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1 Introduction

At the Large Hadron Collider (LHC) the primary mechanism for producing and detecting
Higgs bosons is the process gg — h. This process is mediated, in the Standard Model,
by a loop of massive coloured fermions. Since the Yukawa coupling is proportional to
the fermion mass the predominant contribution is the result of the coupling of the top
quark to the Higgs boson. In the limit in which only a very heavy top quark contributes,
the corresponding amplitude is independent of the top quark mass; this gives rise to an
effective field theory (EFT) in which the loop of heavy top quarks is replaced by an effective
Lagrangian,

2
9s A ~A,uv
= G2 G 1.1
Lot 487r2vh By (1.1)

where g, is the strong coupling constant, v is the vacuum expectation value of the Higgs
field, G, is QCD field strength, and h is the Higgs boson field. The EFT in eq. (1.1)



has been used to compute higher-order corrections to the inclusive cross-section — most
recently up to next-to-next-to-next-to-leading order [1, 2] — as well as rates for the produc-
tion of Higgs bosons in association with up to three additional jets up to next-to-leading
order [3, 4]. The effective field theory description is expected to break down when, for
example, the transverse momentum of produced gluons is of order of the top quark mass.
This breakdown has most recently been investigated at NLO in ref. [5]. This kinematic
regime is beginning to be explored at the LHC [6] and can give important information
about the mediators in the loop that couple to the Higgs. For such configurations it is
therefore important to make use of a superior calculation in which the full dependence on
the top quark mass is retained. Such a calculation also allows a direct quantification of the
breakdown of the EFT approach.

Analytic results for the Higgs+3 parton amplitude in the full theory have been known
for a long time [7, 8]. Corresponding results for Higgs+4 parton amplitudes have been
obtained in refs. [9, 10], although in both cases expressions for at least some of the am-
plitudes were too long to report. In addition there are several automatic procedures than
can provide numerical results for one-loop amplitudes [11-14]. The aim of this paper is to
present compact amplitudes for all contributing processes,

0 — ggggh, (1.2)
0 — gqggh,
0— qqq'q'h, (1.4)

retaining all mass effects. Compact analytic results for the 0 — ggggh case when all
the gluons have positive helicity have been published in ref. [15]. Although our result is
therefore not new per se, it is the first time that a compact publishable analytic result has
been obtained for all gluon helicities. A calculation with compact analytic formulae allows
examination of the structure of the amplitude for all values of the fermion mass. It also has
the potential to lead to faster and more stable numerical evaluation of the amplitude. This
would be a boon to calculations requiring this amplitude in all regions of phase space, such
as recent NLO predictions for Higgs boson plus 1-jet production in the full theory [5] and
at large transverse momentum [16, 17]. Although the results are quite compact, given the
number of integral coefficients, this paper is not easy to read. However we believe that it is
detailed enough that readers wishing to implement this amplitude in a numerical program
will find enough information to do so in our paper.

2 Structure of the calculation

2.1 Definition of colour amplitudes

The amplitude for the production of a Higgs boson and n gluons can be expressed in
colour-ordered sub-amplitudes as follows:

n 2
Hgggg({pi,hi,ci})zilg;m? STt (1,20, ot h) L (2.0)
{1,2,....n}




where the sum with the prime, 2{1’27“.7,&,, is over all (n — 1)! non-cyclic permutations
of 1,2,...,n and the ¢t matrices are the SU(3) matrices in the fundamental representation

normalized such that,
tr(t“tb) = 5o, (2.2)

m is the mass of the quark circulating in the loop. Because of Bose symmetry it is suffi-
cient to calculate one permutation, and the other colour sub-amplitudes can be obtained
by exchange.

For the particular case at hand with four gluons eq. (2.1) becomes,

4 2
Higgg({pi, hi7 cz}) - 12;_2 <77:)> {[tr (tm tcztcgtm) Tt (tc1 tc4t03t02)] Hi234(1h1 , 2h2 , 3h374h4; h)

+ [tr (tcl $C3¢C4 tCQ)—i-tl“ (tm 12 CatCs )] Hi342(1h1 ’ oha ’ 3h3 ’ 4h4; h)
4 [tr (tc1 tc4tcztcs)+tr (tm t03t02t04)] Hi423(1h1 ’ 2h2 ’ 3h3 ’ 4h4; h)} ) (23)

Squaring the amplitude eq. (2.3) for a fixed helicity configuration and summing over colours
we find

4 2\ 12
> = [ () v v e

1672 \ v
colours

(N2
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_47) ‘Hi234+Hi342+Hi423‘2 } ’ (24)

N2
where N is the dimensionality of the SU(V) colour group, i.e. N = 3, and the labels for
the helicity configuration (as explicitly shown in eq. (2.3)) have been suppressed.
The amplitude for the production of a Higgs boson, an antiquark, quark and two gluons
is similarly decomposed into colour-ordered amplitudes as follows,
2

4
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The colour structure 6% ¢;,;, /N is also present in individual diagrams but makes no
net contribution to the one-loop amplitude. In this paper we will give results for the
colour-ordered amplitude H3*. Tt is straightforward to obtain Hj® from this through the
parity operation (complex conjugation) and permutation of momentum labels. Squaring
and summing over colours yields,

4 \2 2\ 2
q 2 _ g m 2 342 4312 1 34 4312
S = () () -0 [V (EPE PR - gl mEP).
(2.6)

where the labelling of the helicity configuration shown in eq. (2.5) has again been sup-

pressed.
The four-quark amplitude takes the form,

4 2
4 . . g m 4 h1 o— hs 4—h
My ({pis his ji}) = i > (v ) )0 )y 5 Hy' (161?% "854y 3) (2.7)



where the helicities of the quarks are fixed by those of the antiquarks.Performing the sum
over colours we then have,

3 ) 2 = (2) () (N = 1) 0, ) P (28)

for the case in which the quark lines have different flavours. For the case of identical quarks
we first introduce,

HYY (b, hs) = Hy'(10, 4, M 3k 9 hay (2.9)
The sum over the colours for the identical case is then,

4 2 m2 2 ,
SO = () (M) 6 = 1 (80 ) 1 )

1672 v

S , ) .
+ (qu(hbhs)qu (h1, hs)* + H2(hy, hy)* H (hl,hg))> (2.10)

where, as indicated, the term on the second line only contributes when the quarks have
the same helicity.
2.2 Decomposition into scalar integrals

The colour-ordered sub-amplitudes can be expressed in terms of scalar integrals. For the
0 — ggggh sub-amplitude we have,

—4—n
1 Num(¢)
H1234 1h172h2’3h3’4h4;h — Li dre — 211
4 ( ) rr iﬂ_n/g HZ dz(ﬁ) ( )
=) eixgxar(1", 22,3, 4") Bo(pi, pj, pi, i m)
i?j?k?l
+Zdixjxk(lhla2h273h374h4)DO(pi7pj7pk;m)
7:7j7k
+ZCixj(1h1,2h2,3h3,4h4)Cg(pi,pj;m)
i,j

+ > b1, 2h2 30 4t Bo(piym) + r(1M, 282,30 4ty

)

The scalar bubble (By), triangle (Cp), box (Dp) and pentagon (Ey) integrals, and the con-
stant rr, are defined in appendix A. [i is an arbitrary mass scale, and r are the rational
terms. The rank of a Feynman integral is defined to be the number of powers of the loop
momentum in the numerator. A scalar Feynman integral has no powers of the loop mo-
mentum in the numerator, and is hence of rank zero. All scalar integrals are well known
and readily evaluated using existing libraries [18-20]. The sums in the above equation scan
over groupings of external gluons. Thus, for example, the sum for the scalar triangle inte-
grals will contain a term ¢ x234 which multiplies the scalar triangle integral Co(p1, pasa;m)
where pass = pa + p3 + pa. The reduction in eq. (2.11) is written in n dimensions, although
at the end the amplitude is finite. The individual bubble integrals contain ultra-violet
singularities that are regulated using dimensional regularization.



In four dimensions the pentagon integral can be reduced to a sum of the five box
integrals obtained by removing one propagator [21-23],
E m) = cW D . c? D .
0(p1, P2, P3, Pa;m) = Ci o554 Do(P2, 3, P43 M) + Ciyoygq Do(p12, b3, pasm)

3
+ C§><)2><3><4 DO(p1>p237p4; m)

4 5
+ C§X)2X3X4 Do(p1, p2,p3a;m) + C§X)2X3X4 Do(p1,p2,p3;m). (2.12)

Explicit forms for the pentagon reduction coefficients, CYX)M 345 AT€

o 1sassa[2s1080tsissautssasia—sassi
1x2x3x4 9 16 ’Sl><2><3><4‘
-0 _ 1sm [$1234 523 (S123 —2 812) + 5123 (S34 (S123 — S23) + 512 (S234+ S23) — S234 S123)]
1x2x3x4 2 16 ‘51><2><3><4’
c® _1[s1as03—(s124513) (s24+534)] [534 512+ 523 514 — 513 524]
1X2x3x4 9 16 |S1x2x3x4|
c@ _ L su2[s1034 523 (5230 —2534) +5234 (512 (5234 — 523) +534 (S123+523) — 5234 5123)]
1x2x3x4 9 16 |S1x2x3x4]
1 2 —
), = — 2 912523 [2534 513+ 513 504+ 534 512 — 523 514] (2.13)
2 16 |S1x2x3x4]

The factor |Six2x3xa| is the determinant of the matrix, [Slx2><3><4]¢j = [m? — %(qi_l —
qj—1)?], where g; is the offset momentum, see eq. (A.2). It can be written as,

16 |S1xaxsxa| = s12 523 s34 (514 523 — (512 + 513) (524 + 834)) + M* G,

2
G = (512534 — 513 524 — S14 523)° — 4 513 514 523 524 - (2.14)

As a result of eq. (2.12), in four dimensions the integral basis given in eq. (2.11) is over-
complete. The full amplitude can be described by the box, triangle and bubble integrals
alone (+ rational terms). This is the specific choice made in this paper, but the other
choice to keep the redundant basis of eq. (2.11) is also perfectly viable. In this paper we
will work in a basis without pentagon integrals, but the box coefficients will in part display
vestiges of their pentagon origin, through effective pentagon coefficients and the presence
of the pentagon-to-box reduction coefficients, C&)QX 354~ This will be explained in detail in
section 5. Our decomposition of the sub-amplitudes is thus,

H4(1h172h273h374h4; h) = Zdixjxk(1h172h273h374h4)DO(pivpj7pk;m)
Z'7j7k
+Zci><j(1h172h273h374h4)00(piapj;m)
i?j
+Zbi(1h172h2>3h3>4h4) BO(piQm)"i'r(lhl ) 2h273h374h4) ., (2.15)

)

which also applies for the 0 — ggggh sub-amplitude H 2’4 since it contains no pentagon
diagrams in the first place.



2.3 Unitarity methods

The modern treatment of one-loop amplitudes containing massive particles was pioneered
25 years ago in ref. [24]. Since that early paper a whole set of tools and methods have
been invented to deal with one-loop amplitudes (for an introduction and comprehensive
review see refs. [25] and [26] respectively). We shall apply many of them in order to arrive
at the simplest form for the Higgs + 4 parton amplitude. This paper will present compact
expressions for the coefficients in the four dimensional version of eq. (2.11) where the scalar
pentagon integral has been expressed as a sum of box integrals. The coefficients will be
expressed in terms of spinor products. Our notation for spinor products is reported in
appendix B.

As we shall see below, there is an intimate connection between the full one-loop cal-
culation with a massive fermion and a suitably normalized calculation performed with the
Higgs boson coupling to four partons via a loop of colour-triplet, massive scalar particles.
The latter calculation with scalar intermediaries has two advantages. First, the scalar
calculation is completely free of Dirac algebra, allowing more compact expressions to be
maintained throughout the calculation. This is useful if one can show the identity of the
coefficients of scalar integrals between the scalar and the fermionic theories. Second, the
scalar calculation, unlike the fermionic calculation, can be performed in the m — 0 limit.
If it can be shown that:

1. the result for a particular coefficient in the scalar theory is identical to the result in
the fermionic theory,

2. that particular coefficient is also independent of the mass,

the value of the m — 0 limit is established.

