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Abstract: Mixing of axion fields is widely used to generate EFTs with phenomenologi-

cally advantageous features, such as hierarchies between axion couplings to different gauge

fields and/or large effective field ranges. While these features are strongly constrained by

periodicity for models with only a single axion, mixing has been used in the literature

(sometimes incorrectly) to try to evade some of these constraints. In this paper, we ask

whether it is possible to use axion mixing to generate an EFT of axions that evades these

constraints by flowing to a theory of a non-compact scalar in the IR. We conclude that

as long as the light axion is exactly massless, it will inherit the periodicity and associated

constraints of the UV theory. However, by giving the light axion a mass, we can relax these

constraints with effects proportional to the axion mass squared, including non-quantized

couplings and the realignment of monodromy to a light axion with a larger field range. To

show this, we consider various examples of axions mixing with other axions or with non-

compact scalar fields, and work in a basis where coupling quantization is manifest. This

basis makes it clear that in the case where an axion is eaten through the Higgs or Stückel-

berg mechanism, the light axion does not have a large effective field range, in contrast to

some recent claims in the literature. Additionally, we relate our results about axion EFTs

to a well-known fact about gauge theory: that QFTs with compact gauge groups in the

UV flow to QFTs with compact gauge groups in the IR, and make this correspondence

precise in the 2+1 dimensional case.
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1 Introduction

Axion fields are ubiquitous in theories of physics beyond the Standard Model. For our

purposes, the defining feature of an axion (as compared with a generic scalar field) is that

it is a compact boson, whose target space is a circle. That is, an axion field by definition

is identified under a discrete shift symmetry:

a(x) ∼= a(x) + 2πnFa, n ∈ Z (1.1)

where 2πFa is the fundamental period of the field. The canonical example is the QCD

axion, which provides a dynamical explanation of the lack of observed CP violation in the

strong interactions [1–4]; for more up-to-date reviews, see [5–7]. Axions have also been

postulated to: play the role of the inflaton that drove exponential expansion in the early

Universe [8]; account for the presence of large-scale magnetic fields in intergalactic space [9,

10]; serve as dark matter [11–13]; or help generate the matter/antimatter asymmetry in
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the Universe [14]. The wide range of roles that axions can play in cosmology is reviewed

in [15]. The existence of axion fields, possibly in large numbers, is a prediction of string

theory [16–20], and in recent years there has been significant interest in the phenomenology

of theories with many axions [21].

The periodicity (1.1) of an axion has significant consequences for the structure of

axion effective field theories. An immediate consequence is that axion potentials must be

periodic functions. Less obviously, for reasons that we will review below, couplings of the

form aFµνF̃
µν of axions to gauge fields must have quantized coefficients, which are integer

multiples of e2/(16π2Fa). This poses a significant challenge for many phenomenological

models that rely on axions. For example, in a cosmological model one might be interested

in an axion potential with a very large field range, but at the same time may want a large

coupling of the axion to gauge fields (e.g., for reheating [22], magnetogenesis [9, 10], or for

the structure of the inflationary model itself [23, 24]). Because the axion potential and the

aF F̃ couplings both depend on Fa, our options for building such models are very limited,

unless the constraints imposed by periodicity (1.1) can be relaxed.

In this paper, our chief interest is in the robustness of the constraints associated with

axion periodicity. Can an effective field theory containing periodic axions flow in the

infrared to a new effective field theory in which some of the axion fields have become effec-

tively non-compact, and hence have fewer constraints on their couplings? By considering

various examples, in which axions mix with other axions or with non-compact scalar fields,

we will argue that the options are very limited. In particular, we claim that whenever some

of the axions remain massless in the IR, they will continue to exactly respect periodicity

constraints. Deviations from these constraints are always proportional to powers of the ax-

ion mass. This is reminiscent of the fact that quantum field theories with compact gauge

groups in the UV flow to quantum field theories with (possibly different) compact gauge

groups in the IR. As we will discuss below, this is more than a superficial similarity.

Before summarizing our results in more detail, let us briefly review the properties of

axion effective field theories enforced by the shift symmetry (1.1).

1.1 Review: quantized couplings in axion EFT

Readers who are thoroughly familiar with the reason why aF F̃ couplings are quantized,

and how to precisely formulate this condition in theories with fermions, can safely skip this

subsection, though it may be useful for establishing our conventions.

Because we will be studying scenarios in which axions may not have canonical kinetic

terms, it is often useful to consider dimensionless axion fields θ which are normalized to

have period 2π,

θ(x) ∼= θ(x) + 2πn, n ∈ Z. (1.2)

These identifications on field space may be thought of as discrete gauge symmetries. In

certain theories, such gauge symmetries may be spontaneously broken, in which case an

axion may appear to acquire a non-periodic potential or other interactions that violate the

symmetry. In such cases, there is a monodromy when the axion traverses its fundamental

circle, so that the full set of states of the theory actually respects the underlying symmetry.
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We will refer to such fields as “monodromy axions.” Monodromy axions have played a

major role in inflationary model-building [25, 26].

The periodicity (1.2) imposes important, well-known constraints on the effective field

theory of an axion. An obvious one is that (in the absence of monodromy) the potential

is periodic, V (θ) = V (θ + 2π). In many theories of axions, there are important couplings

between axions and gauge fields of the form

L
θF F̃

= k
θ

16π2
FµνF̃

µν , k ∈ Z, (1.3)

where the dual gauge field is defined as F̃µν := 1
2ε
µνρσFρσ. The requirement that k is

quantized follows from the axion periodicity (1.2). Here we have assumed that the nor-

malization of F is such that the kinetic term is − 1
4e2
FµνF

µν and that particles of gauge

charge q ∈ Z couple to the gauge field through the action S = q
∫
γ A, where γ is the

charged-particle worldline and A = Aµ dxµ is the 1-form gauge field. The reason that the

coupling k in (1.3) is quantized is that the interaction Lagrangian is not gauge invariant: its

coefficient changes value under the shift θ 7→ θ+ 2πn. However, the path-integral measure

is well-defined whenever k ∈ Z, because exp(i
∫

d4xL
θF F̃

) is well-defined.

Our statement of the quantization of the coupling (1.3) applies when we consider this

coupling in isolation. In theories with fermions that couple to θ and transform under the

gauge field, the correct statement of coupling quantization refers to an invariant combina-

tion of couplings. For example, if we consider a Lagrangian containing the terms

iΨ /DΨ + c∂(∂µθ)Ψγ
µγ5Ψ−

[
meicmθΨLΨR + h.c.

]
+ cF

θ

16π2
FµνF̃

µν , (1.4)

where the Ψ transform in the fundamental representation of the gauge group, then the field

redefinition

ΨL 7→ eiaθΨL, ΨR 7→ e−iaθΨR (1.5)

produces a different Lagrangian with replacements

c∂ 7→ c∂ − a, cm 7→ cm − 2a, cF 7→ cF + 2a, (1.6)

with the shift in cF arising due to the chiral anomaly (e.g., from the anomalous transfor-

mation of the fermion measure in the path integral). As a result, it is clearly not correct to

demand that cF ∈ Z in general. However, if we first decouple the axion from the fermions

by performing a field redefinition to set cm = 0, so that the axion couples only through in-

teractions like c∂ that preserve a continuous shift symmetry and through θF F̃ type terms,

then the latter terms are quantized. In other words, the correct quantization condition in

the case of the Lagrangian (1.4) is

cm + cF ∈ Z. (1.7)

This suffices to ensure that the path integral is well-defined under the identification (1.2).

