

As shown in [5], its pure bosonic part, i.e. with λ = λ̄ = 0, after elimination of the D

auxiliary field, is written as

Lbosonic =
1

8g2κ2
+

iθF F̃

32π2 (8γ2κ2 + 1)
− 1

8g2κκ̃

√
1 +

θ2g4γ2κ̃2

8π4

√
− det

(
ηµν + 2

√
2κ̃Fµν

)
,

(3.9)

– 14 –



J
H
E
P
0
5
(
2
0
2
0
)
1
1
1

where

κ̃2 =
κ2

1 + 8γ2κ2
. (3.10)

To prepare for the next subsection, we write down the free Maxwell piece of (3.8) explicitly

L4 =
1

4g2

(
D2 + D̄

2
)
− 1

2g2

(
iλ/∂λ̄+ iλ̄/̄∂λ

)
− F 2

4g2
+

θ

32π2

(
iF F̃ + i(D̄

2 − D2)
)
, (3.11)

where D = d+ iγ is complex.

The model obtained above with three deformation parameters will be referred to as

SDBI+γ, θ model. The SDBI+FI model we discussed in the previous section arises by

setting the deformation parameter γ = 0, and adding the standard FI term ξ
∫
d4θV ∝ ξd

to (3.4) and (3.8). Actually SDBI+FI can be obtained from SDBI+γ, θ. The last term

in (3.11) contains iθ(D̄
2 − D2) ∼ γθd which is the standard FI term ξd with

ξ ≡ − θγ

8
√

2π2
. (3.12)

Moreover, in the limit γ → 0, the non-linear third term in (3.8) reduces to the one in the

standard SDBI. Hence we conclude that SDBI+FI Lagrangian can be obtained from the

SDBI+γ, θ one by taking the double scaling limit:

LSDBI+γ,θ −→ LSDBI+FI + total derivative, when

{
γ → 0

γθ = −8
√

2π2ξ fixed.

(3.13)

Of course, this limit is ill-defined at the non-perturbative level, since θ goes to infinity.

3.2 Component expansion

We would like to find the physical on-shell action of (3.8) including both bosonic and

fermionic contributions, by performing a low energy perturbative expansion in mass di-

mension. The non-linear interacting piece in (3.8) is∫
d4θΦΦM = ΦΦ

∣∣
0
M|θθθ̄θ̄ + ΦΦ

∣∣
θ
M|θθ̄θ̄ + · · ·+ ΦΦ

∣∣
θθθ̄θ̄
M|0 . (3.14)

The relevant superfield expansions are shown in appendix B.2. In the following equa-

tions, we expand explicitly the various contributions of the superfield multiplication shown

in (3.14) and keep terms up to dimension 10.5 Explicitly, the important terms read (we

use ∼ symbol to indicate that equalities hold up to dimension-10 terms included or to-

5As we will see below, the D auxiliary field can be expanded as D = D0 +D4 + · · · , where D0 is constant,

D4 has dimension 4, etc. Hence the various terms in ∂µD have dimensions at least 5.
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tal derivatives)

ΦΦ
∣∣
0
M|θθθ̄θ̄ ∼ 0 , (3.15)

ΦΦ
∣∣
θ̄
M|θ̄θθ ∼κ

2λ2λ̄�λ̄
1

8D2

(
1− 1+8iκ2dγ√

Z

)
− iκ2D̄

4D2D̄
2λ

2λ̄σab∂µλ̄ ∂
µFab, (3.16)

ΦΦ
∣∣
θ̄θ̄
M|θθ ∼

−κ2λ2�(λ̄2)

8D2

(
1− 1+8iκ2dγ√

Z

)
+#κ4(λ/∂λ̄)2, (3.17)

ΦΦ
∣∣
θθ̄
M|θθ̄ ∼κ

2 iψσ
µψ̄

8D2D̄
2

[
∂µ

(
E−+D2−D̄2

)(
1− 1√

Z

)
+∂µ

(
E++D2+D̄

2
)

8iκ2dγ√
Z

]
+#κ4(λ/∂λ̄)(λ̄/̄∂λ), (3.18)

ΦΦ
∣∣
θ̄θ̄θ
M|θ ∼κ

2 iψ/∂ψ̄

4D2

(
1+

F+2

D2

)[
1− 1+8iκ2dγ√

Z
−2κ2E−

(
1√
Z

+
8iκ2dγ−64κ4d2γ2

Z
√
Z

)
−2κ2E+

1+8iκ2dγ

Z
√
Z

]
− κ2

8D2λ
2λ̄�λ̄

(
1− 1+8iκ2dγ√

Z

)
+

iκ2D̄

4D2D̄
2λ

2λ̄σ̄ab∂µλ̄∂
µFab

+#κ4(λ/∂λ̄)(λ̄/̄∂λ)+#κ4(λ/∂λ̄)2, (3.19)