In order to perform the reduction to scalar integrals indicated in eq. (2.11) we use uni-
tarity techniques to isolate the contribution of boxes [27], triangles [28] and bubbles [29-31].
Since bubble integrals satisfy both criteria enumerated above, their coefficients are most
easily calculated using a massless internal scalar loop.

Integrals that do not give rise to rational terms are said to be cut-constructible. In
general, z-point integrals are cut constructible in four dimensions if the rank r satisfies
r < max[(z — 1,2)]. Thus rank-3 pentagons, rank-2 boxes, rank-1 triangles and bubbles
are cut constructible. Integrals that are not cut-constructible give rise to the rational
terms (r) in eq. (2.11). In our case the rational terms can instead be obtained by using
already-computed results for the mass-dependent coefficients of triangle integrals [32].

2.4 Simplification techniques

We now briefly describe two further techniques that are useful to help simplify the results
obtained using unitarity methods. Both methods exploit the fact that the kinematics of our
process can be expressed as massless 6-point kinematics by decomposing the momentum
of the Higgs boson into two light-like momenta, which for definiteness we call ps, pg.
Reduction of the analytic forms to simpler expressions is aided by the use of momentum
twistors [33-36]. In this formalism each particle is described by a 4-component momentum



twistor Z(A, ), where X is the usual two-component holomorphic Weyl spinor (with (i j) =
AaA?) and p is a two-component object related to dual momentum coordinates [33]. Anti-
holomorphic spinors ();, with [i j] = A*\4) are obtained from these via the identity,

GG D (D) 6= D) st (6= 1))
A= G+ ) (G- 1)) | (2.16)

To describe an n-particle scattering amplitude there are thus 4n momentum twistor com-

ponents, of which only 3n — 10 are independent due to a U(1) symmetry for each particle
and overall Poincaré symmetry. We thus need 8 momentum-twistor variables (z; ...z3) to
describe our 6-point kinematics, which we choose to parametrize as,

1 0 1w Y3 (7
M o e s = ) 0 1 1 1 1 1
Z:123456:000 1 , o (2.17)
P12 (3[4 fi5 fe L5L6 L6
00 1 1 1—(—1—”) —(71”8)
ToTs T2THTG

where y; = Z;Zl Hi:ll /x. The spinors involving our four massless partons are then

given by,

(12) = -1, (13) = -1, (14) = —

1 1
(23) =1/, (24) = + o (34) =

172 122

21 (27 + 28) (2.18)
[12] = I1, [13] = T1rs, [14] =
Ts5

23] = _$%x2$5$67 24] = x%$21’6a [34] = —IL‘%{EQSL'GJW,

where the [i j] spinors in the second line have been derived with the aid of eq. (2.16). Note
that the variables x3 and x4 are not present, leaving us with a rational parametrization of
our amplitude in terms of only 6 parameters. Inverting we have

B L e3aep4as) (456

n=—ADM2 m=trEdy BT T as)y T (1) (56)

o BRI GopY B a9, o
(14)[24) 13 12) (12 [24] iy

where we see explicitly that the variables x3 and x4 involve momenta ps and pg and ef-
fectively decouple in our case [36]. In order to use this parametrization we first need to
remove the overall phase of the coefficient corresponding to the helicities of the external
gluons, for example by multiplying by (1 2>2 (3 4}2 for the all-plus amplitude. The advan-
tage of this approach is that the amplitude can now be simplified using straightforward
algebra, without needing to account for momentum conservation and Schouten identities
to manipulate spinor strings. In this way overall factors can easily be identified and the
true denominator structure of the coefficients established.

The second method we adopt is to use high precision floating-point arithmetic to sim-
plify our analytic expressions [37]. The study of singular and doubly singular limits in



complex phase space allows us to explore the singularity structure of the integral coeffi-
cients. The integral coefficients can then be reconstructed by solving linear systems for
the rational numerical coefficients of generic spinor trial functions. The helicities of the
gluons impose constraints on the structure of the trial functions. This method is par-
ticularly useful when unitarity techniques result in lengthy expressions that are hard to
treat using twistor variables, such as in the case of some triangle and bubble coefficients.
It is also useful to bypass the algebra involved in removing artefacts of loop-momentum
parametrizations, such as square roots and massless projections of non-lightlike external
momenta [28, 38]. This paper is the first instance where this method has been applied in
the presence of massive particles.

3 Higgs boson production mediated by a coloured scalar

Consider a complex scalar field ¢ in the triplet representation of colour SU(3) coupled to
a gluon field and to the Higgs boson, h. The part of the QCD Lagrangian involving the
field ¢ is

L = (Dug)i(D )i — Aglgin (3.1)

where (D, ¢); = (0,0ij+1ig(t-A,)i;)¢5. The partial correspondence with the fermion theory
emerges when setting A = —4m? /v.

We will calculate colour-ordered sub-amplitudes for the production of a Higgs boson
and four gluons mediated by a scalar loop. For the Higgs 4+ 4 gluon amplitude this is,

4
A (i) =505 (=) { o) o o) AR 2 30 4 )
+ [tr (tcl O3 ¢Catc2 ) +tr (tCI $C24C44C3 )] A}L342(1h1 ) 2h2 7 3h5 7 4h4, h)

+ [br (Eer 42t ) tr (¢ ¢3¢ ) | A3 (10 22 3hs 4ha s p) } (3.2)

and the colour amplitudes have the decomposition,

4—n
o 1 n, Num(?)
Ai234(1h1, 2h2,3h3,4h4; h) = 77“1“ /2 /d 571_[‘ (E)

=) Cigur(1M, 272,37 4M) By (pi, pj, pi, pis m)
i7j7k7l
+ Zdixjxk(1h172h273h374h4)DO(pi7pj7pk;m) (33)
i?j?k
+ Zéixj(1h172h273h374h4)C()(pivpj;m)
i7j
+ ) b1, 2h2 30 ahe) Bo(piym) + (1M, 202 30 4he).

1

Thus the tilde indicates that we are referring to an amplitude mediated by a scalar field.
For the case of the triangle coefficients we divide the coefficient into two pieces, to separate



D2

Liz=l+p,+p2
L=ltp,\ >

Dy (a)

Figure 1. Triangle diagrams showing the production of a Higgs boson by gluon fusion.

the mass dependence. Thus for both the fermion- and scalar-mediated loops we have,

Cixj = ng)j +m? cgi)j (3.4)
Ginj = o +mP &2 (3.5)

In eq. (3.2) we have chosen the normalization so that in some cases the coefficients c;x j=
(2 _ ~@

Cix; and in addition in all cases ¢,/ 5 = Cixys b; = l;, and » = 7. Thus we can perform certain
parts of the calculations in the scalar theory. We further have that b; are independent of

the mass m, so that they can be calculated in the massless scalar theory. In addition, for

2)

the case at hand the rational terms are fully fixed by ¢;3;,

1

r(1f, 2" 30 gty = 2% &) (10 o 3l gha), (3.6)
Z’?j

(2)

where the sum runs over all non-zero ¢;, f for a particular helicity.

3.1 Relationship of the fermion theory to the scalar theory

In order to elucidate the relationship between the fermion and scalar theories [39] it is
instructive to review the steps previously used to demonstrate their similarity using the
second order formalism [40]. Following ref. [40] we define the quantity A to represent
the combination of the numerator part of a fermion propagator with momentum ¢ and a
gluon-quark-antiquark vertex at which momentum p; flows out along the gluon line

1 1 1
A% = () = (4 3 = g ) 9 = Q04 L= ] = 2 ).
(3.7)
The first term on the right hand side of eq. (3.7) already resembles the vertex for a gluon
(on-shell or off-shell) interacting with a scalar field. Now consider the integrand of a triangle
diagram for a Higgs boson coupled to two gluons as shown in figure (1a),

crser o L {(I+m)y* ()4 +m)y2 (f12 + m)}
A e, D) D(61) D(t1a)

(-1) (3.8)

where our notation for the loop momenta and propagator factors D(¢) is given in ap-
pendix A. The minus sign is included because of the fermion loop and an overall factor of



1/m has been included for convenience. By using the decomposition in eq. (3.7) twice, the
expression in eq. (3.8) can be brought into the form,

tr{B’“ (E, EI)B“2(€1,£12)} _ tr{’y”lfy“?}

(=1) x #712% x D(¢) D(41) D(¢12) D(£) D(tr) | °

(3.9)

where B is a four-by-four matrix-valued function. It contains a convection term (as ex-
pected for a scalar field) and a spin term,

B (L) = (04 )1+ (0= )] = (0 + 01— [Gha"]. (3.100)

Note that the spin term is independent of the loop momentum. The result for the com-
panion triangle as shown in figure (1b) is

1 tr{(~fi2 + my*2 (= + m)y*" (= +m)}
tl“{B’m(—glg, —El)Bl‘l(—Eh —E)} _ tr{’y’”y‘“} :|
D(¢) D(¢1) D(f12) D(£) D(t12)d

(—1) x t2t x

— (—1) x 249 x [ (3.11)

Adding both diagrams, dropping vanishing terms and exploiting the cyclicity of the trace,
the integrand appearing in the full amplitude is,

(—1){75617502 x

(0 + e (47 + 65)te{1} + gor{[h, 7‘“][%277“2“]

D(¢) D(¢1) D(f12)
el (@“1 + 5‘1‘1)(5‘1‘2 + K‘f;)tr{l} + }ltr{[ﬂhfyul][ﬂ%,},m]}]
D(£) D(£1) D({12)
C14C2 co2pC1 1 o tr{l}
R )gWD(z)D(zw)}‘ (3.12)

If we drop the terms involving the commutators of gamma matrices, the fermionic loop
(after removing an overall factor of m) can be written as the effect of a (suitably normal-
ized) scalar triangle, with 3-point and 4-point (seagull) vertices. The full fermionic theory
requires the inclusion of the additional spin flip terms, given by commutators. These ad-
ditional terms do not involve the loop momentum and are thus of lower rank. Note also
that there is no explicit mass dependence in eq. (3.12). Dependence on the mass m will be
generated by the reduction to scalar integrals. In contrast to the full fermionic theory, we
may also consider the scalar theory in the massless case.

Iterating this argument for a larger number of gluons, it can be shown that separation of
the full fermionic theory into a suitably normalized scalar theory, plus spin terms involving
gamma matrix commutators of rank lower by two powers of ¢, continues to hold. The scalar
theory is obtained by dropping all of the spin terms, cf. eq. (3.10). Thus the full amplitude
can be written as the sum of the scalar theory and a correction of lower rank, AF

Fermion theory = Scalar theory + AF (3.13)

~10 -



The difference between the scalar theory and the full fermionic theory AF is of lower
rank. Although the scalar theory contains rank-4 pentagons, rank-3 boxes, and rank-2
triangles, AF' contains only rank-2 pentagons, rank-1 boxes and rank-0 triangles. This has
several important consequences:

1. AF' is cut constructible.

2. AF gives no contribution to bubble integral coefficients. Bubble integral coefficients
can thus be calculated in the scalar theory.

(2)

3. AF gives no contribution to the m? contributions to triangle coefficients, ¢, . i

(0)

4. AF gives no contribution to certain m® triangle coefficients, Cixje

Exploiting these facts provides the following identities for the ggggh case.

27,81 47) = E3uq (11,271,317, 47)
Gaxsa(17,27,37,47), (3.14)

43(1+7 2+7 3+74_) )

C3x4
cax3a(17,27,37 47)

C1x43 1+ 2+ 3+ 4~ )

c ><4(]~+7 277 3+747) )

(1

(

(
c3xa(17,27,3%,47)

(

(

(

3.15

C2x34 1 2 3+ 4~ ):62X34(1+72_73+74_)7 ( )
cax3(1T T,47) = Goxs(17,21,37,47),

2x3 _) ~2><3( N ) _) (3.16)
C1x23 T,47) = Cixa3(17,27,37,47),

i.e. all triangles that do not have the Higgs boson as an external leg can be calculated fully
in the scalar theory. In appendix C we reproduce several results for tree graphs involving
massive scalars, Higgs bosons, gluons and a quark-antiquark pair. These results are useful
in applying unitarity to calculate loop diagrams.