Invariant combinations of couplings including the derivative term, such as c∂ − 1
2cm, can

take any real value.
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The quantization rules (1.3) or (1.7) apply for axion couplings to U(1) gauge fields or to

nonabelian gauge fields, up to a change in the linear combination of coefficients appearing

in (1.7) that depends on the Dynkin index of the gauge representation of the fermions. In

most of the equations in our paper, a factor of FµνF̃
µν may be replaced by 1

2F
a
µνF̃

aµν for

a nonabelian group without changing the validity of our statements. The only necessarily

abelian gauge fields that we discuss will be those in section 3 that eat axions to acquire a

mass, and the higher-dimensional gauge field in section 4 that is used to engineer a simple

scenario with monodromy. (In both cases one could consider nonabelian extensions, but

this would complicate the physics without obvious dividends.)

1.2 Summary: motivation and results

Axions, like more general scalar fields, can mix with other fields in a variety of ways.

They may have mass or kinetic mixing with other axions (e.g., [27–29]). Some linear

combinations of the axions may be eaten by massive spin-1 fields (via the Higgs mechanism

or Stückelberg couplings, e.g., [30–34]). Axions may even mix with other fields that are not

periodic, whether these are ordinary scalar fields or monodromy axions (e.g., [35]). When

some of these fields acquire mass, we can integrate them out to obtain an effective field

theory involving only the light fields.

The central question of this paper is: does the EFT of the light fields always inherit

a periodicity condition like (1.2) and the associated constraints? For example, can one

begin with a theory of two axions, one linear combination of which acquires a mass (either

through a potential or through being eaten by a massive spin-1 field) so that the remaining,

light combination is no longer an axion (i.e., has no well-defined period)? The answer to

an analogous question in gauge theory is familiar: if we consider a theory with a compact

gauge group, which is reduced to a smaller gauge group in the infrared through Higgsing,

then the infrared gauge group will still be compact. For example, in the Standard Model,

the photon couples to an electromagnetic charge whose quantization is inherited from the

quantization of SU(2)L and U(1)Y charges. This follows from the fact that the Higgs field

itself carries quantized charges. Similarly, even in theories with kinetic mixing, there is a

discrete charge lattice for the massless U(1) bosons, whether or not they mix with massive

spin-1 bosons [36, 37]. Despite the existence of such analogous results, we emphasize that

our results for spin-0 bosons do not all precisely map to familiar results for spin-1 bosons.

For example, we will discuss cases in which spin-0 bosons are eaten by spin-1 bosons,

quantization of aF F̃ couplings and the role of massless chiral fermions in determining the

invariant quantized couplings, and axion monodromy. These additional ingredients require

different arguments from those of [36, 37].

Apart from its intrinsic interest as a question about the structure of quantum field

theory, our motivation for studying this question is that the constraints imposed by the

periodicity (1.2) can provide serious obstructions to building interesting phenomenological

models. The literature on applications of axions in phenomenology is vast, so we cannot

provide a complete bibliography, but some of the main themes and specific examples to

which our work is relevant include:
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• Hierarchies between couplings. One interesting goal is to have axion couplings to FF̃

terms with very different sizes. In a theory where these couplings are quantized, this

can only be achieved by invoking a large integer, which one could then attempt to

explain from within a UV completion (e.g., [28, 38–40]). An obvious application is

to the QCD axion, where one might like to separate the coupling to gluons (which

determines the axion mass) from the coupling to photons (which is often invoked to

provide experimental tests of the theory). Various models can alter the ratio of these

couplings [41, 42].

• Achieving large field ranges. Especially in cosmological applications, it is often of

great interest to have a field that can evolve over a long distance in field space.

For example, this is necessary to produce large primordial gravitational wave signals

from standard inflation models [43], or to allow novel mechanisms like dynamical

relaxation of the weak scale to operate [44]. In the context of string theory, it is

known to be difficult to find axions with fundamental period larger than the Planck

scale (e.g., [45–48]), which has motivated many efforts to build models where small

field ranges in the UV become large field ranges in the IR (which are too numerous

to review here).

• Reconciling a large field range with a large coupling. In some cases, the challenge

is a blend of the two previous ideas. One might want a large axion field range f

appearing in terms like cos(a/f), but also a large coupling α
8π

a
f ′FF̃ , and hence a

small scale f ′. Because f and f ′ are both related to the axion period, again, it

can be difficult to achieve a large separation of these scales. This issue arises in

chromonatural inflation [24], which in any single-axion model requires an enormous

integer to appear in the effective action [49, 50]. Similar issues arise when using

axion couplings to gauge fields for preheating [22], to suppress the axion dark matter

abundance [51, 52], or to produce dark photon dark matter [53–55].

Separate from these specific phenomenological or model-building goals, if an axion field

is discovered experimentally in the future, precisely measuring its couplings and under-

standing whether they are quantized could play a critical role in interpreting the signal.

Clearly, it is important to understand our theoretical expectations before any such discov-

eries are made.

We will see that in studying simple theories in which multiple axions mix, interesting

subtleties arise in examining the periodicity and couplings of a light axion. If one simply

examines formulas that are present in the literature, one might suspect that the IR theory in

general does not inherit any periodicity constraint from the UV theory. We will encounter

a case in which the light axion field appears to be non-compact, and yet inherits periodic

couplings just as a compact field would. We will also encounter a case in which the light

axion field at first sight appears to be compact, but periodicity-violating couplings appear in

the EFT. These results provide tantalizing hints for the construction of phenomenological

models that can evade various constraints, and in some cases claims of large effective field

ranges in such models have been made in the literature [32, 33, 56]. However, in every case
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that we study, a more careful examination reveals that the periodicity of the axion field

and quantization of (properly defined, invariant) couplings are properties of the infrared

theory whenever the light axions remain massless. In the particular cases referenced above

in [32, 33, 56], the authors overlook subtleties related to the absence of anomalies, which

relates the various parameters in the Lagrangian and enforces quantization. In particular,

these relations prevent some of the scenarios discussed in [32, 33, 56] from being able to

generate large effective field ranges. Once a mass is generated, the constraints are loosened.

However, all such effects are proportional to powers of the light axion mass.

In order to achieve hierarchies between an axion’s coupling to different gauge fields,

or between an axion field range and the scale suppressing its coupling to a gauge field, we

find the following options:

• The axion couplings remain quantized due to periodicity, and the hierarchy arises

from a large integer, as in the clockwork scenario [28, 38–40, 57, 58].

• The axion is massive, and its couplings deviate significantly from their expected

quantization due to mixing with other axions with masses generated at the same

scale. This possibility is familiar from the QCD axion’s coupling to the photon,

which obtains a non-quantized contribution from mixing with the π0 [59–61].

• Mixing between monodromy axions and ordinary axions can “realign” monodromy

to a light axion with a larger field range than the original monodromy axion, as in

the “Dante’s Inferno” model [35]. This effectively extends the axion field range by

allowing it to “unwind.”

