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1 Introduction

In the Schrödinger picture of quantum mechanics, unitary evolution mixes the initial state

|ψ〉 with other quantum states as time evolves

|ψ(t)〉 = e−iHt |ψ〉 =
∞∑
n=0

(−iHt)n

n!
|ψ〉 ≡

∞∑
n=0

(−it)n

n!
|ψn〉 . (1.1)

Hence, solving for the time evolution amounts to understanding the states |ψn〉 ≡ Hn|ψ〉, an

understanding which is definitely challenging for chaotic Hamiltonians. Similarly, in the

Heisenberg picture, unitary evolution mixes the initial operator O with other operators

according to

O(t) = eiHtO e−iHt =

∞∑
n=0

(it)n

n!
[H, · · · , [H,O] · · · ] ≡

∞∑
n=0

(it)n

n!
On . (1.2)

In this case, it is the understanding of the operators On ≡ [H, · · · , [H,O] · · · ] that allows

to solve for the time evolution, and ultimately determines any notion of operator growth

one might potentially define.
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The structure of the Heisenberg’s time evolution in chaotic systems has attracted some

recent interest for several reasons. First, due to its expected connection to quantum chaos.

It was found in [1, 2], for the case of SYK [3–5], that certain notion of operator size, to

be reviewed in the main text, is related to out-of-time-ordered correlation (OTOC) func-

tions [6–8]. Second, because of the relation between operator growth, quantum complexity

and the emergence of near horizon symmetries [9–12]. Finally, due to the broader con-

nection between complexity and operator growth, as discussed from different perspectives

in [10, 13–15], such as using Nielsen’s geometric approach to quantum circuit complex-

ity [16, 17] or the recursion method in many-body physics [18].1

The main goal of this work is twofold. First, and most importantly, to discuss the

structure of the operators On in large-N theories, broadly understood as those theories

where large-N factorization holds [23]. These include large-N holographic theories [24–28].

Second, to revisit some of the existent approaches to operator growth, apply them to large-

N theories in the light of our previous analysis, and compare them with quantum circuit

complexity and quantum chaos. Within the context of AdS/CFT [29–31], the present

approach, based on the analysis of the operators On, makes manifest that any notion of

operator growth is the same at both sides of the duality, given the equivalence of Hilbert

spaces, operator algebras, and Heisenberg time evolutions.

Albeit the first objective might seem a hopeless task, given the inherent complexity of a

chaotic Hamiltonian, we will show how large-N factorization and generic finite temperature

properties in relativistic QFTs completely determine the action of the operators On in most

of the relevant states of the theory, at least if the Eigenstate Thermalization Hypothesis

(ETH) [32] holds. Since the action of these operators will be shown to be controlled by the

2-pt function, we conclude that any notion of operator growth is determined by the latter

alone, at leading order in the large-N limit.

As a byproduct of this discussion, we use the operators On in holographic theories to

construct boundary CFT operators closing the bulk Poincaré algebra. Our construction

is analogous to how the Poincaré algebra in free QFT is generated from the algebra of

operators in the two Rindler wedges. It also uses the notion of mirror operators introduced

in the context of holographic bulk reconstruction [25–27]. This emergent Poincaré algebra

controls aspects of bulk infalling physics.

As for the second objective, we first note that, while quantum systems may have

different notions of operator size depending on their nature and dynamics, all of them can

be formulated as expectation values of simple operators within the Gelfand-Naimark-Segal

(GNS) construction. The latter associates a Hilbert space to an algebra of operators, and

maps the Heisenberg evolution of operators to the Schrödinger evolution of states in the

GNS Hilbert space. This observation allows to extend notions of operator growth to QFT,

and large-N theories in particular.

In this vein, before discussing natural notions of operator growth in QFT, we refor-

mulate different existent notions of operator size in spin systems in terms of the GNS

1See [19–21] for further work on operator growth in the context of SYK and [22] for a more generic

discussion in holographic theories.
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Hilbert space. All these notions are given by expectation values of simple operators, such

as the number operator. Given this observation, we consider energy and number opera-

tors as natural size operators in large-N holographic theories. In particular, we stress the

exponential growth of the proper energy operator [10]. This choice reproduces the upper

bound in the Lyapunov exponent in holographic theories and it is intrinsically linked to our

discussion of boundary CFT operators closing the bulk Poincaré algebra. Such emergent

Poincaré algebra thus reproduces known important physics associated to infalling observers

in black holes.

Another existent formalism to study time evolution, mainly in many-body physics, is

the so called recursion method [18]. We apply this method to large-N theories, and find

a closed solution for the basis of orthonormalized operators that solves the 1d diffusion

equation governing the time evolution of operators in this approach. This is accomplished

by a change of basis between the operators typically used in the recursion method (the

Lanczos basis), and the Fourier mode operators that naturally arise in large-N theories,

which set the ground of our approach.

Finally, we end with a discussion relating Nielsen’s geometric approach to quantum

circuit complexity, to operator growth and chaos. These are typically viewed and pre-

sented as independent concepts, but we observe that when one compares the complexity

of formation between a pair of time evolved target states differing by an initial small per-

turbation, the quantum circuit complexity equals the cost to generate the time evolution

of the operator generating the perturbation. Hence, given our previous observations, we

can conclude the variation in the quantum circuit complexity in this situation and operator

growth must be functionally dependent. On the other hand, the connection between circuit

complexity and classical chaos was described in [15], borrowing ideas from [10]. Combining

such recent results with our approach to operator evolution in large-N theories allows for

a simple undertanding of the classical chaotic features in black holes found in [33–35].

This work is organized as follows. In section 2, we discuss the operators On in large-N

theories. In section 3, we first review the construction of the Poincaré algebra using the

algebra of operators in the Rindler wedges in section 3.1. We then apply an analogous

construction to holographic large-N theories in section 3.2. In section 4.1, we reformulate

different notions of operator size in the literature using the GNS construction reviewed in

appendix A. We discuss natural notions of operator growth and the many-body recursion

method in large-N theories in sections 4.2 and 4.3, respectively. We close with a discussion

connecting quantum circuit complexity and operator growth in section 4.4. A summary of

our results and the logic purposed in this work are given in section 5.

2 Operator evolution in large-N theories

The goal of this section is to evaluate the series of nested commutators

On ≡ [H, · · · , [H,O] · · · ] . (2.1)

controlling the Heisenberg time evolution (1.2) in generic large-N gauge theories for a subset

of initial operators O for whom large-N factorization of correlation functions holds [23].

– 3 –
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Consider a local gauge-invariant scalar operator2 O(t, ~x) in a gauge theory defined on

R1,d−1. Its Fourier decomposition

O(t, ~x) =

∫
ω>0

dωdd−1~k

(2π)d

(
O
ω,~k

e−iωt+i
~k~x +O†

ω,~k
eiωt−i

~k~x
)
, (2.2)

defines the non-local Fourier mode operators O
ω,~k

as

O
ω,~k

=

∫
dt dd−1~xO(t, ~x) eiωt−i

~k~x , (2.3)

with a similar expression for O†
ω,~k

.

Even though the energy ω and momentum ~k labels are not related to each other by

means of a dispersion relation, as it occurs for free quantum fields due to the classical

equation of motion, the time evolution of O(t, ~x) remains trivial, as in the latter case.

Indeed, the nested commutators (2.1) equal

On(t) = i−n
dn

dtn
O(t) =

∫
ω>0

dωdd−1~k

(2π)d

(
(−ω)nO

ω,~k
e−iωt+i

~k~x + ωnO†
ω,~k

eiωt−i
~k~x
)
. (2.4)

In particular, each mode satisfies

[H,O
ω,~k

] = −ωO
ω,~k

=⇒ O
ω,~k

(t) = e−iωtO
ω,~k

, (2.5)

and similarly for O†
ω~k

. Hence, these Fourier mode operators do not mix with other operators

as time evolves. For this reason, they are especially suited to study operator growth.

The Fourier decomposition (2.2) trades the problem of understanding operator growth,

characterized by the operators On in (2.4), for the one of understanding the Fourier modes

O
ω,~k

and O†
ω~k

. In general, this is a hard dynamical problem. However, we argue below

that these operators are well understood in large-N gauge theories at finite temperature,

where factorization of higher point functions holds.

Indeed, large-N factorization allows to compute higher point correlation functions in

terms of the thermal 2-pt functions

Z−1β Tr
(
e−βH O

ω~k
O
ω′~k′

)
= Z−1β Tr

(
e−βH O†

ω~k
O†
ω′~k′

)
= 0 ,

Z−1β Tr
(
e−βH O

ω~k
O†
ω′~k′

)
= Gβ(ω,~k) δ(ω − ω′)δd−1(~k − ~k′) ,

Z−1β Tr
(
e−βH O†

ω~k
O
ω′~k′

)
= Gβ(−ω,−~k) δ(ω − ω′)δd−1(~k − ~k′)

(2.6)

where Gβ(ω,~k) is the Fourier transform of the 2-pt function

Gβ(ω,~k) ≡
∫
dt dd−1~xGβ(t, ~x) eiωt−i

~k~x

≡ Z−1β

∫
dt dd−1~xTr

(
e−βH O(t, ~x)O(0,~0)

)
eiωt−i

~k~x .

(2.7)

2The analysis of more generic smeared operators just follow from linearity as we comment further below.
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It follows from (2.6) that the commutators of the Fourier mode operators satisfy

Z−1β Tr
(
e−βH

[
O†
ω,~k

,O†
ω′,~k′

])
=Z−1β Tr

(
e−βH

[
O
ω,~k

,O
ω′,~k′

])
= 0 ,

Z−1β Tr
(
e−βH

[
O
ω,~k

,O†
ω′,~k′

])
=
(
Gβ(ω,~k)−Gβ(−ω,−~k)

)
δ(ω−ω′)δ(d−1)(~k−~k′) ,

(2.8)

up to 1/N corrections. In fact, as stressed in [24] and further developed in [25], due to

large-N factorization, the same statements hold when inserting operators P1 and P2

Z−1β Tr
(
e−βH P1

[
O†
ω,~k

,O†
ω′,~k′

]
P2
)

=Z−1β Tr
(
e−βH P1

[
O
ω,~k

,O
ω′,~k′

]
P2
)

= 0 ,

Z−1β Tr
(
e−βH P1

[
O
ω,~k

,O†
ω′,~k′

]
P2
)

=
(
Gβ(ω,~k)−Gβ(−ω,−~k)

)
δ(ω−ω′)δ(d−1)(~k−~k′)·

· Tr
(
e−βH P1P2

)
(2.9)

involving a number of legs not scaling with N . Therefore, these commutators behave as c-

numbers when inserted in correlation functions within this regime, a characteristic feature

of free fields.

Correlators (2.6) and (2.9), together with linearity, allow us to evaluate the expecta-

tion values of the nested commutators (2.4) in the thermal ensemble at any temperature.