4 Coefficients for H}***(g*,g",g%,g"; h)

The reduction of a scalar pentagon integral into a sum of box integrals shown in eq. (2.12)
applies in four dimensions. Therefore an extraction of the scalar pentagon integral coeffi-
cient must be performed by making use of unitarity methods in d dimensions. To this end
the loop momentum is expressed most generally as,

]
¢ = apf + By + 5 (19712] + 5 (21 + (4.1)

where /. represents the excursion beyond four dimensions, with /2 = —u2. Putting the
propagators on shell determines o, 3, 7, 6 and p?. Parametrizing the amplitude at hand
with the decomposition in eq. (4.1) we thus find the pentagon coefficient,

(m? + 1?) (s1234 — 4(m? + p?)) try {1234}
(12)(23) (34) (41)

el><2><3><4(1+72+73+74+) = (42)
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where the trace functions are defined by,

try {1234} = tr{yr P ¥, 3,04} = [12] (23) [34] (41) ,
tr {1234} = tr{y v o, p3, ¥} = (12) [23] (34) [41] , (4.3)

and vg/r, = (1 £ v5)/2. The identities on the far right of eq. (4.3) holds only for lightlike
pi. The value of p? is fixed by the constraint /2 = m? (implying m? + p? = —6 s12) but
we have left the coefficient in eq. (4.2) in this form in order to emphasise the d-dimensional
nature of the result. We choose to write our amplitude in terms of an effective pentagon
coefficient é that corresponds to the four-dimensional limit u? — 0,

m? (81234 — 4m2)tr+{1 23 4}

g 17,2%,3%,47) = 4.4
€1><2><3><4( 3 ) ; ) <1 2> <2 3> <3 4> <4 1> ( )
This leads to a very compact form for the complete amplitude [15],
4m? — s1234
H?34 (17,27 3% 47 h) = —tr {1234}m>F, ;
4 ( 3 ) ; ) ) <1 2) <2 3) <34> <4 1> I‘+{ }m 0(p17p2’p37p47m)

1
+ 5((812 + 513)(S24 + S34) — S14523) Do (p1, P23, pa;m)

1
+ 5312323D0(p1,p2,p3; m)

+ (s12 + s13 + 514)Co(p1, P234; m)} +2

§12 + 813 + 514
(12)(23) (34) (41)

+ {3 cyclic permutations} . (4.5)

Although this expression, that includes the scalar pentagon integral, is very simple, we do
not follow this approach for the other helicity choices in the following sections. Instead,
since in the end our aim is to produce a numerical code to calculate this amplitude, we
feel that the structure is more straight-forward working only in terms of boxes, triangles
and bubble coefficients. Adopting this approach also for this amplitude means that the
minimal set of coefficients that must be specified corresponds to the ones shown in the first
and third columns of table 1. Note that coefficients of integrals that could in principle
appear but that are not specified in this table (and in subsequent tables in later sections)
vanish. There is some ambiguity in the naming convention for the integral coefficients. For
a given colour-ordered amplitude the external legs will appear in cyclic or anti-cyclic order,
cf. eq. (2.3). For example, djx2x34 in table 1 could equally well be written as dygx2x1. Our
convention is that the vertex containing more than one gluon, should appear last in the
name of the coefficient. Where the compound vertex is in the centre, we have chosen the
cyclic ordering.

4.1 Boxes
4.1.1 d1X2X34

dixaxaa(17,27,3%,4%) =\, oy €1+ x2+ x3+ x4t} (4.6)
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Coefficient | Related coefficients Coefficient | Related coefficients

d1x2x34 dox3xal, d3xax12, dax1x23, C1x234 C2x 341, C3x 412, CAx 123
d1x4x32, d2x1x43, A3x2x14, Aax3x21
d1x23%4 dox34x1, d3x41x2, dax12x3

dix2x3 dox3xd, d3xax1, dax1x2

Table 1. Minimal set of integral coefficients for 1;‘ 2;‘ 3;‘ 43’.

4.1.2 dix23x4

3 A
d1><23><4(1+7 2+» 3+7 4+) = C§><)2><3><4 €{1+x2+x3+x4+}

+1 sz (512 + 513) (524 + 534) — 514 523] (4.7)
2(12) (23) (34) (41) 112 T o m o 14 523 .

4.1.3 d]_x2x3

+ ot ot 4+ _ oD 5 ®) 5
dixax3(17,27,37,47) = Cyl1xaxs €1at x1+x2+ x31} T Clxaxsxa €11+ x2+ x3+ x4+}

1 (4 m2 — $1234)
o) (23) (34) (41) P12 (4.8)

4.2 Triangles

(0) (2)
4.2.1  Cyy2345Cix234

0 51234
ng)234(1+> 2%,37,47) = —(s12 + s13 + s14) (12) (23) (34) (41) (4.9)
1
2 p3a(14,2F, 3%, 47) = d(s12 + 513+ 514) (4.10)

(12) (23) (34) (41)

In presenting these results we have adopted the notation defined in eq. (3.4) to separately
quote the mass-independent and mass-dependent parts.

4.3 Rational terms
Ie) 2
T(1+a 2+’ 3+74+) = 5 [Cg><)234(]‘+> 2+a 3+’4+) + Cg>3234(2+7 3+74+7 1+)
2 2
+ 052234(3+74+, 17,27) + 052234(4+, 17,2%,3%)]

=5 G AL (4-11)

5 Coefficients for H;>**(g",g%,g7,97; h)

Following the procedure outlined in section 4 to obtain the pentagon coefficients yields, for
this particular helicity combination,

€{1+x2+ x3+Tx4-} = —S512534 (5123 - 4(m2 + MQ)) [[2 ?,:1;?1“2232:}2'1]] , (5.1)
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where we have introduced the notation,

trs{1234} = tr{ys pra s pa} = [12] (23) [34] (41) —(12) [23] (34) [41] . (5.2)

Note that the last identity, eq. (5.2), only applies for the case of lightlike momenta. At
this point we could follow the same strategy as in the previous section and take the limit
©? — 0 to obtain an effective pentagon coefficient é. However the appearance of the
factor trs{1234} in the denominator of eq. (5.1) is unpalatable since it is an unphysi-
cal singularity. In the amplitude its presence is compensated by corresponding factors in
box coefficients, and separating contributions in this way can lead to a loss of numeri-
cal precision.

As an alternative solution, we also choose to modify the coefficient itself in such a
way that these factors are eliminated. We do so by noting that the denominator can be
expressed as,

tr5{1234}? = (512 534 — 514 523 — 513 524)> — 4 514 523 524 513 = G, (5.3)

where G has already been introduced in eq. (2.14). In fact, rearranging that equation and

making use of spinor notation we have,
512523534 <1’(2 + 3)’4] <4’(2 + 3)‘1] =m? tI‘5{1 234}2 — 16 ‘Sl><2><3><4| . (54)

We may use this equation to eliminate the factor of tr5{1234}? in the pentagon coeffi-
cient indicated in eq. (5.1). The additional term that is introduced contains a factor of
|S1x2x3x4l; this neatly cancels the denominator factor involved when reducing the pen-
tagon integral to boxes (cf. eq. (2.13)) such that factors of 1/tr5{1234}2 can be explicitly
absorbed into the box coefficients and cancelled.

In this way we arrive at effective pentagon coeflicients,

. 23| (4](2 + 3)|1
et xz+ x3+ x4~} = (5123 — 4m?) m” [<[2 3]> <<1‘((2J-; 3))‘4]]] ’ (55)
é~{4—><1'*‘><2+><3+} = é{1'*‘><2+><3'4'><4—}{1 AN 3}a (5'6)
bl = g 5 ?f;» ; ([2 3] <2|<?2 1+|é>|+1}4<;|1|2§1 3 e s
23] (34) (2I(3 +4)[1]
e 11 + 1) ) ’ 57
{3+ x4~ x1+x2+} = €2+ x3+xa-x1+)11 > 3}. (5.8)

The correspondence between €1+,+x3+x4-) defined here, and ef1+y2+x3+x4-} given in
eq. (5.1) is clear from the first term on the right-hand side of eq. (5.4). We will see that
the box coefficients take a particularly simple form when written this way.

The minimal set of remaining integral coefficients to determine this amplitude is shown
in the first and third columns of table 2. The related coefficients included in the table are
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Coefficient | Related coeflicients || Coefficient | Related coefficients
d1x2x34 d3x2x14 C3x4 Cax1
d1xax32 d3xax12 Cax34 Cox14
dax1x43 dax3x41 C1x43 C3x41
d2x34x1 d3x41x2 C4x123
d4x3x21 dax1x23 C1x234 C3%412
d1x23%4 d4x12x3 Cox341
dax3x4 dax1x2 C12x34 C23x41
d1x2x3 b34 b14
d3x4x1 b234 bs12, b341
b1234

Table 2. Minimal set of integral coefficients for 15 213+ 4_".

determined by using symmetry properties of the amplitude and relabelling momenta. These
are mostly straightforward except for the coefficient b341 where we have found the relation,

baa1(11,27,3747) = —boga(27,37,17,47) — boge(27,17,37,47). (5.9)

5.1 Boxes

5.1.1 d]_x2x34

_ 4 .
dixax3a(17,27,3%,47) =C§X)2X3X4 €{1+x2+x3+x4-}

L 2R (A0
2 B GHR (1314 (12)

1 [12](24) (4](2+3)[1] (24)

12
~2(23)(34) (2|(3+4)1] <<4|(2+3)!1] +4<12>m2> (5.10)

5.1.2  dixax3s2

dixaxz2(17,27,3%,47) = Cézx)gx4x1 {2+ x3+x4— x1+} (5.11)

1 23] 5145234 .
T3 (23)2[34] (1](3 + 4)[2] (1](2 + 3)|4] (4m©s934 — 52351234)

5.1.3 da2x1x43

d2><1><43(1+’2+’3+’47) :C§3<)4><1><2é{3+><4*><1+ x2t+} (5.12)
1 [12] (4](1+3)]2)
2 12) Gy (13 + ) @ o (M~ (2 )]
2
% (12) [1451[51151(21(3%”1] (4m? (2|(1+4)[3] = (21) [13] s1234)
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5.1.4 dax34ax1

daxsax1(17,27,37,47) = Céi)3><4><1 {2+ 3+ xd-x1+} (5.13)
L 29) [2<14> (24) (1[G +4)[2] (2((3+4) 1] | (4] +3)[2] (4[(2+ 3)[1]
(12)(23) (12)2(34) 2 (34)
s34 [13] 23] 2( (14)(24)[12] | [13][23] | (24)[14] [23]>
2[34] (12) (34) [34] (23)[34]

5.1.5 d4X3X21

d4><3><21(1+, 2+7 3+7 4_) = C§2><)2><3><4 é{1+ x2+x3+x4-} (5'14)

83482
+ (4m? — s193) <2 % @3] <1|(2+1§§|4] <3|(1+2)|4]>

5.1.6 dix23x4
dl><23><4(1+a 2+7 3+7 4_) = C§?>’<)2><3><4 é{1“’><2""><3+><4_} (515)
5.1.7 d2x3x4

d2><3><4(1+7 2+a 3+>4_) = Cﬂ<)2><3><4 é{1"’><2'*‘><3‘*‘><4—} + C’§5><)3><4><1 é{2'*‘><8‘»+><4—><1'*‘}
(34) [23]?
13 +4)12) (1[(2 + 3)[4]

4m?s934 — 5.16
+ (4m“s234 — S2351234) 2(23) ( ( )

5.1.8  dix2x3

— 5 A 1 ~
d1><2><3(1+a 2+7 3+7 4 ) = C£><)2><3><4 C{1+x2+x3+ x4~} + Czix)1><2><3 €{4-x1+x2+tx3+}
s123 [12] [23]

(BI(1+2)[4] (1](2 +3)[4] (5.17)

+ (4m? — s193) 5

Note that, as expected, this whole expression is invariant under 1 <+ 3 since C£21X2X3 =

5
C§><)2><1><4'

5.1.9 d3x4x]_

d3><4><1(1+; 2+a 3+7 4_) = Céi)3><4><1 é{2"’ x3+tx4—x1+} + C?Ei)4><1><2 é{3+ x4—x1tx2t}
1 514 [2 3] <34>
2(13)(23)* (13 + 4)[2]
1 [12] (14) s34

1 y
2(12)2(13) <3|(1+4)|2](<4!<1+3)!2] (21) + 4m? (14))

((4](1 4 3)[2] (23) + 4m? (34))

(1 4> <3 4> 4814834

1
+§(12><13><23> (13)

+[13] (s123 — 12m?) (5.18)

Note that this is manifestly symmetric under the exchange 1 < 3.
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5.2 Triangles

For the case of the triangle coefficients we divide the coefficient into two pieces, to separate

the mass dependence, see eq. (3.4). For many coefficients the cgi)j term is equal to zero.

