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1 Introduction

Effective field theory (EFT) lies at the core of our modern understanding of the fundamental

interactions in nature. EFTs encode the dynamics of the relevant degrees of freedom at the

scales of interest, and enable the systematic exploration of the effects of heavy states via an

infinite set of local operators built out of the light fields. Crucially, the higher the operator’s

dimension, the smaller the departure it introduces from the leading order dynamics, the

latter understood, from this point of view, as a standard quantum field theory. One of

the most elegant quantum field theories is Einstein’s theory of general relativity (GR).

Formulated in 1915, it has survived all experimental tests, both in measurements on Earth

and using precision astrophysical observations at various scales. An important question

is how one can systematically test departures from GR, or even at a more basic level,

what is the set of independent IR departures one could possibly test. Since most of the

probes of GR involve macroscopic distances or very low energies, especially if compared to

(4π)MPl, the maximal scale up to which one could envision GR as a good description of

gravitational phenomena, it is natural to work in the language of EFT. A subtle problem is

that of finding a non-redundant operator basis for the EFT, something that is key in order

to properly identify the independent directions in the space of all possible UV completions

of the EFT, i.e. the most general set of physically different deformations of the leading

dynamics. This issue is non-trivial because, in general, seemingly independent operators

can be related by the equations of motion, partial integration and algebraic identities. This

problem however has been recently solved for the EFT of the Standard Model of particle

physics (known as SMEFT) [1, 2], the method relying on Hilbert series and, to a lesser

extent, conformal representation theory.

In this work we extend this solution to account for gravitational interactions, the

primary extra ingredient being the identification of the Weyl tensor (and its symmetrized

and traceless covariant derivatives) as the building block of the EFT. With the method

we develop, we obtain a general and non-redundant set of EFT operators of GR coupled

to the SM to all orders, which we call GRSMEFT. Such an EFT is of intrinsic value per

se, being the true most general parametrization of all the physically distinct low-energy

deviations from the established description of all fundamental interactions known to date,

i.e. the SM dimension-4 Lagrangian and the Einstein-Hilbert term. Besides, one should

recall that it has been known since long that GR is non-renormalizable, meaning quantum

corrections do in fact require higher-dimensional gravitational operators beyond Einstein-

Hilbert, also when matter fields are included. This makes an EFT understanding of the SM

and GR practically unavoidable. Furthermore, an EFT of gravity coupled to matter is of

relevance in the broader context of physics beyond the SM. For instance, higher-dimensional

operators are relevant in inflation or in modified gravity theories (in particular scalar-tensor

theories). As an application in this regard, we construct the operator basis for the EFT

of a shift-symmetric scalar coupled to gravity. Finally, our method can be of potential

use in more formal settings, concerning e.g. renormalization, scattering amplitudes, or as

a systematic connection between UV completions of gravity and low-energy physics.
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The paper is structured as follows. In section 2, we first provide a self-contained

review of the Hilbert series method for constructing EFT operator bases, and then apply it

to the Euler-Heisenberg Lagrangian as an illustrative example. In section 3, we extend this

method to gravity, showing how we can use the Weyl tensor to construct gravitational EFT

operators. In section 4, we apply our approach to the pure gravity EFT up to dimension

10 and to the simple case of a shift-symmetric scalar coupled to gravity up to dimension 8.

We comment in passing on known results regarding the renormalization, matching to UV

completions, and positivity/causality constraints on these EFTs. Finally, in section 5, we

develop the EFT of gravity coupled to the SM to all orders, present its explicit form up to

dimension 8 (see also appendix D), and discuss some of its interesting features as well as

phenomenological applications and future directions of investigation [3].

2 Method

Let us first introduce the key facts about the Hilbert series, to then review the main results

of [1, 2] on how the Hilbert series can be used as an efficient tool to find irreducible operator

bases for EFTs.1 A reader familiar with these concepts may skip this section.

2.1 Hilbert series

The Hilbert series H(q) is a generating function that counts the number of independent

group invariants that can be built out of a spurion q in a given representation of the group.

It is formally defined as a power series in q

H(q) =
∞∑
r=0

cr q
r , (2.1)

where cr denotes the number of invariants involving r spurions, with c0 = 1 by definition.

By including multiple spurions qi, one can construct the multi-graded Hilbert series, which

provides information on the structure of the invariants. In a field theoretical setting, the

spurions stand for field operators φi and derivatives D, i.e. the Hilbert series in general has

the form

H(D, {φi}) =
∑

r1,...,rn,k

cr1,...,rn,k φ
r1
1 · · ·φ

rn
n Dk , (2.2)

where cr1,...,rn,k now indicates the number of invariants of order k in derivates and order

ri in φi. As an explicit example, consider a complex scalar field φ charged under a U(1)

symmetry. Any invariant in the scalar potential can be written as a polynomial in the

monomial (φ∗φ), with each power appearing exactly once. In this case it is straightfor-

ward to compute the Hilbert series for the scalar potential, which even has a closed form

expression if we formally take the spurions to be small, (φ∗φ) < 1,

H(φ, φ∗) = 1 + (φ∗φ) + (φ∗φ)2 + . . . =
∞∑
r=0

(φ∗φ)r =
1

1− φ∗φ
. (2.3)

1For a physics oriented introduction to the Hilbert series technique we recommend [4] (see also [5]) . For

a mathematically more rigorous presentation refer to [6, 7].
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Obtaining the Hilbert series in this example was simple only because we already knew

the form of the invariants. However, when multiple spurions in different representations

of a group G are involved, it is no longer straightforward to find all the invariants. This

task can be greatly simplified using group characters. The character of a representation

R of a group G is defined as χR(g) = TrR(g) with g ∈ G. Group characters of com-

pact Lie groups are orthonormal w.r.t. the integration over the group’s Haar measure,

i.e.
∫
dµG(g)χR(g)χ∗R′(g) = δR R′ . Therefore, taking all possible tensor products of the

spurions, which amounts to multiplying their characters, and projecting them onto the

trivial representation yields all the group invariants. For a bosonic spurion φR in the

representation R, the generating function for the characters of all the symmetric tensor

products is the plethystic exponential (PE) [8, 9]

PE[φR χR(z)] =

∞∑
n=0

φnR χSymn(R)(z) = exp

[ ∞∑
r=1

1

r
φrR χR(zr)

]
, (2.4)

where Symn(R) is the symmetric tensor product of n representations R and z =

{z1, . . . , zrank(G)} are the rank(G) variables parameterizing the group. For a short deriva-

tion of this formula see appendix C. The fermionic plethystic exponential (PEF) [10] is

the counterpart for fermionic spurions, where the antisymmetric tensor product has to be

taken,

PEF[φR χR(z)] =
∞∑
n=0

φnR χ∧n(R)(z) = exp

[ ∞∑
r=1

(−1)r+1

r
φrR χR(zr)

]
. (2.5)

In the following our notation will not differentiate between the fermionic and bosonic

version of the PE, as it will be clear from the context which one is meant. For more than

one spurion we define the PE as PE[φR, . . . , ϕR′ ] = PE[φR] · · ·PE[ϕR′ ], where from now

on we omit the characters for the spurions in the argument of the PE to ease the notation.

From the PE one can obtain the Hilbert series by projecting onto the trivial representation

1, with character χ1 = 1, and integrating over the group

H(φR, . . . , ϕR′) =

∫
dµG PE[φR, . . . , ϕR′ ] . (2.6)

In the literature this is often referred to as the Molien-Weyl formula (see e.g. [7]). Let

us illustrate how this machinery works by looking at a simple example with a bosonic

spurion φ2 that transforms in the fundamental representation of SU(2) and its complex

conjugate φ†
2̄
. SU(2) has rank one and therefore its characters are a function of one complex

variable y. The characters for the fundamental 2 and adjoint 3 representations of SU(2)

are χ2̄(y) = χ2(y) = y+ 1/y and χ3(y) = y2 + 1 + 1/y2 [11], while the SU(2) Haar measure

can be expressed as a contour integral in the complex plane [11]

∫
dµSU(2)(y) =

1

2πi

∮
|y|=1

dy

y

(
1− y2

)
. (2.7)
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Up to O(φ2), the PE for the spurion φ is given by

PE[φ2] = exp

[ ∞∑
r=1

1

r
φr2 χ2(yr)

]
= 1 + χ2(y)φ+

1

2
(χ2(y2) + χ2(y)2)φ2 +O(φ3)

= 1 + χ2(y)φ+ χ3(y)φ2 +O(φ3) , (2.8)

where note that we recover the symmetric part of the SU(2) tensor decomposition 2⊗2 =

1A⊕3S from the characters. The PE for φ†
2̄

is obtained from eq. (2.8) after the substitution

φ2 → φ†
2̄
. Combining these ingredients and using eq. (2.6), the Hilbert series up to second

order in the fields is given by

H(φ2,φ
†
2̄
) =

∫
dµSU(2)(y)

(
1+(φ2 +φ†

2̄
)χ2(y)+(φ2

2 +φ†
2̄

2)χ3(y)+(φ2φ
†
2̄
)χ2(y)χ2(y)+ . . .

)
= 1+φ2φ

†
2̄

+O(φ2,φ
†
2̄
)3 , (2.9)

where only the φ2φ
†
2̄

term survives the integration, since the tensor product contains one

singlet as can be seen from χ2(y)χ2(y) = χ1(y) + χ3(y). This result tells us that there

is no invariant at the first order in the fields, and exactly one at the second order. This

may seem trivial, however by continuing the expansion of the PE to higher orders one can

derive the multiplicity and structure of each invariant order by order.

2.2 Hilbert series for EFTs

The main principle for constructing EFTs is to include all Lorentz and gauge invariant

local operators built out of the degrees of freedom accessible at the relevant energy scale.

However, to find an operator basis K = {Oi}, i.e. the minimal set of operators that lead to

physically distinct phenomena, is considerably more difficult than just finding all invariants,

since in general redundancies appear among operators, which need to be taken care of. Such

redundancies appear in two ways: (1) operators proportional to the free field equation of

motion (EOM), which can be removed by a field redefinition that leaves the S-matrix

invariant (see e.g. [12, 13]), and (2) operators related by a total derivative, which can be

transformed into each other using integration by parts (IBP). The basic building blocks for

local operators are fields and derivatives acting on them. For example, for a single scalar

field φ, any local EFT operator can be written as a polynomial in C[φ, ∂µφ, ∂µ∂νφ, . . .].

Monomials such as ∂µ∂νφ have to be understood as the tensor product of two derivatives

acting on the field and therefore still contain a term which is proportional to the free EOM

∂2φ = −m2φ. These redundant terms (φ is already a building block) can be avoided by

taking only the symmetrized, traceless combination of the derivatives, which we denote as

– 5 –
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∂{µ1 · · · ∂µn}.2 This leads to the single particle module Rφ as the basic building block [2]

Rφ =


φ

∂µφ

∂{µ1∂µ2}φ
...