However, for the subset of large-N gauge theories satisfying the Eigenstate Thermalization

Hypothesis (ETH) [32], the set of states in the Hilbert space where the previous correlation

functions hold is much larger. This is because ETH ensures the same expectation values

apply to most energy eigenstates compatible with the physical temperature. Therefore, in

the large-N limit, correlators (2.6) and (2.9) define the action of the operators O
ω,~k
, O†

ω,~k
,

and consequently the action of the On operators, in the basis of eigenstates of the theory,

up to a set of atypical energy eigenstates.3 It is the knowledge of this action, and the

associated expectation values, that actually defines these operators in this limit. Following

the logic in this work, this information determines the time evolution of the initial operator

O(t, ~x) and any notion of operator growth associated with it.4

Let us stress that, mathematically, the correlators (2.6), (2.8) and (2.8) assume the

energy-momentum labels do not scale with N . However, physically, these high energy

modes are not necessary. Since local operators (2.2) have an infinite amount of energy, the

actual physical operators are smeared versions of these

O =

∫
dtdd−1~xf(x, t)O(t, ~x) =

∫
ω>0

dωdd−1~k

(2π)d

(
f̃(ω,~k)O

ω,~k
+ f̃∗(ω,~k)O†

ω,~k

)
, (2.10)

where

f̃(ω,~k) ≡
∫
dt dd−1~x f(t, ~x) eiωt−i

~k~x . (2.11)

To have a well defined (finite energy) operator O, the smoothness of the smearing function

f(t, ~x) must not blow up in the large-N limit. The Fourier transform of such function will

3For a discussion on large-N factorization in chaotic theories and its relevance to ETH, see [25, 28, 36].
4This is typical in probability theory. We can define a random variable by its associated probability

distribution, or equivalently by giving all its moments. From a physical perspective, the second option is

better since the moments are the ones being measured.
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exponentially suppress the modes O
ω,~k

with frequencies and wavelengths scaling with N .

This smearing condition, together with large-N factorization, provides a good and precise

definition of a “simple” operator in large-N QFT’s.5

Before ending this section, it is worth making a couple of closing remarks. First, the

“growth” of the operator (2.2) in space, as defined by the nested commutators[
P j , · · · ,

[
P j ,O(t, ~x)

]
· · ·
]

= (−i)n d
n

dxnj
O(t, ~x) (2.12)

=

∫
ω>0

dωdd−1~k

(2π)d

[
knjOω,~k e

−iωt+i~k~x + (−kj)nO†
ω,~k

eiωt−i
~k~x
]
.

is also determined by the same 2-pt functions above. Second, the generators of time (H)

and space ( ~P ) translations reduce to

H =

∫
ω>0

dωdd−1~k

(2π)d
ωO†

ω,~k
O
ω,~k

and ~P =

∫
ω>0

dωdd−1~k

(2π)d
~kO†

ω,~k
O
ω,~k

, (2.13)

in the large-N limit we are considering.

Modular time evolution. Besides unitary time evolution, there is a second natural

notion of evolution, modular time evolution, when restricting physics to subregions of

spacetime (see [37] for a review). Modular time evolution is defined as the unitary evolution

generated by the modular hamiltonian Hmod in the region of interest

O(s) ≡ eisHmodOe−isHmod = ρ−isOρis , (2.14)

where Hmod is related to the reduced density matrix6 in this region ρ, as ρ = e−Hmod .

It is interesting to ask for the structure of operator evolution in this context.7 Since

O(s) = eisHmod O e−isHmod =
∞∑
n=0

(is)n

n!
[Hmod, · · · , [Hmod,O] · · · ] ≡

∞∑
n=0

(is)n

n!
Omod
n ,

(2.15)

this structure is determined by the operators

Omod
n ≡ [Hmod, · · · , [Hmod,O] · · · ] , (2.16)

which are the only ones with whom the initial operator mixes through modular time evolu-

tion. Proceeding as before, we can Fourier transform the fields, but against modular time

evolution

Oω =

∫
ds O(s) eiωs (2.17)

This allows for a simple computation of the action of Omod
n in all eigenstates of the theory,

in the vein of (2.4), if the correlators of the modular field modes are gaussian, as expected

for holographic theories with free bulk duals.

5In the context of spin systems, a “simple” operator is defined as one involving the product of an O(1)

number of spins.
6In QFT care has to be taken when defining these objects, but modular time evolution is well and

unambiguously defined, see [37] and [38] for example.
7Operator growth in the context of modular time evolution has also been considered recently in [39].
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3 Emergent Poincaré algebra in holographic theories

The arguments of the previous section apply, as a particular case, to large-N holographic

theories. For such theories, the dual bulk description to the CFT at finite temperature is

a black hole [40]. The spectrum of low energy bulk excitations is captured by a small (not

scaling with N) number of boundary generalized free fields, whose Fourier modes satisfy

similar commutation relations to the ones in (2.9) (see below for a more precise account).

It follows from section 2 that the time evolution of these boundary operators is controlled

by thermal 2-pt functions, up to 1/N corrections.

Consider now low energy bulk excitations near the black hole horizon. The geome-

try they probe is locally equivalent to a Rindler horizon. We can ask whether the exact

relations satisfied by 2-pt functions in a fixed Rindler spacetime, characterizing the differ-

ences between infalling and uniformly accelerated observers in free QFT, will continue to

hold at lowest order in a 1/N expansion in the holographic set-up. Similarly, we can ask

whether we can see the relations between infalling and acelerated observers directly in the

CFT description. The objective of this section is to provide a constructive answer to these

questions, just based on the observations made in the previous section.

More concretely, our logic will proceed as follows. Free QFT in Rindler spacetime is

Poincaré invariant. Motivated by the black hole scenario and the questions above, we can

ask how to build operators closing an exact Poincaré algebra out of the algebra of operators

existing in the right Rindler wedge alone. We will review such construction in section 3.1,

stressing it simply relies on the algebra satisfied by the Rindler creation/annihilation op-

erators. But this is the same algebra satisfied by the Fourier modes of the generalized

free fields, dual to the bulk excitations in the boundary CFT. Therefore, we will conclude

that applying the same Rindler construction to large-N holographic theories gives rise to

boundary CFT operators closing the bulk Poincaré algebra at lowest order in a 1/N ex-

pansion. The implications of this construction for operator growth will be discussed in the

next section.

3.1 From Rindler to Poincaré

Consider a free quantum scalar field of mass m in R1,d. We want to review how to construct

the relevant generators of the Poincaré algebra starting from the operator algebra in the

right Rindler wedge plus the associated thermal state on it. To set some notation, let

us decompose the space directions into z and ~x, with conjugate momentum kz and ~k,

respectively, so that z corresponds to the direction along which the Rindler observer is

uniformly accelerated. Local fields in the right Rindler patch can be expanded in terms of

creation and annihilation operators

âR
ω~k
, âR†

ω~k
(3.1)

satisfying the standard commutation relations[
âR
ω~k
, âR†

ω′~k′

]
= δ(ω − ω′)δ(d−1)(~k − ~k′) . (3.2)

– 7 –
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Since ω stands for the Rindler energy, time evolution in this Rindler wedge is generated by

the operator

ĤR =

∫
dω d~k ω âR†

ω~k
âR
ω~k
. (3.3)

It follows that each operator âR
ω~k

evolves as

[ĤR, âR
ω~k

] = −ω âR
ω~k

⇒ âR
ω~k

(t) = e−iωt âR
ω~k

(3.4)

as usual in free quantum field theory, with a similar expression for âR†
ω~k

(t). Linearity extends

these claims to local quantum fields. Notice Rindler time is labelled as t. Minkowski

operators and coordinates will carry an M superscript.

Consider a thermal state ρβ in the right Rindler wedge quantum field theory (QFT)

with β = 2π
a , where a stands for the proper acceleration defining the Rindler frame. The

state ρβ is well known to be the reduced density matrix of the pure state |0M〉, i.e. the

vacuum of the QFT in Minkowski (see [41] for a review and more details about QFT in

Rindler space). This purification involves a duplication of the operator algebra giving rise

to a new set of operators

âL
ω~k
, âL†

ω~k
(3.5)

corresponding to the creation and annihilation operators in the left Rindler wedge from the

perspective of the full Minkowski spacetime. These operators commute with the original

ones (3.2) and altogether form a complete basis of operators in the Minkowski Hilbert

space. This matches the general Gelfand-Naimark-Segal (GNS) representation of thermal

states reviewed in appendix A, for later convenience. In this appendix, the origin of the

duplication of the algebra responsible for the canonical purification of the thermal Rindler

density matrix ρβ in the current discussion is explained in detail.

The Minkowski vacuum |0M〉 is determined by the relations(
âL
ω~k
− e−π

ω
a âR†

ω (−~k)

)
|0M〉 =

(
âR
ω~k
− e−π

ω
a âL†

ω (−~k)

)
|0M〉 = 0 . (3.6)

These allow to write the action of both âL
ω~k

and âL†
ω~k

on |0M〉 in terms of operators acting on

the right wedge. Notice that in our conventions, those of ref. [41], Rindler time in the left

wedge also runs in the same direction as in the right Rindler wedge. To get the opposite

conventions typically used in black hole physics and holography [42], one needs to perform

the replacement âL†
ω (−~k)

→ âL†
ω~k

.

Given this complete basis of operators, there are two additional bases one can introduce

which will be relevant in what follows. The first is the set of creation and annihilation

operators associated with Minkowski time evolution

âM
kz~k

=

∫ ∞
0

dω√
2πaω~k

1√
1− e−2πω/a

×
[
eiϑ(kz)

ω
a

(
âL
ω~k
− e−π

ω
a âR†

ω (−~k)

)
+ e−iϑ(kz)

ω
a

(
âR
ω~k
− e−π

ω
a âL†

ω (−~k)

)]
,

(3.7)

where

ϑ(kz) =
1

2
log

(
ω~k + kz

ω~k − kz

)
, (3.8)

– 8 –
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is the standard rapidity in relativistic physics and ω2
~k

= m2 + k2z + |~k|2 is the on-shell

Minkowski frequency carried by each mode. In this basis, the generators of Minkoswki

time and spatial z translations are the standard expressions

ĤM =

∫
dkz d

d−1~k ω~k â
M†
kz~k
âM
kz~k

,

P̂M
z =

∫
dkz d

d−1~k kz â
M†
kz~k
âM
kz~k

,

(3.9)

whereas the number operator equals

N̂M =

∫
dkz d

d−1~k âM†
kz~k
âM
kz~k

. (3.10)

Notice that using (3.6), any Minkowski mode can be easily generated by acting with oper-

ators in the right wedge

âM†
kz~k
|0M 〉 =

∫ ∞
0

dω√
2πaω~k

√
2 sinh

πω

a

[
e−i

ω
a (ϑ(kz)+iπ2 ) âR

ω (−~k) + ei
ω
a (ϑ(kz)+iπ2 )âR†

ω~k

]
|0M〉 .

