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in nearly conformally invariant field theories, where confinement is predominantly sponta-

neously generated and associated with a light “dilaton” field. We show how the leading

contribution to the transition rate can be computed within the dilaton effective theory. In

the context of Composite Higgs theories, we demonstrate that a simple scenario involving

two renormalization-group fixed points can make the transition proceed much more rapidly

than in the minimal scenario, thereby avoiding excessive dilution of matter abundances gen-

erated before the transition. The implications for gravitational wave phenomenology are

discussed. In general, we find that more (less) rapid phase transitions are associated with

weaker (stronger) gravitational wave signals. The various possible features of the strongly

coupled composite Higgs phase transition discussed here can be concretely modeled at

weak coupling within the AdS/CFT dual Randall-Sundrum extra-dimensional description,

which offers important insights into the nature of the transition and its theoretical control.
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1 Introduction

First order phase transitions (PT) can play an important role in cosmological evolution

through dramatic rearrangements of particle physics degrees of freedom (d.o.f). As out-of-

equilibrium processes, such PTs can create new matter asymmetries, or drastically alter

pre-existing ones. They also can provide a spectacular source for stochastic gravitational

waves (GW) [1–4] (see reference [5] for a review). While the Standard Model (SM) Higgs

boson does not give rise to a first order electroweak (EW) PT (see reference [6] for a review),

this PT can be first order in many beyond-SM (BSM) extensions. Further, BSM extensions

may give rise to other PTs, roughly connected to the EW scale by the naturalness principle.

There may then be one or more PTs in the ∼ TeV–100 TeV range. If so, we should be able

to probe such BSM physics by complementary means, its microphysics at particle collider

experiments, and the associated PT in GW detectors [7–11].

Theories in which the Higgs boson is a tightly confined composite made of more fun-

damental constituents (see references [12, 13] for a review) are particularly promising in

this regard, naturally generating realistically large particle physics hierarchies. Beyond

the EW PT itself, they undergo a fascinating and rich PT between the confined and

deconfined phases, albeit a non-perturbative and theoretically challenging one. While a

(de)confinement PT is not necessarily first order, as illustrated by QCD for realistic pa-

rameters [14], it can readily be. Composite Higgs flavor-physics typically requires strong
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coupling over a large hierarchy of scales, such as occurs in the domain of an approximate

fixed point (FP) of the renormalization group (RG), and plausibly a large-N(color) struc-

ture (see reference [15] for a review of large N). Greater theoretical control of the strong

dynamics is then possible if the large-N approximate FP conformal field theory (CFT) has

a useful Anti-de Sitter (AdS)/CFT dual description [16–18]. Indeed, most of the realistic

model building has been done in such a dual higher-dimensional Randall-Sundrum (RS)

warped spacetime [19–22] (see [23, 24] for reviews).

Another controlled regime, already visible in four dimensional (4D) spacetime without

AdS/CFT, occurs if the breaking of approximate conformal invariance by confinement is

primarily spontaneous, resulting in a light pseudo Nambu-Goldstone boson (PNGB) “dila-

ton” field φ [25]. Here, the vacuum expectation value (VEV) 〈φ〉 gives the confinement

scale which typifies the masses of generic composites. This structure was first seen in

composite Higgs theory in the dual RS formulation in terms of the “radion” [19, 20, 26].

One goal of this paper is to re-analyse the PT using the 4D dilaton effective field theory

(EFT) [22, 27–32] and reasonable physical expectations, as far as possible. In particular,

we study the conditions under which the dilaton dynamics dominates the bubble nucleation

rate, which competes with the cosmological expansion rate. Ultimately, a fuller description

and justification of these expectations involves modeling the deconfined phase, outside the

dilaton regime, a task we will re-examine in a forthcoming paper from the RS perspec-

tive [33]. This dual description requires large N and yields a more tractable semi-classical,

but higher-dimensional description of non-perturbative 4D deconfinement in terms of the

AdS-Schwarzschild horizon. The confinement PT then corresponds to bubbles of the RS

“IR brane” nucleating and expanding from this horizon [34]. Our 5D analysis [33] will fur-

ther justify and sharpen the dilaton dominance approximation and account for subleading

corrections. Therefore, here, we will track the consistency of our dilaton dominance results

with large N .