 . (2.10)

One could now use the Molien-Weyl formula with each component of the single particle

module as an independent spurion. Using their group characters for the Lorentz represen-

tations and integrating over the Lorentz group, one could project out all scalar operators.3

This would yield an operator basis with the EOM redundancy removed, but the IBP re-

dundancy still present. A procedure which additionally takes care of the IBP redundancy

was first proposed in [2], their main insight the realization that the single particle mod-

ules coincide with unitary conformal representations of free fields. The conformal group

in four dimensions is isomorphic to SO(4, 2) ' SO(6,C) and its representations consist of

a primary operator Ol and an infinite tower of derivatives acting on it, its descendants.

Schematically, they are of the form

R[∆;l] ∼


Ol
∂Ol
∂2Ol

...

 . (2.11)

The representations are labeled by the scaling dimension ∆ and the Lorentz representation

l = (l1, l2) ∈ SU(2)L×SU(2)R of the primary operator, where li denotes the 2 li+ 1 dimen-

sional representation. For a conformal representation to be unitary its scaling dimension

∆ has to satisfy a lower bound ∆l [14]

∆ ≥ ∆l = l1 + l2 + 2 l1 6= 0 , l2 6= 0 ,

∆ ≥ ∆l = l1 + l2 + 1 l1l2 = 0 .
(2.12)

Conformal representations of free fields saturate the unitarity bound, i.e. ∆ = ∆l [14–16],

which causes some of its descendants to be absent (avoiding negative-norm descendants).

Such descendants are exactly those that vanish due to the free EOM. This implies that

any local operator can now be constructed by taking tensor products of single particle

modules, i.e. tensor products of unitary conformal representations. These tensor products

2Note that this remains true even if we replace the derivatives by covariant derivatives. Antisymmetric

combinations of covariant derivatives are related to the gauge field strength via [Dµ, Dν ] ∼ Fµν . Therefore,

the antisymmetric contributions are already accounted for when constructing operators with Fµν and φ.
3The Lorentz group is not a compact Lie group and therefore its characters are not orthonormal. How-

ever, since we are not interested in dynamics but only want to enumerate the operators, we can work in

Euclidean space, where the Lorentz group SO(4) ' [SU(2)L ⊗ SU(2)R]/Z2 is compact. In addition, since

we will be considering fermions, we in fact work with the covering group Spin(4).

– 6 –
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can in turn be decomposed into irreducible conformal representations O′
Ol
∂Ol
∂2Ol

...


⊗n

=
∑
O′


O′

∂O′

∂2O′
...

 . (2.13)

The set of all scalar primaries in the tensor product are independent operators with both

the IBP and EOM redundancy removed. Therefore, in order to obtain a basis of operators

for the EFT, one only has to consider all possible tensor products and project out the

scalar [∆, (0, 0)] representations for all ∆. The corresponding primaries form the EFT

basis. Using conformal group characters χ[∆;l], the Hilbert series is schematically

H ∼
∫
dµconformal

∑
∆

χ[∆;(0,0)] PE[{φa}] . (2.14)

Including the integral over possible gauge groups to project out the gauge invariant opera-

tors and performing the integral associated with the dilatations one obtains the expression

for the Hilbert series4 (see [2] for details)

H(D, {φi}) = H0(D, {φi}) + ∆H(D, {φi}) , (2.15)

with H0(D, {φi}) given by

H0(D, {φi}) =

∫
dµLorentz(x)

∫
dµgauge(y)

1

P (D, x)

∏
i

PE

[
φi
D∆i

]
, (2.16)

where we denoted the single particle modules by their primaries (i.e. φi for Rφi), and recall

that φi comes with its character χφi in the PE. The group characters for the single particle

modules are a product of the conformal and gauge group characters

χφi(D;x, y) = χ[∆φi
;li](D;x) · χgauge(y) . (2.17)

Furthermore, ∆H(D, {φi}) in eq. (2.15) contains terms of at most scaling dimension 4, and

arises from subtleties regarding the orthonormality of the group characters of conformal

representations saturating the unitarity bound; basically, the absence of descendants of the

form �O and/or ∂µOµ (associated with the EOMs). An explicit expression can be found

in [2]. The 1/P (D, x) factor corrects for the IBP redundancy, with P (D, x) being the

momentum generating function that encodes the information about the symmetric tensor

products of derivatives (D transforming in the fundamental ( 1
2 ,

1
2) representation of the

Lorentz group) and is given by (see appendix C for symmetric tensor products)

P (D, x) =

∞∑
d=0

Dd χSymd(1/2,1/2)(x) =
1

det(1/2,1/2)(1−D g)
. (2.18)

4Note that eq. (2.16) still holds even if the single particle module is not a unitary conformal rep-

resentation [2]. However, a closed form expression for ∆H(D, {φi}) exists only for unitary conformal

representations.
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The conformal characters are obtained by tracing over the sum of Lorentz representations

in the single particle module weighted with the corresponding scaling dimensions. For

instance, for a scalar field with primary scaling dimension ∆φ = 1 for the primary and

single particle module given in eq. (2.10), the conformal character is

χ[1;(0,0)](D;x) = D(1−D2)

∞∑
d=0

Dd χSymd(1/2,1/2)(x) = D P (D, x)(1−D2) . (2.19)

The D1 factor in eq. (2.19) is due to the scaling dimension of the primary, while each

additional power of D corresponds to a derivative (the subtraction of D2 in the parenthesis

is due to ∆φ = ∆0 saturating the unitarity bound). Therefore, if each spurion φi in

eq. (2.16) is weighted by D−∆φi , any occurrence of D in the Hilbert series will be associated

with a derivative. Let us finally note that generically the Hilbert series cannot be computed

in full but only as an expansion following a given grading. A common grading is to use

the mass dimension [φi] of the operators, i.e. we rescale the spurions φi → ε[φi]φi , D → εD
and expand the Hilbert series in powers of ε

H(D, {φi}; ε) =
∑
n

εnHn(D, {φi}) . (2.20)

Explicit expressions for P (D, x) and for the conformal and gauge characters and the inte-

gration measures relevant for this work can be found in appendix A.

We wish to note at this point that the Hilbert series systematically counts the operators

at a given order in fields and derivatives, yet it does not explicitly construct them. While

knowing the number of operators is exceedingly useful for the latter task — in fact in

this paper this will be information enough to construct the operator basis — algorithms to

directly construct the operators are being developed in the context of the S-matrix [17, 18].

2.3 Example: generalized Euler-Heisenberg Lagrangian

Before moving on to gravity, we will apply this formalism to an instructive example, the

generalization of the well-known Euler-Heisenberg Lagrangian, i.e. we construct the most

general EFT for an abelian gauge field.5 The basic building block is the gauge invariant

abelian field strength Fµν , which satisfies the free EOM

∂µF
µν = 0 . (2.21)

From the Bianchi identity ∂[αFµν] = 0 it also follows that

∂2Fµν = 0 . (2.22)

5The original Euler-Heisenberg Lagrangian [19] is the EFT for QED at energies much below the electron

mass. The CP symmetry of QED forbids CP breaking terms in the Euler-Heisenberg Lagrangian; here we

extend it by including CP violating operators.
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Therefore, the single particle module contains only symmetric and traceless combinations

of derivatives of the field strength tensor [2]

RF =


Fµν

∂{µ1Fµ}ν

∂{µ1∂µ2Fµ}ν
...

 . (2.23)

The field strength transforms in the reducible (1, 0) ⊕ (0, 1) representation of the Lorentz

group. We will therefore work with the combinations FL,Rµν = 1
2(Fµν ± iF̃µν) of the field

strength and its dual F̃µν = 1
2εµνρσF

ρσ which live in the (1, 0) and (0, 1) representations,

respectively. The conformal character associated with FL,Rµν is the sum of the characters

for the Lorentz representations of the elements in the single particle module in eq. (2.23),

weighted by the scaling dimension (∆FL,R = 2), i.e. for FLµν

χ[2;(1,0)](D;x) = D2 P (D, x)
(
χ(1,0)(x)− χ(1/2,1/2)(x)D +D2

)
, (2.24)

and the same with χ(1,0)(x) replaced by χ(0,1)(x) for FRµν . The first term in the paren-

thesis is the Lorentz representation of the conformal primary, i.e. the field strength, with

a tower of symmetrized derivatives generated by P (D, x). The second term subtracts all

the descendants where one derivative is contracted with the field strength, corresponding

to the Lorentz representation ∂µF
L, µν ∼ (1

2 ,
1
2) ⊗A (1, 0) = (1

2 ,
1
2). However, this means

that also the term ∂µ∂νF
L, µν ∼ (0, 0) and derivatives thereof are being subtracted, even

though they vanish due to the antisymmetry of the field strength and thus were never there

from the beginning. For this reason they are added back in the form of the third term

in the parenthesis. The structure of eq. (2.24) can also be understood directly in terms

of conformal representations [15]. Since abelian field strengths are gauge invariant, the

full group characters are χFL = χ[2;(1,0)](D;x) and χFR = χ[2;(0,1)](D;x) and the integral

over the gauge group is trivial
∫
dµgauge =

∫
dµU(1) = 1. The Hilbert series in the mass

dimension grading scheme, i.e. FL,R → ε2 FL,R and D → εD, is thus given by

H0(D,FL,FR;ε) =

∫
dµLorentz(x)

1

P (εD,x)
PE

[
FL
D2

,
FR
D2

]
(2.25)

= ε8
(
F 4
L+F 2

LF
2
R+F 4

R

)
+ε10

(
F 4
L+F 3

LFR+F 2
LF

2
R+FLF

3
R+F 4

R

)
D2 + . . . .

Eq. (2.25) gives the structure and multiplicity of the operator basis at mass dimension 5

and higher, but it does not reveal how the Lorentz (and gauge) indices of the field strengths

and derivatives are contracted. However, if the field content of an operator is known, it

is usually straightforward to build Lorentz and gauge invariants. This is especially true if

the multiplicity of a given structure is one, since then any non-vanishing contraction can

be used as a basis element. The operator basis implied by the Hilbert series in eq. (2.25)

can be expressed in terms of Fµν and F̃µν . At mass dimension 8 this is, explicitly,

L =
c1

Λ4
(FµνF

µν)2 +
c2

Λ4
(FµνF̃

µν)2 +
ic3

Λ4
(FµνF

µν)(FρσF̃
ρσ) + . . . , (2.26)

– 9 –
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where the first two terms also appear in the Euler-Heisenberg Lagrangian. The operator

proportional to c3 is CP violating and therefore constitutes an extension of the Euler-

Heisenberg Lagrangian. Finally, we note that this method automatically takes algebraic

identities, such as Fµν = −Fνµ in this simple case, into account. This is because the Hilbert

series directly uses group representations to build the invariants, instead of explicitly con-

tracting indices.

3 Gravity

In this section we introduce the Einstein-Hilbert action of GR as the leading contribution

at low energies of the EFT of gravity [20–22]. We then identify the relevant building block

to construct higher-dimensional, IR subleading operators of the EFT and show that the

methods outlined in section 2 can be applied. In the following we adopt the metric and

curvature conventions of [22, 23].