For these cases, the full result is given by the m® term and we shall omit the superscript.

5.2.1 C3x4

(14) (43)

c3xa(11,21,3%,47) = 2534 12)23) 13 (5.19)
5.2.2 cCax34
+ ot at 4 (24)°
cax34(17,27,37,4 ):—2(323+524)< 3 23) (34) (5.20)

5.2.3 C1x43

c1xa3(17,2%,3747) = —2(s13 + s14) (

(14) 12
3>} . (521

(0) (2)
5.2.4  C4.1231Cox123

2
(0) 4 oot o0t 4— 3123<314+324+334)
17.27.37.47) = — .22
(L2035 40) = = e g Bl 1 2)4] (12 + 9] (5:22)
oy (1F, 2 3% 47y = 4 Sz (S s ss) (5.23)

(12) (23) BI(1+2)[4] (1/(2+3)4]

(0) (2)
5.2.5  Ciy2345Cix234

(11(2+3)1] (4 (2+3)[1]
(1](2+3)[4] (12) (23) (34) [14]

0 _
ng)234(1+72+73+74 )=-—2

1 41243)[1][23]%  (s124s13)?[34]+523 (12)[23][14]
+(812+813+814) (11(2+3)]4] (2 8345234 B (12)(13)(23) [14][34] )
BIA+4)21(14)[23]*  @4[+3)[1[13]*  (14) (512 (23)+2(13) (24) [14] 524)
(1[(3+4)[2](12) (13) [24] s34 (2|(34+4)[1] (12) [14] s34 (12)%(23) (13) (34) [24] [14]
(5.24)
(2) N _ 8 (4]2+3)|1]°
Clx234(1+’2+’3+’4 )= 5234 (512 +813+514) (23) (34) (2|(34+4)|1]
7 (14)% [23]
4(812“13“14){ (12)7 (34) (3 4)[2] (12 3) ]
B (23] {<12>[13][23]+[1z]<14><24>}
(12) (1(2+3)[4] (1[(3+4)[2] (2](3+4)[1] [34] (34)

(80 | e (24)
[ (12) + (23) :| [(12} (34) (1](2+3)|4] <2‘(3+4)‘1]:| } (5.25)
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0 2
5.2.6 Cg><)3419 Cg>2341

(s12 + 823 + 520) (24)” ((14) (23)” + (12)* (34)%)
(12)°(23)° (14) (34)

0 _
C§><)341(1+’2+’3+a4 ) =2

N (4)(1+3)2]* (s12 + s23) [13]?
s134 (14) (34) (1[(3 +4)[2] (3|(1 +4)[2] ~ (12)[14](23)[34]
N (si2+sos+so0) [12][13°  [12](24)° (4|3 +2)]1]  [12][13]*(24)
s134 [14] [34] 2[(3+4)[1]  (12)(23)(34) 2|3+ 4)[1]  (23)[34] (2[(3 + 4)[1]
+ {13} (5.26)

2 _
022341(1+72+,3+,4

)= 4(s12+523+524) 5134 [12] [32]
(12) (32) [14] [34] (1[(3+4)[2] (3[(1+4)[2]

B 8 (4](143)[2]*
(s12+823+524) s134 (14) (34) (1](3+4)[2] (3](1+4)[2]
4(s12+823+524) [13)° [23]  [12](14) (24)*
[(s13+514) (s23+524) —s12834] | (12) [14] [34] (1 >2 (23) (34)
+{1<—>3} (5.27)
5.2.7 ng)x34vcg22)><34
O b gt gr gy L3 Gt em) Q43I 12 247 @2+
@A s ot (12) (23) [24] 2|3 +4)[1] ~ (12) (23) (34) (2[(3+4)[1]
_ 23] (4](1+3)2] _ 23] s1234
(12) [24] 34) (1|3 +4)[2]  (12) [24] [34] (1[(3 +4)|2]
[1 3]2 (23] s1234 [12] s123 (s123 — S124)

(12) 241 [34] (B +4)11] * (12) (23) [24] B](1 +2)J4]
_ [12) (14) (4)(2+3)[1]
(12) (23) [24] (34)

(5.28)

[12]
(12) (3[(1+2)|4] [(s13 + 514) (523 + 524) — 512 534]

2 _
652)><34(1+’ 2+v3+a4 ) =—4

X [(<1 4> [1 3] — <2 4> [2 3]) (813 + 893 — S14 — 824)

+(12) (34) [13] [23] (2 _ (513 + 523) (513 + 514 + S23 + 824)>

512 534

+(14) (24) [12] [34] <2 _ (S14 + S24) (513 + S14 + S23 + 324)> ]

512 834
(5.29)
5.3 Bubbles
5.3.1 b3y
L 4 (24)% (13)[23]  (14)*(23)[13]
baa(17,27,37,47) = (12)%(13) (23) < (523 + s24) (513 + 514) ) (5.30)
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5.3.2 ba3y

4 (24)” (42 +3)[1]
(17,27 3747) = o) <<1 2)* 213 +4)]
B 4l(2+ 3)|1° (297 23] 34) (5.31)
(2[(3+ 491 (s1231 — 5230)2  (12)2 (523 + 524) '

5.3.3 bi234

Since the full amplitude is finite in four dimensions, one of the coefficients is uniquely
determined in terms of the remainder. We thus have,

brosa(11,27,37,47) = —bsg — bay — bazs — bar2 — bsar (5.32)

where we have suppressed momentum and helicity labels on the right-hand side for brevity.

5.4 Rational terms

1
r(1%,2%,3%,47) = 5[ @ @t ot 3t a4 L (3t 2t 1t 4

2 — 2 _
+ 2,0t 2t 3t 4y 4 B (3T, 2t 1 )
2 — 2 _
el (1F,2F, 3% 47y 4 2, (1F, 2% 3% 47)] (5.33)

6 Coefficients for Hi234(g+,g_,g+a9_; h)

For this helicity combination the coefficients of the scalar pentagon integrals contain a
factor of 1/tr5{1234}* and we must modify the pentagon integral coefficients in a similar
fashion as described for the + 4 4+— configuration in section 5. All coefficients can then be
written in terms of a single function,

+
[34] (12) (12 +3)[4]
(6.1)
This is manifestly symmetric under {1 ¢+ 4, 2 ¢+ 3,() <> [|}. Other coefficients are trivially

A L2 B4EER+3) (13734 (24)°[12]
Cmamatdny = T3 4) (1](2 + 3)/4)

a2l 3)\1])

related via symmetries:

{3+ xd4-x1+x2-} = é{1+><2—><3+><4—}{1 3,24 4} (6.2)
€{4-x1*+x2-x3+} = é{1+><2*><3+><4*}{1 —4,2-1,3-24-=3,() < H} (6.3)
é{2—><3'*‘><4—><1"'} = é{1+><2—><3'*‘><4—}{1 —2,2-3,3->44—-1, <> AN H} (6'4)
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Coefficient | Related coefficients Coefficient | Related coefficients
d4x3x21 dax1x43, d3x2x14, d1x4x32, || C3x4 C4x1,C2x3, C1x2
d1x2x34, d2x3%41, Cax34 C3x41, C4x 12, C1x23
d3x4x12, dax1x23 C1x435 C2x14, C3x 215 C4x 32
d1%23x4 dax34x1, d3x41x2, dax12x3 || Cl2x34 C23%41
d1x2x3 dax3x4, d3xax1, dax1x2 C1x234 C2%341, C3x 4125 C4x 123
b34 b12, ba3, ba1
b234 b3a1, ba12, b123
b1234

Table 3. Minimal set of integral coefficients for 1523+ 4, .

The minimal set of integral coefficients that must be calculated for the colour ordering
H}?3% is shown in the first and third columns of table 3, for example the bubble coefficients
are given by:

b412(1+7 2_7 3+a 4_) = b234(3+7 4_7 1+7 2_)

b123(1+) 277 3+a 47) = b234(4+’ 177 2+7 37)|<><—>H

baar(1%,27,37,47) = bosa(2¥,37,4%,17) (s - (6.5)

The calculation of the coefficients of other colour orderings requires the use of + + — —
functions which are given in the next section.

6.1 Boxes
6.1.1 dsx3sx21

d4><3><21(1+72_73+74_) = é{1+ x2— %3+t ><4—}C§2><)2><3><4 (6'6)
(2[(143)[4] 5 $23) (2|(143)[4] 5345753
(1(2+3)[4] 3](1+2)[4] (12) (3[(1+2)[4]*

1(24)°[34] 5135 | 113 (3453, <2 (18] (4](2-+3)]1]

2 (12) 2 [12] [12]
23] (2[(1+3)[4] (4](2+3)[1]  ,(23) (2|(1+3)[4] (4](1+2)[3]
[12](1](2+3)|4] (12) (3](1+2)|4]

6.1.2 dix23x4

dixosxa(11,27,3%,47) = €1+ %2 X3+ x4-} C£3x)2x3x4
1(24)3 (4/(2 +3)[1] (12)
+L@$@®MD G*”ﬁ@®m0+mmﬂ

+PH&2H&OHM (6.7)

Note that here the symmetrization only applies to the terms in square brackets.
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6.1-3 dlx2x3

_ - 5 A 1 R
d1><2><3(1+72 ,3%,4 ) :C£X)2X3X4 ef1+ ><2*><3+><4*}+Cz(1><)1><2><3 €{4-x1+x2-x3+}

n (12) (23)  os125235123 1 [12][23](24)% (s14+ 524+ 534)
(1[(2+3)[4] (3(1+2)[4] (13)* 2 (14)(34)
1 2 [13] s12: 2, [12]]23](2 4>2
+§[13] 8123+2m2<2 <13>3—[13] +W
_[23](2](1+3)[4] (4] (2+3)[1] | [12](2](143)4] (4](1+2)[3] (6.8)
(34) (1[(2+3)[4] (14) (3[(1+2)[4] )

Note that this is explicitly symmetric under the exchange 1 <> 3.

6.2 Triangles
6.2.1 c3x4

_ —2s834
512 (3|(142) 4] (13)2[24)?
{<3|1|4]3 [824(514+824)+512(823+834)] + <3|1|4}2 <3‘2|4] [5%2 —814(814+SQ4) +S12(38234—5824)}

C3><4(1+72_73+74_)

(6.9)

+ <3\2|4]3 [s13(513+523)+512(S14+534)] + (3]1]4] <3|2|4]2 [3%2—323(313+523)+312(35134—5313)] }
6.2.2 C2x%x34

st 232 (12 +4)}3) [24] + (13 +4)]2) [34])

ol 280 = 2w b o) (13 + O 4P [34

(6.10)

(0) (2)
6.2.3  Ci9x345Ciaxsa

This coefficient is defined in terms of the corresponding coefficient with a scalar loop, ég%)x 34
0 _ —\ _ (0 _ _
C§2)><34<1+7 27,37,47)= C§2)><34(1+7 27,37,47)

21 (18 (34— (24)” (U(B+4)1 (410 +2)14
+{ (12) (34) (1](3+4)]2] (3](1+2)|4] } (6.11)

+{1<—>3,2<—>4}+{1<—)2,3(—>4,<><—>H}+{1<—>4,2(—>3,<><—)H}

2[3+4)[1]
(1 B+4)[2] (3[(1+2)[4]

[23)* (s23—514) 3[13][23]
2

) - - _
Ciawaa(17,27,37 .4 )_{4 [12][34](1|(3+4)[2] ~ 2[12][34]

As3(1,2,3,4) (12)(34)

—|—{1<—>3,2(—>4}—|—{1(—>2,3(—>4,<><—>H}+{1<—>4,2<—)3,<><—>H}

where Aj is given by eq. (B.2).
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The coefficient for a scalar loop is,

+0) — gt gy o (237 B (310+2)13] ((3(14+2)[3] [28] - [12] (14) [34)
(172,574 )_{2 (12) (1](3+4)[2] (3](1+2)[4)"