Reference [34] already argued for dilaton dominance in the RS context, but not com-

pletely within higher-dimensional EFT control, and they showed that the PT cannot be

prompt in the minimal RS model. References [35–37] showed that the PT could neverthe-

less complete after a period of supercooling, assuming dilaton dominance (see also [38–42]

for further studies of supercooling). Our results will reinforce the earlier work more sys-

tematically. Furthermore, we will also show that having separate approximate RG FP

regimes controlling large hierarchies and the PT dynamics can easily result in a more

prompt PT than the minimal model, with important consequences for cosmological (dark)

matter abundances, GW and collider phenomenology. References [43–47] explored other

non-minimal modeling to make the PT complete more promptly.

This paper is organized as follows. In section 2, we give the equilibrium description of

the confined and deconfined phases, and then in section 3, we calculate the rate of the phase

transition between the two phases in the thin-wall regime. We notice that in the minimal

composite Higgs models where the Planck-Weak hierarchy is correctly accounted for, the

PT does not complete in the thin-wall regime if we demand a theoretically controlled

analysis. In such cases, the universe supercools for a very long time and dilutes any pre-

existing particle abundances. Therefore in section 4, we construct a simple modification
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of the minimal scenario involving two non-trivial fixed points. In this modified scenario,

although the PT has a better chance of completing within the thin-wall regime, it will

still often complete only after some supercooling. However, we show in section 5, that the

extent of supercooling need only be mild, and thus any pre-existing abundances do not

get significantly diluted. After discussing the associated gravitational wave signatures in

section 6, we conclude in section 7.

2 Equilibrium description of the two phases

We model the deconfined phase as an approximate CFT, coupled to gravity, with O(N2)

d.o.f. At a temperature T , its free energy (density) F can be written as [34],

Fdeconfined = V0 − CN2T 4, (2.1)

where V0 is a vacuum energy in the deconfined phase and C is some strong-coupling model-

dependent O(1) constant. At low enough T the theory can spontaneously confine giving

rise to massive composite states. One of the light composites will be the PNGB dilaton,

as noted above. In addition, there may be an O(1) number of other light composites, in

particular the composite Higgs boson, which are weakly coupled to the dilaton by 1/N .

However, it is the dilaton that will play the central role in determining the bubble nucleation

rate, as discussed below. We will therefore neglect the other light composites. Further there

may be other light elementary particles. They are very weakly coupled to the dilaton, are

present in both phases, and are essentially spectators to the PT.

Below the spontaneous confinement scale, we work in the dilaton EFT. We model the

small departure from conformal invariance by ∆L = gO, where O is a nearly-marginal

composite operator and where the coupling g runs from the UV, but stops at the confine-

ment scale, locally given by φ(x). This is the only way in which conformal invariance is

broken within the compositeness dynamics, leading to an effective Lagrangian:

Leff =
N2

16π2

(
(∂φ)2 − λ (g(φ))φ4

)
− V0, (2.2)

where the explicit breaking is characterized by the “running” quartic coupling λ (g(φ)).

We see that if g did not run, the dilaton coupling would be exactly conformally invariant

φ4. The vacuum energies of the two phases are equated by matching at the common limit

of the two phases, T = 0, φ = 0. This vacuum energy also breaks conformal invariance

but is only of gravitational relevance. In this standard large-N “glueball” normalization

(reviewed in [15, 48]), the self-coupling is expected to be λ ∼ 1. However, it is certainly

possible that λ is somewhat smaller, in which case theoretical control can be gained by

expanding in λ, as we will see below.