(3.11)

The second additonal basis is the Unruh basis, defined by an appropriate normalisation of

the operators annihilating |0M〉 in (3.6)

b
+ω,~k

=
1√

1− e−2π
ω
a

(
âL
ω~k
− e−π

ω
a âR†

ω (−~k)

)
,

b−ω,~k =
1√

1− e−2π
ω
a

(
âR
ω~k
− e−π

ω
a âL†

ω (−~k)

)
,

(3.12)

together with b†
±ω,~k

. These operators satisfy standard commutation relations[
b̂±ω~k , b̂

†
±ω~k

]
= δ(ω − ω′)δ(~k − ~k′) . (3.13)

They are convenient to determine the thermal nature of the Rindler modes in |0M〉 [43].

Indeed, using

âR
ω~k

=
b̂−ω~k + e−π

ω
a b̂†

+ω−~k√
1− e−2π

ω
a

, âL
ω~k

=
b̂
+ω~k

+ e−π
ω
a b̂†
−ω−~k√

1− e−2π
ω
a

, (3.14)

and the fact that Unruh modes annihilate |0M〉 (eq. (3.6)), one easily finds

〈0M| âRω~kâ
R
ω~k
|0M〉 = 〈0M| âR†

ω~k
âR†
ω~k
|0M〉 = 0 ,

〈0M| âRω~kâ
R†
ω~k
|0M〉 =

eβω

eβω − 1
δ(ω − ω′)δ(d−1)(~k − ~k′) ,

〈0M| âR†
ω~k
âR
ω~k
|0M〉 =

1

eβω − 1
δ(ω − ω′)δ(d−1)(~k − ~k′) .

(3.15)

The associated Unruh number and energy operators, labelled with a U superscript, are

ĤU =

∫ ∞
0

dω

∫
dd−1~k ω

[
b̂†
ω~k
b̂
ω~k

+ b̂†
−ω~k

b̂−ω~k

]
,

N̂U =

∫ ∞
0

dω

∫
dd−1~k

[
b̂†
ω~k
b̂
ω~k

+ b̂†
−ω~k

b̂−ω~k

]
.

(3.16)

It can be verified by direct computation that N̂U = N̂M.
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We now have all the required ingredients to construct the generators of the Poincaré

algebra. Indeed, the operators (3.9) generate time and space translations, whereas the

total Rindler Hamiltonian, in appropriate units,

K̂M
z =

1

a

(
ĤR − ĤL

)
, (3.17)

gives rise to the boost operator. Let us stress that we view all three operators as implicitly

(or indeed explicitly) defined in terms of the right Rindler wedge operators satisfying the

commutation relations (3.2), and placed in thermal state ρβ . Using these and the definition

of the Minkowski creation/annihilation operators (3.7), one can verify ĤM , P̂M
z and K̂M

z

satisfy the commutation relations characteristic of the Poincaré algebra[
ĤM, K̂M

z

]
= iP̂M

z ,
[
P̂M
z , K̂

M
z

]
= −iĤM . (3.18)

To summarize, using the free algebra of creation and annihilation operators in the

right Rindler wedge, the canonical duplication of the algebra in the thermal state, and the

definition of the Minkowski vacuum (3.6), we constructed a set of operators ĤM, P̂M
z

and K̂M
z , implicitly defined using (3.7) and its hermitian conjugate, closing the exact

Poincaré algebra.

3.2 From boundary CFT to bulk Poincaré algebra

Let us consider large-N holographic theories. Due to large-N factorization, thermal corre-

lation functions are determined by (2.6) and (2.9). As noticed in [25], a normalised version

of the Fourier operators appearing in section 2

Ô
ω,~k
≡

O
ω,~k(

Gβ(ω,~k)−Gβ(−ω,−~k)
)1/2 =

1√
Gβ(t,~k)

O
ω,~k√

1− e−βω
, (3.19)

have canonical commutations relations and their thermal expectation values satisfy

Z−1β Tr
(
e−βHÔ†

ω,~k
Ô
ω′,~k′

)
=

1

eβω − 1
δ(ω − ω′)δd−1(~k − ~k′) ,

Z−1β Tr
(
e−βHÔ

ω,~k
Ô†
ω′,~k′

)
=

eβω

eβω − 1
δ(ω − ω′)δd−1(~k − ~k′) .

(3.20)

Hence, these operators display the same algebra and expectation values as the right Rindler

wedge creation/annihilation operators in (3.2) and (3.15). We use this observation to

explicitly construct boundary CFT operators closing the bulk Poincaré algebra, up to 1/N

corrections, for both 2-sided and 1-sided holographic AdS black holes.

2-sided AdS black holes. If the state in the (right) CFT is exactly thermal, we can

canonically purify it by the associated thermofield double state

|TFD〉 ≡ 1√
Z(β)

∑
i

e−
βEi
2 |Ei〉L ⊗ |Ei〉R (3.21)

belonging to the duplicated Hilbert space HL ⊗ HR. This pure state matches the GNS

construction of the thermal state reviewed in appendix A.1. It is holographically dual to
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the 2-sided eternal AdS black hole [42]. Since the algebra of operators is also duplicated,

it gives rise to two sets of commuting modes O†
Lω,~k

and O†
Rω,~k

satisfying the same algebra

and with the same expectation values as in (2.6) and (2.9). They also verify the relation(
Ô

Lω,~k
− e−

βω
2 Ô†

Rω,~k

)
|TFD〉 =

(
Ô

Rω,~k
− e−

βω
2 Ô†

Lω,~k

)
|TFD〉 = 0 . (3.22)

The origin of this equation is explained in appendix A.1. It is an special case of eq. (A.18),

and it is basically equivalent to (3.6), the equation defining |0M〉 in the Rindler discussion.

As stressed there, our conventions involve time running in the same direction in both

wedges. Furthermore, the Rindler acceleration a is mapped to the black hole temperature

using β = 2π
a .

Given the equivalence between the algebra of left/right creation/annihilation operators

in Rindler, and the left Ô
Lω,~k

, Ô†
Lω,~k

and right Ô
Rω,~k

, Ô†
Rω,~k

Fourier modes belonging to

the two boundary CFT Hilbert spaces, we can now proceed analogously to our discussion

of the different bases of operators and Poincaré generators associated to Rindler physics.

In particular, the generator of time translations in the right CFT reduces in the large-N

limit to

ĤR =

∫
dω d~k ω Ô†

Rω,~k
Ô

Rω,~k
. (3.23)

The Unruh creation/annihilation operators can be defined by

OU
+ω,~k

=
1√

1− e−βω
(
Ô

Lω,~k
− e−βω/2 Ô†

Rω,~k

)
,

OU
−ω,~k =

1√
1− e−βω

(
Ô

Rω,~k
− e−βω/2 Ô†

Lω,~k

)
,

(3.24)

while Minkowski annihilation modes can be defined by

OM
kz~k

=

∫ ∞
0

dω√
2πak0

1√
1−e−βω

(3.25)

×
[
ei2πϑ(kz)ω/β

(
Ô

Lω,~k
−e−βω/2 Ô†

Rω,~k

)
+e−i2πϑ(kz)ω/β

(
Ô

Rω,~k
−e−βω/2 Ô†

Lω,~k

)]
.

These operators allow us to define operators generating Minkowski time and spatial z

translations by

ĤM =

∫
dkz d

d−1~k ω~kO
M†
kz~k
OM
kz~k

P̂M
z =

∫
dkz d

d−1~k kz OM†
kz~k
OM
kz~k

, (3.26)

where ω2
~k

= m2 + k2z + |~k|2. The associated number operator is just given by

N̂M =

∫
dkz d

d−1~kOM†
kz~k
OM
kz~k

. (3.27)

Since the algebra of the modes Ô
Rω,~k

and Ô
Lω,~k

, together with the expectation values in the

thermofield double, are equal to the ones in the Rindler discussion, up to 1/N corrections,

we conclude these boundary CFT operators close the same bulk Poincaré algebra[
ĤM, ĤT

]
= iP̂M

z ,
[
P̂M, ĤT

]
= −iĤM , (3.28)
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where the boost operator ĤT is the total boost Hamiltonian of the two decoupled CFTs

defined by

ĤT =
β

2π

(
ĤR − ĤL

)
(3.29)

This is the same as in the Rindler discussion (3.17), after the replacement a→ 2π/β.

1-sided AdS black holes. The proposal on bulk reconstruction of the black hole interior

developed in [25–27] extends the previous discussion to single AdS black holes involving a

single boundary CFT. Observing that energy eigenstates |Ei〉 are well approximated by

the thermal ensemble, one can work within the code subspace [44, 45] and show that |Ei〉
is a cyclic and a separating vector in the Hilbert space with respect to the code subspace

algebra [28, 36]. The Tomita-Takesaki theorem8 guarantees the existence of a non-trivial

“mirror” commutant. The mirror operators Õ
ω,~k

generating this commutant play a similar

role to the operators O
Lω,~k

in the 2-sided discussion, but they belong to the same boundary

CFT dual to the single AdS black hole. Mirror operators are state dependent and defined

by the relations

Õ
ω,~k
|Ψi〉 = e−

βω
2 O†

ω,~k
|Ψi〉 ,

Õ
ω,~k
O
ω1,~k1

. . .O
ωn,~kn

|Ψi〉 = O
ω1,~k1

. . .O
ωn,~kn

Õ
ω,~k
|Ψi〉 ,[

H, Õ
ω,~k

]
O
ω1,~k1

. . .O
ωn,~kn

|Ψi〉 = ω Õ
ω,~k
O
ω1,~k1

. . .O
ωn,~kn

|Ψi〉 ,

(3.30)

which only hold within the code subspace. As discussed in [28], there are some ambiguities

regarding the 1/N extension of these operators, but for us it will be enough to work

within the code subspace. This, together with microstates |Ei〉 being well approximated

by the canonical ensemble, ensures the defining properties (3.30) give rise to an algebra

and correlation functions that are equivalent to the algebra of the O
Lω,~k

in the 2-sided

discussion, and therefore to the algebra of annihilation operators in the left wedge. We

can thus proceed anagolously to the 2-sided discussion. In particular we can define the

different basis and generators, including the Poincaré ones, by the very same formulas, just

changing the modes O
Lω,~k

by the mirror modes Õ
ω,~k

.

Let us summarize the results of this section. Building on the transparent construction

in Rindler spacetime, where the Poincaré algebra is seen to directly rest on the algebra

of operators in the right wedge (together with an appropriate thermal state), we have

established the existence of CFT operators in large-N CFTs closing the bulk Poincaré

algebra both in the 2-sided and 1-sided black hole scenarios. This algebra describes the

experience of infalling observers in black holes.

4 Growth measures

As argued in section 2, time evolution of simple perturbations in large-N theories at any

finite temperature is captured by the Fourier modes O
ω,~k

and O†
ω,~k

. These modes allow

8See the book [37] for a physics introduction, the summary done in ref. [26], or ref. [38] for a recent review.
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for the evaluation of the series of nested commutators (2.1) in any energy eigenstate com-

patible with the given temperature if the theory satisfies the ETH conjecture. Within

the large-N limit,9 this operator structure should be enough to characterize any notion of

operator growth.