ΦΦ
∣∣
θθθ̄θ̄
M|0∼

(
1−4κ2(d2−γ2)−

√
Z
)[

1

32
+

iψ/∂ψ̄

16D2D̄
2

(
1+

2F+2

D2

)
+
iψσµψ̄

8D2D̄
2

∂µD

D

+
1

32D2D̄
2∂µ(λ2)∂µ(λ̄2)

]
−κ2 iψ/∂ψ̄

8D2D̄
2

(
E+

(
1− 1√

Z

)
+E−

8iκ2dγ√
Z

)
− κ4

16

(
E2
−

(
1√
Z

+
64κ4d2γ2

Z
√
Z

)
− E2+
Z
√
Z

+2E+E−
8iκ2dγ

Z
√
Z

)
,

+#κ4(λ/∂λ̄)(λ̄/̄∂λ)+#κ4(λ/∂λ̄)2+c.c. . (3.20)

The (anti-)self-dual tensors F± are defined in (A.4) while ψ, E±, and Z are introduced

in (B.6), (B.14) and (B.18). In particular, Z is given by

Z = (1 + 8κ2γ2)(1− 8κ2d2) = 1− 8κ2
(
d2 − γ2

)
− (8κ2dγ)2. (3.21)

In (3.20) the final c.c. symbol refers to complex conjugation of the whole right-hand side,

even if some terms are real by themselves. We show (3.20) in this form to stress the fact

that this term is real. In equations (3.15) to (3.20), we put # in front of four-gaugino

terms to indicate that the corresponding coefficients can be calculated but their specific

values are not important. As we explain later, these terms can be eliminated in the end

by a field redefinition.
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Collecting all the above terms, the SDBI Lagrangian (3.8) can be expanded up to

dimension 10 as6

LSDBI+γ,θ =
1

8κ2g2

(
1−
√
Z
)

+
θ

32π2 (iF F̃+4γd)− F 2

4g2
√
Z

+iF F̃
2κ2dγ

g2
√
Z

+
κ2F 4

4g2Z
√
Z

−iκ2FF̃F 2 4κ2dγ

g2Z
√
Z
− κ2(FF̃ )2

4g2

(
1√
Z

+
64κ4d2γ2

Z
√
Z

)
−
(
iλ/∂λ̄+c.c.

) 1

2g2
√
Z

+
iψ/∂ψ̄

2g2D2

(
1− 1+8iκ2dγ√

Z
+

1

4κ2D̄
2

(
1−4κ2(d2−γ2)−

√
Z
))

+c.c.

+#(λ/∂λ̄)(λ̄/̄∂λ)−#(λ/∂λ̄)2−#(λ̄/̄∂λ)2

+
∂µ(λ2)∂µ(λ̄2)

2g2

[
1

2D2

(
1− 1+8iκ2dγ√

Z

)
+c.c.+

1

4κ2D2D̄
2

(
1−4κ2(d2−γ2)−

√
Z
)]

+
iψ/∂ψ̄

2g2D2

[(
1− 1+8iκ2dγ√

Z

)
F+2

D2 +2κ2FF̃

(
1√
Z

+
64κ4d2γ2−8iκ2dγ

Z
√
Z

)
+2κ2F 2 1+8iκ2dγ

Z
√
Z

+
1

2D̄
2

(
FF̃+F 2

)(
1− 1−8iκ2dγ√

Z
+

1

2κ2D2

(
1−4κ2(d2−γ2)−

√
Z
))]

+c.c.

−κ2

(
iλ/∂λ̄F F̃

(
1√
Z

+
64κ4d2γ2

Z
√
Z

)
−iλ/∂λ̄ F 2

Z
√
Z

+iλ/∂λ̄(FF̃+F 2)
8iκ2dγ

Z
√
Z

)
+c.c.

+κ2 iψσµψ̄

4g2D̄
2
D2

(
1

D
− 1

D̄

)
∂µd

(
1−4κ2(d2−γ2)−

√
Z
)

+c.c.− ψσµψ̄

g2D̄
2
D2
γ∂µd

(
1− 1−8κ2d2√

Z

)
+total derivatives+O(dim 12) , (3.22)

where each c.c. symbol indicates now complex conjugation of the first preceding term.

Again, # coefficients in front of the four-fermion dimension-8 terms are not important

since these terms can be removed through field redefinitions, as explained later.

3.3 Physical action with γ deformation and θ angle

In this subsection we compute the physical (on-shell) SDBI+γ, θ Lagrangian out of the off-

shell one in (3.22). It is clear from (B.19) that when 〈D〉 6= 0 the SDBI Lagrangian (3.22)

contains dimension-6 terms. As explained in section 2.2, these terms are unphysical and

can be eliminated by means of a field redefinition. This field redefinition generates also

extra higher dimensional operators when acting on other terms in the Lagrangian.