For a small deformation g, we can expand λ to first order,

λ(g) = λ0 + λ′0g, (2.3)

where λ0 ≡ λ(g = 0) and λ′0 ≡ dλ
dg |g=0. For β(g) ≡ dg

d lnµ ≈ εg, the scaling dimension of O

is determined to be 4 + ε, and g(φ) ≈ gUV

(
φ

ΛUV

)ε
, where gUV is the deformation at UV
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cut-off scale ΛUV. Plugging this and eq. (2.3) into eq. (2.2), gives us the explicit form for

the leading dilaton potential from which we derive the confinement scale,

〈φ〉 = ΛUV

(
− 1

1 + ε/4

λ0

λ′0gUV

) 1
ε

. (2.4)

We note that an exponentially large hierarchy between 〈φ〉 and ΛUV can be obtained if ε is

small, given just a mild hierarchy between λ0 and λ′0gUV [22]. This is dual to the minimal 5D

Goldberger-Wise mechanism [26]. It is convenient to express the potential in terms of 〈φ〉,

Veff =
N2

16π2
λ0φ

4

(
1− 1

1 + ε/4

(
φ

〈φ〉

)ε)
+ V0. (2.5)

We choose V0 to ensure the (almost) vanishing cosmological constant (CC) today, i.e. we

impose Veff(〈φ〉) = 0. Note that, vacuum stability implies ελ0 < 0.

Assuming a low critical temperature for the PT, Tc � 〈φ〉, we can solve for it by

equating the free energies of the two phases:

Fdeconfined(Tc) = Fconfined(Tc) ≈
Tc�〈φ〉

Veff(〈φ〉)

⇒ Tc
〈φ〉

=

(
−ελ0

16π2C(4 + ε)

)1/4

+O
(

1

N2

)
. (2.6)

We see that Tc is self-consistently small for small ε and/or small λ0. Therefore the confining

phase is within dilaton EFT control. Since the coupling g(φ) blows up in the IR for ε < 0,

making the bounce calculation unreliable, we will consider ε > 0, λ0 < 0 in the minimal

set-up. With this choice, approximate conformal invariance only improves in the IR, so

that the deconfined phase is expected to exist at arbitrarily small T , including at Tc. This

expectation is borne out in the dual RS analysis [33, 34]. The simultaneously allowed

phases at Tc indicate a first-order PT. It follows from eq. (2.6) that V0 = CN2T 4
c for

vanishing CC today.

A cosmological PT completes for sufficiently large bubble nucleation rate per unit

volume, Γ ≥ H4, where H is the Hubble scale. For T < Tc, H asymptotes to a constant,

driven by vacuum energy, H2 ≈ 8π
3 GNV0 ∼ CN2T 4

c

3M2
Pl

. Here, GN and MPl are respectively

Newton’s constant and the reduced Planck scale, MPl = 2.4 × 1018 GeV. Semi-classically

the finite temperature bubble nucleation rate Γ, is computed in terms of the Euclidean

bounce action Sb with time periodicity 1/T as,

Γ ∼ T 4e−Sb ≥
completion

H4. (2.7)

Thus for the PT to complete, Sb < 4 ln
(
MPl
Tc

)
∼ 140 for Tc ∼TeV. For small λ, as

we would expect, and will show in the appendix, the dominant finite-temperature bounce

solutions are O(3) symmetric (and Euclidean time independent).
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3 Phase transition in the thin-wall regime

Let us first compute Γ in the thin-wall approximation, for prompt PT, T ≈ Tc. In this

approximation quite generally [49, 50]