In this section, we confirm this last expectation by exploring several notions of oper-

ator growth. We start by reviewing some recently introduced notions of operator growth,

such as operator size in spin systems or the recursion method in many-body physics. We

then provide a general framework to study operator growth in QFT, based on the GNS

construction reviewed in appendix A. Lastly we apply the approach to large-N theories.

Albeit our applications will be confined to such theories, the present GNS approach might

help to understand the putative definitions of operator growth in generic QFT’s.

We close the section with a discussion on the relation between Nielsen’s geometric

formulation of quantum circuit complexity, operator growth and quantum/classical chaos.

In particular, we show that the quantum circuit complexity of a perturbed state equals the

cost of generating the time evolved operator responsible for the perturbation. Quantum

circuit complexity and operator growth are thus functionally dependent in this precise

manner. Using the results in previous sections, we conclude both are determined by the

nested operators (2.1) we computed in the large-N limit.

4.1 Operator growth as state mixing in the GNS construction

To define any notion of operator growth, it is natural to require the ability to expand a

given operator in different bases of the space of operators, in order to quantify how the

support of the operator changes with time. Hence, given an operator algebra A, we need

an inner product endowing A with the structure of a Hilbert space. This is precisely the

goal of the GNS construction, which is reviewed in appendix A. Here we briefly summarize

its main ingredients. Given a state10 φ acting on the algebra A satisfying

A ∈ A , φ(A†A) = 0 ⇐⇒ A = 0 , (4.1)

the GNS Hilbert space Hφ and its inner product are defined by

A ∈ A ⇒ |A〉 ∈ Hφ , 〈B|A〉 ≡ φ(B†A) . (4.2)

In this Hilbert space there are two equivalent representations π and π̄ of the algebra A
acting on Hφ

A ∈ A ⇒ |A〉 ∈ Hφ , π(A)|B〉 ≡ |AB〉 , π̄(A)|B〉 ≡ |BA†〉 . (4.3)

9Our discussion focuses on large-N theories, but it also applies to free QFT in Rindler space given

the algebraic equivalence between Rindler operators and the Fourier modes Oω,~k and O†
ω,~k

, as explicitly

discussed in section 3. To our knowledge, operator growth in Rindler space has not been considered in the

literature and it is useful to gauge away some of the confusions arising when defining the notion of operator

growth in QFT.
10The word state refers to a linear functional acting on the algebra A as properly defined in (A.2). This

is the standard terminology used in algebraic QFT [37].
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This construction is valid for any type of operator algebras, including the type III algebras

relevant for QFT.

Consider states |κ〉 arising from abstract states in the algebra which are invariant under

time evolution, such as thermofield double states.11 In this context, the GNS construction

maps the Heisenberg time evolution A(t) of any operator belonging to the algebra to the

Schrödinger’s time evolution of the associated GNS state

U(t)π(A)|κ〉 ≡ π(A(t))|κ〉 = |A(t)κ〉 ≡ |Ψ(t)〉 , (4.4)

The same conclusion holds for the representation π̄.

Since operator evolution is equivalent to state evolution in the associated GNS Hilbert

space, any notion of operator growth should be characterized by expectation values of size

operators in the GNS Hilbert space Hφ

〈Ψ(t)|
∑
ij

π̄(Bi)π(Bj)|Ψ(t)〉 , (4.5)

as any other property attached to states in Hφ. In the previous relation Bj runs over a

basis of operators of the algebra.

Albeit the previous formulation might seem too abstract, below we describe how recent

examples in lattice systems look through this light. The advantage of the present formu-

lation is that it will prove to be useful and trasnparent as well when we move towards

large-N CFT’s.

Operator size for simple Majorana operators. Before exploring this perspective for

large-N theories, we briefly comment on how the case of Majorana spin systems at infinite

temperature [1] and its extension to finite temperature [2] fit in this framework.

Consider a set of N fundamental Majorana operators normalized by {ψa, ψb}2 = 2δab.

Every operator ψ in the algebra A can be expanded as

O =

N∑
s=1

∑
a1···as

ca1···asψa1 · · ·ψas . (4.6)

The size of such operator was defined by [1]

SO =

N∑
s=1

s
∑
a1···as

|ca1···as |2 . (4.7)

This is natural if one thinks of the label s as describing, either location in a 1d lattice, or

directly in terms of the number of fundamental fermions building the operator.

The connection to the GNS construction is as follows. One assigns a vector |O〉 ∈ Hφ
to every operator O ∈ A with GNS inner product

〈O|O′〉 ≡ 1

Z
Tr(O†O′) , (4.8)

11Notice that this can be straightforwardly generalized to states invariant under so-called modular time

evolution. Also, notice that this definition is not restricted to time-independent states. Starting with the

invariant one we can move to other states by using elements of the algebra. These states would then evolve

as it is described.
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where Z is the dimension of the Hilbert space Z = Tr(1) induced by the normalized inner

product for finite matrices. It follows the identity element of the algebra 1→ |1〉 and the

inner product can be interpreted as an expectation value at infinite temperature. There is

one natural representation of the algebra in Hφ, defined by π(O)|O′〉 = |OO′〉. This allows

to define unitary time evolution in the GNS Hilbert space by

Utπ(O)|1〉 ≡ π(O(t))|1〉 = |O(t)〉 . (4.9)

This gives a concrete example on how operator evolution is seen as state evolution in the

GNS Hilbert space.

Within the GNS construction, there exists an operator Ŝ acting on Hφ

Ŝ =

N∑
s=1

s
∑
a1···as

π(ψa1 · · ·ψas)|1〉〈1|π(ψa1 · · ·ψas) =

N∑
s=1

s
∑
a1···as

|ψa1 · · ·ψas〉〈ψa1 · · ·ψas | ,

(4.10)

satisfying

SO(t) = 〈O(t)|Ŝ|O(t)〉 . (4.11)

Hence, the notion of size (4.7) equals the expectation value of Ŝ in the GNS state |O(t)〉 that

is mapped to the time evolution of the original operator O(t). This matches our general

expectation that any notion of operator growth should be computable by expectation values

evaluated on the GNS state. In fact, introducing creation c†i and annihilation ci operators

in Hφ by

ci|ψa1 · · ·ψas〉 = δi,a1 |ψa2 · · ·ψas〉+ · · ·+ δi,as |ψa2 · · ·ψas−1〉 ,

c†ici|ψa1 · · ·ψas〉 = δi,a1 · · · δi,as ,
(4.12)

the size operator (4.10) can be reinterpreted as a number operator

Ŝ =
N∑
i=1

c†ici . (4.13)

Hence, we learn there is a basis of operators in Hφ where a natural notion of size in this

lattice system is a simple quadratic operator.

This notion of size in lattice systems was extended to finite temperature in [2] by

purifying the thermal ensemble of the Majorana fermions. Such an approach is directly of

the GNS form, as reviewed in appendix A.1, but using fermionic operators. Hence, our

conclusions extend to this finite temperature case too.

Alternative notions of operator size Depending on the dynamics and state of the

system, operator size defined as in (4.7) may not be a dynamical quantity. This can

happen even if the complexity of the operator grows. Indeed, if the Hamiltonian preserves

the number of particles, the previous definition of operator size will be a conserved charge

for a natural class of initial states, as we review now.

Consider a bunch of spinless fermions whose hamiltonian conserves the number of

particles. Any state can be expanded as

|ψ〉 =
N∑
s=0

∑
a1···as

ψa1···asc
†
a1 · · · c

†
as | ↓1 · · · ↓N 〉 , (4.14)
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where c†i and ci create and destroy such fermions at site i. Besides operator size, one can ask

about how many particles are being transported by the Hamiltonian as time evolves. This

was considered in [46]. To be definite, consider an starting state with the first m particles

excited. Unitary evolution mixes the state with other states in the m-particle sector

|ψ(t)〉 =
∑

a1···am
ψa1···am(t) c†a1 · · · c

†
am | ↓1 · · · ↓N 〉 . (4.15)

One proposed notion of operator growth is the average number of jumps (the average

transport) the spins have performed due to Hamiltonian evolution. Such number can be

measured by the expectation value of the number operator

T̂ ≡
N∑

i=m+1

c†ici (4.16)

counting the number of fermions in the sites that were not populated at t = 0. It follows

T (t) ≡ 〈ψ(t)|T̂ |ψ(t)〉 (4.17)

is the average particle transport. This is a sensible measure of the growth of the state

|ψ(t)〉 and it is still the expectation value of a simple operator. Also, since

|ψ(t)〉 = U(t)c†1 · · · c
†
mU
−1(t)| ↓1 · · · ↓N 〉 ≡ O(t)| ↓1 · · · ↓N 〉 , (4.18)

this expectation value is equivalently studying the growth of the operator O = c†1 · · · c
†
m in

the state | ↓1 · · · ↓N 〉. Notice that while this notion of size is bound to grow, as analized

in [46], the previous notion of size, where we would add up all spins in the definition (4.16),

would be constant through time evolution due to particle number conservation.

4.2 Size, number operators and energies in large-N and holographic theories

The observation that Heisenberg operator evolution is equivalent to Schrödinger’s time

evolution in the GNS Hilbert space provides a hint to extend the notion of operator size to

QFT. Such notion is based on simple operators, such as (4.13) and (4.16) in spin systems

(see [1, 2, 13, 46]).

Given the structure of time evolution for holographic CFTs in the large-N limit dis-

cussed in sections 2 and 3.2, it may be natural to define any notion of operator size as

being of the form

Ŝ =
∑
α

Fα

[
(Oα)

ω,~k
,
(
O†α
)
ω,~k

,
(
Õα
)
ω,~k

,
(
Õ†α
)
ω,~k

]
(4.19)

in terms of the operator modes and its mirror partners for the different local low conformal

dimension boundary operators indexed by α. The additive nature on the spectrum of op-

erators is due to the absence of mixing between operators when neglecting 1/N corrections.

Assuming the generic definition (4.19), large-N factorization ensures that any notion

of size in large-N theories associated with a choice of the functionals Fα is completely
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determined by the two-point function (2.6), up to 1/N corrections. Indeed, to study the

growth of the size of a certain field O(t) in the thermofield double |κβ〉 at temperature β,

we just need to take the expectation value of Ŝ in the evolving GNS state |O(t)κβ〉. Such

expectation value can be computed by using expressions (2.2) and (2.6), together with

large-N factorization.

Let us remark that in previous literature, starting with [1], the notion of size has

been argued to be related to out-of-time ordered correlation functions. If this relation is

extended to any large-N theory and any temperature, our analysis would imply a non-

trivial relation between two and four-point functions in the large-N limit. These aspects

will be studied elsewhere.