3.1 General relativity as an EFT

GR as a classical theory provides an excellent description of gravitational phenomena at

large distances. However, once the Einstein-Hilbert action6 is quantized

SEH = −
M2

pl

2

∫
d4x
√
−gR , (3.1)

where Mpl = (8πG)−1/2 is the reduced Planck mass and R the Ricci scalar, it becomes clear

that this can only be the leading term in a low-energy EFT. GR as a quantum field theory

is non-renormalizable and quantum corrections induce higher-dimensional operators with

higher powers of the Riemann tensor [24–26] (the same conclusion is reached when quantum

effects from matter fields are considered [24, 25, 27–29]). According to the EFT paradigm,

all operators invariant under general coordinate transformations, the gauge symmetry of

GR, should be included in a systematic expansion in derivatives over a cutoff scale Λ, i.e.

Seff =

∫
d4x
√
−g
[
−
M2
Pl

2
R+ aR2 + bRµνR

µν + cRµνρσR
µνρσ + d�R+

e

Λ2
Riem3 + . . .

]
,

(3.2)

where Riem3 stands for terms with three Riemann tensors and � = ∇µ∇µ is the contraction

of two covariant derivatives. As discussed in the previous section, not all invariants one

can write are independent. Operators proportional to the free EOM can be removed by

means of field redefinitions. The EOM for GR are the Einstein equations, which can be

written in their trace-reversed form as

Rµν =
1

M2
pl

(
Tµν −

1

2
Tgµν

)
, (3.3)

6In the following discussion we will always implicitly assume that the cosmological constant is set to

zero.
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where we included a possible contribution from matter fields through the energy momentum

tensor Tµν = −2√
−g

δSmatter
δgµν

, with its trace T = gµνTµν . The free EOM, i.e. the Einstein

equations in vacuum (Tµν = 0), have the simple solution

Rµν = 0 . (3.4)

This implies that any higher-dimensional operator containing Rµν or R = gµνRµν can be

eliminated by performing a perturbative field redefinition of the metric

gµν → gµν +
2

M2
pl

δgµν , (3.5)

which modifies the Einstein-Hilbert action by

δSEH =

∫
d4x
√
−g
[
Rµν − 1

2
Rgµν

]
δgµν =

∫
d4x
√
−gRµνδḡµν , (3.6)

where we introduced the trace-reversed metric perturbation

δḡµν = δgµν −
1

2
gµν δg , (3.7)

with δg = gµνδgµν . From eq. (3.6) it is clear that by choosing an appropriate δḡµν , any

operator including Rµν can indeed be removed. Coming back to the effective action in

eq. (3.2), several redundant operators can now be identified (see also [21]). Furthermore,

we can drop
√
−g�R = ∂µ(

√
−g∇µR), since it is a total derivative. The term proportional

to RµνρσR
µνρσ can be expressed in terms of RµνR

µν and R2 because the Gauss-Bonnet

term LGB = R2−4RµνR
µν+RµνρσR

µνρσ is a total derivative in four dimensions; this shifts

the Wilson coefficients a → ã = a − c and b → b̃ = b + 4c. Finally, performing the metric

redefinition in eq. (3.5) with δḡµν = −b̃Rµν − ãRgµν , gets rid of all the operators with two

Riemann structures. The first non-trivial contribution to the gravity EFT appears only at

dimension 6 with three Riemann tensors.

In the presence of matter fields, a redefinition of the metric such as eq. (3.5) also affects

the matter action

δSEH + δSmatter =

∫
d4x
√
−g
[
Rµν − 1

M2
pl

(
Tµν − 1

2
Tgµν

)]
δḡµν . (3.8)

We can still use this redefinition to remove any pure gravity terms involving Rµν or R, but

this will in general introduce mixed curvature-matter operators, such as RµνT
µν . These

however usually have a higher mass dimension than the removed operators and can there-

fore be further removed by an independent redefinition. More care has to be taken when a

massive scalar field φ is involved, since its energy-momentum tensor at leading order in fields

and derivatives is Tµν = 1
2m

2φ2gµν + . . ., thus one always introduces new mixed curvature-

scalar operators with the same mass dimension as the removed ones. This is in fact not an

issue, since the redefinition of the metric can be generalized to include matter fields. To

make this clear, consider again the field transformation with δḡµν = −b̃Rµν− ãRgµν , which
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removes the ãR2 + b̃RµνR
µν terms in eq. (3.2), now in the presence of a massive scalar field

φ. The change of the action is

δSEH + δSmatter =

∫
d4x
√
−g
[
− ã R2 − b̃ RµνRµν −

m2

2M2
pl

(b̃+ 4ã)φ2R+ . . .

]
, (3.9)

where we dropped higher-dimensional operators. The last term in eq. (3.9) is a non-

minimal coupling of the scalar field to gravity, which could in fact have been there from

the beginning. As anticipated, this term can be removed by a further metric redefinition

with δḡµν ∝ φ2gµν . This is a Weyl transformation which takes us to the Einstein frame,

where the leading order EOM of the scalar field and gravity are decoupled.

The recipe above lets us, order-by-order in mass dimension, remove any occurrence of

Rµν and R in the Lagrangian.7 This implies that the only non-redundant gravitational

operators are those built out of the traceless components of the Riemann tensor Rµνρσ.

Still, even such operators might not all be independent, due to algebraic identities. The

Riemann tensor is cyclic

Rµνρσ +Rµρσν +Rµσνρ = 0 (3.10)

and it satisfies the Bianchi identity

∇αRµνρσ +∇ρRµνσα +∇σRµναρ = 0 . (3.11)

Additionally, there are the so-called dimensionally dependent tensor identities, which are

obtained by antisymmetrizing tensor indices [30], and can be used to simplify tensor con-

tractions. Once all the redundancies in the gravitational sector are removed, it is clear that

field redefinitions of the matter fields can be used to simplify the matter Lagrangian, just

as in flat spacetime.

Let us finally briefly comment on spacetimes with torsion. If one is not restricted to a

torsion-free spacetime, coupling fermions to gravity will in general induce a non-vanishing

torsion tensor Tµν
ρ. However, even if we chose to include the torsion tensor explicitly as a

building block of the EFT, torsion vanishes in vacuum, i.e. in the free theory, and at the

lowest order in derivatives, i.e. from the leading EOM. Therefore, we conclude that in the

presence of matter one can use field redefinitions and work with a torsion-free theory, with

shifted coefficients in the matter action [36, 37]. In other words, no generality is lost in our

EFT by considering a torsion-free spacetime.

3.2 Building blocks for the gravity EFT

The Riemann tensor does not transform in an irreducible representation of the Lorentz

group. It can be decomposed as

Rµνρσ ∼ (1, 1)⊕ (2, 0)⊕ (0, 2)⊕ (0, 0) , (3.12)

7Another comment in this regard is that the same procedure also holds in the presence of classical

(gravitational) sources and one is interested in how gravity affects their dynamics; once operators with Rµν
and R are removed, one should properly include contact terms between the sources [21]. Besides, we note

that in these situations it might be more convenient to work with a non-covariant EFT on the corresponding

background metric, as for example in [31–35].
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where the (1, 1) is a symmetric rank-two traceless tensor, identified with the traceless

part of the Ricci tensor Rµν , the singlet (0, 0) is the Ricci scalar R, and the component

transforming as (2, 0) ⊕ (0, 2) is the Weyl or conformal tensor Cµνρσ. The Weyl tensor is

the traceless part of the Riemann tensor and is given by

Cµνρσ ≡ Rµνρσ −
(
gµ[ρRσ]ν − gν[ρRσ]µ

)
+

1

3
gµ[ρgσ]νR , (3.13)

where the brackets denote index antisymmetrization, e.g. A[µν] = 1
2(Aµν−Aνµ) for arbitrary

tensors A. It possesses the same symmetries as the Riemann tensor and satisfies the

cyclicity and Bianchi identity of eqs. (3.10) and (3.11) up to terms involving Rµν and R.

As discussed in the previous section, any occurrence of Rµν and R can always be eliminated

by an appropriate field redefinition. This leaves the Weyl tensor as the only independent

object for constructing gravitational EFT operators. The Einstein equations do not directly

constrain the traceless components of the Riemann tensor, but the contracted Bianchi

identities imply an EOM for the Weyl tensor, which can be expressed in terms of the Ricci

tensor and scalar,

∇µCµνρσ = ∇[ρRσ]ν +
1

6
gν[ρ∇σ]R . (3.14)

For the free theory, i.e. in vacuum, this simplifies to

∇µCµνρσ = 0 , (3.15)

in analogy to the EOM for the field strength tensor of gauge fields in eq. (2.21). Addition-

ally, the Bianchi identity in combination with the EOM implies that also ∇2Cµνρσ is not

an independent object, since in vacuum

∇2Cµνρσ = −2Cλ µραCλνσ
α − 2Cλ νραCµλσ

α − Cλ αρσCµνλ α (3.16)

plus terms that can be removed due to the EOM. Consequently, the EOM redundancy is

taken care of if we consider, similarly to the case of the spin-1 field strength, Cµνρσ and sym-

metric traceless combinations of covariant derivatives acting on Cµνρσ as the basic building

blocks for EFT operators. This implies that the single particle module is of the form

RC =


Cµνρσ

∇{µ1Cµ}νρσ
∇{µ1∇µ2Cµ}νρσ

...

 . (3.17)

We consider only symmetric combinations of the covariant derivatives, since antisymmetric

combinations are related to the Riemann tensor via [∇µ,∇ν ]V ρ = Rµνσ
ρV σ. An operator

containing an antisymmetric combination of covariant derivatives is therefore always

equivalent to the tensor product of the Weyl tensor with a descendant that contains

fewer derivatives. Analogously to the gauge field strength, we can identify the irreducible

representations of the Lorentz group with

CµνρσL/R =
1

2

(
Cµνρσ ± i C̃µνρσ

)
, (3.18)
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where the dual Weyl tensor C̃µνρσ = εµναβCαβ
ρσ/2.8 CL/R transform in the (2, 0) and

(0, 2) representations of the Lorentz group, respectively. Note that the single particle

modules RCL/R cannot be identified with unitary conformal representations in four

dimensions. The mass dimension of the Weyl tensor is [CL/R] = 2, which violates the

unitarity bound for the scaling dimension ∆ ≥ ∆(2,0) = ∆(0,2) = 3 in eq. (2.12). However,

since our aim is only to enumerate and construct operators, we can formally assign a

conformal scaling dimension of ∆CL/R = 3 to the spurion representing the Weyl tensor.9

When expanding the Hilbert series we can choose a grading in which the spurion for the

Weyl tensor is assigned a weight according to the Weyl tensor’s actual mass dimension

in four dimensions. The conformal representations [3; (2, 0)] and [3; (0, 2)] saturate the

unitarity bound and therefore are representations with all descendants proportional to the

free EOM ∇µCµνρσ = 0 (as well as ∇2Cµνρσ) being absent. This is exactly of the form of

the single particle module in eq. (3.17). The corresponding conformal character is

χ[3;(2,0)](D;x) = D3 P (D, x)
(
χ(2,0)(x)− χ(3/2,1/2)(x)D + χ(1,0)(x)D2

)
, (3.19)

and equivalently for [3; (0, 2)]. Note that here and in the following the spurion D denotes

covariant derivatives ∇µ. The structure of eq. (3.19) is completely analogous to that

of the conformal character for a gauge field strength, eq. (2.24). Using this character,

in the next section we will construct the operator basis for EFTs which involve gravity.