Sb =
S3

T
=

16π

3

S3
1

(∆F )2T
, (3.1)

where ∆F is the free energy difference between the two phases and S1 is the surface

tension of the bubble wall. The bubble has to interpolate between the de-confined and the

confined phases, see figure 1. This interpolation consists of two regions, (i) the lowering

of the dynamical confinement scale from 〈φ〉 down to ∼ Tc � 〈φ〉, followed by (ii) the

rearrangement of all d.o.f from confined into deconfined at . Tc scales. The first region

is described purely within the dilaton EFT. To see this note that the dilaton bounce

solutions have |∇φ| ∼
√
Veff which implies |∇φ|/φ2 ∼

√
|λ(g)| � 1 for small λ0. Thus

for φ > Tc, gradients and T are smaller than the local mass gap φ, and do not excite the

heavier composite d.o.f. In this dilaton dominance approximation we find

S
(i)
1 ≈

N

2π

∫ 〈φ〉
∼Tc

dφ
√
Veff ≈ 0.6

(
C3

ε|λ0|

)1/4

N2T 3
c . (3.2)

We see this is enhanced by small ε and λ0 in Tc units because φ is getting large in these units

over the bounce trajectory as seen from eq. (2.6). We are therefore insensitive to the lower

limit of integration which we can approximate as vanishing. In region (ii), φ/Tc ∼ O(1) so

that we do not expect enhancement by small ε or λ0. Therefore we have dilaton dominance,

S1 ≈ S(i)
1 ,

S3

T
≈ 3.6

(
1

|λ0|ε

) 3
4

C
1
4N2 Tc/T

(1− (T/Tc)4)2 . (3.3)

Let us apply the above result to the case of a PT at very roughly TeV scale in the

minimal scenario in which ε accounts for the Planck-TeV hierarchy, ε ≈ 1/25. But we

see from eq. (3.3) that a prompt PT cannot occur within theoretical control, even for

|λ0| = 1/2, T
4
c −T 4

T 4
c

= 1/2 and N > 1! To allow the PT to happen for larger values of N , we

need larger values of ε while still somehow generating a large hierarchy. We now describe

a simple scenario which achieves that.

4 A two-FP RG evolution

Earlier, to obtain eq. (2.5) we approximated β(g) ≈ εg for near-FP behaviour. However, it

is possible that the running flows to this vicinity from a different UV FP at g∗. We then

have two important critical exponents:

β(g) =

{
ε′(g∗ − g) for g near g∗

εg for g small.
(4.1)
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CN 2T 4 

CN 2Tc
4 

( i )( ii )

( i )( ii )

T≪ Tc (Thickwall)

T ≈ Tc (Thinwall)

∼ T ∼ T

ϕr

ϕr
0 Tc 〈ϕ〉

ϕ

V(ϕ)

Figure 1. The scalar field dynamics of the PT in the prompt (orange) and supercooled (blue)

regimes. φr denotes the release point, characterizing the value of the dilaton field at the center of

the bubbles at the moment of their nucleation. The free energy in the deconfined phase is indicated

along the vertical axis. The parts of the bounce trajectory to the right/left of the vertical dotted

lines correspond to regimes (i)/(ii) in the text giving dominant/sub-dominant contributions to Sb.

The transition between the two regimes happens around some intermediate coupling,

g ∼ gint at a scale Λint ∼ ΛUV

(
g∗−gUV
g∗−gint

)1/ε′

. The confinement scale is now generated from

Λint analogously to eq. (2.4) but with replacements ΛUV → Λint and g0 → gint,

〈φ〉 ∼
(
g∗ − gUV

g∗ − gint

)1/ε′ (
− λ0

(1 + ε/4)λ′0gint

)1/ε

ΛUV. (4.2)

We see that we can now have a larger ε controlling the PT dynamics while still having

a large Planck-TeV hierarchy given by small ε′ (for a related idea see [42]). Eq. (2.5)

implies that the dilaton mass2 ∝ ε, and hence a larger ε implies a heavier dilaton relative

to the confinement scale 〈φ〉, relevant for collider searches. The above two-FP structure

of RG running can be simply modeled with a suitable 5D scalar potential in the dual RS

formulation [33]. By contrast, the standard Goldberger-Wise 5D scalar [26] with only a

mass term in the RS “bulk” is dual to the minimal scenario discussed above.