49 (23)% [34] (4](142)|3] (—2523 — s24)
(12) (1](3+4)[2] (3|(142)[4)
[ 2] (23)? [34] (2512523 — 514 — 534) + 2513523 + 2535 + 14534 — 523534 +2[1 2] (13) (24) [34])
(1](344)12] (3] (1+2)|4)°
[14]2 ((14) (24) (2(s13—524) —3(s34+514) —4(s12+523)) —2(13) [23] (24)%+3[13] (14)* (23))
(1](3+4)]2] (3|(1+2) 4]
534512 (6813—2814+2823+2824)—84114—1—8?4 535 _ 512 513 514 523
(1/(3+4)[2)* (3|(142)[4]* (1](3+4)[2]* (3|(1+2)[4]?
s1481234 (2[(3+4)[1] (4/(1+2)[3] 14 (12) [13] (2(3+4)[1] (4](1+2)[3] (3](1+4)[2]
(11(3+4)[2] (3[(1+2)[4] As(1,2,3,4) (11(3+4)12] (3](1+2)[4] As(1,2,3,4)
(1](243)[4] (2|(3+4)[1] (3](144)|2] (4|(1+2)|3] (11(4,3,2,1)T1(1,2,3,4)+A3(1,2,3,4))
(1)(3+4)|2)% (3|(1+2)]4)* A3(1,2,3,4)
g s (2(344)|1] (4|(1+2)|3] T1(4,3,2,1)T1(1,2,3,4) (s13+ 514+ S23+524)
2 (1](3+4)]2] (3](142)|4] Az(1,2,3,4)2

_l’_

+2

_l’_

+4

_'_

|5 12 (2|B+4)[1] (4](1+2)[3] (s15+s1a+523+524) _ 4 (2/(3+4)]1] (4](1+2)|3]
2 (1[(3+4)12] (3](1+2)[4] As(1,2,3,4) (1](3+4)[2] (3](1+2)[4]
+{1<—>3,2<—>4}+{1<—>2,3<—>4,<>+> []}+{1<—>4,2<—>3,(><—) H} (6.13)

where
(i, 7, k1) = six, + Sjk — sa — Sii (6.14)
and As is given by eq. (B.2).

0 2
6.2.4 C§><)234’ Cg>2234

(0) C et 4oy [13)*
e (17,27,87,47) = =2 12114 32 34]

| (o2t 513 4 510) [13]% [34] [13]% [32]

(1(2+3)4] [14] [23] [24] ~ (1](3+4)[2] [12] [43] [42]
N (24)% (14) N (24)% (12)
(1[(3+4)I2] (13) (12) (34> (1[(2+3)14] (13) (14) (32)
s34 (1](2+ 4)[3] ( 2 {12+ 3)[4] + [34)° <1|(3+4)|2]2> 1
- (112 +3)|4° (113 +4)2)° 23] [34] ] (619

2 _ _
c§><)234(1+72 ,3+,4 ):4

(1[(2 +4)|3] ((14> {
(13 +4)[2] \(12) (

(512 + 513 + S14) [( 24° 137 >
(LB +4)2] 12+ 3)[4] [\(23) (34) [12] [14]
[13] [23]) + (1/(2+4)[3] ((12> (24) n [13] [34]”
(12] [34]/  (1](2+3)[4] \(14) (23) ~ [14] [23]

24)
34)
3 [13]

[12] [14] [23] [34] (s12 + s13 + 514)

(6.16)
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6.3 Bubbles
6.3.1 b3y

[13] (14)? s134
(13) (s13+s14) (1|(3+4)|2)?
L4 (34) (515 + 514) (4](1+2)[3] (2515 + s124)
[12] (1](3+4)|2] (3](1+2)]4]* As(1,2,3,4)
(12) [14]* (34) (4](1+ 2)[3] s134 4 (4](1 4 2)[3] (4[(1 + 3)[4]
(11(3+4)[2] (3](1 +2)4]* A3(1,2,3,4) (1/(3+4)[2]* (3|(1 + 2)[4]
g [13] (34) (1](2 + 3)[4] (4[(1 +2)|3] (5234 — s5134)
(1[(3+4)12]* (3[(1 + 2)]4] Ag(1,2,3,4)

[14] (23) (41 +2)[3] |, [14] 23) (s13 + 514) (4](1 +2)[3] (5123 — 5124)
(1[(3+4)[2] (3|(1 +2)[4] (1](3+4)[2] (3](1 +2)[4]* As(1,2,3,4)
(2((3+4)[1] (4[(1 +2)[3] (5123 — 5124) (5234 — S134) (5134 + S234)

(1/(34+4)|2] (3|(1+2)[4] As(1,2,3,4)2
n <2‘(3 + 4)‘1] <4|(1 + 2)|3] (513 — 5814 —HSs93+ 594 — 14 834) }
(1|(3+4)|2] (3](1 +2)[4] A3(1,2,3,4)

b3s(17,27,3%7,47) = {4

+3

+{1<—>2,3<—>4,<)<—>[]} (6.17)

where Agj is given by eq. (B.2).

6.3.2 bogy
b234(1+,2_,3+,4_) = 45934 [34} (_ <24> [34] i
[24] (5241 530) (1/(2+3)4]
[13] (1[(2+4)|3] 13 34 ] >
(s1934—5234) (1](2+3)[4] [23] [34] | (51234 —52314)  (1](2+3)4]
+H{ze4) (6.18)

6.3.3 biazs
Similarly to eq. (5.32) we have,

bi23a(11,27,37,47) = —b3y — big — bag — by — bazg — b3a1 — ba1o — b2, (6.19)

suppressing momentum and helicity labels on the right-hand side for brevity.
6.4 Rational terms
_ _ 17 2 _ _ 2 _ _
r(17,27,3%,47) = 5[ 52)><34(1+a2 ;37,4 )+Cg2)x34(2+73 AT 1) e

2 — — 2 _ _
+C§>2234(1+,2 a3+74 )+C§><)234(2+73 74+71 )‘[](—)()

+ el (3,47,17,27) + 0, (41,17,27,37) 6y | (6:20)
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Coefficient | Related coefficients Coefficient | Related coeflicients
d1x2x34 d2x1x43, d3x4x12, dax3x21 || C2x3 Cax1
d1x4x32 d3x2x14, da4x1x23, d2x3x41 || C1x23 Cox 145 C3x41, C4x 32
dax34x1 dyx12x3 C23x41
d1x23x4 d3x41x2 C1x234 C2x3415 C3x 4125 C4x 123
d1x2x3 d3xax1, dax1x2, d2x3x4 ba3 b4

b234 b341, ba12, b123

b1234

Table 4. Minimal set of integral coefficients for 1;‘ 23‘ 3,4,

7 Coefficients for H;***(g",g%,97,97; h)

In this case, as for the all-plus helicity amplitude, there are no factors of 1/tr5{1234}2
in the pentagon integral coefficients. Therefore the effective pentagon integral coefficients
simply correspond to the p? — 0 limit, as in the + 4+ ++ case. We thus have,

E{1+x2+x3— x4} = m?(s12 + s34 — 4m2)£1122]><§)2 (7.1)
ottty =g | (oo — 4SS~ 12 (72)
é{4—><1'*‘><2+><3—} = é{2+><3—><4—><1+}{2 4,13, <> A H} (7'3)

The minimal set of integral coefficients that must be computed in this case is shown in
the first and third columns of table 4. For the colour ordering H}?3* the complete set of
related coefficients is given in table 4, for example bubble coefficients are given by:

b341(1+7 2+7 377 47) = b234(2+7 1+747737)
bias(1%,27,37,47) = bosa(47,37,27,17) ()
ot 34

ba12(1 ) = b234(3+,4+, 1, 27)|<><_>H . (7.4)

The calculation of the coefficients of other colour orderings requires the use of + — + —

functions which are given in the previous section.

7.1 Boxes

7.1.1 d1X2X34

o 4 R
dixax34(17,27,37,4 ):C§><)2><3><46{1+><2+><3*><4*} (7.5)
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7.1.2 dixaxs2

24]
2+3)[4] [34]

— = 2 ~
divaxs2(17,2%,37,47) =Cs 1 e A e AT

o 24514535, (1(3+4)12] 1|4 (34)° L1y [12]?
23] (1](2+3)4]> 2 (23) 23]
+2m2[3 [24] (1](3+4)|2) (4](2+3)[1] | [14] (34) 5034
23] (1](2+3) 4] (23)[34]
(34) (3](2+4)|1]
+ 23) ]} (7.6)

7.1.3 dax34ax1

daxaaxt (17,2%,37,47) = C)y 41 Gt xaxa-x1+)
1(34) (113 +4)|2] (2(3 +4)[1] (s34 — 4m?)
2 (12) (14) (23) [34]?

(7.7)

7.1.4 dix23xa

o 3 .
dixasxa(1t,2%,37,4 ):C§><)2><3><46{1+><2+><37><47}

1 [21] [24] 4m? [24]

~g Ul [ww(””‘www)
@38 (. 4m?(13)

n % 114 <12><<43) <1!(2+3)!4]>] (7.8)

7.1.5 dix2x3

d1><2><3(1+7 2+7 37,47) = C§E>)<)2><3><4 é{1+><2+><3*><4*} + Cz&)1><2><3 é{4*><1+><2+><3*}
[12]° (23) (s12 — 4m?)
2 [34] <1 2> [14]

(7.9)

7.2 Triangles

7.2.1 C2x3

CQ><3<1+a2+73_74_> =-2

5923 [1 3}2 S134 <2|(3+4)’1] <24>2 S124 <4‘(1+2)‘3]
(21(1+4)[3)° [14] [34] (14) (12)

(7.10)

7.2.2 ci1x23

s123 (13)” (3|(1 +2)]4]

ere(1,20,87,47) =2 sz + 1) o 0 7 ) P

(7.11)
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0 2
7.2.3 Cgs)x 41 cg3)>< 41

The full coefficient for this scalar integral is defined in terms of the coefficient with a scalar

running in the loop, 5gg)x41’

Cg(:]})x41(1+72+73_a4 ) - 5%%)X41(1+,2+,3_,4_)
+{_ (32)% [21)2 (14)2— (34) (2|(1+4)(2] (4](2+3)[4] } (712)

(23) (14) (2[(1+4)[3] (1](2+3)[4]
+{1<—>2,3<—>4}+{1%3,2H4,<)H[]}+{1H4,2H3,<)HH}

In turn the coefficient for a scalar loop is given by,
~(0 - - ~(0 _ _
053)><41(1+7 2+7 3 74 ) = _Cg2)><34(2+7 3 ) 1+7 4 ) (7'13)

+ —2A(1423)[ (513 = 524) r
C LI+ 4)[3] (12 + 3)4]

(1

{
Yol

(

3|1+
21(1 +

4)[2] (4](2 + 3)[1]
4)[3] (1](2 + 3)[4]

where 6§g)x 44 is given by eq. (6.13) with the appropriate permutation of arguments.

2 g+ ot 35— 4= (24) (3[(1+4)[2] 1 (24) (s13—821)
w2034 {4< S i | pea )
@E+I (12) Elo+1
goorex ] o ‘<34>>]} (714

+{1234}+{13,2<4, ()« [[}+{1<4,2+3,) <[]}

where Aj is given by eq. (B.2).