In analogy to the spin size (4.13), natural choices for the size Ŝ in large-N QFTs

are simple operators like the number or energy operators associated to the different bases

(Rindler, Unruh, and Minkowski) of creation and annihilation operators discussed in sec-

tion 3.2. As in our discussion of the dynamics preserving the number of particles, not all

choices for such operators will provide useful dynamical information. In what follows, the

upper index in the size operator refers to the basis chosen, either Rindler (R), Unruh (U) or

Minkowski (M), and the lower index to whether it is energy-based (H) or particle number

based (N).

Let us start our discussion with the number and energy operator associated to the

standard basis of operator modes

ŜR
N = N̂ =

∫
ω>0

dωdd−1~kO†
ω,~k
O
ω,~k

and ŜR
H = Ĥ =

∫
ω>0

dωdd−1~k ωO†
ω,~k
O
ω,~k

. (4.20)

Then the expectation value 〈κβO(t)|Ŝ|O(t)κβ〉 is constant for any operator O and provides

no further dynamical information.

Unruh and Minkowski number operators. Consider the Unruh and Minkowski num-

ber operators choice

ŜU
N = N̂U =

∫
dkz d

d−1~kOU†
ω~k
OU
ω~k
, and ŜM

N = N̂M =

∫
dkz d

d−1~kOM†
kz~k
OM
kz~k

. (4.21)

Both choices are equal due to the algebra of field modes. This proposal is inspired by

the relation (3.22), which is a specific instance of the more general Tomita-Takesaki like

equation (A.18). One basically defines the simplest operators annihilating the thermofield

double12 and uses them to define a number operator. For Majorana fermions this was the

path chosen in [2]. Here we see that such operators, in the black hole scenario, are the

known Unruh creation/annihilation operators.

These notions of size give zero on the thermofield double, while positive sizes on the

thermofield double with perturbations. However, if we consider a Minkowski mode excita-

12Notice there is an infinite number of choices that also annihilate the thermofield double, including the

Minkowski annihilation/creation operators.
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tion generated by OM†
kz~k

,13 this notion of size will remain constant through time evolution.

This is because unitary evolution acts like a boost on these excitations. Hence, it changes

the value of their momentum but not the number of modes. This choice shows that de-

pending on the basis of operators being considered, equating size with number operators

may not provide useful dynamical information.

Minkowski energy. Consider the boundary CFT operator describing the analog of a

bulk infalling Hamiltonian14 constructed in the previous section

ŜM
H = HM =

∫
dkz d

d−1~k ω~kO
M†
kz~k
OM†
kz~k

. (4.22)

This choice was studied in detail in [10]. Since the CFT time evolution acts as a boost

upon a Minkowski mode OM†
kz~k

eiγ K OM†
kz~k

e−iγ K =

√
γ(ω~k)
√
ω~k

OM†
γ(kz)~k

, (4.23)

it follows the size will exponentially grow at large times (tM � β), with Lyapunov exponent

equal to 2π/β, since evolving with the QFT Hamiltonian for time t is equivalent to boosting

the particle with rapidity 2π
β t (see (3.29)). This shows that the usual exponential blueshift

of the proper energy Ep ∼ e
2π
β
t

of infalling observers (perturbations) in black hole physics,

which simply rests on the universal structure of the time component of the metric (g00) near

the horizon, can be seen as measuring the growth of the size of the associated perturbation

in the CFT.

4.3 The recursion method at large-N

A standard approach in condensed matter physics to study the Heisenberg time evolution

and complexity of operators is the recursion method (see [18] for a detailed presentation).

This perspective on operator growth was recently considered in SYK in [13] and used to

study long time scales of operator dynamics in [14]. In this section we explore what the

structure of time evolution in large-N theories described in sections 2 and 3.2 teaches us

about this approach.

Let us first describe this method briefly. As before, the recursion method requires

the definition of an inner product. The book [18] considers a whole family of them, but

we show in appendix A.2 that all choices can be related to one convenient representative

in QFT. In the following we focus on such representative and, for simplicity, we only

13We remark that although the Minkowski creation/annihilation operators are state-dependent in the

one-sided case since they make use of the mirror operators, exciting a Minkowski mode is not a state-

dependent action. The reason is that the action of the mirror creation operator can be fully mimicked by

their partners in the right wedge, as in (3.11).
14Here we are referring to the Minkowski energy choice. The Unruh energy is not a sensible choice since

it is infinite for any Minkowski mode.
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consider operators with vanishing one-point functions. Given two operators A and B, the

representative inner product (A,B) is defined by

(A,B) ≡ 〈eβH/2A†e−βH/2B〉β , (4.24)

where 〈A〉β = Tr(ρβ A). Within the GNS framework, this inner product can be written as

〈κ|π̄(A)π(B)|κ〉 = 〈κ|BκA†〉 = 〈eβH/2A†e−βH/2B〉β = (A,B) . (4.25)

The inner product (4.24) allows to expand any hermitian operator O(t) in an orthog-

onal basis of operators

O(t) =
∞∑
k=0

Ck(t)fk , with (fk, fk′) = (fk, fk) δkk′ (4.26)

for some time dependent coefficients Ck(t). The recursion method proposes to use an

explicit basis fk, the Lanczos basis, to study operator evolution. Basically, starting from

the operators On defined previously, it provides a constructive algorithm, based on the

Gram-Schmidt orthogonalization procedure, to determine such basis

fk+1 = i[H, fk] + ∆k fk−1 , k = 0, 1, . . . with ∆k =
(fj , fj)

(fj−1, fj−1)
, j = 1, 2, . . . (4.27)

with initial conditions f−1 = 0 and f0 = O being the operator at initial time. The

coefficients ∆k are referred to as the Lanczos coefficients. The linear operator L generating

the time evolution as L(O) ≡ [H,O] is sometimes called the Liouvillian. It corresponds

to the GNS Hamiltonian in the GNS construction described in appendix A generating the

unitary evolution in (A.14)–(A.15).

Plugging the expansion (4.26) into Heisenberg’s equation of motion, one derives a 1d

diffusion equation for the amplitudes Ck(t)

dO
dt

= iLO ⇔ Ċk(t) = Ck−1(t)−∆k+1Ck+1(t) , k = 0, 1, 2 . . . (4.28)

with initial conditions C−1(t) = 0 and Ck(0) = δk0. In this framework, the Lanczos

operator complexity LO of an operator O can be defined by the average position in this

effective 1d chain15

LO ≡
∞∑
k=0

k
|(fk,O(t))|2

(fk, fk)
. (4.29)

15When adopting this definition, one is assigning some kind of locality interpretation to the 1d chain

which was manifest in our Majorana fermion discussion (4.7). Here, the label k technically accounts for

the number of commutators with H that have acted upon the starting operator. Thus, depending on the

interactions in this hamiltonian, the support of the different fk operators will grow accordingly. Since

one is interested in quantifying the evolution in the size of this support, one could consider more general

functionals
∞∑
k=0

g(k) |(fk,O(t))|2
(fk,fk)

capturing this quantity more precisely. Our point here is that the existent

inner product allows to define a notion of average size for any relevant choice of g(k).
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Because of (4.25), LO equals the expectation value of the “Lanczos operator” in the GNS

Hilbert space

L̂O ≡
∞∑
k=0

k
π̄(fk)√
(fk, fk)

|κ〉〈κ| π̄(fk)√
(fk, fk)

, (4.30)

so that

LO = 〈κ|π(O(t))L̂Oπ(O(t))|κ〉 . (4.31)

Notice L̂O is a state dependent operator in the GNS Hilbert space, i.e. it is not linear in O.

Knowledge of the Lanczos coefficients ∆n determines the orthogonal basis {fk} and

allows to determine the full-time evolution of the operator O(t) through the integration

of the 1d diffusion equation (4.28). Interestingly, these coefficients ∆n can be recursively

extracted from the connected 2-pt function

Q(t) ≡ 〈O(t)O(0)〉β . (4.32)

This can be seen as follows [18]. Since

C0(t) ≡
(O(t), O)

(O, O)
=

Φ(t)

Φ(0)
, (4.33)

where Φ(t) ≡ (Q(t) +Q(−t)) /2, if one assumes the Taylor expansion

C0(t) =

∞∑
k=0

(−1)k

(2k)!
M2k t

2k , (4.34)

is sensible, it follows the existence of a one-to-one reconstruction algorithm between the

moments M2k, which are determined solely by derivatives of the 2-pt function (4.32), and

the Lanczos coefficients ∆k

M
(n)
2k =

M
(n−1)
2k

∆n−1
−
M

(n−2)
2k−2

∆n−2
, ∆n = M

(n)
2n , k = n, n+ 1, . . . ,K and n = 1, 2, . . . ,K

(4.35)

The initial conditions of this recursion are M
(0)
2k = M2k and ∆−1 = ∆0 = 1 and M

(−1)
2k = 0.

In section 2, the structure of time evolution in large-N theories was discussed. It

is natural to ask whether we can learn anything about the recursion method given this

structure. The first observation is that the operators O
ω,~k

diagonalize the Liouvillian

dO
ω,~k

(t)

dt
= iL(O

ω,~k
) = i[H,O

ω,~k
] = −iωO

ω,~k
=⇒ O

ω,~k
(t) = e−iωtO

ω,~k
(t) (4.36)

Hence, there are two natural bases in the space of operators: the Lanczos basis, made of

the orthogonal fk and the operator modes O
ω,~k

diagonalising the Liouvillian in the large-N

limit. Finding the change of basis would immediately solve the diffusion equation (4.28),

since the time evolution of the O
ω,~k

operators is known. Since properly normalised operator

modes (3.19) satisfy the canonical commutation relation associated to a set of creation and

annihilation operators, we analyse the latter from the recursion method perspective next.
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Consider K free harmonic oscillators, denoted by aj and a†j , with j = 1, . . . ,K. Take

as our starting operator in the recursion method algorithm

f0 =
∑
j

Dj(aj + a†j) , Di ∈ R (4.37)

with Dj any set of coefficients. This choice matches the t = 0 expansion of the field in (2.2)

and accommodates their normalisation (3.19). Since La†j = ωj a
†
j and Laj = −ωj aj , it

follows the vectors generated by the recursion method algorithm must be of the form

f2k =
∑
j

Dj Pk,j(aj + a†j) , k = 0, 1, . . .K − 1 with P0,j = 1 ∀ j

f2k+1 =
∑
j

Dj Qk,j i(a
†
j − aj) , k = 0, 1, . . .K − 1 with Q0,j = ωj ∀ j

(4.38)

for some unknown real coefficients Pk,j and Qk,j satisfying the above initial conditions.