Below, we proceed as follows. We first solve the equation of motion of D and use it to

obtain the D-solved Lagrangian. Since the Lagrangian is too complicated, we only show

explicitly the dimension-6 terms and the gaugino kinetic terms. Then we demonstrate how

to eliminate the dimension-6 terms through field redefinition and write down the D-solved

Lagrangian without dimension-6 terms. After discussing the elimination of some other

unphysical terms, we finally obtain the physical on-shell action of SDBI+γ, θ Lagrangian

up to dimension 10 (included).

6Note that the dimension-8 and dimension-10 contributions of the form λ2λ̄�λ̄, λ2λ̄σ̄ab∂µλ̄∂µFab present

in (3.16) and (3.19) cancel each other in the Lagrangian (3.22) (and so do their complex conjugates).
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Solving the D auxiliary field. In the presence of γ deformation the D auxiliary field

splits into its dynamic part d and deformed part γ [5]. As already mentioned, it is no more

real and we get

D = d+ iγ, D̄ = d− iγ. (3.23)

We expand D in terms of increasing dimensions and solve for the first two terms through

Euler-Lagrange equations applied in (3.22). The solution reads

D ≡ D0 + D4 + · · · , D0 = d0 + iγ,

d0 = − γg2θ

2
√

2
√

8π4 + γ2κ2(g4θ2 + 64π4)
,

D4 = − 2iκ2γF F̃

1 + 8κ2γ2
+ d0

2κ2F 2

1 + 8κ2γ2
+ 8κ2(d0 − iγ)

1 + 8κ2γ2 + 2
√
Z0

(1 + 8κ2γ2 +
√
Z0)2

(iλ/∂λ̄+ iλ̄/̄∂λ),

Z0 = (1− 8κ2d2
0)(1 + 8κ2γ2) =

8π4(1 + 8κ2γ2)2

γ2κ2g4θ2 + 8π4(1 + 8κ2γ2)
, (3.24)

where Z0 is the lowest term in the expansion of Z defined in (3.21).

We then plug the above solutions for D0 and D4 back into (3.22). Especially, the

∂µd factor in (3.22) can be replaced with ∂µD4 at dimension-10 order. One can further

integrate by parts to transfer the derivative in ∂µD4 to other factors. The resulting terms

with bare D4 can be combined with other terms in the Lagrangian. We do not show the

whole D-solved Lagrangian but rather present it in schematic form

LD−solved = Lbosonic + L4

(
λ/∂λ̄, λ̄/̄∂λ

)
+ L6

(
λσµ∂νFµν , λσ

µ∂νF̃µν

)
+ L8

(
λ/∂λ̄F 2, ∂µλσ

µλ̄F 2, λ/∂λ̄F F̃ , ∂µλσ
µλ̄F F̃ , λσµ∂νFµρF

ρ
ν

)
(3.25)

+ L10

(
λσµ∂νFµνF

2, λσµ∂νFµνFF̃ , λσ
µ∂νF̃µνF

2, λσµ∂νF̃µνFF̃
)

+ · · · .

In the above schematic Lagrangian we indicated the dimension of each term by a sub-

script, and showed each field dependence (in linearly independent operators up to to-

tal derivatives).

The dimension-4 term L4 contains the gaugino kinetic terms

L4 =− iλ/∂λ̄

2g2
√
Z0

+
iλ/∂λ̄D0D̄0

2g2D2
0

(
1− 1+8iκ2d0γ√

Z
+

1

4κ2D̄
2
0

(
1−4κ2(d2

0−γ2)−
√
Z0

))
+c.c.

=− 1+8κ2γ2

g2
√
Z0(1+8κ2+

√
Z0)

iλ/∂λ̄+c.c.+total derivatives , (3.26)

while L6 can be obtained by inserting the expression (B.19) into the third line of (3.22),

replacing D→ D0 and keeping only the dimension-6 operators

L6 =
i ψ/∂ψ̄

∣∣
6

2g2D̄
2
0D

2
0

(
D̄

2
0

(
1− 1 + 8iκ2dγ√

Z0

)
+

1

4κ2

(
1− 4κ2(d2

0 − γ2)−
√
Z0

))
+ c.c.

=
−4κ2(1 + 8κ2γ2)

g2
√
Z0(1 + 8κ2γ2 +

√
Z0)2

(
2D̄0λσ

µ∂ν λ̄F
+ν
µ − 2D0λσ

µ∂ν λ̄F
−ν
µ − D0λσ

µλ̄∂νFνµ

)
+ c.c.+ · · · . (3.27)
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Eliminating dimension-6 terms. The dimension-6 part L6 shown in (3.27) can be

completely eliminated through the field redefinition

λ→ λ+ aσµνλFµν , a = −i 4κ2

1 + 8κ2γ2 +
√
Z0

D̄0. (3.28)

Under (3.28) the gaugino kinetic term transforms as

iλ/∂λ̄+ c.c. −→
(3.28)

iλ/∂λ̄− 2iaλσν∂µλ̄F+
µν − 2iāλσν∂µλ̄F−µν − iāλσµλ̄∂νFνµ

+ 2iaāλσµ∂ν λ̄F
ρ
µ F

ν
ρ +

aā

2
iλ/∂λ̄F 2 + c.c.+ · · · , (3.29)

and the last three terms in the first line indeed cancel the dimension-6 operator L6 of (3.27).