For a benchmark set of parameters ε = 0.5, |λ0| = 0.5, C = 1, T
4
c −T 4

T 4
c

= 1/2, the

bounce action can be obtained using eq. (3.3), with eq. (2.7) showing that the PT can

complete promptly for N ≈ 2. This is marginally in theoretical control. If we are outside

the regime/parameters for prompt PT, the universe remains and cools in the deconfined

phase, and inflates due to the constant term in eq. (2.1). Ultimately, the PT may complete

in a supercooled regime, T � Tc. We now turn to this analysis.

5 Phase transition in the supercooled regime

For T � Tc, by eqs. (2.1) and (2.5) the release point in φ drops [44], see figure 1. Therefore

the bounce only probes the dilaton potential for small φ, Veff ≈ N2

16π2λ0φ
4 + V0. In this

– 6 –
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regime we can use a scaling argument for the O(3) symmetric bounce action,

S
(i)
3

T
=

N2

4πT

∫
drr2

((
dφ

dr

)2

+ λ0φ
4 + 16π2CT 4

)
(5.1)

=
N2

4π|λ0|
3
4

∫
dxx2

(dφ̃
dx

)2

− φ̃4 + 16π2C

 , (5.2)

where φ̃ = |λ0|
1
4φ/T and x = |λ0|

1
4 rT . Thus we see that the S

(i)
3 is not enhanced by ε

compared to thin wall eq. (3.3), allowing a larger nucleation rate at low T . The dilaton

profile is then given by extremizing this action subject to two boundary conditions (BC).

One is given by dφ
dr = dφ̃

dx = 0 at r = 0. For the other BC, we first note that part (ii) of

the bounce connects to part (i) for φ ∼ T � Tc � 〈φ〉 which we approximate as φ ≈ 0 i.e.

φ̃ ≈ 0. Due to the fact that part (ii) of the bounce is insensitive to small |λ0| � 1, we will

have a λ0-independent kinetic/gradient energy ( dφdr )2|φ=0 = T 4(dφ̃dx )2|φ̃=0 where (dφ̃dx )2|φ̃=0

is some O(1) number which we will fix below. These BCs imply that φ̃(x) is independent

of λ0 and therefore the radius of the bubble where φ ≈ 0 is ∝ 1
|λ0|1/4

. Beyond this radius,

the λ0-independent physics of part (ii) forms a “thin-wall” ∼ (λ0)0 around the larger part

(i) of the profile. Thus, S
(ii)
3 is proportional to the area of the bubble ∝ 1

|λ0|1/2
. The

gradient energy at the matching point φ ≈ 0 is then given by the thin-wall approximation

(dφ/dr)2 ≈ 16π2

N2 ∆F = 16π2CT 4. To summarize, S
(i)
3 ∝ |λ0|−3/4 while S

(ii)
3 ∝ |λ0|−1/2,

demonstrating dilaton dominance for |λ0| � 1. In reference [33] we will quantify and

include the next-to-leading contribution due to region (ii).

Having demonstrated dilaton dominance for extreme T , we expect it to hold for all T ,

in particular, intermediate temperatures. We then evaluate the bounce action numerically

with the BC above. The results are shown in figure 2, indicating when the PT completes,

i.e., eq. (2.7) is saturated, or equivalently:

Sb

4
+ ln

Tc
Tn
≈ ln

MPl

Tc
, (5.3)

where Tn is the nucleation temperature for the PT to complete.

Figure 2 can be understood qualitatively. The ε enhancement of Sb for prompt PT

(thin wall) is absent in the asymptotic supercooled regime. Therefore, for a given ε < 1

we have larger allowed values of N for the supercooled PT than for the prompt PT. For a

choice of N such that the PT can complete for several values of ε, we see that Tn rises with ε.

We can understand this as follows. Supercooling can lower Sb until the PT completes, most

dramatically around ln(Tc/Tn) ∼ 1/ε, below which the second term within the parenthesis

in eq. (2.5) can be ignored. Furthermore, for larger ε, Sb is already smaller at T ≈ Tc
and therefore less cooling is needed to complete the PT. We also see based on eq. (5.2)

that even though the bounce action becomes ε-independent for small temperature i.e.

ln(Tc/Tn) ∼ 1/ε, larger ε lets us complete the PT at higher N as can be seen from eq. (5.3).