Note that similarly to the example in section 2.3, the Hilbert series method automatically

factors in redundancies due to Bianchi identities, cyclicity of indices or dimensionally

dependent identities, since we do not construct index contractions but work directly with

group representations and form invariants. In appendix E we generalize eq. (3.19) to d

spacetime dimensions, pointing out the main difference with respect to the derivation

for d = 4, namely that the single particle module for the Weyl tensor, RC in eq. (3.17),

cannot be embedded for d > 4 in a free field unitary conformal representation. We count

and identify as well the basis of effective operators for pure gravity in d = 5.

4 Applications

In this section we combine the formalism outlined in section 2 with the considerations of

section 3 to construct operator bases for EFTs involving gravity. First we verify and extend

the operator basis for gravity in vacuum as given in e.g. [38]. Next, as a first step towards

including matter fields, we build the EFT for a shift-symmetric scalar coupled to gravity

and point out redundancies in the operator basis of [39]. Finally, we list for the first time

the complete basis of the SM coupled to gravity.

4.1 Gravity in vacuum

In vacuum the only independent operators that do not vanish on-shell are the Weyl ten-

sor and its dual, which can be used to form the chiral combinations CµνρσL/R , as shown in

8The normalization of the Levi-Civita tensor is such that ε0123 = 1/
√
−g.

9Besides, note that eq. (2.16) for the construction of the Hilbert series also holds for single particle mod-

ules that are not conformal representations [2]. The advantage of promoting the Weyl tensor to be formally

a unitary conformal representation is that in this case there is a closed form expression for ∆H in eq. (2.15).
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eq. (3.18). The building blocks are therefore their corresponding single particle modules,

which can be embedded into conformal representations if we formally assign to CL/R a

conformal scaling dimension of ∆CL/R = 3. Hence, their group characters are

χCL(D;x) = χ[3,(2,0)](D;x) , χCR(D;x) = χ[3,(0,2)](D;x) , (4.1)

with the explicit form of the conformal characters given in eq. (3.19) and appendix A.

Grading the spurions according to their actual mass dimension, i.e. CL/R → ε2CL/R and

D → εD, the Hilbert series can be computed as an expansion in mass dimension using

eq. (2.15)10

H(D, CL, CR; ε) =

∫
dµLorentz(x)

1

P (εD, x)
PE

[
CL
εD3

,
CR
εD3

]
+ ∆H(D, CL, CR; ε)

= ε4
(
C2
L + C2

R

)
+ ε6

(
C3
L + C3

R

)
+ ε8

(
C4
L + C2

LC
2
R + C4

R

)
(4.2)

+ ε10
(
C5
L + C3

LC
2
R + C2

LC
3
R + C5

R + C4
LD2 + C2

LC
2
RD2 + C4

RD2
)

+ . . . .

The terms at O(ε4) correspond to the operators CµνρσC̃
µνρσ and CµνρσC

µνρσ. Both can be

dropped, since the first is a total derivative and the second can be related to RµνR
µν and

R2 because the Gauss-Bonnet term is a total derivative in four dimensions (see section 3.1).

These operators were misidentified as being non-redundant, since they are in fact related

to gravitational topological terms. That topological terms are misidentified by our method

was already realized in [2], being a consequence of working with covariant field strengths

instead of gauge fields. The operators CµνρσC̃
µνρσ and CµνρσC

µνρσ give rise, respectively,

to the four-dimensional Pontryagin and Euler densities [40]. The other terms in eq. (4.2)

indicate the structure and multiplicity of the basis of operators for the most general gravity

Lagrangian in vacuum up to mass dimension 10. In terms of the Weyl tensor and its dual

the basis can be written as

S =

∫
d4x
√
−g
[
−
M2

pl

2
R+

c1

Λ2
I +

c2

Λ2
Ĩ +

d1

Λ4
C2 +

d2

Λ4
CC̃ +

d3

Λ4
C̃2 (4.3)

+
e1

Λ6
IC +

e2

Λ6
ĨC +

e3

Λ6
IC̃ +

e4

Λ6
ĨC̃ +

e5

Λ6
FC +

e6

Λ6
FC̃ +

e7

Λ6
F̃ C̃ + . . .

]
,

with the basic invariants

I = Cµν
ρσCµναβCαβρσ , Ĩ = Cµν

ρσCµναβC̃αβρσ , (4.4)

C = CµνρσC
µνρσ , C̃ = CµνρσC̃

µνρσ , (4.5)

F = (∇αCµνρσ)(∇αCµνρσ) , F̃ = (∇αCµνρσ)(∇αC̃µνρσ) . (4.6)

The first line of eq. (4.3) is equivalent to the effective action in eq. (1.1) of [38].11 The

second line of eq. (4.3) shows for the first time the basis of gravitational operators at

10For unitary conformal representations, as it is the case here, ∆H can be evaluated explicitly [2] and

yields −ε4D4, which cancels the +ε4D4 that one obtains from evaluating the integral over the group measure.
11In [38] the operator basis is given in terms of the Riemann tensor, which after the decomposition in

eq. (3.13) coincides with the operators we found in eq. (4.3) modulo terms with Rµν and R, which can be

removed by field redefinitions as explained in section 3.1.
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dimension 10. We used the Invar package [41] to explicitly construct and classify the (CP

even) operators and to check that they are indeed independent. We note that in general the

basis of operators without derivatives corresponds to the most general polynomial of the

invariants C, C̃, I and Ĩ, these being the four scalar quantities that completely determine

the spacetime curvature in four dimensions (see e.g. the discussion in [42]). This fact is

further verified by computing the Hilbert series for the left- and right-handed Weyl tensors

CL/R without derivatives, which according to the Molien-Weyl formula eq. (2.6) yields

H(CL, CR) =
1

(1− C2
L)(1− C2

R)(1− C3
L)(1− C3

R)
. (4.7)

Therefore all operators without derivatives are generated by the four basic invariants C2
L,

C2
R, C3

L and C3
R, corresponding to the invariants in eqs. (4.4) and (4.5).

It is straightforward to compute even higher order contributions to the Hilbert series

with this formalism. Finding the explicit form for the corresponding basis of operators can

be more involved. However, since we know how many independent operators appear in each

category, one does not need to classify all invariants. It is sufficient to find as many opera-

tors as the multiplicity in the Hilbert series predicts and check that they are independent.

Let us finally comment on some important aspect of the gravity EFT in vacuum.

At one loop GR is finite [25], a fact that from the EFT perspective follows from naive

dimensional analysis (NDA) and the absence of non-redundant operators at O(ε4). At two

loops the Einstein-Hilbert term induces renormalization group (RG) evolution of the CP

preserving cubic curvature term in eq. (4.3), with running coefficient [26, 43, 44]

µ
∂c1

∂µ
=

1

120

Λ2

M2
pl

1

(4π)4
. (4.8)

Heavy matter fields (scalars, fermions or vectors) contribute at one loop to the gravity

EFT [45, 46], giving rise to a finite contribution to c1, which for e.g. a Dirac fermion of

mass Λ reads c1 = − 1
7560(1/4π)2, as well as to contributions to several other operators that

are not present in our basis being dependent on Rµν , R.12 Gravitational UV completions,

such as (super-)string theories, generate as well a specific pattern of Wilson coefficients

below the string scale, see e.g. [47]. In a generic gravity effective Lagrangian, the Wilson

coefficients are arbitrary O(1) numbers. To be more precise, the size of the coefficient can

be estimated following NDA as

Leff =
m4
∗

g2
∗
L

(
Rµνρσ
m2
∗
,
∇µ
m∗

)
−
M̂2

pl

2
R , (4.9)

where m∗ and g∗ broadly characterize, respectively, the typical mass scale and coupling of

the UV resonances that have been integrated out. We have explicitly included a “funda-

mental” Einstein-Hilbert term, to distinguish between a bona fide completion of GR such

as string theory, which would correspond to Mpl ∼ M̂pl ∼ m∗/g∗, and the case where the

graviton can be considered external, i.e. “elementary”, to the dynamics giving rise to L,

12Matter fields also contribute to the RG running of Mpl and the cosmological constant.
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e.g. loops of N matter particles of mass m∗, for which g∗ ∼ 4π/
√
N . The simple power

counting of eq. (4.9) implies then c1 = O(1) for Λ ∼ g∗m∗, and similarly for the rest of Wil-

son coefficients. Interestingly, several works have derived constraints on the sign and size

of such coefficients based on causality, unitarity and analyticity. For instance, positivity

of the coefficients of the CP even dimension 8 operators, i.e. d1, d3 > 0, has been derived

based on causality of graviton propagation [48], or unitarity and analyticity of graviton

scattering amplitudes [49, 50], while [38] extended the former causality analysis to the

CP odd operator, concluding d2 . d1d3. We should recall however that these arguments

are delicate when applied to gravitational interactions, in particular [49, 50] neglect the

universal t-channel singularity due to graviton exchange, a fact that could be justified by

e.g. the rationale presented in [51]. Besides, [52] argues that in a weakly coupled theory

of gravity, with g∗ ∼ m∗/Mpl � 1, avoiding causality violation originating from cubic

curvature terms (I and Ĩ in eq. (4.3), with coefficients c1 and c2 effectively of tree-level

size), requires an infinite tower of higher-spin states to appear at or near the EFT cutoff

m∗, regardless of the coefficients sign. Instead, for other types of UV completions where

the graviton is elementary, with Mpl � m∗/g∗ such as from loops of matter particles [46],

acausality lies beyond the validity of the EFT.

4.2 Shift-symmetric scalar coupled to gravity

As a second application of our method we consider a shift-symmetric scalar φ coupled to

gravity. The shift symmetry φ→ φ+α implies that the scalar can only couple derivatively,

i.e. it will always appear with at least one derivative acting on it. The scalar can be thought

of as the massless Nambu-Goldstone boson of a spontaneously broken U(1) symmetry.

Because of this interpretation, it is no surprise that the single particle module for the shift-

symmetric scalar has the same form as for non-linear field realizations as given in [2]13

Rdφ =


∇µφ

∇{µ1∇µ}φ
∇{µ1∇µ2∇µ}φ

...

 . (4.10)

In eq. (4.10) we already imposed the scalar’s EOM ∇µ∇µφ = 0. Therefore, the weighted

character for the single particle module is identical to the one for non-linear realizations [2]

χdφ(D;x) = D
[(

1−D2
)
P (D;x)− 1

]
. (4.11)

Note that this single particle module is not a conformal representation since the primary

field is a total derivative. However, we can still use eq. (2.16) to construct the Hilbert series

for higher-dimensional operators, which are the ones we are interested in. To obtain the

13Ref. [2] used the decomposition of the Maurer-Cartan form U−1∂µU = uiµX
i+vaµT

a = uµ+vµ into com-

ponents along broken generators Xi and unbroken generators T a to obtain a linearly transforming building

block uµ from the non-linearly transforming Goldstone matrix U = exp(iφiXi/fφ). For a spontaneously bro-

ken U(1) symmetry uµ ∝ ∂µφ. Here the only difference is in the mass dimension, [∇µφ] = 2 whereas [uµ] = 1.
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full Hilbert series, i.e. including also operators of dimension 4 and lower, we have to rely

on the results of [2] for non-linear realizations. A basis for the CP even operators, up to

6 derivatives, was constructed in [39]. We compute the Hilbert series for operators with 6

and 8 derivatives and compare our basis to their results. The Hilbert series as an expansion

in derivatives can be obtained by rescaling the spurions CL/R → ε2CL/R, D → εD and

dφ→ εdφ and expanding in ε

H0(D, CL, CR, dφ; ε) =

∫
dµLorentz(x)

∫
1

P (εD, x)
PE

[
CL
εD3

,
CR
εD3

,
dφ

εD2

]
=
∑
n

εnHn .