Some aspects of our claims have been noted in other recent work, including [42] by one

of us and [34]. We extend earlier work by surveying a wider range of models, but also by

situating the question in the broader theoretical context of compactness of gauge groups.

Some of our arguments in section 2 resemble those made in the past about mixing of spin-

1 gauge fields [36, 37], though various details (e.g., our use of the Smith normal form in

section 2.2, or the effects of turning on a mass for the light axion) are not directly analogous

to results in those references.

The outline of this paper is as follows: in section 2, we discuss scenarios in which some

linear combinations of axions obtain periodic potentials. We show that the remaining,

light scalar fields are always periodic (their field space is a torus) and their couplings are

quantized as expected. In section 3, we consider the possibility that a linear combination

of axions decouples because it is eaten by a massive spin-1 field (either via the Higgs or

Stückelberg mechanisms). Again, we show that the uneaten combination is a periodic field

with quantized couplings. The results of this section were also obtained independently

in [34], which appeared while this paper was being completed. In section 4, we discuss the

possible mixing of axions with other, non-compact scalars. We show that a theory in which

a monodromy axion mixes with a heavier ordinary axion can lead to a “realignment” of

monodromy to a linear combination of the original axions, so that the axion decay constant

is larger in the low-energy effective field theory. In section 5, we discuss the relationship

between our studies of compactness in axion field spaces and the question of compactness of
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gauge groups. In particular, we point out that in some cases these questions are related by

Hodge (electric/magnetic) duality. We suggest that our results fit into a larger picture in

which theories with compact gauge groups in the UV always flow to theories with compact

gauge groups in the IR. Finally, we very briefly conclude in section 6.

2 Mixing with a heavier axion with a periodic potential

2.1 Light axion remaining massless

The first scenario we will consider is when two axions mix and a periodic potential gives

a mass to one linear combination of them, leaving one massless axion in the IR. We will

argue that there is a consistent EFT description in which the light axion is periodic and has

quantized couplings to gauge fields. Elements of our discussion, involving the diagonaliza-

tion of kinetic mixing in the case of a massive axion, have previously appeared in [27, 62],

and some of the conclusions about quantized couplings were previously emphasized in [42].

Nonetheless, it is useful to highlight a confusing aspect of the calculation that has not

previously been emphasized, and then explain how this confusion is resolved. We will en-

counter a similarly confusing intermediate result in section 3, which our experience in this

section will help to resolve correctly.

2.1.1 Setting up the problem in a convenient lattice basis

We will denote our two axion fields θ1 and θ2 and assume that they both have period 2π. A

different way to say this is that our field space is a torus, obtained by taking the quotient

of the plane (θ1, θ2) by the lattice (2πn1, 2πn2), ni ∈ Z. A linear transformation(
θ′1
θ′2

)
=

(
a b

c d

)(
θ1

θ2

)
(2.1)

preserves this structure provided that(
a b

c d

)
∈ GL(2,Z). (2.2)

We will call any such basis for our field space a “lattice basis.” Other bases are, of course,

possible, but they require us to reparametrize the lattice of identifications of the plane.

We will consider an effective Lagrangian of the form

L = − 1

4e2
FµνF

µν +Kij∂µθi∂
µθj − V (j1θ1 + j2θ2) +

k1θ1 + k2θ2

16π2
FµνF̃

µν , (2.3)

where ji, ki ∈ Z but Kij is an arbitrary symmetric real matrix of rank 2. For concreteness,

one could imagine the potential to take the form

V (j1θ1 + j2θ2) = Λ4 [1− cos(j1θ1 + j2θ2)] , (2.4)

which might be the leading approximation to the potential generated by a confining, pure

glue sector via the coupling
j1θ1 + j2θ2

32π2
GaµνG̃

aµν . (2.5)
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However, the only important assumption we will make is that V (x) has a minimum at

x = 0, and a Taylor expansion V (x) ≈ V0 + 1
2µ

4x2 +O(x3). Without loss of generality, we

will assume that gcd(j1, j2) = 1, by absorbing any common factor into the normalization

of the function V .

In the subsequent discussion, we will often drop the − 1
4e2
FµνF

µν term when writing

our Lagrangian. It is understood to be present whenever a coupling to FF̃ appears.

It is always possible to perform a GL(2,Z) transformation so that the massive axion

is a basis vector, θ′1 = j1θ1 + j2θ2. To see this, observe that there must exist integers

`1, `2 such that j1`2 − j2`1 = 1, as a consequence of our assumption that gcd(j1, j2) = 1.

Thus, we can define a new lattice basis as θ′1 = j1θ1 + j2θ2 and θ′2 = `1θ1 + `2θ2. The

Lagrangian (2.3), written in the new basis, has the same form, with

k′1 = `2k1 − `1k2,

k′2 = −j2k1 + j1k2,

K ′ = (M−1)TKM−1 where M =

(
j1 j2
`1 `2

)
. (2.6)

Here K denotes the kinetic matrix whose entries Kij appeared in (2.3). Notice that the

GL(2,Z) transformation maintains the quantization of couplings, k′i ∈ Z, as any lattice

basis should. Without loss of generality, then, we can study the Lagrangian (2.3) in the

special case that the potential depends only on θ′1. Let us do so, dropping the ′ labels:

L = Kij∂µθi∂
µθj − V (θ1) +

k1θ1 + k2θ2

16π2
FµνF̃

µν . (2.7)

We could, equivalently, rewrite this in terms of two periodic, dimensionful axion fields ai
with period 2πFi, as in (1.1), with a dimensionless kinetic mixing parameter ε:

L =
1

2

2∑
i=1

∂µai∂
µai + ε∂µa1∂

µa2 − V (a1/F1) +
1

16π2

(
k1
a1

F1
+ k2

a2

F2

)
FµνF̃

µν , (2.8)

where

Fi :=
√

2Kii and ε :=
K12√
K11K22

. (2.9)

2.1.2 Diagonalizing the propagating states

The Lagrangian (2.7) clearly describes one massive propagating field, θ1, and another

massless propagating field. For general Kij , the massless field will be a general linear

combination of θ1 and θ2, not necessarily aligned with any lattice vector. This means that

it is not a periodic scalar, but rather winds around the torus in an irrational direction,

never returning to its starting point. To identify this direction, we can diagonalize both the

mass and the kinetic terms by performing a shift of the light field, i.e. by defining

aL := a2 + εa1. (2.10)

– 8 –



J
H
E
P
0
5
(
2
0
2
0
)
0
6
6

This resembles the familiar diagonalization of massive dark photons kinetically mixing with

the massless ordinary photon [36], which was further discussed in [37]. To canonically nor-

malize the independently propagating fields, we can further introduce a rescaled heavy field

aH :=
√

1− ε2a1. (2.11)

In terms of aH and aL, the Lagrangian takes the diagonalized form

L =
1

2
∂µaL∂

µaL +
1

2
∂µaH∂

µaH − V (aH/fH) +
1

16π2

(
k2
aL
fL

+ (k1 − ρk2)
aH
fH

)
FµνF̃

µν ,

(2.12)

where

fH :=
√

1− ε2F1, fL := F2, and ρ := ε
F1

F2
. (2.13)

We have denoted the suppression scale in the couplings by lowercase f rather than capital

F to signal that, unlike in equation (1.1), they do not necessarily have an interpretation as

the period of a compact boson. The quantity ρ is essentially a measure of how misaligned

the basis of propagating fields is with the lattice basis.