7.2.4 c§(2234, C:(12>2234
(0) + ot g 4=\ _ (1](3+4)[2] [24]* 212
Cl><234(1 72 73 a4 )_ 2(312+513+514) 5234 <1|(2+3)‘4]3 [23] [34} [14] [23] [34]
_ (s12+813+514) (13) (34)° (34] _ (12) [12]2 24] (7 15)

(12) (1](2+3)14] [34] (14) (23) [14] [23] '

(2) —4 (4]1]2)% ((3]4]1] — (3|2[1))
CIX234(1+ 2+ 3 4 ) S23 <14|3]{ s14(812+ 8513+ 514)

_[12[(34) (512513 +514)
(2 e 5] (7.16)
_2<1|(3+4)|2]<4|(2+3)|1]<3|1|2} (1](3+4)|2)% (4](2+3)[1] (3] 1]4]

(s12+s13+514) (1](2+3)[4] (s12+s13+s14) (1/(2+3)4]°
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7.3 Bubbles

7.3.1 bos
2
bos(11,2F,37,4° —4 (34) sa34 5
34] <4\ 2+3 )14] (1)(2+3)14]
4[ ) (1/(2+3)[1] (3[(4+1)|2] (25124 + 5134 —3514)

[ ]< |(2+3)[4] (2/(1+4)[3]* A3(1,4,2,3)

(14) [13]* (23)* [23] (3](4+1)[2] g (24 [24] (8](4+1)12]
(11(2+3)]4] (2/(1+4)[3]” A3(1,4,2,3)  (1](2+3)|4)* (2/(1+4)|3]
1241 (23) (3[(4+1)[2] ({14) [34] (4](2+3)[1]+{14) (23) [13] [23]+(24) [23] (4](2+3)|4])
(11(2+3) 4] (2(1+4)[3] A3(1,4,2,3)
_y 2O EIA+D] | (14) [34] [13] (23) (4](2+3)[1] (3](4+1)[2]
(11(243)]4] (2|(1+4)[3)° (1/(2+3)[4] (2/(1+4)[3]* A3(1,4,2,3)
+3<4’(2+3)|1] (3](4+1)2] (s124—5134) (5123 — 5234) (5234 +5123)

(1](2+3)[4] (2[(1+4)[3] A3(1,4,2,3)2
| (412+3)]1] (3](4-+ 1)[2] (2525 + 55+ Bssa + 3512+ 5515) }

(1](2+3)[4] (2](1+4)[3] A3(1,4,2,3)
—|—{1<—>4,2<—>3,<>HH} (7.17)

where Agj is given by eq. (B.2).

7.3.2 bogy
4 34) [24)
basa(1F,27,37,47) = S 34) [24] (7.18)
[34] (1](2 + 3)[4]° \ (524 + 534)
L 12 G+ 42 [<1|(2+3)|4] [12] 24] ]
23] (s12 + 513+ 514)% (512 + 513 + S14)
7.3.3 bi23s
Similarly to eq. (5.32) we have,
brasa(17,27,37,47) = —bog — by1 — baga — bsar — a1z — bios, (7.19)

suppressing momentum and helicity labels on the right-hand side for brevity.
7.4 Rational terms
1
r(1t,25,3747) = ¢ &2 (1T, 27,37 47)

2 _ 2 ol
+C§><)234(1+72+73 4 )+C§X)234(2+,1+,4 ,37)

2 o 9 -
+C§X)234(3+’4+’1 '2 )|[}<—><)+ng)234(4+,3+,2 1 )|H<—><) (7.20)
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15,2,,35,4F 15,2.,3,,4F 17,2,,37,4,

Coefficient | Related Coefficient | Related Coefficient | Related
coefficients coefficients coefficients

d3x21x4 d3x21x4 C4x123 C3x412
d4x3x21 d3x4x12 d4x3x21 d3x4x12 b123 ba12
C3x21 C4x12 C3x21 C4x12
C12x34 C3x4
C4x123 C12x34
C3%412 C4x123 C3x412
612 b34
b123 b12
bs12 b123 bs12
b1234 b1234

Table 5. Minimal set of integral coefficients for Hj’4(1;—r,2;73;‘,4;), H434(1(7+,2;739_74;‘) and

H;I"l(qu, 2;,3;, 49_) together with the related coefficients that can be obtained from the base set.

8 Coefficients for H3*(g*,q ,9%,9"; h)
The coefficients that must be computed for this amplitude are shown in table 5.

8.1 Boxes

8.1.1 d3X21X4

(24) (23) tr_{ps P12 s P12}

(0) - - _
d3><21><4(1g72q 73;’4:;) = -2 <1 2> <34>3
L3 [14] sz 121+ 3] 211 +)3)
2 [12] (34) 2 (12) (34)
o| [13] [14] |, (23) (24) [34]
T e TP 1) 3a)? &1)
where we have introduced the notation, (cf. egs. (4.3))
tr—{ps 2 pa 2} = (3[(1 + 2)|4] (4](1 +2)[3] = (s13 + 523) (514 + 524) — 512834 (8.2)
8.1.2 d4xs3x21
_ L1 [34] 21 +3)[4* 1 [13)° [34] s
dixaen (1527 37249) = 5 or iy o] T 2 09 @1 28 (8:3)

Lo |23 B4 2[A+3)14]
(12) (34) (3[(1 +2)4]

[13] [34] (4](2+3)1]
[12] (34) (4](1 +2)[3]
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8.2 Triangles

8.2.1 C3x21

03><21(13_, 2[1_, 32_,4;) =2 (813 + 523) > <<32;>>3 (84)
8.2.2 ng)x34ac§22)x34
D12 35 4 = L Lo —so) (23" [3
A TarRer et [12] (34) 3|(1+2)[4]  (12) (34) (3[(1+2)[4)
N [13]% (s124 — S123 — 834) (24)° [34]°
[12] (34) (4[(1+2)[3]  (12) (34) (4](1+2)[3]
4[13] [14]
D 59
2) - _ 1 [14]* (34)  (23)* [34]
Cl2><34(1g’2q ’3;’4;) - <34>2 <3|(1 +2)|4] [ [1 2] <1 2> ]
4 [13]* (34) (24)* [34]
T BT @+2)3) [ [12] (12) ] 50
8.2.3 ‘34(1(2123acz(12>2123
(0) - _ 2 (2|(1 +3)[4]°
Coan1e: 2030 45) = o7 3y (B + 2) W s
(2((1+4)[3] (2[(1 +3)[4]
— (814 + S24 + S34) (12) (34) tr_{fs o pha o}
[1 3] [1 4] $1234 2 <2 3) <2 4>
+[1m<34>u_U@ﬂmﬁMﬂm}*_<1m<34ﬁ] 8.7)
(2) _ _ 4 (314+$24+834) <23> <24> [34} [1 3] [1 4]
a1 208 45) = G +2>|4]{ Ee [ an s e e
(2/(1 +3)14°
—2 (12) (23) (514 + S24 + S34) S123 } (8.8)
8.2.4 c:gox)41270:(;2x)412
(0) - o 1A+ (12 +4)3]
(120230 45) = P2 o e 2 s
(24) (23)
+ (513 + 823 + 534) | — 21) (43)°
L 1413 [43] (43) (24) (23) [43)?
21] (43) tr_{ps P2 a2} (21) (43) tr—{Ps P12 Vath12}
B [14] B [13]° (8.9)

21] (43) BI(1+2)l4]  [21] (43) (4|(1 +2)[3]
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2 _
C:(ax)412(1gv 2, 73374;) =4

(813 + s93 + 834) <2 4> <2 3) [4 3] [1 4} [1 3]
tr_{ppavipa} | (21) (43)? 21] (43)

(21(1 +4)[3]" (1](2 +4)|3]

-8 <2 1> <1 4> <4‘(1 + 2)‘3] (813 + so3 + 834) S124 (8'10)
8.3 Bubbles
8.3.1 by
_ 4 [13] (23)  [14] (24)
b12(1},2q ’3;’43) B (3 4)2 [(813 +s23)  (s14+ 824)] (8.11)
8.3.2 b123
_ B 4 (34) (24) (2|(1 + 3)|4]?
sl 2435, 45) = (12) (23) 34)% | (514 + 524 + 534)°
(23) (24) 2((1+3)[4] (12) [13] (23)° (8.12)
(514 + 524 + 834) (513 + 523) '
8.3.3 bai2
_ B 1 (23) (34) (2|/(1+4)]3] (1|(2+4)]3]
bually 2,35, 45) = 4 (12) (14) (34) (s13 + 523 + 534)2
(13) 24) @I1+[3) _ (12) (24) 51 51
(513 + s23 + 834) (514 + s524) '

8.3.4 bi234

The final bubble coefficient is given by the relation,
biosa(17,2,,3F,4)) = —b1a — big — baia, (8.14)
where momentum and helicity labels have been suppressed on the right-hand side.
8.4 Rational terms
r(13,2,34.49) = % [C§22)x34(1;v 2,,35,45) + 65122123(1;’ 2,,35,47)
el o (15,2,,35,40)] (8.15)
9 Coefficients for H3*(g",q ,97,9"; h)

The coefficients that must be computed for this amplitude are shown in table 5.

9.1 Boxes
9.1.1 d3x21x4

o 1
dg(221x4(1;’2q ng ’4;-) = 5 <3’(1 + 2)’4] ! - ]
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9.1.2  dsx3x21

d. L (1F,27 37 4t [<23>2 34 147 (34) _, [13] (412+3)]1] ]

1
1+20:39:%) =3 T | 2 2] [12) (41(1+2) 3]

o omP 30131 (3((1+2)14) (412+3)[1] | (23) (2](1+3) 14
2<4(1+2)3][ [12] (4](1+2)[3] + 12) ] (9:2)

9.2 Triangles

9.2.1 C3x4

2 13] (23) 2 1312 (34) (2
o 275,17 = I ED | 200 Gt

(41 +2)13” [12] (4/(1 +2)[3]°
—{1<—>2,3H4,<><—>[]} (9.3)

9.2.2 C3x21

[13] (4](2+3)[1]

c 15,27,37,47) = 2(s13 + s93) s 9.4
wear(lg 2,39 4g) = 2 (01 + sa) 1z 0 T o 4
0 2
9.2.3 ng)xsm C§2)><34
o 24) [13] (3|(1+2)|4
cgg)x34(1g,2q 135, 45) =8 (5124 —5123) (s12+534+2 513 +2 523) (4|<(14>—£)\3]]§A|(3(1,2),‘3,]4)
+((9313—7323—814—824+4834) (24) [14]
1
—(9814—7s24— 13— S23+4534) (23) [13]) X A0 RE
198123 ((s134523)° = (s1a+524)%) (2|(3+4)[1] (3](1+2)[4]
A[(1+2)3] As(1,2,3,4)2
+4 ({3(512+534)+4(813+823+814)} [13] (23)
3|(14+2)|4
—{3(812+834)+4(813+824+514)} [1 4] <24>) X <4|(1+<2)|‘(3] Ag)(|1;|2’374)

[13] 24) 3|(1+2)14]° ¢ [14] (23) Bla+2)|4] | o [14](23)
(4](14-2)|3] As3(1,2,3,4) As3(1,2,3,4) (4](1+2)|3]

e (24)? [34] (s14+524)2
(12) (4/(1+2)[3]°

—24

[1 3} <24> (514+524) (45124—2534)
(4l(+2)[3°

+

+ (813+823) <23> <24> (3144’824*8137823) + 2 <23> <24> [34] (814+824)
(12) (34) (4](1+2)|3)° (12) (4/(1+2)[3)"
—{1<—>2,3<—>47<><—>[]} (9.5)
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O) 1t o a g 1237 44
et (15:2 3740 ={ 3rm (o (12) (34) (4| (1+2)[37
(23) (24) (3](1+2)]4]
—8(s13+s523+514+524) (12) (34) (4](1+2)]3] Aa(1,2,3,4)
_16 [13] (23) (3](1+2)]4] }

4[(112)]3] As(1,2,3,4)

_{1H2,3H4,<>H[]} (9.6)

0 2
9.2.4 Cz(1><)123, Cz(1>2123

2(s14+524+534) [13] (4/(243)[1] 5123
[12] (4](1+2)[3]
<23>2 (514+Sg4+834) [1 4}2 (514+SQ4+834) 2 [1 4]2 [24]

- (12) (34) (4[(1+2)[3]  [12] [34] (4](1+2)[3] " [12] [23] [34]

0 o0
0512123(13_72q ,39 a4;) =

(9.7)
(2) o _ A(s1a+s24+534) [(23) (24)  [13][14]
Cixiza(ly 253 4g) = (4](14-2)|3]? [<12> (34) " [12] [34]]
9 [14]? [24] 0.8)
[12] [23] [34] (s14+ 524+ 834) )
9.3 Bubbles
9.3.1 bay
S e _ (31(1+2)[4]
bsa(17.2; 3, 45) =2 s12 (4](1+2)[3] As(1,2,3,4)
« [3 IB+41] (s1p4—5193) (513 + 514+ 523+ 524)
A3(1,2,3,4)
4o (s124—s123) ((12) [13] (4](2+3)[1] —(24) [12] (2[(1+4)]3])
(4]/(1+2)3]
—3(s123+5124) ((23) [13] —(24) [14]) (9.9)
9.3.2 bs
o B 4 ~(12) [13]% (3](1+2)[4]
b12(1(—1“ra2q a3g 74;_) - { <4‘(1+2)|3]2 [ [34] (813+823)
(3[(142)[4]

G A3 g 92 24 1334 -2(12) 13 (34)°

—(23) (4](1+2)|3] (4](2+3)[1] - (24)° [12] (513+523+514+324)}

—12(s13+523) (2512+S13+523)

2/(3+4)[1] (3(1+2)]4] }
(41(14-2)]3] A3(1,2,3,4)?