The field redefinition (3.28) also acts on operators present in L6 and L8 as follows

iλσµ∂ν λ̄FµρF
ρν −→

(3.28)
iλσµ∂ν λ̄FµρF

ρν+
(
i
a

4
λσµ∂ν λ̄(Fνµ−F̃ νµ)FF̃+c.c.

)
(3.30)

−i ā
4
∂ν(λσµλ̄)F ∗νµF

2+i
((

ā

4
+
a

2

)
λσµ∂ν λ̄− ā

4
∂νλσµλ̄

)
FµνF

2+· · · ,

iλ/∂λ̄F 2 −→
(3.28)

iλ/∂λ̄F 2−i(a+ā)λσµ∂ν λ̄FνµF
2−i(a−ā)λσµ∂ν λ̄F̃νµF

2+· · · , (3.31)

iλ/∂λ̄F F̃ −→
(3.28)

iλ/∂λ̄F F̃−i(a+ā)λσµ∂ν λ̄FνµFF̃−i(a−ā)λσµ∂ν λ̄F̃νµFF̃+· · · ,

(3.32)

λσµ∂ν λ̄F̃νµ −→
(3.28)

λσµ∂ν λ̄F̃ νµ+
a

4
λ/∂λ̄F F̃+

a

2
λ/∂λ̄F 2+

(
aλσµ∂ν λ̄FµρF

ρν+c.c.
)

+
(
aā

4
λσµ∂ν λ̄(F̃νµF

2−FνµFF̃+F̃νµFF̃−FνµF 2)+c.c.
)

+· · · , (3.33)

λσµ∂ν λ̄Fνµ −→
(3.28)

λσµ∂ν λ̄Fνµ+
a+ā

4
λ/∂λ̄F F̃−

(
aλσµ∂ν λ̄FµρF

ρν−c.c.
)

+
(
aā

4
λσµ∂ν λ̄(F̃νµF

2−FνµFF̃+F̃νµFF̃−FνµF 2)−c.c.
)

+· · · , (3.34)

where various identities in appendix appendix A are used and “· · · ” indicate either total

derivatives, terms with dimension higher than 10, or dimension-10 terms proportional to

the free equations of motion.7

Eliminating terms containing four fermions. We also remark that under the field re-

definition (3.28) the four-gaugino dimension-8 terms indicated with # coefficients in (B.19)

transform as

(λ/∂λ̄)2 −→
(3.28)

(λ/∂λ̄)2 + #λ/∂λ̄“λ∂λ̄F” + · · · , (3.35)

(λ̄/̄∂λ)2 −→
(3.28)

(λ̄/̄∂λ)2 + #λ̄/̄∂λ“λ∂λ̄F” + · · · , (3.36)

(λ/∂λ̄)(λ̄/̄∂λ) −→
(3.28)

(λ/∂λ̄)(λ̄/̄∂λ) + #λ/∂λ̄“λ∂λ̄F” + #λ̄/̄∂λ“λ∂λ̄F” + · · · , (3.37)

where “λ∂λ̄F” schematically denotes a sum of various contractions containing one field

strength, two fermions and one derivative. Their specific form is not important but the

7As we explained at the beginning of section 2.2, these terms can be eliminated by means of field

redefinition without introducing extra terms at this order.
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crucial point is that all these terms are proportional to the equation of a free fermion and

thus can be eliminated.

As we did in section 2, the pure four-fermion terms of dimension 8 in (3.35), (3.36),

(3.37) can be eliminated through the field redefinition (2.26)

λα → λα +mλα(λ/∂λ̄) + nλα(∂µλσ
µλ̄) + pλσµλ̄∂µλα , (3.38)

with constant coefficients m,n, p, under which the free fermion kinetic terms transform

as (2.27). It is easy to check that the above four-fermion terms can be eliminated com-

pletely with appropriate constants m,n, p. Since the dimension-6 terms are eliminated

through (3.28), acting (3.38) on the remaining terms in the Lagrangian can only generate

terms with dimension strictly higher than 10 which we do not consider.

The field redefinition (3.28) also generates four fermion and one gauge boson mixed

terms with dimension 10 in (3.35), (3.36), (3.37). Since they are proportional to

the equation of free fermion, they can be eliminated through the following schematic

field redefinition

λα → λα + jλα“λ∂λ̄F” . (3.39)

Acting on the free fermion kinetic term, we have

λ/∂λ̄ −→
(3.39)

λ/∂λ̄+ jλ/∂λ̄“λ∂λ̄F” + j̄λ̄/̄∂λ“λ∂λ̄F” + · · · , (3.40)

which indeed allows us to remove the dimension-10 terms in (3.35), (3.36), (3.37) with

appropriate tensor structures and coefficients. In particular, no other dimension-10 terms

would be generated due to this field redefinition (3.39).