This form of the effective Lagrangian has been derived several times before,

e.g., [27, 42, 62]. However, there is an aspect of it that is, at first sight, puzzling and has not

(to the best of our knowledge) been commented on. Specifically: the field aH , being propor-

tional to θ1, is a periodic scalar, yet its couplings to gauge fields depend on the (generically)

irrational number ρ and thus are not quantized. On the other hand, the field aL is not a pe-

riodic scalar, but its couplings to gauge fields are quantized (proportional to the integer k2).

Should this bother us? Our argument that periodic scalars have quantized couplings

was based on requiring that exp(iS) be gauge-invariant when the scalars are shifted. Be-

cause (2.12) is fully equivalent to our manifestly gauge-invariant starting point (2.3), it

must be the case that exp(iS) is well-defined despite the non-quantized coupling of the

periodic scalar aH . The reason is that a gauge transformation θ1 7→ θ1 + 2πn does not only

shift aH , but also shifts aL; our diagonalized Lagrangian (2.12) is, as it must be, invariant

under the gauge transformations

aH 7→ aH + 2πn1fH ,

aL 7→ aL + 2π (n2 + ρn1) fL, ni ∈ Z, (2.14)

which simply reflect the coordinates of the lattice in our new, misaligned basis. The lack of

quantization of the aH coupling leads to a shift in the action under a gauge transformation

of aH that is precisely compensated by the corresponding, ρ-dependent shift of aL under

the same gauge transformation. Everything is as it should be. However, one might wonder

whether the lack of periodicity of aL means that we can integrate out aH and obtain a

low-energy EFT of aL that lacks the constraints that usually come from periodicity. Given

that our Lagrangian has quantized couplings of aL to FF̃ , it does not seem to be so easy

to escape the constraints of periodicity. In fact, the non-periodicity of aL is a red herring.

Properly understood, the low-energy effective theory is a theory of a compact field, as we

will now explain.
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Figure 1. The space of two axions ai with periods 2πFi. The red lines indicate two periodically

identified values of the two axions. The blue lines are contours of constant aL = a2 + εa1, with

ε = − 1√
2

chosen as an example. Notice that a 2π shift of the heavy field a1 shifts aL by an

irrational amount, but a 2π shift of a2 at constant a1 simply shifts aL → aL + 2πfL. This is the

gauge symmetry of the EFT along the flat valley minimizing the potential V (a1).

2.1.3 Periodicity in the low-energy EFT

We have noted that the light axion field aL is not a simple periodic field, but it still has

quantized couplings. We can understand this better by examining the two-axion field space,

as shown in figure 1. The field space consists of periodic variables a1 and a2, whereas when

we diagonalize the kinetic terms we find a light field aL which is an irrational combination

of the two, and which is constant on the blue diagonal lines in the plot.

The potential V (a1) is independent of a2, and hence constant along horizontal lines

in this plot. This means that there is a flat valley along the horizontal red line at a1 = 0,

which is repeated at a1 = 2πF1 and other gauge equivalent locations. The effective field

theory of the light axion should be defined along this valley, since the field can move along

it without incurring any potential energy cost. Notice that this statement is independent

of the kinetic term for the axions, and in particular of the direction along which lines of

constant aL are oriented. The gauge symmetry a1 7→ a1 + 2πF1 does not shift aL by a

quantized multiple of 2πfL. However, the only gauge symmetry that makes sense within

the low-energy effective theory defined in a valley of fixed a1, namely a2 7→ a2 + 2πF2, does

shift aL by 2πfL: it is the horizontal translation that takes, for instance, the diagonal at

aL = 0 to that at aL = 2πfL. Furthermore, these facts are preserved by any lattice basis

in which the potential depends only on θ1; we could send θ2 7→ θ′2 := θ2 + nθ1, and in the

(θ1, θ
′
2) basis it is still true that V is a function only of θ1 and that the couplings of θ′2 are

quantized. The EFT with θ1 frozen at the minimum of its potential takes exactly the same

form in the new basis.

From this point of view, there is very little mystery: the EFT is defined along the flat

direction in field space, which is periodic. The couplings of the massless periodic axion

should be quantized, and we have found that they are. A lesson to draw from this, which
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generalizes to other contexts, is that although diagonalizing the propagating states is a

good way to proceed if you plan to do Feynman diagram calculations with multiple fields,

it can be an unnecessarily confusing step in the process of understanding the correct way

to think about the low-energy EFT.

A natural, straightforward approach to understanding the low-energy EFT is to obtain

a theory of the periodic field θ2 by directly integrating out θ1 using its equation of motion,

2K11�θ1 + 2K12�θ2 + µ4θ1 −
k1

16π2
FµνF̃

µν + . . . = 0, (2.15)

where the omitted terms arise from higher orders in the Taylor expansion of V (θ1). Solving

this equation reveals that

θ1 = −2K12�θ2

µ4
+

4K11K12�2θ2

µ8
+

k1

16π2µ4
FµνF̃

µν + . . .

=
1

F1

[
− ε

m2
1

�a2 +
ε

m4
1

�2a2 +
k1

16π2m2
1F1

FµνF̃
µν + . . .

]
, (2.16)

where in the second line we have rescaled to dimensionful fields and made the replacement

µ4 = m2
1F

2
1 . This makes it apparent that we could equally well obtain such an expansion by

working with Feynman diagrams defined in terms of the fields θ1,2 rather than the diagonal-

ized fields. The kinetic mixing is then an insertion proportional to ε� that flips a θ2 prop-

agator to a θ1 propagator or vice versa, and leads to the �a2 terms in the above equation.

In summary: the EFT of the light field is a theory of an axion θ2, with couplings

to gauge fields quantized as expected given its periodicity. All of the effects of kinetic

mixing with the heavy field are encoded in manifestly shift symmetry-preserving derivative

interactions.

2.2 An N-axion generalization

Above, we saw that if we had two axions (θ1, θ2) and a potential depending on one linear

combination of the two, we could change to a new lattice basis in which the potential

is independent of the periodic axion θ′2. This allows us to integrate out the heavy field

and obtain a theory of only the compact axion θ′2. It is natural to generalize this to the

case of N axions (θ1, . . . , θN ) with period 2π as follows: suppose that we have a potential

that depends on k independent linear combinations of the N axions and respects their

periodicity,

V = V (ϑ1, . . . , ϑk) where ϑi =

N∑
j=1

Qijθj , Qij ∈ Z. (2.17)

Then we claim that there is a new lattice basis, θ′1, . . . , θ
′
N , in which the potential has

the form V (θ′1, . . . , θ
′
k) and is independent of θ′k+1, . . . , θ

′
N . Hence, we can integrate out

the massive modes θ′1, . . . , θ
′
k to obtain an effective field theory of the N − k massless,

2π-periodic axions θ′k+1, . . . , θ
′
N .
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This fact follows from the existence of the Smith normal form [63] for matrices over a

principal ideal domain (such as the integers): given the k×n integer matrix Q with entries

Qij , there exist integer matrices S ∈ GL(k,Z),T ∈ GL(n,Z) such that

R := SQT =


r1 0 · · · 0 0 · · · 0

0 r2 · · · 0 0 · · · 0

0 0
. . . 0 0 · · · 0

0 0 · · · rk 0 · · · 0

 , ri ∈ Z. (2.18)

(The Smith decomposition also implies that we can arrange that ri divides ri+1, but we

will not need this.) The definition of GL(m,Z) means that S and T are invertible and

their inverses have integer entries.