Using the harmonic oscillator thermal correlators

〈ai a†j〉β = eβωi nβ(ωi) δij , 〈a†i aj〉β = nβ(ωi) δij , (4.39)

where nβ(ω) = (eβω − 1)−1, it follows(
aj + a†j , ak + a†k

)
=
(
i(a†j − aj), i(a

†
k − ak)

)
=

2

β

∫ β

0
dλ eλωj nβ(ωj)δjk ≡ Ajδjk , (4.40)

with all other inner product combinations vanishing. Hence, the set of vectors {f2k, f2k+1}
defines an orthogonal set, as it should. For K finite oscillators, the algorithm will halt

once we reach a basis of 2K orthogonal vectors, which matches the number of independent

creation/annihilation operators. This explicitly confirms the relation between the two set

of operators is indeed simply a change of basis. This change is only non-trivial for K > 1,

as in large-N QFTs where there is an infinite set of operator modes when studying the

growth of a local field.

Plugging the parameterisation (4.38) into (4.27), we obtain the following recurrence

relations
Ps,j = −ωj Qs−1,j + ∆2s−1 Ps−1,j , s = 1, 2, . . .K − 1

Qs,j = ωj Ps,j + ∆2sQs−1,j , s = 1, 2, . . .K − 1
(4.41)

These are solved by16

Ps,j =

s∑
m=0

(−1)m ω2m
j

2m+1∑
i1=1

∆i1

2m+3∑
i2=i1+2

∆i2 · · ·
2s−1∑

is−m=is−m−1+2

∆is−m ,

Qs,j = ωj

s∑
m=0

(−1)m ω2m
j

2(m+1)∑
i1=1

∆i1

2(m+2)∑
i2=i1+2

∆i2 · · ·
2s∑

is−m=is−m−1+2

∆is−m .

(4.42)

The proof is by induction and it is given in appendix B.

16It is understood that whenever the subindex labels r in ir equal zero, such terms do not contribute to

the solution.
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As a check of our formal solution to the recursion method, we show it satisfies the

diffusion equation (4.28). As stressed above, the advantage of expressing our operators

in the basis of field modes is that these modes diagonalize the Liouvillian operator L and

therefore make the time dependence trivial. Hence, the exact time evolution of our initial

operator just equals

f0(t) =
∑
j

Dj

(
eitωja†j + e−itωj aj

)
. (4.43)

From this expression, to find the Lanczos expansion we just need to write the a†j and aj in

terms of the fk. We remark this is not a dynamical question, just a change of basis. To

invert the relation we use that the amplitudes entering the diffusion equation are given by

the projections

C2k(t) ≡
(f2k, f0(t))

(f2k, f2k)
, C2k+1(t) ≡

(f2k+1, f0(t))

(f2k+1, f2k+1)
. (4.44)

Explicit calculation yields

C2k(t) =
∑
j

D2
j Aj

Pk,j
(f2k, f2k)

cosωjt ,

C2k+1(t) =
∑
j

D2
j Aj

Qk,j
(f2k+1, f2k+1)

sinωjt .

(4.45)

Computing the time derivatives and using the recursion relations (4.41) to replace the ωj
dependent terms reproduces the diffusion equation (4.28).

To sum up, the 2-pt function (4.32) determines the Lanczos coefficients ∆k and these

determine the orthonormal basis of operators fk controlling the Heisenberg time evolution

of an initial operator O. These are related by a change of basis to the operators used

in section 2 to describe this same evolution in large-N gauge theories. This is consistent

with our claim that 2-pt functions characterize operator growth in these theories at leading

order. In this approximation, what makes these theories special, from the recursion method

perspective, is that we can solve the diffusion equation analytically by relations (4.45), once

we have the coefficients ∆k. In QFT, the set of modes is infinite and the recursion does

not halt. The operator then grows indefinitely, even if we are dealing with a set of free

harmonic oscillators.

The specific structure of the Lanczos basis unraveled here also differs from the general

exponential growth of the Lanczos complexity in QFT. As remarked in [13], in the typical

QFT scenario in which the 2-pt function is exponentially decaying and its Fourier transform

has poles, as dictated by the generic analyticity properties of thermal correlations, then

the mean position in the one-dimensional diffusion equation (4.28), the Lanczos operator

complexity (4.29), will grow exponentially fast with Lyapunov exponent 2π/β.17 Such

statement holds for any chaotic QFT, and it is not particular to large-N theories.

17As shown in appendix A.2, this exponential growth with the right Lyapunov exponent only applies

to the representative inner product considered in (4.24). For other inner products, one gets exponential

growths with faster rates. This statement seems similar to the results found in [47] for out-of-time-ordered

correlation functions, which show that different choices of euclidean separations in the OTOC 4-pt function

might lead to faster growth than the chaos bound [8].
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4.4 Chaos and quantum complexity

In this section we first stress the existence of a natural relation between operator growth and

quantum circuit complexity. Afterwards, we discuss the link between these two concepts

and quantum chaos [10, 12, 15]. Finally, in the context of the AdS/CFT correspondence,

we also briefly comment on the relation between them and the emergence of classical

bulk chaos.

In quantum complexity discussions, the complexity C|ψ〉 to prepare a particular target

state |ψ〉 starting with a certain reference state |ψR〉 by applying a series of elementary

gates gi
|ψ〉 = UR |ψR〉 = gn · · · g2 g1 |ψR〉 , (4.46)

is defined as the number of gates associated to the optimal protocol. Nielsen and collabo-

rators [16, 17, 48] mapped the problem of identifying this optimal circuit to the geometric

problem of finding a geodesic in the space of unitaries acting on the Hilbert space. Given

a one parameter family of states, labelled by s, the local driving hamiltonian H(s) satisfies

i
d

ds
|ψ(s)〉 = H(s) |ψ(s)〉 (4.47)

and generates the unitary transformation acting on the state

U(σ) = ~P exp

[
−i
∫ σ

0
dsH(s)

]
, with H(s) ≡

∑
I

Y I(s)OI , (4.48)

where the Hermitian operators OI generate the individual gates gI. Circuits satisfying

eq. (4.46) correspond to trajectories satisfying the boundary conditions

U(σ = 0) = 1 , U(σ = 1) = UR . (4.49)

Optimal circuits minimise the cost defined as

C|ψR〉→|ψ〉 ≡
∫ 1

0
ds F (H(s)) (4.50)

where F is a local cost function depending on the tangent vector H(s).

Consider two states, |ψ〉, as above, and a perturbed state |ψO〉 = eiO |ψ〉, generated

by the action of a simple unitary generated by certain local operator O. The time evo-

lution of both states is determined by the unitary action U(t) = e−iHt on them, where

H corresponds to the physical hamiltonian of the system, leading to the states |ψ(t)〉 and

|ψO(t)〉, respectively. In this set-up, one can define some notion of growth or size based on

the circuit complexity to go from one evolved state to the other18

SO(t) ≡ C|ψ(t)〉→|ψO(t)〉 (4.51)

This relative complexity is simpler than expected in the limit of small perturbations.

As shown in the original geometric complexity paper [16], if the perturbation is small

18This might be related to the complexity variation C|ψ(t)〉 − C|ψO(t)〉 considered in [12]. Variations in

quantum circuit complexity have also been considered recently in [15, 49].
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enough so that |ψ〉 and |ψO〉 are sufficiently closed to each other, the geodesic connecting

them is simply

U(s)|ψ〉→|ψO〉 = eiOs , 0 6 s 6 1 (4.52)

The key observation now is that the geodesic connecting the time evolved states |ψ(t)〉 and

|ψO(t)〉 is also going to be of the same type

U(s)|ψ(t)〉→|ψO(t)〉 = eiO(−t)s , 0 6 s 6 1 , (4.53)

by dialling the initial perturbation to be small enough. This argument allows to write the

relative complexity of such geodesic as

SO(t) ≡ C|ψ(t)〉→|ψO(t)〉 =

∫ 1

0
ds F (O(−t)) = F (O(−t)) . (4.54)

The precise evaluation requires a choice of the cost function. See [15] for a discussion and

calculation of several possibilities.

Connection to previous notions of size. Equation (4.54) states that the circuit com-

plexity is the computational cost of the time evolved operator responsible for the pertur-

bation.19 The final value depends on the choice of a cost function, pretty much as in

our earlier discussions on operator size, the latter depends on the definition of size. Cru-

cially, (4.54) stresses that, given some cost function, circuit complexity only depends on

the time evolution of the operator, the same structure controlling any notion of operator

growth or size. Hence, both notions are functionally dependent. In particular, if we were

to define the cost as one of the previous notions of operator size, both would be equivalent.

A convenient choice then is the Minkowski energy discussed in the previous section. With

this choice, the relative complexity of large-N theories will grow exponentially fast with

Lyapunov exponent λ = 2π/β.20

Connection to chaos. Chaotic behavior concerns the sensitivity of certain dynamical

systems to small perturbations δxi of its initial conditions. Classically, such sensitivity is

usually studied in a double scaling limit, where the size of the perturbation is taken to zero

first and the limit of large times is taken afterward. The first limit ensures that a linearized

equation of the type

δxi(t) =
∑
j

Mijδxi , (4.55)

is a good approximation to the dynamics, where the Jacobian matrix Mij = ∂xi(t)/∂xj
encodes the dependence on the initial conditions xj . The second limit ensures the solution

to (4.55) is dominated by the largest Lyapunov exponent.

19The connection between cost functions and operator size was recognized already in [10] for spin systems,

but equation (4.54) shows it holds more generally.
20This construction and the Minkowski energy choice for the complexity cost provides a specific realization

of the idea put forward in [10], in which the cost function was argued to be related to the scaling dimension

of the associated perturbation.
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A natural extension of the classical definition to the quantum domain has been recently

developed in [15]. As shown in [50], quantum dynamics can be formulated as classical dy-

namics on a “quantum phase space”, defined to be the Hilbert space itself. The symplectic

form at point |ψ〉 along two infinitesimal directions, generated by Hamiltonian operators

H1 and H2 is just the expectation value of the commutator Ω|ψ〉(H1, H2) ≡ 〈ψ|[H1, H2]|ψ〉.
It turns out that Schrödinger equations are seen as Hamilton equations in such a phase

space with “classical Hamiltonian” H(|ψ〉) = 〈ψ|Ĥ|ψ〉. Having framed quantum dynamics

as a classical system, it is most natural to define quantum chaos by the usual classical defi-

nition (4.55) but applied to the quantum phase space. This definition has, by construction,

the appropriate pullback to the classical definition on a semiclassical phase space, but it is

otherwise valid through the whole quantum system.