(4.12)

The 6-derivative Hilbert series is

H6 = C3
L + C3

R + dφ3CLD + dφ3CRD + dφ2C2
L + dφ2C2

R + dφ6 + dφ4D2 . (4.13)

If we restrict to CP even operators, the EFT operator basis at the 6-derivative level can

be written as

O1 =
[
(∇µφ)2

]3
, O2 = (∇µφ)2(∇ρ∇σφ)2 , O3 = Cµν

ρσCµναβCαβρσ ,

O4 = (Cαβρσ)2(∇µφ)2 , O5 = Cµνρσ(∇µφ)(∇ρφ)(∇ν∇σφ) . (4.14)

Note that [39] lists two additional operators in their operator basis (written in terms of

the Riemann instead of the Weyl tensor), (∇αRµνρσ)2 and Rµναβ(∇µ∇αφ)(∇ν∇βφ). Both

of these operators are redundant: the first is related to O3, whereas the second to O4 (see

appendix B). Therefore, the correct CP even operator basis for the 6-derivative Lagrangian

is that in eq. (4.14). At 8 derivatives we find 26 independent operators, with the structures

as given in the Hilbert series

H8 = C4
L + C2

LC
2
R + C4

R + dφ8 + 2dφ6D2 + dφ5D3 + dφ4D4 + dφ5DCL + dφ5DCR
+ dφ4CLCR + dφ4D2CL + dφ4C2

L + dφ4D2CR + dφ4C2
R + 2dφ3DC2

L

+ 2dφ3DC2
R + dφ2D2CLCR + 2dφ2D2C2

L + dφ2C3
L + 2dφ2D2C2

R + dφ2C3
R .

(4.15)

Finally, we note that there are two operators that respect the shift-symmetry that cannot

be found by our method (and are missing in [39]):

φCµνρσC
µνρσ , φCµνρσC̃

µνρσ . (4.16)

Not surprisingly, these operators are related to (gravitational) topological terms.

5 Standard Model coupled to gravity

Let us now construct the complete EFT for the SM, i.e. all operators including SM fields

and gravity. Operators including gravity are usually omitted in the SMEFT, even though

gravity is part of the SM. We work with one generation of fermions and introduce them

in the left-handed ( 1
2 , 0) representation of the Euclidean Lorentz group SO(4) ' SU(2)L ×

SU(2)R along with their right-handed conjugates.14 In the following we adopt the notation

14This means we work with the charge conjugated fields of the standard SM right-handed fermions,

i.e. uc, dc, ec. In the following we will drop the superscript c.
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SU(2)L × SU(2)R SU(3)C SU(2)W U(1)Y

H (0, 0) 1 2 1/2

BL (1, 0) 1 1 0

WL (1, 0) 1 3 0

GL (1, 0) 8 1 0

CL (2, 0) 1 1 0

Q (1
2 , 0) 3 2 1/6

uc (1
2 , 0) 3̄ 1 −2/3

dc (1
2 , 0) 3̄ 1 1/3

L (1
2 , 0) 1 2 −1/2

ec (1
2 , 0) 1 1 1

Table 1. Representations of the spurions under the Lorentz and SM gauge groups.

of [1] and denote the spurion fields as

{φa} =
{
H,H†, BL, BR,WL,WR, GL, GR, CL, CR, Q,Q

†, u, u†, d, d†, L, L†, e, e†
}
, (5.1)

with their representation under the Lorentz and SM gauge group SU(3)C×SU(2)W×U(1)Y
given in table 1. We can write the Hilbert series as

H({φa};D) =

∫
dµgauge(y)

∫
dµLorentz(x)

1

P (D;x)
PE

[{
φa
D∆a

}]
, (5.2)

with the integral over the gauge groups given by∫
dµgauge(y) =

∫
dµU(1)Y (v)

∫
dµSU(2)W (w)

∫
dµSU(3)C (z1, z2) , (5.3)

with y = {v, w, z1, z2} being the variables that parameterize the SU(3)C×SU(2)W ×U(1)Y
gauge group. The characters χa for the single particle modules of the spurions are a

composition of the characters for the conformal and gauge group representation R of the

spurions,

χa(D;x, y) = χ[∆a,la](D;x) · χU(1)Y
Ra

(v) · χSU(2)W
Ra

(w) · χSU(3)C
Ra

(z1, z2) . (5.4)

The explicit form of the group measures and characters is given in appendix A. Note that

in order to fully describe the flavor structure of the SM we would have to work with three

independent instances of each fermion to implement the three fermion generations. This

would increase the number of terms in the generating function at each order exponentially.

However, we can still get some information about the number of invariants with Nf flavors

by simply suppressing the flavor indices and adding the same fermion spurion Nf times,

i.e. we can write the complete PE as

PE

[{
φa
D∆a

}]
=
∏
b

PE

[{
φb
D∆b

}]∏
f

PEF

[{
φf

D∆f

}]Nf
, (5.5)
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where the index b runs over all bosons and f over all fermions. Next we expand the

Hilbert series according to the mass dimension of the operators. We will neglect all pure

SM contributions to the Hilbert series, which are given in [1]. The first gravity operators

appear at dimension 6, the Hilbert series being

H6 = C3
L +C3

R +B2
LCL +B2

RCR +HC2
LH
†+HC2

RH
†+CLG

2
L +CRG

2
R +CLW

2
L +CRW

2
R .

(5.6)

This includes the pure gravity contributions discussed in section 4.1 plus mixed SM-gravity

terms. Note that at this mass dimension, the latter operators only contain SM bosons. An

explicit operator basis is given by

L6 =
c1

Λ2
Cµν

ρσCµναβCαβρσ +
c̃1

Λ2
Cµν

ρσCµναβC̃αβρσ

+
c2

Λ2
H†HCµνρσC

µνρσ +
c̃2

Λ2
H†HCµνρσC̃

µνρσ

+
c3

Λ2
BµνBρσCµνρσ +

c̃3

Λ2
BµνBρσC̃µνρσ +

c4

Λ2
GµνGρσCµνρσ +

c̃4

Λ2
GµνGρσC̃µνρσ

+
c5

Λ2
WµνW ρσCµνρσ +

c̃5

Λ2
WµνW ρσC̃µνρσ . (5.7)

There are no new gravity operators at mass dimension 7. However, there is a multitude

of terms in the Hilbert series at mass dimension 8. This is the first order where operators

with SM fermions appear. For one flavor, i.e. Nf = 1, the part of the Hilbert series that

involves gravity reads

H8 = C4
L+HH†C3

L+H2
(
H†
)2
C2
L+2B2

LC
2
L+B2

RC
2
L+C2

RC
2
L+2G2

LC
2
L+G2

RC
2
L+2W 2

LC
2
L

+W 2
RC

2
L+HQuC2

L+HD2H†C2
L+eLH†C2

L+dQH†C2
L+He†L†C2

L+Hd†Q†C2
L

+H†Q†u†C2
L+deu2CL+HH†B2

LCL+HH†G2
LCL+BLG

2
LCL+HH†W 2

LCL

+BLW
2
LCL+dQ2uCL+HQD2uCL+eLQuCL+eLD2H†CL+dQD2H†CL

+HQuBLCL+dDd†BLCL+eDe†BLCL+HD2H†BLCL+eLH†BLCL+dQH†BLCL

+LDL†BLCL+QDQ†BLCL+Duu†BLCL+HQuGLCL+dDd†GLCL+dQH†GLCL

+QDQ†GLCL+Duu†GLCL+HQuWLCL+HD2H†WLCL+eLH†WLCL

+dQH†WLCL+LDL†WLCL+QDQ†WLCL+HH†BLWLCL+C4
R+HH†C3

R

+H2
(
H†
)2
C2
R+B2

LC
2
R+2B2

RC
2
R+HQuC2

R+HD2H†C2
R+eLH†C2

R+dQH†C2
R

+He†L†C2
R+Hd†Q†C2

R+H†Q†u†C2
R+C2

RG
2
L+2C2

RG
2
R+HH†CRG

2
R+BRCRG

2
R

+C2
RW

2
L+2C2

RW
2
R+HH†CRW

2
R+BRCRW

2
R+d†e†

(
u†
)2
CR+HH†B2

RCR

+HD2e†L†CR+HD2d†Q†CR+d†
(
Q†
)2
u†CR+D2H†Q†u†CR+e†L†Q†u†CR

+dDd†BRCR+eDe†BRCR+HD2H†BRCR+LDL†BRCR+He†L†BRCR

+QDQ†BRCR+Hd†Q†BRCR+Duu†BRCR+H†Q†u†BRCR+dDd†CRGR
+QDQ†CRGR+Hd†Q†CRGR+Duu†CRGR+H†Q†u†CRGR+HD2H†CRWR

+LDL†CRWR+He†L†CRWR+QDQ†CRWR+Hd†Q†CRWR+H†Q†u†CRWR

+HH†BRCRWR . (5.8)
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Structure Nf Nf = 1 Nf = 3 Representative Operator

C4 3 3 3 (CµνρσC
µνρσ)2

C3H2 2 2 2 H†H(Cµν
ρσCµναβCαβρσ)

C2H4 2 2 2 (H†H)2(CµνρσC
µνρσ)

C2X2 18 18 18 BµνB
ρσCµναβCαβρσ

CH2X2 8 8 8 H†H(CµνρσW a
µνW

a
ρσ)

CX3 4 4 4 CµνρσW a
µνW

a
ραB

α
σ

C2Hψ2 12N2
f 12 108 Q̄LHdR(CµνρσC

µνρσ)

CHXψ2 16N2
f 16 144 Cµνρσ(Q̄Lσ

µνdR)τaHW a,ρσ

Cψ4 N2
f

3 (17N2
f +3Nf −2) 6 480 εjkCµνρσ(Q̄jLσ

µνuR)(L̄kLσ
ρσeR)

CXψ2D 20N2
f 20 180 Cµνρσ(Q̄Lγ

µτa∇νQL)W a,ρσ

C2H2D2 2 2 2 (∇µH)†(∇µH)(CµνρσC
µνρσ)

CH2XD2 4 4 4 Cµνρσ(∇µH)†τa(∇νH)W a,ρσ

CHψ2D2 6N2
f 6 54 Cµνρσ(Q̄Lσ

µν∇ρdR)∇σH

Total 43+
N2
f

3 (17N2
f +3Nf +160) 103 1009

Table 2. Classification of dimension-8 operators containing gravity interactions. C denotes the

Weyl tensor, whereas H, ψ, X and D stand for the Higgs, fermions, gauge fields and derivatives

respectively. We show the number of operators in each class for Nf fermion flavors and give one

exemplary operator for each class.