In our original basis, the span of the rows of Q defines the subspace of axions that

obtain a potential. We can change to a new lattice basis by defining

θ′i =

N∑
j=1

T−1
ij θj , (2.19)

where T−1
ij are the entries in T−1. In terms of this basis, the potential depends on the span

of the rows of the matrix QT = S−1R. We can read off immediately that the span of the

rows of R contains only linear combinations of the first k basis vectors in the θ′i basis. The

form of R together with invertibility of S−1 guarantees that the rows of S−1R span the

same subspace. Hence the potential is independent of (θ′k+1, . . . , θ
′
N ).

This shows that our discussion of the 2-axion case can be fully generalized to N axions.

When a potential gives a mass to k < N axions, we can always find a lattice basis where

it is manifest that N − k axions with period 2π are flat directions. By the usual logic

of effective field theory, then, we can integrate out all of the heavy axions, and obtain a

theory of the N − k light axions that respects all of the expected quantization rules for

axion couplings. Any kinetic mixing with heavy axions, upon integrating them out, will

produce only shift-symmetric terms involving � acting on light axions, as we saw above.

2.3 Light axion obtaining a mass

So far we have discussed only cases in which light axions remain exactly massless, and have

found that they are periodic fields with exactly quantized couplings. The quantization of

axion couplings can be violated once the axions obtain a mass. One straightforward way to

see this is by noting that within the effective field theory, we can use equations of motion

to make the replacement

�aL 7→ −
∂V (aL)

∂aL
≈ −m2

LaL + . . . , (2.20)

which exchanges a term that is manifestly invariant under continuous shift symmetries of

θ2 with one that is not. Although the linear term coupling aL to FF̃ is not necessarily

quantized, if we keep higher-order terms in aL this replacement does preserve the discrete

shift symmetry (1.1) because V (aL) is a periodic function. One could also see this effect
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from the Feynman diagram approach; an external, on-shell light axion of mass mL that

kinetically mixes with the off-shell propagator of a heavier axion of mass mH will obtain an

insertion proportional to εp2 = εm2
L followed by a propagator factor of 1/(m2

H−m2
L), which

agrees with the EFT result obtained by integrating out θ1 using (2.16) and expanding order-

by-order in m2
L/m

2
H � 1. Thus, the couplings of a massive axion field are not quantized,

but to the extent that the mass of the axion is much smaller than all other mass scales in

the problem, we expect the deviations from coupling quantization to be small.

It is instructive to compare this to the familiar non-quantized shift of the axion coupling

to photons via its mixing with the neutral pion. As explained in [42], this does not violate

the shift symmetry (1.1) of the axion because it is part of a set of terms that resum to a

periodic function, similar to (2.20). Furthermore, the effect is suppressed by m2
a, and is

large only because the axion mass arises from the same strong dynamics as the pion mass,

so that m2
aF

2
a ∼ m2

πF
2
π . In other words, in this case, the suppression factor m2

a/m
2
π that we

have argued to exist on general EFT grounds is compensated by an enhancement factor of

F 2
a /F

2
π . (One could, in principle, perform a field redefinition to discuss this example in the

language of kinetic mixing rather than mass mixing, although because the kinetic mixing

would then be nearly maximal, this is not a very useful viewpoint to take.) This example

shows that some caution is in order when asserting that effective field theories of very light

axions are expected to contain quantized couplings to gauge fields. On the other hand, it

also reveals that one needs rather special circumstances to obtain a very large violation of

this expectation, as arises when multiple periodic scalars obtain mass simultaneously from

the same dynamics, as in QCD confinement.

3 Mixing with a heavier axion eaten by a spin-1 field

As our next example, we again consider a theory with two axions, but with a linear com-

bination obtaining a mass in a different way: by being eaten by a massive, spin-1 gauge

field through the Higgs or Stückelberg mechanism [30, 31]. This type of theory has been

considered in great detail in [32, 33]. A version of it in a Randall-Sundrum scenario was

recently discussed in [56]. In this scenario, we will again see intermediate results that seem

to break the expected connection between periodic scalar fields and quantized couplings.

In this case, the pattern will be reversed from what we observed in section 2.1.2: the

heavy axion will be a non-periodic field, but will have quantized couplings; on the other

hand, the light axion will be a periodic field, but will have non-quantized couplings. These

non-quantized couplings have led to earlier claims that super-Planckian field ranges can

be obtained in models of this type [32, 33, 56]. However, our results do not support such

claims. Once again, a careful assessment of the underlying gauge invariance of the theory

will show that the proper understanding of the low-energy EFT is that of a periodic field

with quantized couplings, despite initial appearances. Our conclusions are in accord with

those of [34], which appeared while this paper was being completed.
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3.1 Diagonalizing the propagating states

Let’s begin by looking at an effective theory with two axions, one combination of which

is eaten to provide a mass to a spin-1 field via the Stückelberg mechanism. (It is possible

to obtain this effective theory as a limiting case of a Higgs mechanism, so we expect our

remarks to apply to both scenarios.) For the time being, we will neglect kinetic mixing, as

the points we wish to illustrate do not depend on it. We begin by considering the action

2∑
i=1

1

2
F 2
i (∂µθi−qiAµ)2− 1

4e2
FµνF

µν− 1

4g2
GµνG

µν+
k1θ1+k2θ2

16π2
GµνG̃

µν+Lcon, (3.1)

where Fµν = ∂µAν−∂νAµ is the field strength of the massive gauge field, whereas Gµν is the

field strength of a different, massless gauge field Gµ. We are interested in the quantization

of the θGG̃ coupling for the light axion. The term Lcon denotes additional couplings that, in

some cases, may be necessary for consistency of the theory. We will discuss these couplings

in more detail below.

The subtleties in this case, compared to our previous case, arise because we now must

ensure invariance under three different gauge transformations that shift the axions. These

are the two discrete shift symmetries θi 7→ θi + 2π associated with the periodicities of the

axions, together with a continuous shift symmetry associated with the U(1) group gauged

by Aµ:

Aµ 7→ Aµ + ∂µα, θ1 7→ θ1 + q1α, θ2 7→ θ2 + q2α. (3.2)

When studying the theory on a spacetime of nontrivial topology, eiα(x) ∈ U(1) must be

well-defined (single-valued) but α itself need not be. Because eiθi(x) must also be single-

valued, we see that the gauge transformation (3.2) makes sense only if q1, q2 ∈ Z. This is

consistent with our expectations if the axions θi arise as phases of complex fields of charge

qi that obtain a vacuum expectation value, in the case that (3.1) arises as a limit of the

Higgs mechanism.