To conclude, the four fermion terms in (3.22) with unspecified coefficients can be

completely eliminated at this order without introducing extra terms. The only leftover

four fermion operator of dimension 8 is the one written in the fifth line that corresponds

to the expansion of the VA action.

D-solved Lagrangian after eliminating dimension-6 operators and non Voklkov-

Akulov 4-fermion terms. The field redefinition (3.28) used to eliminate L6 also acts

on other terms as we see from (3.29) to (3.34). Collecting all these terms, we arrive at

LSDBI+γ,θ =
1

8g2κ2

(
1− 1+8γ2κ2

√
Z0

)
+

iθF F̃

32π2(1+8κ2γ2)
− F 2

4g2
√
Z0

+
F 4−

(
FF̃

)2

4g2(1+8κ2γ2)
√
Z0

−
(
iλ/∂λ̄+c.c.

) 1+8κ2γ2

g2
√
Z0(1+8γ2+

√
Z0)
−∂µ(λ2)∂µ(λ̄2)

4κ2(1+8κ2γ2)

g2
√
Z0(1+8κ2γ2+

√
Z0)2

−(iλσρ∂ν λ̄−i∂νλσρλ̄)F νµF
µ
ρ

4κ2

g2
√
Z0

(
1+8κ2γ2+

√
Z0

)
+iλ/∂λ̄F 2 κ2

g2
√
Z0

(
1+8κ2γ2+

√
Z0

)−iλ/∂λ̄F F̃ 2κ2

g2
√
Z0

(
1+8κ2γ2+

√
Z0

)+c.c.

−λ/∂λ̄F 2 16κ4d0γ(1+8κ2γ2)

g2
√
Z0

(
1+8κ2γ2+

√
Z0

)2−λ/∂λ̄F F̃ 16d0γκ
4(1+8κ2γ2)2

g2
√
Z0

(
1+8κ2γ2+

√
Z0

)3 +c.c.

+
8κ4d20 λσµ∂ν λ̄

g2D0

√
Z0(1+8κ2γ2+

√
Z0)2

(
F̃ µνFF̃+FµνFF̃−F̃ µνF

2−FµνF 2
)

+c.c.+. . . ,

(3.41)
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where here c.c. indicate complex conjugation of entire lines. Several terms in the La-

grangian (3.41) still remain to be eliminated.

Eliminating dimension-8 and dimension-10 terms. The dimension-10 operators in

the last line of (3.41) can be eliminated through the field redefinition

λα → λα + h(σµνλ)α

(
FµνF

2 − FµνFF̃
)
, h = −i 4κ4d2

0

D0(1 + 8κ2γ2 +
√
Z0)

, (3.42)

which is the analog to (2.34) used in section 2.2. The fermion kinetic terms transform as

in (2.35) and cancel the dimension-10 operators.

Dimension-8 terms in the fourth and fifth line of (3.41) can also be eliminated by field

redefinitions

λα → λα + bλαF
2, λα → λα + cλαFF̃ , (3.43)

with appropriate b, c coefficients. This is again analog to the field redefinitions (2.36)

and (2.41) in section 2.2. Acting (3.43) on fermion kinetic terms eliminates the above

dimension-8 operators. Additional terms generated by the field redefinitions (3.42)

and (3.43) have dimension at least 12. The leftover dimension-8 operators containing two

gauginos and two gauge bosons are those of the third line and correspond to the standard

goldstino coupling to the energy momentum tensor, foretold by the low energy theorems.

Therefore, we can discard the last three lines of (3.41) by using (3.42) and (3.43), and

the physical on-shell Lagrangian contains only the first three lines of (3.41).

Rescaling and final result. Finally we rescale the fields to obtain canonical kinetic

terms

λλ̄→
√
Z0

(
1 + 8κ2γ2 +

√
Z0

)
2(1 + 8κ2γ2)

λλ̄ , (3.44)

Fµν → Z
1/4
0 Fµν . (3.45)

Applying this to the first three lines of (3.41), we finally arrive at the following on-shell

Lagrangian

LSDBI+γ,θ =
1

8g2κ2

(
1− κ2

κ̄2

)
+
iθF F̃ κ̄2

32π2κ2
− F 2

4g2
+

κ̄2

4g2
F 4 − κ̄2

4g2

(
FF̃
)2

− 1

2g2

(
iλ/∂λ̄+ c.c.