The classical approach to quantum mechanics illuminates the relation between oper-

ator growth and chaos by showing the transparent relation between O(−t), the operator

that generates the unitary interpolating between the nearby quantum states at time t, and

the Jacobian matrix associated to the classical chaotic process. In the Hilbert space we

can define generalized coordinates |qi, pi〉 (at least locally) satisfying the canonical Poisson

brackets with respect to the Hilbert space symplectic form. Generic infinitesimal pertur-

bations of any state can be written as21

eiO|qi, pi〉 ≡ ei(p̂iδqi−q̂iδpi)|qi, pi〉 = |qi + δqi, pi + δpi〉 =⇒ O =
∑
i

p̂iδqi − q̂iδpi . (4.56)

This equation just states that any small perturbation O can be expanded in the gener-

ators of translations along the local reference frame defined by qi, pi. Evolving in time,

one observes

O(−t) =
∑
i

p̂i(−t)δqi − q̂i(−t)δpi =
∑
i

p̂iδqi(t)− q̂iδpi(t) , (4.57)

where δqi(t) and δpi(t) are determined by a linearized equation of the type (4.55) associated

to the quantum phase space. This is analyzed in a specific generic example in [15]. It follows

that the growth properties of the perturbation O are controlled by the Jacobian matrix

defining the chaotic process in the quantum phase space, and vice versa.

Classical chaos in AdS/CFT. In the context of the AdS/CFT correspondence, CFT

perturbations eiO |ψ〉 generated by operators O with large conformal dimension can be

described by freely falling particles in the bulk geometry dual to |ψ〉, in the semiclassical

approximation [51–56]. At high energies, the bulk geometry involves a black hole with the

temperature related to the energy of the state by the usual thermodynamic relation.

It was realized in [33–35] that the optical metric defined by

ds2optical ≡
ds2

|g00|
, (4.58)

21There is a missing phase in the equation, due to the non-commutativity between q and p. It is not

included here because it is second order in the infinitesimal perturbations δq, δp.
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has an insightful structure in the near horizon region of a black hole. Concretely, for a

black hole in d+ 1 dimensions we have that near the horizon

ds2optical ≈ −dt2 + (
β

2π
)2ds2Hd , (4.59)

where

ds2Hd =
dy2 + dx2⊥

y2
, (4.60)

is the metric of the euclidean hyperboloid with unit radius. Therefore, near the horizon,

where particles become effectively massless [35], particle trayectories are controlled by

geodesics on a hyperbolic space with radius of curvature given by R = β/2π. These

geodesics are known to display chaotic properties. In fact, compact hyperbolic spaces are

examples of hard chaos, and the geodesic deviation growth is characterized by a Lyapunov

exponent given by λ = 1/R = 2π/β.

With the construction developed in previous sections, particularly in section 3, we can

now understand the emergence of this classical chaos. The hyperbolic geodesic deviation

rests on the conformal transformation from the near horizon Rindler geometry to the

hyperbolic one. It therefore secretly rests on the emergent Poincaré symmetries described

above. The fact that Minkowski energies and radial momenta grow exponentially in the

Rindler frame with Lyapunov exponent λ = 2π/β is mapped, in the optical frame, to the

fact that perturbations in the transverse direction grow exponentially fast with the same

Lyapunov exponent. This is because it is the inverse of |g00| which grows exponentially fast

as we approach the horizon. Such conformal transformation from the Rindler frame to the

optical one was studied at the classical level and also in the QFT setup in [35, 57]. Having

constructed the Poincaré symmetries above from the structure of the Heisenberg time

evolution, such conformal transformation to the optical frame can be constructed as well,

exactly as if we were studying free QFT in the Minkowski/Rindler scenario. In this way,

the chaotic properties of the optical metric are thus recovered, and are transparently seen

to be fundamentally attached to the validity of the equivalence principle near the horizon.

5 Discussion

We have considered the problem of operator growth in large-N gauge theories at finite

temperature. We framed the problem as that of understanding the operators

On ≡ [H, · · · , [H,O] · · · ] (5.1)

where H is the Hamiltonian. This is most natural since the expansion of Heisenberg time

evolution in powers of time (1.2) teaches us these are the only operators with whom the

initial operator mixes over time.

In section 2, we argued that the expression

On(t) =

∫
ω>0

dωdd−1~k

(2π)d

(
(−ω)nO

ω,~k
e−iωt+i

~k~x + ωnO†
ω,~k

eiωt−i
~k~x
)

(5.2)
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together with linearity, large-N factorization, the fact that most eigenstates at a given

temperature behave as thermal states (ETH) and the correlation functions of the field

modes O
ω,~k

and O†
ω,~k

, given by (2.6), completely specify the action of these operators in

most interesting states, up to 1/N corrections. Hence, (5.2) determines the time evolution

of the operator O(t, ~x). A similar statement holds for modular time evolution as well.

A first interesting insight is that any notion of operator growth should be determined

by the 2-pt function at this order. Given the relation found between operator growth and

four-point functions at an infinite temperature in SYK [1], one might hope for a non-trivial

relation between the two-point function and the connected four-point function in generic

large-N theories. We leave this interesting observation for future work.

In section 3, we constructed an emergent bulk Poincaré algebra (3.28) as the first

application of our proposed solution. This was achieved by the known doubling of the

modes appearing in large-N theories [25]. This algebra is related to the near horizon Rindler

behaviour of thermal horizons. Albeit we have focused on the conventional modes, defined

by means of the Hamiltonian of the large-N theory, the construction can be easily extended

to modular time evolution, by using the modular modes (2.17) instead of the conventional

ones. If large-N factorization holds, we can again find renormalized modes satisfying the

algebra of free creation and annihilation operators, and proceed with the construction of an

emergent Poincaré algebra. It would be interesting to develop the arguments given here in

relation to the recent results in [39], based on prior work [58], where such Poincaré algebra

emerges from a local bulk perspective due to the limiting modular evolution behaviour,

making the latter much closer to Equivalence Principle considerations.

Albeit the simplicity of the previous solution contrasts with the expected complexity

of the problem, in section 4, we analyzed several existent notions of operator growth and

size existent in the literature from the perspective presented here. These include number

operators, energy measures, the recursion method in condensed matter physics, and the

approach to quantum chaos based on quantum circuit complexity. All of them can be

considered in detail, and analytically, in the basis of field modes. We have seen that the

different approaches are just variations over a common theme: the evolution in time of

the initial operator O, which is fully characterized by expression (2.2), at leading order.

We made proposals for operator size in large-N QFTs by noticing that the GNS construc-

tion maps operator evolution to conventional state evolution in the GNS Hilbert space,

and also derived an explicit relation between operator complexity and circuit complex-

ity in eq. (4.54). In the large-N limit, all such notions are functionals of the two-point

function alone.22

It is an important open problem to understand how to systematically incorporate 1/N

corrections to our discussion. Given our approach, this is not an intrinsic problem attached

to operator growth, but it is generic to large-N gauge theories including holographic ones if

one is interested in a bulk interpretation of these statements. See [22] for a recent discussion

on how to incorporate these corrections in the bulk for some choices of operator size.

22The dependence of operator growth on the two-point function was noticed in ref. [46], for the case of

the operator growth of a “complex” operator in the vacuum.
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We finish by stressing a point made in the introduction: our work neatly shows that

any notion of operator growth has an equivalent formulation both in the bulk and the

boundary theories, in the context of large-N holographic theories. This is just a consequence

of the equality between bulk and boundary Hilbert space and Hamiltonians. In our setup,

on a technical level, this is transparent due to the work in bulk reconstruction relating

bulk field modes with boundary modes O
ω,~k

, O†
ω,~k

, and their mirror partners, mainly

following [25–27].
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A The Gelfand-Naimark-Segal (GNS) construction

The GNS construction [59, 60] generates a Hilbert space Hω from an abstract C?-algebra

A and a linear functional (state) ω from A to C, together with a representation of the

algebra π(A) acting on it. In this appendix, we review its main ideas following closely [37].

A C?-algebra A is a set of objects such that if A,B ∈ A and a, b ∈ C, then the linear

combination aA + bB ∈ A. Furthermore, there exists a map A 7→ A† , ∀A ∈ A being an

involution and satisfying

(AB)† = B†A† , (aA)† = a?A† ∀A,B ∈ A , ∀a ∈ C (A.1)

Up to topological requirements, see [37] for a more detailed account, A is called a von

Neumann algebra if it further contains the identity. From now on we consider von Neumann

algebras only.

States ω are positive and normalized linear functionals from A to C satisfying

ω(aA+ bB) = aω(A) + b ω(B) ,

ω(A?A) ≥ 0 ,

ω(1) = 1 .

(A.2)

Hilbert spaces H are vector spaces with an inner product mapping any pair of elements

|w〉, |v〉 ∈ H to a complex number 〈v|w〉 ∈ C satisfying

〈v|w〉 = 〈w|v〉? ,
〈av1 + bv2|w〉 = a?〈v1|w〉+ b?〈v2|w〉 ,

|〈v|v〉|2 ≥ 0 ,

(A.3)

where the last line is only saturated for |v〉 = 0.
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Let the algebra A be an algebra of operators. Since the algebra A is already a vector

space over C, to become a Hilbert space it requires an inner product. This can be defined

using the state ω as

〈A|B〉 = ω(A†B) , (A.4)

where we used the standard notation in quantum mechanics |A〉 to refer to the vector in

H associated with the operator A ∈ A.

This inner product satisfies all the requirements (A.3) except for the existence of non-

zero operators W satisfying ω(W †W ) = 0. The set of such operators I is a left ideal in A,

the so called Gelfand ideal of the state ω, i.e a linear subspace of A that is stable under

multiplication by any element A ∈ A from the left

W ∈ I , A ∈ A ⇒ AW ∈ I . (A.5)

The GNS construction defines the Hilbert space Hω as the quotient of H by the ideal I,

i.e. Hω ≡ A/I.23 Vectors |[A]〉 ∈ Hω correspond to equivalence classes of operators in the

algebra of the form A+ I and such classes do not depend on the representative.

GNS induces a representation πω of A acting on Hω by the product in the algebra A

πω(A)|[B]〉 = |[AB]〉 . (A.6)

A consequence of this construction is that the identity class |Ω〉 ≡ |[1]〉 vector can be

associated to the starting state ω since

ω(A) = 〈Ω|A|Ω〉 . (A.7)

A.1 GNS of the thermal state

When the GNS construction is considered for finite-dimensional algebras A containing

bounded operators, the identity operator 1 can be understood as the maximally entangled

density matrix (up to normalization) and the inner product (A.4) can be taken as

〈A|B〉 =
1

Z
Tr
(
A†B

)
, (A.8)

where Z ≡ Tr(1). There is no Gelfand ideal I in this case. Hence, there exists an

isomorphism between A and Hω. The same conclusion holds when one replaces 1 with

κ = ρ
1/2
β , where ρβ is the Boltzmann finite temperature density matrix (or any density

matrix of full rank).