Consistency of the theory under the axion shift symmetries imposes that k1, k2 ∈ Z in

the absence of additional interactions, just as in our earlier discussions. However, notice

that in general the θGG̃ terms are not invariant under the U(1) gauge transformation (3.2),

which shifts the Lagrangian by

δαLθGG̃ =
k1q1 + k2q2

16π2
αGµνG̃

µν . (3.3)

Because α is a continuous quantity, the theory only respects the U(1) gauge symmetry

if k1q1 + k2q2 = 0. Otherwise, it is necessary to add additional terms, indicated by Lcon

above, which are not gauge invariant on their own but which serve to cancel the gauge

variation (3.3). Such terms could arise from fermions that carry G charge and transform

anomalously under the U(1), or from generalized Chern-Simons terms proportional to

AµK
µ where ∂µK

µ = GµνG̃
µν [31–33].

For the moment, let us leave Lcon unspecified and proceed to diagonalize the propa-

gating states in (3.1). We can change basis to diagonalize the kinetic terms,

L ⊃ 1

2
m2
A(∂µaH −Aµ)(∂µaH −Aµ) +

1

2
m2
A∂µaL∂

µaL, (3.4)
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where the “heavy axion,” the linear combination eaten by the U(1) gauge boson with mass

mA, is

aH :=
1

m2
A

[
F 2

1 q1θ1 + F 2
2 q2θ2

]
, where m2

A := F 2
1 q

2
1 + F 2

2 q
2
2. (3.5)

The orthogonal light combination is

aL :=
F1F2

m2
A

(q2θ1 − q1θ2) . (3.6)

The proportionality of aL to an integer linear combination of our original axion fields is no

accident; it guarantees that aL is invariant under the U(1) gauge transformation (3.2). In

this basis, the couplings of the propagating axion eigenstates to the gauge field G are

L ⊃ 1

16π2

[(
k1q2

F2

F1
− k2q1

F1

F2

)
aL + (k1q1 + k2q2) aH

]
GµνG̃

µν . (3.7)

These results have already been obtained in [32, 33], but let us discuss them from the

point of view of gauge invariance, periodicity, and quantized couplings. The fact that the

coupling of aH is proportional to k1q1 + k2q2 follows from (3.3): when the Lagrangian is

gauge invariant without further contributions, i.e., when Lcon = 0, U(1) gauge anomaly

cancellation demands that the linear combination of axions that transforms under U(1)

decouples from the other gauge fields.

Recall that in section 2.1.2, we faced a puzzle: after diagonalizing the mass and kinetic

mixings, we found a heavy propagating axion mass eigenstate that was a periodic scalar

and yet had non-quantized couplings, and a massless light axion that was not a periodic

scalar and yet had quantized couplings. Here we seem to see exactly the opposite situation:

the heavy linear combination aH is not a periodic scalar, and yet its coupling to GG̃ is

proportional to the integer k1q1 + k2q2.1 On the other hand, the light axion aL is periodic;

from (3.6) we can see that under a general shift of the underlying fields θi 7→ θi + 2πni, the

shift of aL is proportional to the integer q2n1 − q1n2. Thus, aL is periodic, with minimal

period given by the identification

aL ∼= aL + 2π
F1F2

m2
A

gcd(q1, q2). (3.8)

The puzzle is that despite this periodicity, the couplings of aL do not seem to be quantized,

as the GG̃ coupling depends not only on the integer charges ki, qi, but also on the ratio of de-

cay constants F1/F2. In particular, if we define a scalar field θL of period 2π by rescaling aL,

θL :=
1

gcd(q1, q2)
(q2θ1 − q1θ2), (3.9)

its coupling to GG̃ is given by

1

16π2

[
gcd(q1, q2)

(
k1q2F

2
2 − k2q1F

2
1

q2
1F

2
1 + q2

2F
2
2

)]
θLGµνG̃

µν , (3.10)

1This is a bit of an overstatement: in the presence of Lcon, as noted above, the ki need not be integers,

whereas in the absence of Lcon, this coupling is not just any integer, but zero.
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where the term in brackets is, in general, not an integer. This appears to contradict the

basic periodicity (1.3) of a 2π-periodic axion.

We emphasize that the periodicity of θL is entirely determined by the original periodic

lattice of identifications of (θ1, θ2) together with the charges qi, which specify which linear

combination of the fields remains uneaten. We can write the kinetic term of θL as

1

2
F 2
L∂µθL∂

µθL, where FL =
F1F2 gcd(q1, q2)

mA
. (3.11)

The scale FL is the most natural definition of the “decay constant” of the light axion, and

determines the units in which the couplings of the canonically normalized axion to GG̃

are expected to be quantized as well as the expected field range when an axion potential

is generated. This should be contrasted with the approach of [32, 33, 56], which defines

an effective decay constant Feff which is inversely proportional to the factor in brackets

in (3.10). In those studies, a small value of the factor k1q2F
2
2 −k2q1F

2
1 is argued to suppress

the coupling and lead to a trans-Planckian Feff. While it is interesting that the coupling

in (3.10) allows for a very large Feff defined in this way, the fact that it is not related to the

period 2πFL appearing in (3.11) should give us pause. In fact, the axion decay constant as

we have defined it can only be smaller than the decay constants we started with:

FL < min(F1, F2). (3.12)

How do we reconcile this with claims of large Feff extracted from (3.10)?

We have already laid the groundwork for the resolution of this puzzle: because the

Lagrangian (3.1) is not, in general, gauge-invariant in the absence of additional terms

Lcon, we should not be surprised that it violates the expected periodicity properties. The

physical coupling of an axion to gauge fields is quantized in units that allow us to read off

the maximum field range of the axion potential, but in theories with Lcon 6= 0, Lagrangian

couplings like that in (3.10) do not determine the full amplitude, and consequently we do

not expect that the scale Feff extracted from such a term is related to a physical field range.

The discussion in the introduction makes this clear: if we read off Feff ∝ 1/cF from (1.4),

then because cF shifts as in (1.6) under a field redefinition, we could obtain absolutely any

value of Feff by parametrizing our fields in a different way. The physical amplitude which

is quantized, in the presence of anomalous fermions, depends on a combination of terms

like (1.7). Only by first redefining the fermions to set cm = 0 (which, in this context, is

the meaning of Lcon = 0) do we obtain quantized cF , at which point we can read off the

axion periodicity from this coupling. Hence, we cannot, in general, analyze the periodicity

constraints on the effective action of θL without specifying the terms Lcon, which we expect

will always resolve the puzzle. The only case in which we can directly resolve the puzzle

is in the case when it is consistent to set Lcon = 0 because δαLθGG̃ in (3.3) is identically

zero, i.e., the case k1q1 + k2q2 = 0. In this case, the bracketed factor in (3.10) reduces to[
gcd(q1, q2)

(
k1q2F

2
2 − k2q1F

2
1

q2
1F

2
1 + q2

2F
2
2

)]
7→ −k2

q1
gcd(q1, q2) ∈ Z. (3.13)

To justify the claim that this is an integer: given that k1q1 = −k2q2, it follows that

q1|(k2q2). In order for this to be true, q1/ gcd(q1, q2) must divide k2.
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So far we have assumed the light axion to be exactly massless, and found that it has

exactly quantized couplings. We could also consider a theory which has a potential that

provides a mass for the light axion well below the mass of the heavy spin-1 field. Just as

we discussed in section 2.3, the effective field theory of the light axion allows for terms

proportional to �θL which, upon making use of the equations of motion, can appear as

effectively non-quantized couplings proportional to the light axion mass squared.