)
− κ̄2

g2
∂µ(λ2)∂µ(λ̄2) +

2κ̄2

g2
(iλσρ∂ν λ̄− i∂νλσρλ̄)F νµF

µ
ρ

+O(dim 12), (3.46)

where we defined

κ̄2 = κ2

√
Z0

1 + 8κ2γ2
=

2
√

2π2κ2√
8π4(1 + 8κ2γ2) + g4γ2κ2θ2

. (3.47)

This perturbative low energy expansion agrees with (2.48), up to an additive constant

which plays no role in global supersymmetry.
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After dropping the total derivative term θF F̃ , it is easy to see that this expansion

agrees on-shell with the low energy expansion of the action

L′SDBI+γ,θ =
1

8g2κ2

(
1 +

κ2

κ̄2

)
− 1

8g2κ̄2
detA

(
1 +

√
− det(ηµν + 2

√
2κ̄Fµν)

)
. (3.48)

One can also compare this action with the bosonic truncation given in (3.9) which can be

rewritten as follows

Lbosonic =
1

8g2κ2
− 1

8g2κ̄2

√
− det

(
ηµν + 2

√
2κ̄Fµν

)
, (3.49)

where we have rescaled F as Fµν → Z
1/4
0 Fµν and dropped the total derivative term θF F̃ .

It is obvious that (3.49) indeed agrees with the bosonic truncation of (3.48) by setting

λ = 0 and thus detA = 1. Instead, in the pure fermionic case F = 0, (3.48) becomes the

VA action, in agreement with the well-known fact that the VA action is the low energy

description of spontaneous supersymmetry breaking. Considering our explicit low energy

expansion up to dimension 10 as well as the above limits, we conclude that (3.48) is indeed

on-shell equivalent to the original SDBI+γ, θ action.

To study the SDBI+FI model, we can consider the double scaling limit γ → 0 with

γθ = −8
√

2π2ξ fixed, as explained in (3.13). In this limit, the value of κ̄ in (3.47) gives the

value in (2.47). Hence the result (3.48) also agrees with the explicit computation (2.51)

in the last section based on the non-linear formalism. Therefore, this also provides a

non-trivial test of the non-linear supersymmetric formalism of [7].

4 Summary and outlook

In this work, we have studied the on-shell SDBI action implemented with either a standard

FI term or an induced FI term through a γ supersymmetry deformation in the presence

of a θ-angle. We have computed its low-energy expansion up to mass dimension-12 terms.

We argued that the result up to dimension-8 operators can be guessed by non-linear su-

persymmetry and its low energy theorem, and thus that the first non-trivial computation

starts for operators of dimension 10. We have shown that these operators vanish on-shell

and can be eliminated by field redefinitions, while the operators of dimension 12 involving

up to two gauginos are reduced to those dictated by the low-energy theorem.

Our result suggests that in either case, the deformation or the FI parameter only

renormalize the couplings (without changing the form) of the physical on-shell standard

SDBI action. Based on the bosonic truncation, it was argued that the deformation or the

FI parameters in SDBI action do not break the supersymmetry completely; instead they

rotate the remaining residual supersymmetry. Considering the nature of the SDBI action

realizing partial supersymmetry breaking with both linear and non-linear supersymmetry,

it is not surprising to see the trivial role of the deformation or the FI parameter on-shell. On

the other hand, the rotation modifies the field transformations of the linear supersymmetry

in a non-linear way (although without constant in the gaugino transformation) that makes

the result non-trivial.

– 22 –



J
H
E
P
0
5
(
2
0
2
0
)
1
1
1

Obviously, the rotation argument breaks down in the presence of another (referent)

SDBI action and supersymmetry breaking should occur in this system. An interesting

question remains, whether there is a deformation of the SDBI action that breaks spon-

taneously the linear supersymmetry and its coupling to supergravity. A related question

concerns the effective field theory of branes in string (or M) theory in the presence or not

of supersymmetry breaking.
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A Conventions and useful identities

We use conventions of [14] for spinors. We list some properties of Pauli σ-matrices as

follows:

σµν ≡ 1

4
(σµσ̄ν−σν σ̄µ), σµσ̄ν+σν σ̄µ =−2ηµν → σµσ̄ν =−ηµν+2σµν , (A.1)

Tr(σµνσργ) =−1

2
(ηµρηνγ−ηµγηνρ)− i

2
εµνργ , (A.2)

σµνσρ =
1

2
(ηµρσν−ηνρσµ+iεµνργσγ) , σ̄µσνρ =−1

2
(ηµν σ̄ρ−ηµρσ̄ν+iεµνργ σ̄γ) . (A.3)

We define the dual F̃ γρ of the antisymmetric field-strength tensor Fµν and the associ-

ated self-dual or anti-self dual tensors as follows

F̃ γρ =
i

2
εγρµνFµν , F+

µν =
Fµν + F̃µν

2
, F−µν =

Fµν − F̃µν
2

. (A.4)

The above tensors satisfy the following properties

F̃µρF̃
ρν = −1

2
ηµνF 2 − FµρF ρν , F 2 ≡ FµνFµν = F̃ 2 , (A.5)

FµρFραF
αν =

1

4
F̃µνFF̃ − 1

2
FµνF 2, FµαF̃

α
ν =

1

4
ηµνFF̃ , (A.6)