A classification of the dimension 8 operators of our basis is given in table 2, while an explicit

form for all 103 of them for Nf = 1 can be found in tables 3 and 4 of appendix D.15

5.1 Comments on the GRSMEFT operator basis

Let us comment on some interesting aspects of the GRSMEFT operator basis.

Matching what can be derived based on little group covariance and locality of on-

shell massless 3-particle amplitudes (see e.g. [53]), we find in our basis the corresponding

EFT operators modifying gravitational trilinear vertices: Cµν
ρσCµναβ

(∼)

C αβρσ (3 gravitons),

XµνXρσ
(∼)

C µνρσ (1 graviton and 2 gauge bosons), and H†HCµνρσ
(∼)

C µνρσ (2 gravitons and 1

scalar, once the Higgs gets a vacuum expectation value). This one-to-one correspondence

follows from the fact that our basis does not include terms that vanish on the free EOMs.

Similar to the EFT of pure gravity in vacuum, the leading dimension-4 Lagrangian

induces, at one loop, RG evolution for some of the operators in the GRSMEFT, although

in our basis all such operators involve SM fields only [24, 25, 27–29]. In this regard, the

absence of (one-loop) divergences associated with mixed SM-gravity operators, such as

XµνXρσCµνρσ, can be understood, in the particular case of gravity coupled to a U(1)

15As a curiosity, we find a single dimension-8 operator, OuedC in table 4, that violates baryon and lepton

numbers, by ∆B = ∆L = 1.
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gauge field, by the invariance of the leading Einstein-Maxwell Lagrangian under vector

field duality transformation [54], or from supersymmetry in the case of the Einstein-Yang-

Mills system [55]. To rederive these non-renormalization results from helicity selection

rules as in [56] would certainly be interesting [3]. Heavy (charged) matter fields give finite

contributions [57–59] to the operators of the GRSMEFT, e.g. a Dirac fermion of unit

hypercharge and mass Λ generates c3 = − 1
90(g′/4π)2, as well as contributions to several

other operators in the SMEFT. In this regard, one should note that the latter operators, for

instance (BµνB
µν)2, receive direct contributions from the heavy dynamics, of O(g′4/Λ4),

as well as contributions from operators with Rµν , R, which when rewritten in our basis

are relatively suppressed by powers of Λ/g′Mpl. We note in passing that we have not

found in the literature the corresponding calculation for the coefficients of the dimension-6

Higgs-gravity operators in eq. (5.7).

One can power-count, as in eq. (4.9) for the pure gravity EFT, the size of the Wilson

coefficients in a generic GRSMEFT. Focussing for simplicity on the subclass of operators

involving gauge fields and gravity

Leff =
m4
∗

g2
∗
L

(
Rµνρσ
m2
∗
,
∇µ
m∗

,
εXµν

m2
∗

)
−
M̂2

pl

2
R− 1

4ĝ2
XµνX

µν , (5.9)

where we introduced a “fundamental” kinetic term for the gauge field, with coupling ĝ .
g∗, ε parametrizes the (multipole) charge of the heavy states that have been integrated

out, and ∇µ = ∂µ + iωµ + iε′Xµ with ε′ parametrizing the (monopole) charge of the

particles, if any, that remain in the EFT, fixing then the low-energy gauge coupling to

g = ε′ĝ [60]. From eq. (5.9) one can conclude that there could be situations in which

gravitational operators such as XµνXρσCµνρσ are enhanced compared to non-gravitational

ones like (XµνX
µν)2, e.g. if ε � ε′, a pattern that arises for instance from milli-charged

particles — an axion would belong to this category. This however does not appear as an

optimal (phenomenological) scenario, since the light charged SM particles that remain in

the spectrum below m∗, e.g. the electron, would dominate the new EFT coefficients (since

ε′ � ε) after being themselves integrated out at even lower energies. This is unless there

exists no charged particle below m∗, i.e. m∗ � me, for which, while ε � 1, ε′ = 0 — for

the GRSMEFT, this would mean a very low new physics scale, yet with an interesting

and unexplored parameter space in terms of mixed SM-gravity effects. In scenarios where

ε � ε′ 6= 0, the non-gravitational operators are instead comparatively enhanced. We also

note that from a purely low-energy point of view, there seems to be nothing wrong with

taking mixed SM-gravity operators, such as XµνXρσCµνρσ, of size O(g2/g2
∗m

2
∗), as the

leading deformation in the EFT, in the sense that quantum corrections within the EFT do

not point towards large non-gravitational operators as long as the cutoff, which saturates

the loops in the UV, satisfies m∗ . 4π(g∗/g)Mpl, and this even for g∗ � g, although such

a condition goes against NDA.16

16However, at least for the mixed SM-gravity operator XµνXρσCµνρσ with Xµν associated with a

U(1) gauge field, this possibility seems to be in tension with arguments related to the weak gravity

conjecture [51, 61].
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Regardless of these facts, there always remains the obstacle that to probe operators

intrinsically sensitive to gravitational physics, by which we mean those that do not depend

on Rµν , R and therefore do not contribute to the SMEFT, one needs to overcome the

Mpl suppression that comes with gravitational interactions. This is of course the reason

why experimental constraints on the SMEFT are much more stringent than those on the

rest of the GRSMEFT. The question of how to test gravitational EFT operators has been

partly investigated before, e.g. in [58] for the Einstein-Maxwell system after integrating out

the electron, or more recently in [62] for more general situations yet concentrating still on

photon propagation around non-trivial gravitational backgrounds. For purely gravitational

operators, [38] studied their effects on the gravitational waves from merging black holes. In

all these situations, the conclusion is that for the effects of the higher-dimensional opera-

tors to be observable, the typical size (e.g. the Schwarzschild radius) and distance from the

gravitational source should be of the order of the (inverse) cutoff of the EFT. Leaving aside

our preconceptions on the expected size of the mixed SM-gravity operators with respect to

non-gravitational ones, one should consider probing the former at high-energy colliders [3].

Finally, we think it is worthwhile to further investigate and extend the theoretical con-

straints based on causality, unitarity and analyticity to the full set of operators in eq. (5.7).

6 Summary

In this paper we have developed a systematic methodology to construct operators bases for

relativistic EFTs with gravity. Our approach relies on Hilbert series and conformal repre-

sentation theory, and makes use of the Weyl tensor as basic building block of gravitational

operators.

We applied our method to build several compelling EFTs: pure gravity, a shift-

symmetric scalar coupled to gravity, and the GRSMEFT, i.e. gravity coupled to the SM

of particle physics. Needless to say, the same techniques could be used as well to con-

struct other gravitational EFTs of interest. Along the way, we reviewed several important

aspects of the EFT of gravity in vacuum, identified several operator redundancies of the

shift-symmetric scalar EFT, and explored a few salient features of the set of potential

deformations of the SM coupled to gravity.

Finally, we recall that while GR is one of the most solid theories in fundamental physics,

its deformations remain largely unconstrained, in particular at distances where the other

fundamental forces operate on. It is our hope that the results we have obtained in this pa-

per, specially for what regards the GRSMEFT, will contribute to improving our knowledge

of these issues, which we believe are of great theoretical and phenomenological interest.
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A Group characters

In this appendix we summarize the Haar integration measures and group characters, taken

from [11], that were used to derive our main results.

A.1 Integration measures

The Haar integration measures over the SM gauge groups can be written as contour inte-

grals in the complex plane of the variables parametrizing the groups∫
dµU(1)Y (v) =

1

2πi

∮
|v|=1

dv

v
, (A.1)∫

dµSU(2)W (w) =
1

2πi

∮
|w|=1

dw

w

(
1− w2

)
, (A.2)∫

dµSU(3)C (z1, z2) =
1

(2πi)2

∮
|z1|=1

∮
|z2|=1

dz1

z1

dz2

z2

(
1− z1z2

)(
1− z2

1

z2

)(
1− z2

2

z1

)
. (A.3)

Note that these expressions differ from the ones in [1], since the Haar measures that we

use involve only the positive roots and therefore have no Weyl group normalization. This

simplified measure can be used when integrating over class functions, i.e. functions f(g)

which satisfy f(hgh−1) = f(g) for h, g ∈ G, since they are invariant under the Weyl group.

Note that all characters are class functions. For the integration measure over the euclidean

Lorentz group SO(4) ' SU(2)L ⊗ SU(2)R we use∫
dµLorentz(x) =

∫
dµSU(2)L⊗SU(2)R(x) =

1

(2πi)2

∮
|x1|=1

∮
|x2|=1

dx1

x1

dx2

x2

(
1− x2

1

)(
1− x2

2

)
,

(A.4)

where x = {x1, x2}.

A.2 Characters for SM gauge representations

The characters for all gauge group representations appearing in the SM are given by

χ
U(1)Y
Q (v) = vQ , (A.5)

χ
SU(2)W
2 (w) = χ

SU(2)W
2̄

(w) = w +
1

w
, χ

SU(2)W
adj (w) = w2 + 1 +

1

w2
, (A.6)

χ
SU(3)C
3 (z1, z2) = z1 +

z2

z1
+

1

z2
, χ

SU(3)C
3̄

(z1, z2) = z2 +
z1

z2
+

1

z1
,

χ
SU(3)C
adj (z1, z2) = z1z2 +

z2
2

z1
+
z2

1

z2
+ 2 +

z1

z2
2

+
z2

z2
1

+
1

z1z2
. (A.7)

Characters for the Lorentz group are products of SU(2) characters

χ(l1,l2)(x) = χ
SU(2)L
l1

(x1) · χSU(2)R
l2

(x2) , (A.8)
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with

χ1/2(x) = x+
1

x
, χ1(x) = x2 + 1 +

1

x2
,

χ3/2(x) = x3 + x+
1

x
+

1

x3
, χ2(x) = x4 + x2 + 1 +

1

x2
+

1

x4
. (A.9)

A.3 Conformal characters

The characters for all unitary conformal representations we use in this work are given

by [1, 2, 15]

χ[0,(0,0)](D;x) = D P (D;x)(1−D2) , (A.10)

χ[3/2,(1/2,0)](D;x) = D
3
2 P (D;x)

(
χ(1/2,0)(x)−D χ(0,1/2)(x)

)
, (A.11)

χ[3/2,(0,1/2)](D;x) = D
3
2 P (D;x)

(
χ(0,1/2)(x)−D χ(1/2,0)(x)

)
, (A.12)

χ[2,(1,0)](D;x) = D2 P (D;x)
(
χ(1,0)(x)−D χ(1/2,1/2)(x) +D2

)
, (A.13)

χ[2,(0,1)](D;x) = D2 P (D;x)
(
χ(0,1)(x)−D χ(1/2,1/2)(x) +D2

)
, (A.14)

χ[3,(2,0)](D;x) = D3 P (D;x)
(
χ(2,0)(x)−D χ(3/2,1/2)(x) +D2χ(1,0)(x)

)
, (A.15)

χ[3,(0,2)](D;x) = D3 P (D;x)
(
χ(0,2)(x)−D χ(1/2,3/2)(x) +D2χ(0,1)(x)

)
, (A.16)

with the momentum generating function P (D;x) [1]