Summing up: when we give one linear combination of the axions a mass through the

Higgs or Stückelberg mechanism, the massless light axion is a periodic field, with smaller

field range than our initial axions. In the case that the Lagrangian we have studied is

gauge invariant in its own right, we have shown that the couplings of this periodic field are

quantized, just as we expect them to be. This is as it must be; if we integrate out the heavy

fields, we obtain an effective field theory of a periodic axion, with all of the constraints that

this entails. Nonetheless, to illustrate the point more generally, let us look at an example

in which Lcon 6= 0. Specifically, we will consider a theory in which light fermions cancel

the gauge variation (3.3).

3.2 Analyzing a 4d UV completion

To clarify the physics, it is useful to consider an explicit, 4d UV completion of the effective

Lagrangian (3.1) in which the massive gauge field obtains a mass from the Higgs mechanism,

and fermion fields supply a non-vanishing contribution to Lcon. The goal of this model is

simply to show a consistent example that generates the effective theory we are interested

in, in which we can explicitly calculate the interactions and understand how the constraints

of axion periodicity are respected. This model is not meant to be natural or aesthetically

appealing, just to illustrate some points about the physics of axions. For this reason, we

will freely assume hierarchies in the dimensionless couplings, and invoke global symmetries

that are not necessarily accidental, with no need for further explanation.

In this model, the axions θ1,2 arise from the phases of two complex scalars φ1,2 with

U(1) gauge charges q1,2. We also consider an SU(N) gauge group that will provide the

GG̃ couplings we are interested in. Each of the scalars will provide Dirac masses to some

fermions Q, Q̃ which transform in non-trivial, conjugate SU(N) representations, so that

from the SU(N) point of view the theory is not chiral. However, these fields will have

chiral couplings to U(1): Q carries charge and Q̃ does not, or vice versa. To cancel the

U(1)3 and mixed U(1)–gravitational anomalies, we also introduce fermions L, L̃ that have

the opposite U(1) charge assignments but do not interact with SU(N) gauge fields (though

they come in the appropriate number of copies to compensate for the anomalies of the

Q, Q̃ fields). By construction, this theory has no SU(N)3, U(1)3, or mixed gravitational

anomaly, but the SU(N)2U(1) mixed anomaly still imposes a nontrivial constraint on the

representations and charged assignments, to which we will return shortly. The field content

of this model is summarized in table 1.

The Lagrangian (3.1) can be obtained in a decoupling limit of this model. We begin

with the complete theory, including Yukawa couplings

LYuk =
∑
i

(
y1Qiφ

†
1Q1iQ̃1i+y1Liφ1L1ikL̃1ik

)
+
∑
j

(
y2Qiφ

†
2Q2jQ̃2j+y2Ljφ2L2ikL̃2ik

)
+h.c.,

(3.14)
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φ1 φ2 Q1i Q̃1i L1ik L̃1ik Q2j Q̃2j L2jk L̃2jk

U(1)gauge q1 q2 q1 0 −q1 0 0 q2 0 −q2

SU(N) 1 1 R1i R1i 1 1 R2j R2j 1 1

U(1)global 1 0 1 0 0 −1 0 0 0 0

Ncopies 1 1 1 dim(R1i) 1 dim(R2j)

Table 1. Matter field content in a potential UV completion of the two axion model. The integers

i ∈ {1, . . . , N1} and j ∈ {1, . . . , N2} label the set of fields, while the subscripts 1 and 2 signal which

Yukawa couplings provide mass to the fields, e.g., φ1Q1iQ̃1i. The full set of Yukawa couplings

is displayed in (3.14). The φ fields are scalars, whereas the Q, Q̃, L, L̃ fields are all left-handed

Weyl fermions. The L, L̃ fields come in multiple copies, k ∈ {1, . . . , Ncopies}, to ensure anomaly

cancellation. With these charge assignments, the only anomaly cancellation condition that must be

explicitly checked is the SU(N)2U(1) anomaly.

where sums over the copies k of the L fields are implicit. To generate an effective Lagrangian

of the form (3.1), we suppose that there is a hierarchy among the Yukawa couplings so

that some are much larger than others. Then below the symmetry breaking scale, we

can integrate out the heavy fermions. In general, integrating out a term of the form

m(φ)ΨΨ̃ + h.c. produces a term of the form

∆L =
2µ(RΨ)

32π2
arg(m)GaµνG̃

aµν , (3.15)

where µ(RΨ) is the Dynkin index of the representation of Ψ under the group G. For

concreteness, let us suppose that the fields with i = 1 and j = 1 are relatively heavy,

whereas all of the others are much lighter (i.e., have much smaller Yukawa couplings to

φ1, φ2). We further assume that the U(1) gauge coupling e is small enough that we can

integrate out the heavy fermions without integrating out the massive gauge field, i.e.,

eq1,2 � y1Q1, y1L1, y2Q1, y2L1. We further assume that the fields φ1,2 have a symmetry

breaking potential which does not mix them, e.g.,

VSSB =
λ1

4

(
|φ1|2 − v2

1

)2
+
λ2

4

(
|φ2|2 − v2

2

)2
. (3.16)

The structure of this potential ensures that, when we turn off the U(1) gauge interaction, we

have two distinct Nambu-Goldstone bosons θ1,2 which are the phases of φ1,2 respectively.

An example of a U(1) global symmetry charge assignment that can be responsible for

protecting the uneaten Nambu-Goldstone boson is given in the “U(1)global” row of table 1.

We further assume that the radial modes of the φ fields are sufficiently heavy that we can

integrate them out, i.e., eq1,2 �
√
λ1,2. The choice of which fields to integrate out is not

unique, but making this arbitrary choice suffices to illustrate our main points. We illustrate

the various interesting ranges of energies, and corresponding effective field theories, in this

model in figure 2.

Integrating out the heavy SU(N)-charged fermions Q11, Q̃11, Q21, Q̃21 will generate

couplings

L
θGG̃

= − 1

16π2
[µ(R11)θ1 + µ(R21)θ2]GaµνG̃

aµν . (3.17)

– 18 –



J
H
E
P
0
5
(
2
0
2
0
)
0
6
6

Energy

MPQ

MU(1)

UV Complete Lagrangian:
Complex Scalars (φ1,φ2), Gauge Fields (Aµ,G

a
µ), Fermions (Q, Q̃, L, L̃)

Renormalizable Couplings

Intermediate Scale Lagrangian:
Axions (aH,aL), Gauge Fields (Aµ,G

a
µ), Light Fermions (Q, Q̃, L, L̃ with i, j 6= 1)

Non-renormalizable aFF̃ terms

IR Lagrangian:
Light Axion (aL), SU(N) Gauge Fields (Ga

µ), Light Fermions (Q, Q̃, L, L̃ with i, j 6= 1)
Non-renormalizable aFF̃ terms

Figure 2. Schematic of important energy scales and effective field theories obtained from our UV

completion. After integrating out the radial modes of the scalars and the heavy fermions at the

Peccei-Quinn scale MPQ, we obtain an effective field theory of two axions, one eaten by a spin-1

field, as considered in section 3.1. Below the mass scale MU(1) of the spin-1 field, an effective field

theory of a single light axion is obtained. We show that this axion is a periodic field with quantized

couplings.