F+µ
ρF
−ρν = F+ν

ρF
−ρµ =

1

4

(
FµρF

ρν − F̃µρF̃ ρν
)

=
1

8
ηµνF

2 +
1

2
FµρF

ρν . (A.7)

From (A.3) and (A.4) we derive the useful identities

σµσ̄νρFνρ = −2F−µνσ
ν , Fνρσ

νρσµ = 2F+µ
νσ

ν . (A.8)
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We also present here useful spinor conventions and algebra used for our calculation:

ψχ = ψαχα = −χαψα = χαψα = χψ, ψα = εαβψβ , (A.9)

χσµψ̄ = −ψ̄σ̄µχ,
(
χσµψ̄

)∗
= ψσµχ̄, χσµνψ = −ψσµνχ, (χσµνψ)∗ = χ̄σ̄µνψ̄,

(A.10)

θαθβ =
1

2
εαβθθ, θαθβ = −1

2
εαβθθ, θ̄α̇θ̄β̇ = −1

2
εα̇β̇ θ̄θ̄, θ̄α̇θ̄β̇ =

1

2
εα̇β̇ θ̄θ̄ , (A.11)

χα ≡ (σµνλ)α =⇒ χα = −(λσµν)α, χ̄α̇ = (σ̄µν λ̄)α̇, χ̄α̇ = −(λ̄σ̄µν)α̇ , (A.12)

θψ θφ = −1

2
θθ ψφ, ψχ ϕ̄η̄ = −1

2
ψσµϕ̄ χσµη̄ (Fierz identity) . (A.13)

B Some computational details

B.1 Derivation of (2.4)

The extra term in the second line of (2.1), containing the gauge potential uµ, arises from

the FI term. To make gauge invariance manifest, we rewrite it in terms of the field-strength

Fµν as we describe below. Using the following property of determinant

εabcd(A−1) ν
a (A−1) ρ

c (A−1) µ
d (A−1) γ

b = ενγρµ detA−1, (B.1)

the second line of (2.1) can be written as

idetAεabcd[(A−1) ν
a ∂νλ]σb[(A

−1) ρ
c ∂ρλ̄](A−1) µ

d uµ = idetA ενγρµ detA−1Ae
γ ∂νλσe∂ρλ̄uµ

= iενγρµAe
γ ∂νλσe∂ρλ̄uµ . (B.2)

This can be further simplified by using several integrations by parts and Fierz identi-

ties (A.13)

iενγρµAe
γ ∂νλσe∂ρλ̄uµ = iενγρµ(δeγ+iκ2λσe∂γ λ̄−iκ2∂γλσ

eλ̄) ∂νλσe∂ρλ̄uµ

=−iενγρµδeγ λσe∂ρλ̄ ∂νuµ−iκ2ενγρµ(iλσe∂γ λ̄−i∂γλσeλ̄)λσe∂ρλ̄∂νuµ

−iκ2ενγρµ∂ν(iλσe∂ρλ̄−i∂ρλσeλ̄) λσe∂ρλ̄ uµ+total derivative

=− i

2
εγρνµ λσγ∂ρλ̄ Fνµ−

i

2
κ2ενγρµ(−2)(iλ2 ∂γ λ̄∂ρλ̄−iλ∂γλλ̄∂ρλ̄)Fνµ

−iκ2ενγρµ(−2)(iλ∂νλ∂γ λ̄∂ρλ̄−iλ∂γλ∂ν λ̄∂ρλ̄) uµ+total derivative

=−λσγ∂ρλ̄ F̃ γρ+0+
i

4
κ2ενγρµ∂γ(λ2)∂ρ(λ̄

2)Fνµ+0+total derivative

=−λσγ∂ρλ̄ F̃ γρ−
i

4
κ2ενγρµλ2∂ρ(λ̄

2)∂γFνµ+total derivative

=−λσγ∂ρλ̄ F̃ γρ+total derivative. (B.3)

We also repeatedly used relations ενγρµ∂µ∂ν = 0 and ενγρµ∂µλ∂νλ = 0. Once rewritten

as (B.3) it is obvious that the second line of (2.1) is gauge invariant.
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B.2 Superfield expansions

We first recall the component expansions of the superfields Wα and W 2

Wα = −iλα + θαD− i(σµνθ)αFµν + θθ(σµ∂µλ̄)α , (B.4)

W 2 = C + 2ψθ + θθE , (B.5)

C = −λ2, ψβ = Fµν(σµνλ)β − iDλβ ≡ Ψβ − iDλβ ,

E = D2 − 1

2
(F 2 + FF̃ )− 2iλ/∂λ̄ .