—{1<—>2,3<—>4,<><—>[]} (9.10)

~32 -



9.3.3 bi23

S e B [14]% (4](1 + 3)[2]
b1as(17, 23,35 45) = 45023 | (oo T T 9 3] (501 1 590 1 5302
[14] (4](2 + 3)[1] . (23) [13]
[12] (4)(1 4 2)|3]% (5144 s24 + 531) (513 + s23) (4](1 4 2)[3])*

(9.11)

9.3.4 b1234

The final bubble coefficient is given by the relation,
biasa(1F,2,,3,,4,) = —bia — bgs — biag — ba1a, (9.12)

qg>=q>%g7g

where momentum and helicity labels have been suppressed on the right-hand side.

9.4 Rational terms

o 1 _ oo 2 _ o
T(lt}i_’ 2(] ’39 ’4;) = 5 |:C§2)><34(13—7 2q ’3g 74;_) + 6512123(13_7 2q 739 74;_)
2 _
—0512123(237 1,,45,30)1e0)] (9.13)

10 Coefficients for H3*(g*,q,g",97; h)

Most of the coefficients for this amplitude can be easily obtained from those for
H3* (G ,q7,9,9") by performing the following operation:

12, ()«]]. (10.1)

However, for some coefficients, this procedure effectively changes the colour ordering of the
gluons in the sub-amplitude. For this reason it is necessary to specify the four coefficients
shown in table 5. Results for the base set of coefficients are given explicitly here.

10.1 Triangle

0 2
10.1.1 C<(1><)123’ Cz(1><)123

2
01(102123(1:4- 2—- 3+ 4—) —_9 <3 le> <2’(1 + 3)’4] S123 ) <2 4> <2’(1 + 3)’4] 5123

e 2) (3|(1+2)4]° (12) (3|(1 +2)[4]
(247 21+ 3)4] [13]% (s14 + S24 + 534)
(12) (23) 3[(1+2)|4] ~ [12] [34] (3|(1 + 2)[4]
(24)°
(10.2)

~ (12) (23) (34)

(2) _ v (s1a+ 524+ 834) |
C4><123(1zj+72q73;a4g)* 4 <3|(1+2)|4]2 <
(24)°
(12) (23) (34) (s14 + S24 + S34)

+

23) (24)  [13] [14]
12) (34) ' [12] [34]

+8 (10.3)
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10.2 Bubble

10.2.1 b3

- - (24)* (2|(1+3)}4]
(152085 45 ) = 40125 | = T3 053) (311 + 2] (oua + 51 + 500
3 (24) (2|(1 +3)[4] [13] (23)
(12) (3|(1+ 2)‘4]2 (s14 + S24 + s34)  (s13 + s23) (3|(1 + 2)‘4}2

(10.4)

10.3 Rational terms

_ _ 1 e 2 _ _
r(15,2,,35.45) = 5 [052)x34(2;’ 1,35, 40) e + 022123(1372(1 ,35,4,)
2 _ _
—e 328,15, 453 (10.5)

11 Amplitude for 0 — gqqqh

The amplitude for the ggh process with off-shell gluons with momenta ki, k2 has been
given in ref. [9]. Thus our result is exactly given by ref. [9] and is only included here for
completeness.

The amplitude can be obtained by considering the tensor current for 0 — ggh with
two off-shell gluons (with momenta k; and ko),

2 2
TH (k) = =i <m> Pk, k) TR + Pyl ko) TS (11)

The two tensor structures appearing here are,

T%“M = ky - ko gtH2 — k:’luk‘gl (11.2)
THIk2 _ 212 ghike — T R e S T O T (11.3)
L 172 172 2 2™ ™M 1 ™2

and the form factors are given by!

1
FT(kil,kiz):A(klkz){k‘%Q (Bo(kl;m)+Bo(k2;m)*QBo(klg;m)*2]{?1']{7200(]61,]{2;1771))
+(k%—k§)(Bo(kl;m)—Bo(kg;m))}—kl-kzFL(kl,kQ) (11.4)
1 3k’%k‘2-k12
- _ 92_ B . _B .
Fr(k1,k2) A(k:l,k:g){ [ A(k1,k2):| (Bo(k1;m)— Bo(k12;m))
3k2 ky -k ' ‘
+[2_A(k:1,k'2):| (Bo(/%m) BO(k12am))

KT k3 KTy

—4m?+ K2+ k2 + k2, —3 L2712

] C’o(k‘l,k‘Q;m)2} (11.5)

Note that to produce our standard overall normalization for the helicity amplitude we have changed

the normalization of the form factors by a factor of 2 with respect to ref. [9].
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where k12 = ki + ko and A(ky, ko) = k3 k3 — (k1 - k2)?. By contracting eq. (11.3) with
currents for the quark-antiquark lines we then arrive at the result for the amplitude. All
helicity combinations can be obtained from permutations of the single expression,
213+ 4)11] (4](1 +2)[3] + (24) [13] (2p12-p34)
512 834
+2(24) [13] Fr(p12,ps4) - (11.6)

dq1+ +
H, (1q 124 ,3_,,4q,,h)

Fr(p12, p3a)
12 Large mass limit

In the limit of large (top quark) mass our results agree with those obtained in the effective
field theory given by eq. (1.1). For ggggh we have [41-43],

m2HI24 (1 2% 3% 4T h) — % ) <2§>2<3§4> T (12.1)
2p124(1+ oF 3t 4—.h)_>2 _ $taaa [13]" (12.2)
T TR T | T s 3] (1] (2 )P3] 1B+ 1] |
(l2+3)[1° (l2+1)[3)°
s34 (2/(3+4)[1] (34) (23) * s124 (2|(1+4)[3] (14) (21)
o 2 [12]* (34)4
mEH(T, 27,37, 475h) 3 ![12] [23] [34] [41] * (12) (23) (34) (41) (12:3)

In this limit the amplitudes satisfy the dual Ward identity. For example,
HP (AT, 27,3%,4750) + HPP(3Y,1%,27 475 0) + HPP(11,3%,27,470) = 0, (124)

which means that in this limit our amplitude H}?*(1%,27 3% 47;h) is related to two
amplitudes of the form already specified in eq. (12.3). We note in passing that the dual
Ward identity means that, in the effective theory, the subleading-color term represented
by the second line of eq. (2.4) is absent.

For the large mass limit of the ggggh amplitudes we have [42],

(2)(1+4)|3]* [14] [ 1 1
m® H*(1F,2,,3F 4% h) — 3 [ [+}

@199 120 24) s | s
e+ 3 g i 4>] (129)
I 0 [< X 4>>3 34 17 [[11:1]13 B4 (129
m HP (172,35 455 0) = ; [<1<2> <>14<>1<33>4> - [1[21]4[]223[]2??}4]] (12.7)
and for geg'd,
m? HY(1F,2,,3%,4;h) — —% [[1[21]3[};4] + <1<22>4<>;4>] : (12.8)
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13 Conclusions

We have presented analytic results for all helicity amplitudes representing the processes
0 — ggggh, 0 — qqggh and 0 — gqq'q'h, where the interaction is mediated by a loop of
massive fermions and all dependence on the fermion mass is retained. In order to obtain
compact results we have used unitarity techniques and also exploited the correspondence
between this amplitude and the one in which the massive fermion is replaced by a coloured
scalar. In order to further simplify our analytic results to the forms presented here we have
supplemented this approach by the use of momentum twistors and reconstruction from
high-precision numerical evaluations. In combination this powerful set of tools rendered
this calculation tractable.

Our results for the amplitudes were checked using an in-house implementation of the
D-dimensional unitarity method [44] and also against a previous unitarity-based calcula-
tion [10]. Complete agreement was found at the amplitude level. Our results for the squared
matrix elements are also in full agreement with those obtained using the code OpenLoops
2 [14]. A comparison of the evaluation time of squared matrix elements against both the
previous code implemented in MCFM [45-47] and OpenLoops 2 indicates a speed-up by
at least an order of magnitude over previously-available results. Our results have been
implemented in version 9.1 of the code MCFM,? that includes a calculation of the full
matrix elements for the three partonic processes under consideration. Results are given in
the subdirectory MCFM-9.1/src/ggHgg mass of that release and the result for a particular
equation can be found by searching for the text “Implementation”; every file that gives the
result for an integral coefficient contains a comment of the form:

! Implementation of eq.” (x.xx) from arXiv:2002.04018 v2

The results of this paper will be useful for improving calculations of the h+jet process
at NLO in the full theory. The analytic forms presented here will also be useful in their
own right, for understanding the structure of gauge-theory amplitudes. In particular the
simplification of our results due to the choice of effective pentagon integral coefficients may
have deeper origins that remain to be explored.
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A Integrals
We define the denominators of the integrals as follows,

D(0) =2 —m? +ic. (A1)
The momenta running through the propagators are,

b=l+p=L+aq

lig={+p1+p2="L+q

ligg=L+p1+p2+p3s="L+gs
liosa =L+ pr+p2+ps+pi=Ltaq. (A.2)

The p; are the external momenta, whereas the g; are the off-set momenta in the propagators.

In terms of these denominators the integrals are,

H4—n
i 1 n L
Bo(pr1;m) = N TOVIA)
olprim) == —- 05 / D(0) D(t1)’
1 1
m) = — [ d%¢
Co(p1,p2;m) in2 D(¢) D(¢1) D(£12)’
1 1
D(s m) = — [ d%¢
()(p1, p2, p3;m) i D(¢) D(¢1) D(f12) D(f123)

1 1
E m) = —5 [ d
0(pl7p25p3ap47m) ’L'7T2 D(E)D(Bl)D(ZlQ) D(flgg) D(£1234) ;

(A.3)
where 71 = 1/T(1 — €) + O(€?) and [z is an arbitrary mass scale.

B Spinor algebra

All results are presented using the standard notation for the kinematic invariants of

the process,
sij = (pi +0j)?sijk = Di +pj + i) s sijin = (pi + pj + i+ p1)? (B.1)
and the Gram determinant,
As(i, 7,k 1) = (sijr — sij — sp)? — 4555k - (B.2)
We express the amplitudes in terms of spinor products defined as,
(1J) = u—(pi)ut(ps), [id] = uy(pi)u—(p;), (iJ)[it] =2p;i-pj, (B.3)

and we further define the spinor sandwiches for massless momenta j and k,

[l + R =[] GO + [ik] (k1) (B-4)
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In the Weyl representation for the Dirac gamma matrices we have,

0 0 pT p1 — ip2
0 0 pt+ip?  p
0 1 2 3
— _ _ _ = ) B.5
P=7"Po—7 pPL—7"p2—7 D3 'S —pl +ip? 0 0 (B.5)
—pt —ip? pT 0 0

where p* = p® + p3. The spinor solutions of the massless Dirac equation are,
VpT 0
. \/}’)Teiwp _ 0
(p) = 0 , u-(p) = e | (B.6)
0 —/pT

Ut

where
pl + 7po B pl + 2p2

VOOZ+ ()2 et

In this representation the Dirac conjugate spinors are,
iy (p) = ul ()" = [0,0, Vvt \/p—e‘“"p} (B.8)
i (p) = ul (p)y" = [vP‘ei‘P", —\/197,0,0} (B.9)

etir =

p==p"£p’ (B.7)

C Results for tree-level amplitudes with massive scalars

In the following we shall give results for colour-ordered tree amplitudes for a scalar, anti-
scalar pair coupled to n partons (n gluons or n — 2 gluons with a quark antiquark pair).
For the n gluon case the amplitudes are defined as follows,

Abree(p: 1., nyl) =gl Z (teom .t m) 5 AT(L0(1), ..., 0(n); f), (C.1)
O'EEn

where ¥, is the permutation group on n elements, and A% are the tree-level partial
amplitudes. The ¢ matrices are the SU(3) matrices in the fundamental representation
normalized as in eq. (2.2). The massive scalars are in the fundamental representation of
SU(3) and the colour indices of the scalar and anti-scalar are j and j respectively.