Besides the GNS representation π(A)

π(A)|κ〉 ≡ |Aκ〉 , (A.9)

there exists the conjugate representation π̄(A), defined by

π̄(A)|κ〉 ≡ |κA†〉 . (A.10)

23More precisely Hω is defined as the completion of A/I with respect to the norm topology.
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These are equivalent because there exists an anti-unitary operator J acting onHω satisfying

J |Aκ〉 = |κA†〉 with J2 = 1 , (A.11)

implying

Jπ(A)J = π̄(A) . (A.12)

It also follows from these expressions that

ω(A) = 〈κ|π(A)|κ〉 = 〈κ|π̄(A)|κ〉∗ . (A.13)

Since |κ〉 is invariant under time evolution,24 we can now easily define unitary evolution

Ut in all states of the representation by

Utπ(A)|κ〉 = π(At)|κ〉 , Utπ̄(A)|κ〉 = π̄(At)|κ〉 . (A.14)

It helps to disentangle the meaning of these definitions to explicitly write the unitary

evolution as

Ut = π(eiHt)π̄(eiHt) . (A.15)

We can then check the definition (A.14)

Utπ(A)|κ〉 = Ut|Aκ〉 = |eiHtAκe−iHt〉 = |eiHtAe−iHtκ〉 = |Atκ〉 = π(At)|κ〉 (A.16)

is satisfied. Given this representation, it is natural to introduce the full hamiltonian as

HF = π(H)− π̄(H). Using κ = ρ
1/2
β = Z−1/2e−βH/2, it follows

Je−βHF/2π(A)|κ〉 = Je−βHF/2|Aκ〉 = J |κA〉 = Jπ̄(A†)|κ〉 = π(A†)|κ〉 . (A.17)

It is interesting to single out the equality from the first term to the fourth term. Multiplying

from the left both side by J and moving the right hand side to the left we obtain

(e−βHF/2π(A)− π̄(A†))|κ〉 = 0 , (A.18)

which is the (generalized) origin of the known relations (3.6) and (3.22), associated to free

QFT and large-N theories.

As stressed through the article, one general lesson is that operator evolution can be

seen as a conventional state evolution through the GNS construction. The generator of

the GNS unitary evolution, the GNS Hamiltonian, is what in the condensed matter com-

munity is called the Liouvillian [18], see [13, 14] for recent applications of such approach.

Furthermore, the GNS construction points out the subtlety of the Gelfand ideal, stressing

why states with full rank are convenient, and allows a direct application into QFT since it

is valid for all types of algebras.

24For a general full rank state ρ, the evolution which is naturally defined by this construction is the

so-called modular evolution. If ρ = e−H , with H the modular Hamiltonian, then H is the generator of

modular time evolution.
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A.2 Inner products in the space of operators

In the previous GNS construction, one starts with a natural inner product on the space of

operators, such as (A.8) or (A.13). This choice of inner product is not unique. Denoting a

general inner product by (A,B), in [18] the following family is considered

(A,B) =
1

β

β∫
0

dλ g(λ) 〈eλHA†e−λHB〉β − 〈A†〉β〈B〉β , (A.19)

where 〈A〉β ≡ Tr(ρβ A) and g(λ) is any function satisfying:

g(λ) ≥ 0 g(β − λ) = g(λ)
1

β

β∫
0

dλ g(λ) = 1 . (A.20)

Examples of such functions are

g(λ) =
1

2
β [ δ(λ) + δ(β − λ)] , g(λ) = δ(β/2− λ) , (A.21)

for which the inner product reduces to

(A,B) =
1

2
〈A†B +BA†〉 − 〈A†〉〈B〉 , (A,B) = 〈eβH/2A†e−βH/2B〉β − 〈A†〉〈B〉 , (A.22)

respectively. In this section we want to describe the status of this big family (A.19) of inner

products. In particular, we show below how they change the specific functional describing

the chaotic growth. Indeed faster growths than the chaos bound can be obtained, albeit

there is no surprise here, since one can actually relate all the inner products (A.19) to the

one defined by g(λ) = βδ(β/2− λ), as we show below.

To test the dependence on the inner product we can analyze the basic quantity con-

trolling the growth, which is the return probability

p(t) ≡ |(O(t)|O(0))|2 . (A.23)

Using the previous inner products we thus need to analyze25

(O(t),O(0)) =
1

β

β∫
0

dλ g(λ) 〈eλHO(t)e−λHO〉β =
1

β

β∫
0

dλ g(λ) 〈O(t− iλ)O〉β , (A.24)

and such function is completely determined equivalently by its Fourier transform

R(ω) =

∫
eiωt (O(t),O(0)) . (A.25)

To find such Fourier transform first consider:

Gλ(ω) ≡
∫
eiωt 〈O(t− iλ)O〉β . (A.26)

25We assume the operator O to have vanishing one point function for visual clarity. Including in the

discussion one-point functions is trivial since they do not depend on time.
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The expectation value 〈O(t)O〉β can be analytically continued to imaginary times for

0 > Im(t) > −β. Call F (z) such a unique function in the strip. We can consider the

following integrals of such function: ∫
Cλ

F (z)eizωdz , (A.27)

where Cλ is a path parallel to the real time axis, shifted by −iλ. Due to the absence of

poles or singularities in such a region, Cauchy’s theorem implies:∫
Cλ

F (z)eizωdz =

∫
Cλ′

F (z)eizωdz . (A.28)

This implies that:

∞∫
−∞

F (t− iλ)ei(t−iλ)ωdt =

∞∫
−∞

F (t− iλ′)ei(t−iλ′)ω . (A.29)

Looking at (A.26), we conlude that

eλωGλ(ω) = eλ
′ωGλ′(ω) . (A.30)

This relation is important, since it says that knowing the exact Fourier transform at some

imaginary time λ is equivalent to knowing it at all complexified times in the holomorphic

strip. In particular, for 2d CFT’s, we have the exact results for λ = β/2, so that for general

0 < λ < β:

Gλ(ω) = e−λωeβω/2Gβ/2(ω) . (A.31)

The Fourier transform of the autocorrelation function ends up being:

R(ω) = eβω/2Gβ/2(ω)
1

β

β∫
0

dλ g(λ) e−λω , (A.32)

which is a simple functional of the information encoded in the inner product defined by

g(λ) = βδ(β/2− λ).

The previous relation implies that all inner products have slower decay tails of R(ω) at

large ω than the choice g(λ) = βδ(β/2− λ). The choice g(λ) = βδ(β/2− λ) is indeed the

one considered in [13], which in chaotic QFT leads to a exponential growth with Lyapunov

exponent λ = 2π/β. Therefore, we conclude that all other choices display stronger Lanczos

growths than the one expected by the chaos bound. We point out the existence of the results

found in [47], in the context of OTOCs, which show that different choices of euclidean

separations in the 4-pt functions lead to faster growths than the chaos bound [8].
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B Solving the recurrence relation

In this appendix we complete the proof of the solution of the Lanczos recursion method

when applied to large-N theories. Given P0,j andQ0,j in (4.38), the ansatz (4.42) reproduces

correctly P1,j and Q1,j . Assuming (4.42) holds for s, we want to show Ps+1,j and Qs+1,j

satisfy (4.42). Let us use the first equation in (4.41) to compute Ps+1,j

Ps+1,j = −ωj Qs,j + ∆2s+1 Ps,j

=
s∑

m=0

(−1)s+1ω
2(m+1)
j

2(m+1)∑
i1=1

∆i1

2(m+2)∑
i2=i1+2

∆i2 · · ·
2s∑

is−m=is−m−1+2

∆is−m

+ ∆2s+1

s∑
r=0

(−1)r ω2r
j

2r+1∑
i1=1

∆i1

2r+3∑
i2=i1+2

∆i2 · · ·
2s−1∑

is−r=is−r−1+2

∆is−r

= (−1)s+1ωs+1
j +

s∑
r=1

(−1)r ω2r
j

2r∑
i1=1

∆i1

2(r+1)∑
i2=i1+2

∆i2 · · ·
2s∑

is−m=is+1−r+2

∆is−m

+ ∆2s+1

s∑
r=0

(−1)r ω2r
j

2r+1∑
i1=1

∆i1

2r+3∑
i2=i1+2

∆i2 · · ·
2s−1∑

is−r=is−r−1+2

∆is−r .

(B.1)

To derive the third equality, we relabelled m + 1 = r and wrote the r = s + 1 term

separately, i.e. the only one involving no ∆s. Notice that the only ω0
j term comes from

r = 0 in the last line and reproduces the right answer ∆2s+1∆1∆3 . . .∆2s−1. Hence, given

an index r = {1, 2, . . . s}, the task is to show

2r+1∑
i1=1

∆i1

2r+3∑
i2=i1+2

∆i2 · · ·
2s+1∑

is+1−r=is−r−1+2

∆is+1−r (B.2)

equals the sum of the coefficients in the last two lines of (B.1) for a given r. The key

point is the different upper limit in the last sum in (B.2) being 2s + 1. Indeed, when

is+1−r 6= 2s + 1, the contribution from (B.2) equals the first line in (B.1). Hence, we are

left to show the contribution from is+1−r = 2s+ 1 in (B.2)

∆2s+1

2r+1∑
i1=1

∆i1

2r+3∑
i2=i1+2

∆i2 · · ·
2s−1∑

is−r=is−r−1+2

∆is−r (B.3)

equals the last line in (B.1), which it does.

We are left to check Qs+1,j satisfies

Qs+1,j = ωj

s+1∑
m=0

(−1)m ω2m
j

2(m+1)∑
i1=1

∆i1

2(m+2)∑
i2=i1+2

∆i2 · · ·
2(s+1)∑

is+1−m=is−m+2

∆is+1−m (B.4)
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having assumed Ps+1,j andQs,j do satisfy (4.42). Using the second recursion relation (4.42),

we can write Qs+1,j as

ωj Ps+1,j + ∆2(s+1)Qs,j =

ωj

s+1∑
m=0

(−1)m ω2m
j

2m+1∑
i1=1

∆i1

2m+3∑
i2=i1+2

∆i2 · · ·
2s+1∑

is+1−m=is−m+2

∆is+1−m

+ ∆2(s+1) ωj

s∑
m=0

(−1)m ω2m
j

2(m+1)∑
i1=1

∆i1

2(m+2)∑
i2=i1+2

∆i2 · · ·
2s∑

is−m=is−m−1+2

∆is−m .

(B.5)

Notice the second line already has the right functional dependence and the right number

of sum terms, except for the fact that upper limits in the sums are off. In particular, the

last index is not allowed to reach the maximal value is+1−m = 2(s + 1). Consider the

contribution from ∆2(s+1) in (B.4)

∆2(s+1) ωj

s+1∑
m=0

(−1)mω2m
j

2(m+1)∑
i1=1

∆i1 · · ·
2s∑

is−m=is−m−1+2

∆is−m . (B.6)

In our conventions, the term m = s + 1 vanishes, be definition. The remaining terms

match ∆2(s+1)Qs,j above. The only remaining question is whether the terms in Qs+1,j not

including ∆2(s+1)

ωj

s+1∑
m=0

(−1)m ω2m
j

2(m+1)∑
i1=1

∆i1

2(m+2)∑
i2=i1+2

∆i2 · · ·
2s+1∑

is+1−m=is−m+2

∆is+1−m (B.7)

equal ωj Ps+1,j . Since the upper limit in is+1−m was reduced to 2s+1, the remaining upper

limits should also be decreased by one, finishing the proof.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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