Supercooling can have important consequences. The inflationary dilution in the su-

percooling process ∼ (T/Tc)
3 has to be taken into account in any baryon or dark matter
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2

4

6

8

10

12

Tn/Tc

N

Figure 2. Lines depicting the nucleation temperature as a function of N for different choices of

ε, obtained by saturating eq. (5.3). The interpretation can be found in the text. As explained in

the text, the inverse duration of the PT, βGW, is proportional to the slope of these curves. The

end points of the lines denote the maximum allowed value of N for which the PT completes for

given ε, λ0.

genesis mechanism operating above the PT, in order to match the observed abundance

today. For small ε we see that this is a significant issue, but not for ε . 1 in the two-FP

theory. If supercooled nucleation temperatures are very low, T .GeV, in a composite

Higgs context, then references [39, 42] has pointed out that QCD effects are important,

for similar studies in other models, see references [51–53]. However, in our two-FP theory

with larger ε, we see that one can have only modest cooling. Thus we neglect QCD effects.

6 Gravitational waves

Cosmological first order PTs are powerful sources of stochastic GWs. PTs connected very

roughly to the TeV scale would produce GW amplitudes and frequencies in the range of

proposed detectors. The GWs are produced by bubble wall collisions as well as sound waves

and turbulence in the plasma (for a review see reference [5]). While the plasma-related

effects are typically expected to dominate, they are more model-dependent and less well

understood than bubble collisions. However with sufficient supercooling, as we expect with

small ε, the deconfined plasma will be significantly inflated away. Below, we just consider

the bubble collisions.

For bubble collisions, the peak fractional abundance and peak frequency of GWs

depend strongly on the duration of the PT, 1/βGW [5],

ΩGWh
2 ≈ 1.3× 10−6

(
HPT

βGW

)2(100

g∗

)1/3

fGW ≈ 0.04 mHz

(
βGW

HPT

)
TPT

TeV

( g∗
100

)1/6
, (6.1)
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where HPT is the Hubble scale during the PT and βGW is given by

βGW

HPT
= −T

Γ

dΓ

dT

∣∣∣∣
Tn

≈ −4 + T
dSb

dT

∣∣∣∣
Tn

. (6.2)

h is defined by the present day Hubble expansion rate H0 = 100h km/s Mpc−1and g∗
denotes the number of relativistic d.o.f. in the plasma during the PT. βGW is (proportional

to) the slope of the curves in figure 2, as can straightforwardly be deduced from eq. (5.3)

and the fact that Sb ∝ N2, assuming ln(MPl/Tc)� ln(Tc/Tn),

βGW

HPT
≈ −8 ln

MPl

Tc

(
d lnTn
d lnN

)−1

. (6.3)

In a generic PT, dSb
d lnT ∼ Sb ∼ ln MPl

Tc
. Remarkably, for small ε, βGW is suppressed [38]

and the GW abundance is enhanced. In order to see this, first note that in the supercooled

regime the leading Sb in eq. (5.2), is independent of T . The temperature dependence

arises from keeping the subleading part of the dilaton potential, eq. (2.5), for small φ,

in the derivation of eq. (5.2). This effectively results into the replacement in eq. (5.2) of

λ0 → λ0

(
1−

(
T

|λ0|1/4〈φ〉

)ε)
as shown in the appendix.

Therefore eq. (6.2) gives

βGW

HPT
≈ −4 + 3ε

(
Tn

|λ0|1/4〈φ〉

)ε
ln
MPl

Tc
, (6.4)

where we have taken ln(MPl/Tc) � ln(Tc/Tn). This suppression of βGW can allow large

enough GW backgrounds so that even the primordial fluctuations contained in it may be

observable [54]. As ε increases, the PT duration decreases and bubble collision effects

become less important, while the less diluted plasma effects become more important.