We adopt throughout the convention that all momenta are taken to be outgoing.
Correspondingly we have the tree amplitudes with an additional Higgs boson, derived
using the Lagrangian, eq. (3.1),

_ =)
AT (hi ) = () g8 X (@t AT, (€2
O'GZn
We define the denominators of the scalar propagators as D(f) = 2 — m?, which must be
supplemented by the +ie prescription when the propagators are used in loop diagrams,
cf. eq. (A.1). The momenta in the propagators are defined in eq. (A.2), with similar

expressions for /. Because the external momentum p; is light-like, for an on-shell ¢ we may
also write D(¢1) = (1|¢[1].
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C.1 One gluon

ble]1] {1y
Atree(p 1750 <7 A (4175 ,0) = C.3
(G150 = ATETL D =y (€3)
(blef1] (bl¢[1]
tree +.
AP (h, 61750 = [ (1) (1en] — (b1) ( 'u£|1]
(b 0)1] (1]€]1] — (ble|1] (1]€]1]
[ (b1) (11]1] (1]e1] } (C.4)
In egs. (C.3), (C.4) b is an arbitrary light-like momentum.
C.2 Two gluons
Agree(g; 1+7 2+7g) = <17;L> [Dlé]l) (05)
ree( . —. 0\ — <2M|1]2
AFe(617,2 ’E)__W (C.6)
tree 14 o+. 7\ [12] m? m? 1 <1|Z|2} (2]€|1]
A% (h, 617,275 4) = _4<12> {[D(&)D(m) +D(22) D(m)} s [1_ D(&)D(&)]}
(C.7)
tree (2]¢|1)? (211]? (21211] (2)¢/1]
A (h & 1+ 2 Z> B 45 {D(ﬁﬂ)D(gl) +D(5712)D(472) - D(¢1) D(£2) } (CS)

C.3 Three gluons

The spurious poles in the original BCFW form of the amplitudes [48] can be eliminated
and the amplitudes rewritten in the following form [49],

(3160+ 20001 (3102] | [12] (311 +2)113)

Alree Iz 1+’2+73—;E — , C.9
3 ( ) <1 2) 5923 D(El)D(gm) <1 2> $23 8123 ( )

_ 21] (21¢)1] (21213)*  [31] (2|¢]1] (2/¢|3

A g ghig — L[S | [31) el (210

si2s23 | D(()D({12) D(l12)
21 (1 4 3)[2) [13]?
A +3)) 13 .10
5123
By using charge conjugation on eq. (C.9) we also obtain the following result,
{3l +3)en] (211

AFee(4;17,27,3750) = < 42+ 3)4 ] 2y 23) [1‘(2+3)‘£|1]7 (C.11)

[2 3] 512 D(fl) D(ﬁu) B [2 3] S12 $123
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C.4 One gluon, two quarks

For the calculation of the H3*(gqgg; h) we also need the tree amplitude for a pair of SU(3)
triplet scalars coupled to a quark-antiquark pair with an additional gluon.

[13] (21 (1+2+3)2)
(23) s12 5123

qug(ﬁ; 13—7 211_’ 3;—5 ) = Zﬁg? { [(tCB)jjl 6J2J - (tC?))j?j 5j’j1]

» 1o 1 @ +2+3)2)
= )55, 055 = 5 )0 035 (13) (23) s123
", 1. 1 (24125/1] (2[¢]3]
+ ()5, 0505 — N ()57 O (23) s12 D (3)
o 1. 1 (214)1] (2]¢123]3]
+ | (t 3)j2j 0j.jy — N (t 3)j3 Ojnn (23) 512 D (f12) (€12

499 (9. 1+ 9~ 3= 7) — v/ c c (23) [1]£] (1 +2+3) [1]
qug(£7 13_72(] 73g 7£) = /L\/igs { - |:(t 3)jj1 6_72,3 - (t 3)j23 6]1]1] [1 3} 512 8123

» L 116/ (1 +2+3)|1]
_ 3) -y — 3. .=
(t )j2] 5J7J1 N (t )]2]1 5]J:| []_ 3] [2 3] 5123

s L ey s | Clhss[1[1]43)

- -(t )],71 6j2,j - N (t )]_] 5]2:]1:| [1 3] 812D (63)

Ciesy s L ey s | (21 [HAs)3)
- -(t )jg] 6]7]1 N (t )]] 6]27]1:| [1 3] 812D(£12) } (013)

D Numerical value of coefficients at a given phase-space point

In order to assist in the reconstruction of the coefficients in a numerical program we give
the value of all the needed base set of integral coefficients at a given data point. The point
we choose is given by (with p = (E, pz, py, p-)),

1 = (—15k, =10k, +11k, +2k)

S

(
p2 = (—9k, +8k, +1k, —4K)

p3 = (—21k, +4k, —13k, +16kK)

ps = (—7K, +2K, —6K, +3K)

ph = (+52kK, —4K, +7Tk, —17K) (D.1)

with kK = 1/\/£T4 GeV and py, = —p1 —p2 — p3 —pa. This fixes s1934 = 25 GeV?2, M), = 5 GeV
and we further choose m = 1.5GeV. The numerical values of the coeflicients and the
rational terms are given in tables 6, 7 and 8.
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Helicities | Coefficient | Real Part Imaginary Part | Absolute Value

++++ | dixoxza 1.7494424584 0.9145464014 1.9740678903
d1x23x4 5.9642590946 8.6101701300 10.4741308095
d1x2x3 11.9903841330 27.4958119676 29.9964829174
C1%234 18.9100021625 56.3253050259 59.4148817052
r —6.4366316747 | —19.1721417745 | 20.2237792595

+++- | dixoxza —24.3908884307 | —34.1026538098 | 41.9273948071
d1x4x32 —22.2037730441 | —29.7427434881 | 37.1165505885
dox1x43 16.2217246906 —62.9923572563 | 65.0475320412
d2x34x1 —66.4392574700 | 12.9335349956 67.6864185834
daxsxo1 8.2313626631 —0.7960661671 | 8.2697673869
d1x23x4 2.0815256682 —1.7746340633 | 2.7353382179
dox3x4 —0.9920798783 | —1.5084323993 | 1.8054336843
d1x2x3 22.2417370205 1.7066361068 22.3071170816
d3xax1 0.8741489856 —5.3830902459 | 5.4536040418
C3x4 —0.0041638038 | 0.0115576710 0.0122848289
C2x34 3.1035163815 —0.1080335333 | 3.1053961381
C1x43 6.9656648763 —0.8139894264 | 7.0130639492
C4%123 12.7875856866 2.0711796271 12.9542322327
C1%234 —41.8343835373 | —39.3169799861 | 57.4102827129
C2x341 —0.0578594858 | —18.9964204402 | 18.9965085545
C12x34 12.4596639704 —35.5399553316 | 37.6607441672
b3 —0.0409808246 | 0.1015477837 0.1095051613
b3 0.2936947594 —0.0490382211 | 0.2977605730
b1234 —0.9341272666 | —0.1920882562 | 0.9536727156
r —3.8872487587 | 10.3025699409 11.0115235230

Table 6. Numerical values of coefficients and rational terms for + + + + and + + + — helicities of
of ggggh at kinematic point, (D.1).

In addition the values of the colour-ordered amplitudes after substitution of all the
scalar integrals and including the rational terms are,
H'34(1% 2% 3% 4% h) = 429.24088185 — 46.63892079 14,
|[H'234(1F, 27,37, 47 h)| = 55.04741687
H'34(1% 2% 3% 47 h) = —28.10008864 + 9.8368582551,
|H'234(1F, 27,37, 47; h)| = 29.77211383
H™34(17 27 3%, 47 h) = +4.580787288 + 7.498254006 7,
|[H'234(1%,27,3,47; h)| = 8.786775593
H™234(17 27 37,47 h) = +0.369177073 — 1.815728344 1,
|H'234(17 27 37 47 h)| = 1.852879146

(D.2)
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r

1.3340510134

0.8053633104

Helicities | Coefficient | Real Part Imaginary Part Absolute Value

+—+- dax3x21 —17.6953556408 —6.4085129013 10.0143664825
d1x23x4 —2.3752436126 1.8890031582 3.0348171528
di1x2x3 —14.9620839628 —39.7624750054 | 42.4843309359
C3x4 —0.0785670511 0.1424216217 0.1626551563
C2x34 5.9965313107 —4.5593453199 7.5329952546
C12x34 —22.6495761599 21.1031361652 30.9571584004
C1x234 —9.2908649214 —2.0570320613 9.5158579166
b34 0.0682767006 0.0433975227 0.0809015007
bz 2.3825660060 —0.8884219110 2.5428162074
b1234 —4.2679248420 3.0120566624 5.2237599288
r 2.3606586680 0.8025702116 2.4933568319

+4+—- d1x2x34 —0.0125227093 —0.5196169994 0.5197678754
d1x4x32 8.4132295790 —459.7920528912 | 459.8690186715
dax34x1 62.3890431832 —51.7566409441 | 81.0625844095
d1x23%x4 —3.4240833144 4.6410747884 5.7674883386
d1x2x3 —5.4385640586 —6.5811803202 8.5375589853
Cox3 —41.9249189131 —23.3819669075 | 48.0043248295
C1x23 —1036.7850502032 | —480.4884415677 | 1142.7127297817
C23%41 1080.7316959848 740.3414428401 1309.9948284984
C1x234 22.0281339875 —305.0638529285 | 305.8581256899
bas —5.3092820284 —9.1916846550 10.6148736429
baaa —0.8234906782 5.4869406052 5.5483920285
b1234 26.7533037866 15.0643874405 30.7030134100

1.5583010518

Table 7. Numerical values of coefficients and rational terms for +—+— and + + —— helicities of

g9ggh at kinematic point, (D.1).

H3(17,27,3%,4%; h) = —8.998796972 — 13.02970981 4,
|H3* (17,27, 37 47 h)| = 15.83514081
H3(17,27,37,4%; h) = —3.850947633 + 1.7911515301,
|H34(1F,27,37,4%: h)| = 4.247119197
H34(17,27,3%,47;h) = —0.412185752 + 7.682564596 7,
|[H3*(17,27,3%,47; h)| = 7.693613966

(D.3)

HY(17,27,3%,47; h) = 0.620045806 + 4.7030845622 1,
|H49(1%,27,3%,47; h)| = 4.743781319

— 492 —




Helicities | Coefficient | Real Part Imaginary Part Absolute Value
+-++ dax3x21 4.0685161820 —4.0500901147 5.7407363517
dix21x3 425.5033072909 | 1294.6650310348 | 1362.7951449502
C3x21 —73.7590711176 | —242.0029027576 | 252.9936867102
C12x34 14.7023801790 —6.9563781545 16.2650293561
C4x123 32.6756691373 92.0151860555 97.6447326711
C3x412 87.6696567417 249.0681532719 264.0471807982
bi2 1.4197098901 0.3520351648 1.4627046624
b124 —0.5233075583 | —1.0058683561 1.1338527023
b123 —0.7954324907 | —2.6428744805 2.7599815882
b1234 —0.1009698411 | 3.2967076718 3.2982535351
r —5.4119652752 | 0.7153882121 5.4590428130
+-——4 dax3x21 1.0782715488 —4.7280903169 4.8494852900
dix21x3 13.3402061977 —3.4340877490 13.7751246842
C3x21 —0.8475265952 | 2.4513967233 2.5937708504
C3x4 0.0094395944 0.0336984573 0.0349955993
C12x34 —3.7289304305 | —10.8894201371 | 11.5101864919
C4x123 1.7886984296 —1.6881229718 2.4595123988
C3%412 1.8223566626 0.0772529014 1.8239933708
b1o —0.1514791222 | —0.2049070241 0.2548191770
b3y 0.0053272676 0.1024178437 0.1025562991
b124 0.2906270969 —0.1175213822 0.3134890504
b123 0.6201039140 0.1805231188 0.6458463135
b1234 —0.7645791563 | 0.0394874437 0.7655981613
r —0.2305425036 | 1.4755649890 1.4934663983
+—+- Cax123 0.0795879764 —1.9432491013 1.9448782264
b123 —1.0956687877 | 0.8092787161 1.3621388082

Table 8. Numerical values of the needed coefficients and rational terms for +—++, +——+ and

+—+— helicities of the ggggh process at kinematic point, (D.1).
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