P (D;x) =
1

(1−Dx1x2)(1−D/(x1x2))(1−Dx1/x2)(1−Dx2/x1)
. (A.17)

B Operator redundancies

In section 4.2 we identified two redundant operators in the basis of [39] for a shift-symmetric

scalar coupled to gravity. Here we show how these can be related to the operator basis

in eq. (4.14). Dropping freely all terms proportional to the free EOM, i.e. any terms

containing Rµν , R or ∇µCµνρσ, the first operator can be rewritten as

(∇αRµνρσ)(∇αRµνρσ) = −Cµνρσ∇2Cµνρσ = Cµνρσ(4CλνραCµ λ
σ
α + CλαρσCµν λα)

= 3Cµν
ρσCµναβCαβρσ = 3O3 , (B.1)

where we used IBP in the first step and eq. (3.16) in the second. Since there is only one in-

dependent CP even Riemann invariant with three Riemann tensors in four dimensions [63],

it is clear that the first line is proportional to O3. To find the exact relation one has to

use dimensionally dependent identities, which can be conveniently implemented with the

Invar package [41]. Again throwing away all terms that vanish due to the free EOM, the

second operator can be rewritten as

Rµναβ(∇µ∇αφ)(∇ν∇βφ) = −Cµναβ(∇αφ)(∇µ∇ν∇βφ)

= −1

2
Cµναβ(∇αφ)(({∇µ,∇ν}+ [∇µ,∇ν ])∇βφ)

= −1

2
CµνβαC

µνβ
σ(∇αφ)(∇σφ)

= −1

8
(Cαβρσ)2(∇µφ)2 = −1

8
O4 . (B.2)
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In the first step we used IBP and wrote the covariant derivatives in the last parenthesis

as the sum of its commutator and anti-commutator. The term with the anti-commutator

vanishes, since it is contracted with Cµναβ , which is antisymmetric under µ ↔ ν. The

commutator yields a Riemann tensor, which after removing the Rµν and R components

coincides with the Weyl tensor. In the last step we made use of the identity [30]

CµνβαC
µνβ

σ =
1

4
gασCµνγδC

µνγδ . (B.3)

C Plethystic exponential

In section 2.1 we introduced the (fermionic) PE as the generating function for the characters

of (anti-)symmetric tensor products [8–10]. In the following we give a sketchy derivation

to justify the form of the PE which we use here. Readers looking for mathematical rigour

should refer to commutative algebra textbooks, such as [6, 7].

C.1 Bosonic plethystic exponential

We want to compute the sum over the characters of all symmetric tensor products of a

representation R weighted by a spurion q, i.e.

∞∑
d=0

qd χSymd(R)(g) . (C.1)

For g ∈ G, let RV (g) ∈ GL(V ) be the linear action of the group element g on a n-

dimensional vector space V , i.e. R is a n dimensional group representation. Now let us as-

sume that RV (g) can be diagonalized. We take its set of eigenvectors, i.e. {e1, . . . , en} with

RV (g)ei = λiei, as a basis for V . In this basis the group character is given by the sum over

the eigenvalues χR(g) =Tr(RV (g)) =
∑n

i=1 λi. The symmetric tensor product Symd(R) is

the action of the group element g on the symmetric tensor product of the vector space V ,

i.e. Symd(V ). We denote this linear map by R⊗d
Symd(V )

(g) ∈ GL(Symd(V )).17 A simple basis

for Symd(V ) is { 1
d!

∑
σ∈Sd eiσ(1)⊗. . .⊗eiσ(d) |1 ≤ i1 ≤ . . . ≤ id ≤ n}, where Sd is the symmet-

ric group. As an explicit example let us write down the basis for Sym2(V ) and dim(V ) = 3{
e1⊗e1 , e2⊗e2 , e3⊗e3 ,

1

2
(e1⊗e2+e2⊗e1) ,

1

2
(e1⊗e3+e3⊗e1) ,

1

2
(e2⊗e3+e3⊗e2)

}
. (C.2)

χSym2(R)(g) is obtained by summing over the eigenvalues corresponding to these basis

elements

χSym2(R)(g) = Tr
(
R⊗2

Sym2(V )
(g)
)

= λ2
1 +λ2

2 +λ2
3 +λ1λ2 +λ1λ3 +λ2λ3 =

1

2
(χR(g)2 +χR(g2)) ,

(C.3)

where the trace is a regular matrix trace. In eq. (C.3) we also verified the symmetric

square formula for characters that we already found in the explicit example for the Hilbert

Series in eq. (2.8). For general n and d the character can be written as

χSymd(R)(g) = Tr
(
R⊗d

Symd(V )
(g)
)

=
∑

i1+i2+...+in=d

λi11 λ
i2
2 · · ·λ

in
n , (C.4)

17This map is the tensor product representation ⊗dR acting on Symd(V).
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where the sum is over all partitions {i1, i2, . . . , in} with i1 + i2 + . . . + in = d. The ik
indicate the number of times ek appears in the corresponding basis element and therefore

also the power of λk in its eigenvalue. Each partition corresponds to a basis element of

Symd(V ). This is easily seen in our example with d = 2 and n = 3 with the partitions

being 2 = 2 + 0 + 0 = 0 + 2 + 0 = 0 + 0 + 2 = 1 + 1 + 0 = 1 + 0 + 1 = 0 + 1 + 1. Summing

over d in eq. (C.4) yields the generating function

∞∑
d=0

χSymd(R)(g) qd =

∞∑
d=0

qd
∑

i1+i2+...+in=d

λi11 λ
i2
2 · · ·λ

in
n =

( ∞∑
i1=0

(λ1q)
i1

)
· · ·
( ∞∑
in=0

(λnq)
in

)
=

1∏n
i=1(1− λiq)

=
1

det(1−RV (g) q)
=

1

detR(1− g q)
, (C.5)

where we used the geometric series. Using the matrix identity log(det(A)) = Tr(log(A))

and the logarithmic series log(1− x) = −
∑∞

k=1 x
k/k, we obtain the plethystic exponential

∞∑
d=0

χSymd(R)(g)qd = exp

[ ∞∑
k=1

1

k
qk TrR(gk)

]
. (C.6)

C.2 Fermionic plethystic exponential

In the case of fermionic spurions we have to consider the antisymmetric tensor product,

i.e. we want to compute
∞∑
d=0

qd χ∧dR(g) , (C.7)

where ∧ stands for the antisymmetric tensor product. We again pick the system of eigen-

vectors of RV (g) as basis for V and write R⊗d∧dV (g) ∈ GL(∧dV ) for the action of the group

element g on the vector space formed by the antisymmetric tensor product ∧dV . A basis for

∧nV is { 1
d!

∑
σ∈Sd ε(σ) eiσ(1)⊗ . . .⊗eiσ(d) |1 ≤ i1 < . . . < id ≤ n}, where ε(σ) returns the sign

of the permutation. Coming back to the example with d = 2 and n = 3, the basis for ∧2V is

{e1∧e2, e1∧e3, e2∧e3} =

{
1

2
(e1⊗e2−e2⊗e1),

1

2
(e1⊗e3−e3⊗e1),

1

2
(e2⊗e3−e3⊗e2)

}
, (C.8)

with the group character χ∧2R(g) given by

χ∧2R(g) = Tr
(
R⊗2
∧2(V )

(g)
)

= λ1λ2 + λ1λ3 + λ2λ3 =
1

2
(χR(g)2 − χR(g2)) . (C.9)

For general d and n each basis element of ∧dV contains d different basis elements ek. This

implies that if d > n then ∧dV is an empty space. The group character is the sum over

the eigenvalues

χ∧dR(g) = Tr
(
R⊗d∧dV (g)

)
=

∑
1≤i1<...<id≤n

λi1 · · ·λid . (C.10)

Summing over d we obtain the fermionic plethystic exponential

∞∑
d=0

qd χ∧d(R)(g) =

∞∑
d=0

qd
∑

1≤i1<...<id≤n
λi1 · · ·λid =

n∏
i=1

(1 + λi q) = det(1 + RV (g) q)

= detR(1 + g q) = exp

[ ∞∑
k=1

(−1)k+1

k
qk TrR(gk)

]
, (C.11)
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where we again used the matrix identity log(det(A)) = Tr(log(A)) and the logarithmic

series log(1 + x) =
∑∞

k=1(−1)k+1xk/k in the last line.

D Dimension 8 GRSMEFT basis

We compile in tables 3 and 4 the explicit operator basis for the GRSMEFT at mass di-

mension 8.

We recall that we constructed the Hilbert series in terms of the chiral components of

the gauge field strengths (XL/R) and the Weyl tensor (CL/R), which are related to the

standard field strengths and their duals by

Xµν
L/R =

1

2

(
Xµν ± iX̃µν

)
, CµνρσL/R =

1

2

(
Cµνρσ ± iC̃µνρσ

)
, (D.1)

with X̃µν = 1
2ε
µναβXαβ . For the dual of the Weyl tensor we can define a left- and a

right-dual tensor ∗Cµνρσ = 1
2ε
µναβCαβ

ρσ and Cµνρσ ∗ = 1
2ε
ρσαβCµν αβ , however one can

show that ∗Cµνρσ = Cµνρσ ∗ and therefore we can define without ambiguity C̃µνρσ =
1
2ε
µναβCαβ

ρσ. Useful relations to trade chiral components for the standard field strength

and its dual are

CL/RµνρσC
µνρσ
L/R =

1

2

(
CµνρσC

µνρσ ± iCµνρσC̃µνρσ
)
, (D.2)

XL/RρσC
µνρσ
L/R =

1

2

(
XρσC

µνρσ ± iX̃ρσC
µνρσ

)
. (D.3)

We also use that εi1...inε
j1...jn = n!δj1[ii

· · · δjnin] to rewrite pairs of building blocks that both

include a dual field strength in terms of contractions without the Levi-Civita tensor.
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C4 H2C3

OCC (CµνρσC
µνρσ)2 O2HC (H†H)(CµνρσC

ρσαβCαβ
µν)

OCC̃ (CµνρσC
µνρσ)(CαβγδC̃

αβγδ) O2HC̃ (H†H)(CµνρσC
ρσαβC̃αβ

µν)

OC̃C̃ (CµνρσC̃
µνρσ)2

H4C2 X3C

O4HC (H†H)2(CµνρσC
µνρσ) OGBC GAµνG

A
ραB

α
σC

µνρσ

O4HC̃ (H†H)2(CµνρσC̃
µνρσ) OGBC̃ GAµνG

A
ραB

α
σC̃

µνρσ

OWBC W a
µνW

a
ραB

α
σC

µνρσ

OWBC̃ W a
µνW

a
ραB

α
σC̃

µνρσ

X2C2

O(1)
GC (GAµνG

Aµν)(CαβρσC
αβρσ) O(1)

GC̃
(GAµνG

Aµν)(CαβρσC̃
αβρσ)

OG̃C (GAµνG̃
Aµν)(CαβρσC

αβρσ) OG̃C̃ (GAµνG̃
Aµν)(CαβρσC̃

αβρσ)

O(2)
GC GAµνG

AρσCµναβCαβρσ O(2)

GC̃
GAµνG

AρσCµναβC̃αβρσ

O(1)
WC (W a

µνW
aµν)(CαβρσC

αβρσ) O(1)