7 Conclusion

In general, (de)confinement PTs are dramatic but non-perturbative quantum phenomena.

However, in this paper we have re-examined such PTs in the context of spontaneous con-

finement, and shown that the bubble nucleation rate is dominated by relatively simple

dilaton dynamics. We have also shown, beyond the minimal scenario, that different near-

FP regimes can control the PT dynamics and the appearance of large hierarchies, with

PTs ranging from prompt to supercooled and with distinctive phenomenological features.

While the detailed dynamics of deconfinement is qualitatively important and interesting,

it plays a quantitatively subdominant role in bubble nucleation. This dynamics will be

addressed in a forthcoming paper in the AdS/CFT dual context of the RS model [33].
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A Dominance of O(3) symmetric, time independent bounce

In this section, we argue that for small λ0, the dominant dilaton bounce is O(3) symmet-

ric and independent of 1/T periodic Euclidean time as claimed in the main text. Our

arguments will be valid for all temperatures.

Following eqs. (2.2) and (2.5), the generic Euclidean action for the dilaton is given by,

S=
N2

4π|λ0|
3
4

(A.1)

×
∫ 1

0
dt̃

∫
dxx2

(
(∂xφ̃)2+

1

|λ0|
1
2

(∂t̃φ̃)2−φ̃4

(
1− 1

1+ε/4

(
T

|λ0|
1
4 〈φ〉

)ε
φ̃ε

)
+16π2C

)

where φ̃ = |λ0|1/4φ/T , x = |λ0|1/4rT , t̃ = tT . For simplicity, first focus on the case of

small T such that ln(Tc/T ) & 1/ε, where the potential term proportional to φ̃4+ε can be

neglected. Due to the periodicity of Euclidean time and the fact that φ̃ has to change by at

least an O(1) amount in order to interpolate between the deconfined phase (φ̃ ≈ 0) and a

release point, we get ∂t̃φ̃ ∼ ∆φ̃/∆t̃ ∼ O(1) for a bounce profile φ̃ that depends on time at

the leading order. In this case, for small λ0, due to the 1
|λ0|1/2

(∂t̃φ̃)2 term, a time-dependent

action is parametrically larger than the time-independent O(3)-symmetric bounce eq. (5.2).

So the only way to have a smaller time-dependent bounce action, is to have a bounce that

has a leading time-independent part, φ̃0(x), and a subleading time-dependent part, f(x, t):

φ̃(x, t) = φ̃0(x) + f(x, t), (A.2)

where f is of order |λ0|1/4 or smaller. The ambiguity of separating φ̃ into a time dependent

and time independent part is removed by requiring that
∫ 1

0 dt̃f = 0. In this case the action

can be expanded in powers of λ0, which to first nontrivial order in f becomes

S ≈ N2

4π|λ0|3/4

∫ 1

0
dt̃

∫
dxx2

(
(∂xφ̃0)2 − φ̃0

4
+ 16π2C +

1

|λ0|1/2
(∂t̃f)2 + (∂xf)2

)
, (A.3)

where terms linear in f are not present since they vanish after integrating over t. The

quadratic term in f arising from the potential has been dropped since it has a necessarily

subdominant contribution to the action for small λ0. We see that to this order, φ̃0 and

– 10 –



J
H
E
P
0
5
(
2
0
2
0
)
0
8
6

f have to independently satisfy the equations of motion and a nonzero f has a positive

contribution to the action, so that a time-independent bounce solution has a lower action

than any such time-dependent configurations/solutions.