(B.6)

We also use the following chiral and anti-chiral superfield expansions

−1

4
D

2
W

2
(y) = Ē + 2iθ/∂ψ̄ + θ2�C̄ , (B.7)

−1

4
D2W 2(ȳ) = E + 2iθ̄/̄∂ψ + θ2�C . (B.8)

Then, the chiral superfield Φ defined in (3.7) has the following field component expansion,

depending of the chiral coordinates yµ = xµ + iθσµθ̄,

Φ(y) =
W 2

D
2
W

2 (y) = φ(y) + χ(y)θ + θ2G(y), (B.9)

φ = − C

4Ē
, χα = −ψα

2Ē
+ i

C(/∂ψ̄)α
2Ē2

, G = − E

4Ē
− iψ/∂ψ̄

2Ē2
+
C�C̄

4Ē2
− C(/∂ψ̄)2

2Ē3
. (B.10)

We can now compute the component expansion of the real superfield ΦΦ̄

ΦΦ̄(x) = φφ̄+ (χ̄θ̄φ+ c.c.) + (θ̄2φḠ + c.c.) + χθχ̄θ̄ + iθσµθ̄
(
φ̄∂µφ− φ∂µφ̄

)
+

(
θ̄2θ

[
Ḡχ− i

2
σµ (χ̄∂µφ− ∂µχ̄φ)

]
+ c.c.

)
(B.11)

+ θ2θ̄2

[
GḠ − ∂µφ∂µφ̄−

i

4
χ/∂χ̄+

i

4
∂µχσ

µχ̄+
1

4
�(φφ̄)

]
.

Finally, for the real superfields A and B defined in (3.3), we have the following com-

ponent expansions

A(x) =
κ2

2
(D2W 2 +D

2
W

2
)

= −2κ2

[(
D2 + D̄

2
)

+ E+ + 2i
(
θ̄σ̄µ∂µ(Ψ− iDλ) + θσµ∂µ(Ψ̄ + iD̄λ̄)

)
+ θ̄θ̄�C + θθ�C̄ − iθσµθ̄∂µ(E− + D2 − D̄

2
)

+ θ̄θ̄θ�(Ψ− iDλ) + θθθ̄�(Ψ̄ + iD̄λ̄) + θ2θ̄2 1

4
�
(
E+ + D2 + D̄

2
)]
, (B.12)

B(x) = i
κ2

2
(D2W 2 −D2

W
2
)

= −2iκ2

[(
D2 − D̄

2
)

+ E− + 2i
(
θ̄σ̄µ∂µ(Ψ− iDλ)− θσµ∂µ(Ψ̄ + iD̄λ̄)

)
+ θ̄θ̄�C − θθ�C̄ − iθσµθ̄∂µ(E+ + D2 + D̄

2
)

+ θ̄θ̄θ�(Ψ− iDλ)− θθθ̄�(Ψ̄ + iD̄λ̄) + θ2θ̄2 1

4
�
(
E− + D2 − D̄

2
)]
, (B.13)
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where

E± ≡ E ± Ē −
(
D2 ± D̄

2
)
. (B.14)

Since the auxiliary fields D and D̄ are not dynamical and should be eliminated at the end,

we can isolate their contribution in the above two real superfields

A ≡ Ascalar +A′ = −2κ2
(
D2 + D̄

2
)

+A′ = −4κ2
(
d2 − γ2

)
+A′, (B.15)

B ≡ Bscalar + B′ = −2iκ2
(
D2 − D̄

2
)

+ B′ = 8κ2dγ + B′. (B.16)

Then, the superfield M defined in (3.7) can be expanded up to mass dimension 10 (in-

cluded)

M = 1 +A−
√

1 + 2A− B2

= 1− 4κ2
(
d2 − γ2

)
+A′ −

√
1− 8κ2 (d2 − γ2)− 64κ4d2γ2 + 2A′ − 16κ2dγB′ − B′2

= 1− 4κ2
(
d2 − γ2

)
+A′ −

√
Z

[
1 +
A′

Z
− 8κ2dγB′

Z
− B

′2

2Z

− 1

8Z2

(
2A′ − B′2 − 16κ2dγB′

)2
+

1

16Z3

(
2A′ − 16κ2dγB′

)3 ]
+O(κ6), (B.17)

where we introduced

Z = (1 + 8κ2γ2)(1− 8κ2d2) = 1− 8κ2
(
d2 − γ2

)
− (8κ2dγ)2 . (B.18)

From (B.6) we can compute explicitly the useful expansion

iψ/∂ψ̄ = iΨ/∂Ψ̄− D̄Ψ/∂λ̄− ∂µ(D̄)Ψσµλ̄+ Dλ/∂Ψ̄ + iDD̄λ/∂λ̄

= 2iλσµ∂ν λ̄F
ρ
µ F

ν
ρ +

i

2
λ/∂λ̄F 2 + D̄λσµ∂ν λ̄(F νµ + F ∗νµ) + ∂ν(D̄)λσµλ̄(Fνµ + F̃ νµ)

− Dλσµ∂ν λ̄(Fνµ − F̃ νµ)− Dλσµλ̄∂νFνµ + iDD̄λ/∂λ̄+ iD∂µD̄λσ
µλ̄ . (B.19)
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