WC̃
(W a

µνW
aµν)(CαβρσC̃

αβρσ)

OW̃C (W a
µνW̃

aµν)(CαβρσC
αβρσ) OW̃ C̃ (W a

µνW̃
aµν)(CαβρσC̃

αβρσ)

O(2)
WC W a

µνW
a ρσCµναβCαβρσ O(2)

WC̃
W a
µνW

a ρσCµναβC̃αβρσ

O(1)
BC (BµνB

µν)(CαβρσC
αβρσ) O(1)

BC̃
(BµνB

µν)(CαβρσC̃
αβρσ)

OB̃C (BµνB̃
µν)(CαβρσC

αβρσ) OB̃C̃ (BµνB̃
µν)(CαβρσC̃

αβρσ)

O(2)
BC BµνB

ρσCµναβCαβρσ O(2)

BC̃
BµνB

ρσCµναβC̃αβρσ

X2H2C

OGHC (H†H)(GAµνGAρσCµνρσ) OGHC̃ (H†H)(GAµνGAρσC̃µνρσ)

OWHC (H†H)(W aµνW a ρσCµνρσ) OWHC̃ (H†H)(W aµνW a ρσC̃µνρσ)

OBHC (H†H)(BµνBρσCµνρσ) OBHC̃ (H†H)(BµνBρσC̃µνρσ)

OWBC (H†τaH)(BµνW a ρσCµνρσ) OWBC̃ (H†τaH)(BµνW a ρσC̃µνρσ)

H2C2D2 XH2CD2

OHCD (∇αH)†(∇αH)(CµνρσC
µνρσ) OWCD (∇µH)†τa(∇νH)W a ρσCρσµν

OHC̃D (∇αH)†(∇αH)(CµνρσC̃
µνρσ) OWC̃D (∇µH)†τa(∇νH)W a ρσC̃ρσµν

OBCD (∇µH)†(∇νH)BρσCρσµν

OBC̃D (∇µH)†(∇νH)BρσC̃ρσµν

Table 3. Bosonic dimension-8 operators of the GRSMEFT including gravitational interactions.
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ψ2HC2 ψ2XHC

OuHC (Q̄LH̃uR)(CµνρσC
µνρσ) OuGC (Q̄Lσ

µνTAuR)H̃GAρσCµνρσ

OuHC̃ (Q̄LH̃uR)(CµνρσC̃
µνρσ) OuWC (Q̄Lσ

µνuR)τaH̃W aρσCµνρσ

OdHC (Q̄LHdR)(CµνρσC
µνρσ) OuBC (Q̄Lσ

µνuR)H̃BρσCµνρσ

OdHC̃ (Q̄LHdR)(CµνρσC̃
µνρσ) OdGC (Q̄Lσ

µνTAdR)HGAρσCµνρσ

OeHC (L̄LHeR)(CµνρσC
µνρσ) OdWC (Q̄Lσ

µνdR)τaHW aρσCµνρσ

OeHC̃ (L̄LHeR)(CµνρσC̃
µνρσ) OdBC (Q̄Lσ

µνdR)HBρσCµνρσ

OeWC (L̄Lσ
µνeR)τaHW aρσCµνρσ

OeBC (L̄Lσ
µνeR)HBρσCµνρσ

ψ2HCD2 ψ4C

OuCD (Q̄Lσ
µν∇ρuR)(∇σH̃)Cµνρσ OudC εij(Q̄

i
Lσ

µνuR)(Q̄jLσ
ρσdR)Cµνρσ

OdCD (Q̄Lσ
µν∇ρdR)(∇σH)Cµνρσ OueC εij(Q̄

i
Lσ

µνuR)(L̄jLσ
ρσeR)Cµνρσ

OeCD (L̄Lσ
µν∇ρeR)(∇σH)Cµνρσ OuedC εαβγ [(dαR)TCσµνuβR][(uγR)TCσρσeR]Cµνρσ

ψ2XCD
OQGCD (Q̄Lγ

µTA∇νQL)GAρσCµνρσ OQGC̃D (Q̄Lγ
µTA∇νQL)GAρσC̃µνρσ

OuGCD (ūRγ
µTA∇νuR)GAρσCµνρσ OuGC̃D (ūRγ

µTA∇νuR)GAρσC̃µνρσ

OdGCD (d̄Rγ
µTA∇νdR)GAρσCµνρσ OdGC̃D (d̄Rγ

µTA∇νdR)GAρσC̃µνρσ

OQWCD (Q̄Lγ
µτa∇νQL)W aρσCµνρσ OQWC̃D (Q̄Lγ

µτa∇νQL)W aρσC̃µνρσ

OLWCD (L̄Lγ
µτa∇νLL)W aρσCµνρσ OLWC̃D (L̄Lγ

µτa∇νLL)W aρσC̃µνρσ

OQBCD (Q̄Lγ
µ∇νQL)BρσCµνρσ OQBC̃D (Q̄Lγ

µ∇νQL)BρσC̃µνρσ

OuBCD (ūRγ
µ∇νuR)BρσCµνρσ OuBC̃D (ūRγ

µ∇νuR)BρσC̃µνρσ

OdBCD (d̄Rγ
µ∇νdR)BρσCµνρσ OdBC̃D (d̄Rγ

µ∇νdR)BρσC̃µνρσ

OLBCD (L̄Lγ
µ∇νLL)BρσCµνρσ OLBC̃D (L̄Lγ

µ∇νLL)BρσC̃µνρσ

OeBCD (ēRγ
µ∇νeR)BρσCµνρσ OeBC̃D (ēRγ

µ∇νeR)BρσC̃µνρσ

Table 4. Dimension-8 operators of the GRSMEFT including gravitational interactions and fermions

for Nf = 1. We do not show explicitly the h.c. of non self-conjugate operators. H̃i = εijH
∗
j and C

is the charge conjugation matrix.

E Gravity EFT in d > 4 spacetime dimensions18

In section 3.2 we identified the independent building blocks for the EFT of gravity, i.e. the

graviton single particle module RC , in d = 4 spacetime dimensions. However, this result

does not only hold in 4 dimensions, but trivially extends to d > 4.19 The derivation of

the graviton single particle module only made use of the Einstein equations and Bianchi

identities, which have the same form in any dimension. Consequently, also RC in eq. (3.17)

is valid in dimensions larger than 4.

In this appendix we will shortly outline how to obtain the character for the single

particle module χC and the corresponding Hilbert series for gravity in vacuum in d > 4

and explicitly perform the construction for d = 5.

18We thank B. Henning for suggesting the study of this generalization to us.
19In d < 4 the Weyl tensor identically vanishes, i.e. the graviton is not dynamical.
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E.1 Character for the single particle module

We work in Euclidean space, where the Lorentz group in d dimensions is SO(d). The

finite dimensional representations of SO(d) can be labeled by partitions l = (l1, l2, . . . , lr)

with l1 ≥ · · · ≥ lr−1 ≥ |lr| for SO(2r) and l1 ≥ · · · ≥ lr ≥ 0 for SO(2r + 1), where

r is the rank of the group. These representations are in a one-to-one correspondence

with Young diagrams, i.e. they correspond to tensors with |l| =
∑

i li indices, which are

(anti)symmetrized according to the corresponding Young diagram (in this regard, such a

labelling is more convenient than the one we have used for SO(4) in the main text). In this

notation, the fundamental representation is labeled by l = (1, 0, . . . , 0), the antisymmetric

tensor with two indices is l = (1, 1, 0, . . . , 0) and the completely symmetric, traceless tensor

with n indices corresponds to l = (n, 0, . . . , 0). Therefore the Weyl tensor in d dimensions

lives in the representation labeled by l = (2, 2, 0, . . . , 0).20

The single particle module in eq. (3.17) consists of the Weyl tensor and symmetric,

traceless combinations of covariant derivatives acting on the Weyl tensor. In the notation

we introduced above, it is clear that ∇{µ1 · · · ∇µnCµ}νρσ transforms in the representation

corresponding to l = (n+ 2, 2, 0, . . . , 0), which implies that its character is given by

χ
(d)
C (D;x) =

∞∑
n=0

Dn+2χ
(d)
(n+2,2,0,...,0)(x) , (E.1)

where χ
(d)
l (x) are the SO(d) characters.

Let us specialize to d = 5 dimensions. Eq. (E.1) can be evaluated explicitly using the

Weyl character formula for SO(5) characters, which can be found e.g. in appendix A of [2]

χ
(5)
C (D;x) = D2P (5)(D;x)

[
χ

(5)
(2,2)(x)−D

(
χ

(5)
(2,2)(x) + χ

(5)
(2,1)(x)

)
+D2

(
χ

(5)
(2,1)(x) + χ

(5)
(1,1)(x)

)
−D3χ

(5)
(1,1)(x)

]
.

(E.2)

At this point we want to emphasize that unlike in d = 4, the single particle module

RC cannot be identified with a short conformal representation, whose scaling dimension

saturates the unitarity bound, by formally assigning this scaling dimension to the Weyl

tensor. The character for the conformal representation [4; (2, 2)] in d = 5 dimensions is

given by (see e.g. [64])

χ
(5)
[4;(2,2)](D;x) = D4P (5)(D;x)

[
χ

(5)
(2,2)(x)−Dχ(5)

(2,1)(x) +D2χ
(5)
(1,1)(x)

]
, (E.3)

which clearly differs from eq. (E.2) even after assigning a scaling dimension of 4 to the

Weyl tensor. The reason for this is that the conformal primary, i.e. the equivalent of the

Weyl tensor, does not satisfy the second Bianchi identity. The corresponding descendent

∇[µ1Cµν]ρσ, which transforms in the representation labeled by l = (2, 2), is therefore not

subtracted from the conformal multiplet, as can be explicitly seen in eq. (E.3).

20Note that SO(2r) admits chiral representations if lr 6= 0, which is why in d = 4 the Weyl tensor can

be decomposed into a left-handed and a right-handed part, which belong to the representations labeled by

(2, 2) and (2,−2), respectively.
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Note that there is no known expression for ∆H in eq. (2.15) if the single particle

modules cannot be identified with conformal representations. However, eq. (2.16) for H0

still holds.

E.2 Gravity in vacuum in d = 5

The Hilbert series for pure gravity in d = 5 dimensions can be computed using eq. (2.16)

and the character for the single particle module in eq. (E.2). Grading the spurions according

to their mass dimension, i.e. C → ε2C and D → εD, and expanding up to mass dimension

ten we obtain21

H0(D, C; ε) =

∫
dµSO(5)(x)

1

P (5)(εD, x)
PE

[
C

D2

]
= ε6C3 + ε84C4 + ε10

(
7C4D2 + 5C5

)
+ . . . ,

(E.4)

where we have dropped terms of mass dimension five or lower, since they also receive

contributions from ∆H. Note that the number of independent operators in d = 5 differs

from the number of CP even operators in d = 4, i.e. the operators which can be written

without the dual of the Weyl tensor. This implies that, beyond chirality, there are genuinely

new contractions of Weyl tensors which are linearly dependent or vanish in d = 4. The

number of independent operators without derivatives can be cross-checked with the number

of Weyl invariants given in [63] and we find full agreement.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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