In the thin-wall regime, we can parallel the above arguments. In this regime the

dominant contribution to the bounce comes from the region where φ ∼ 〈φ〉 � Tc. Thus

the effective Lagrangian relevant for a thin-wall bounce can be obtained by expanding

eq. (2.2) around 〈φ〉 to get,

Leff =
N2

16π2

(
(∂φs)

2 + 2ελ0〈φ〉2φ2
s

)
+ · · · , (A.4)

where φs = φ − 〈φ〉. Keeping the terms proportional to φ3
s, φ

4
s in the above expansion,

will not change the parametric argument that follows. We can recast the above using the

rescalings, φ̃s = (ε|λ0|)1/4φs/T , 〈φ̃s〉 = (ε|λ0|)1/4〈φ〉/Tc, x̂ = (ε|λ0|)1/4rT , t̃ = tT , as

Leff =
N2T 4

c

16π2

(
1

(ε|λ0|1/2)
(∂t̃φ̃s)

2 + (∂x̂φ̃s)
2 + 2〈φ̃s〉2φ̃2

s

)
+ · · · , (A.5)

where we have used T ≈ Tc which is appropriate for the thin-wall regime. Using the above

effective Lagrangian, the Euclidean action can be constructed. Then we can repeat all the

arguments given above for the supercooling regime to conclude again that the dominant

bounce is time-independent, this time due to the smallness of the quantity ελ0. Even

for intermediate T , these arguments can be generalized to show time-independence of the

dominant dilaton bounce.

B Subleading temperature correction to the bounce action in the

supercooled regime

In this section we calculate the subleading correction to Sb in the supercooled regime, using

which we can find the parameter βGW relevant for gravitational waves as in eq. (6.4). The

relevant action can be read off from eq. (A.1) by dropping the time-dependent contribution,

Sb =
N2

4π|λ0|3/4

∫
dxx2

(
(∂xφ̃)2 − φ̃4

(
1− 1

1 + ε/4

(
T

|λ0|1/4〈φ〉

)ε
φ̃ε
)

+ 16π2C

)
. (B.1)

We will expand in
(

T
|λ0|1/4〈φ〉

)ε
by treating the term in the potential proportional to φ̃4+ε

as a perturbation, and obtain the leading temperature correction to Sb by first solving the

“zeroth-order” bounce equation in the absence of the φ̃4+ε term. Let us denote such a

bounce solution as φ̃0(x) and the corresponding zeroth-order bounce action as S
(0)
b . The

leading correction to S
(0)
b is then given by

∆Sb =
N2

4π|λ0|3/4
1

1 + ε/4

(
T

|λ0|1/4〈φ〉

)ε ∫
dxx2φ̃4+ε

0 . (B.2)

Note that even though the solution φ̃ is corrected by the perturbation, the change of the

action due to this correction vanishes to first order since the first variation of the action
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vanishes when evaluated on the solution of equation of motion. Then, for small ε, we can

approximate the above correction as,

∆Sb ≈
N2

4π|λ0|3/4

(
T

|λ0|1/4〈φ〉

)ε ∫
dxx2φ̃4

0. (B.3)

This implies the temperature dependent bounce action can be approximated as,

Sb ≈
N2

4π|λ0|3/4

∫
dxx2

(
(∂xφ̃0)2 − φ̃4

0

(
1− 1

1 + ε/4

(
T

|λ0|1/4〈φ〉

)ε)
+ 16π2C

)
(B.4)

≈ N2

4πT

∫
drr2

((
dφ

dr

)2

+ λ0

(
1−

(
T

|λ0|1/4〈φ〉

)ε)
φ4 + 16π2CT 4

)
, (B.5)

where in the second line we have re-expressed the action in terms of φ and r. Therefore

including this subleading temperature correction is equivalent to a corresponding change

in the dilaton quartic coupling,

λ0 → λ0

(
1−

(
T

|λ0|1/4〈φ〉

)ε)
(B.6)

in eq. (5.1). Thus to first order in
(

T
|λ0|1/4〈φ〉

)ε
and for small ε we have using eq. (5.2),

Sb ≈ S
(0)
b

(
1 +

3

4

(
T

|λ0|1/4〈φ〉

)ε)
, (B.7)

which when used in eq. (6.2) gives eq. (6.4).
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