We follow the standard convention in particle physics that the Dynkin index of the fun-

damental representation of SU(N) is µ(�) = 1/2, in which case the Dynkin index of any

representation R satisfies 2µ(R) ∈ Z, which shows that the couplings of θ1,2 are quantized

in the way that we expect. Changing basis as described in section 3.1, this includes a

coupling of the light axion θL of the form

− gcd(q1, q2)

16π2
1

m2
A

[
µ(R11)q2F

2
2 − µ(R21)q1F

2
1

]
θLG

a
µνG̃

aµν . (3.18)

While it appears that we can choose this to be as small as we like by carefully choosing

representations to impose relations among the ql and µ(Rmn), we have not yet taken into

account gauge invariance. The condition for SU(N)2U(1) anomaly cancellation, given the

field content in table 1, is

N1∑
i=1

µ(R1i)q1 +

N2∑
j=1

µ(R2j)q2 = 0. (3.19)

We can use this condition to eliminate µ(R11) from (3.18), obtaining a coupling

L
θLGG̃

=−gcd(q1, q2)

16π2
1

m2
A

− N1∑
i=2

µ(R1i)q2F
2
2 −

N2∑
j=1

µ(R2j)
q2

2

q1
F 2

2 −µ(R21)q1F
2
1

θLGaµνG̃aµν
=

gcd(q1, q2)

16π2

µ(R21)

q1
+

N1∑
i=2

µ(R1i)q2
F 2

2

m2
A

+

N2∑
j=2

µ(R2j)
q2

2

q1

F 2
2

m2
A

θLGaµνG̃aµν . (3.20)
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Notice that we have now written the coupling in terms of a single term that depends on one

of the heavy fields, together with a sum over only the light fields (i.e., the sums omit i = 1

and j = 1). The first term in brackets in (3.20) is a rational number, while the others are,

in general, irrational. However, recall that this is not unexpected: there are additional light

fermions in the theory, labeled by i ∈ {2, . . . , N1} and j ∈ {2, . . . , N2}. The quantization

condition applies only to a combination of coefficients like (1.7), which depends on how the

light fermions couple to the axion. By either performing an anomalous field redefinition

to eliminate the θLΨΨ̃ couplings, or computing the one-loop triangle diagram contribution

to the θLGG̃ amplitude, we find that the light fermion contributions cancel the irrational

pieces of the terms in (3.20) that arise from the sum over i and j. To compute these

contributions, we note that the masses of the Q1i and Q2j fields are proportional to

φ†1 ∼ exp(−iθ1) = exp

[
−i

(
q1aH +

q2 gcd(q1, q2)F 2
2

m2
A

θL

)]
,

φ†2 ∼ exp(−iθ2) = exp

[
−i

(
q2aH −

q1 gcd(q1, q2)F 2
1

m2
A

θL

)]
, (3.21)

where we have changed to the basis of heavy and light fields. As a result, if we eliminate

the θL couplings to the light fermions, we produce new contributions to the θLGG̃ coupling,

∆L
θLGG̃

= −gcd(q1, q2)

16π2
1

m2
A

 N1∑
i=2

µ(R1i)q2F
2
2 −

N2∑
j=2

µ(R2j)q1F
2
1

 θLGaµνG̃aµν . (3.22)

The first of the new terms cancels the middle term in brackets in (3.20), while the second

term combines with the last term in brackets in (3.20) and simplifies:

L
θLGG̃

+ ∆L
θLGG̃

=
gcd(q1, q2)

16π2

µ(R21)

q1
+

N2∑
j=2

µ(R2j)

(
q2

2

q1

F 2
2

m2
A

+
q1F

2
1

m2
A

) θLGaµνG̃aµν
=

1

32π2

2 gcd(q1, q2)

q1

N2∑
j=1

µ(R2j)

 θLGaµνG̃aµν . (3.23)

Now we have finally obtained a manifestly quantized coupling, as we expect for a periodic

axion. We can argue that the term in brackets is an integer in precisely the same way that

we argued following (3.13), once we make use of (3.19) and the aforementioned integer

quantization of 2µ(R).

4 Mixing with a heavier non-compact scalar

In this section, we will study examples in which an axion mixes with a non-compact scalar.

As in our previous examples, our purpose is to study the periodicity of the light axion

after decoupling the heavy field. In our first example, we consider mixing of the light axion

with a radial mode of the same complex field. In the second example, we consider mixing

of an ordinary axion with a monodromy axion. For concreteness, we consider an extra-

dimensional realization of monodromy in which the two axions are the Wilson loop phases

– 20 –



J
H
E
P
0
5
(
2
0
2
0
)
0
6
6

of two different five dimensional gauge fields obtained after compactification on R3,1 × S1.

One has been Higgsed (Hµ), the other remains massless (Aµ), and both couple to the same

charged bulk scalar. While there is extensive literature on both the one-loop potential

(e.g., [64–70]) and axion monodromy (e.g., [25, 26, 35, 71–74]), we highlight features of

their interplay which have not previously been emphasized in the literature and use them

to show our broader conclusions still hold in a more general setting. In both of the examples

we consider, if the non-compact field is much heavier than the axion, we find that we can

integrate it out to obtain a typical EFT of the light axion. In the case of mixing with a

monodromy axion, we find that in the limit where the monodromy potential is subdominant

to a periodic potential for a linear combination of the ordinary and monodromy axions,

the monodromy is effectively “realigned” to the surviving light axion in the EFT, which

has a larger decay constant than the original monodromy axion. In every case, we find

that deviations of θGG̃ couplings from their quantized values are, as before, proportional

to the mass squared of the axion field.

The case of mixing with a monodromy axion that we discuss is related to an earlier

discussion in [58], in which certain axions obtain masses via fluxes (which makes them

monodromy axions) and other axions remain light. That paper emphasized that the light

axions can have enhanced field ranges, providing an implementation of alignment [28] in

which the heavy mode is decoupled by fluxes rather than a periodic potential. Our claims

are in accord with theirs, but we consider an extended range of possibilities including the

scenario when a periodic potential provides a larger mass term than a monodromy potential.

4.1 Mixing with a radial mode

As our first example of mixing with a non-compact scalar, we consider a simple KSVZ UV

completion of a single axion [75, 76] and add at least one PQ-breaking term:

L = λ(|φ|2 − v2)2 +
(
yφQQ̃+ h.c.

)
+

(
zφN

ΛN−4
+ h.c.

)
. (4.1)

The presence of the PQ-breaking term allows, when perturbing around a generic point in

field space, for the radial and angular modes of φ to mix with each other. (The Yukawa term

also allows this, after confinement.) An example of this potential for a particular choice

of parameters is shown in figure 3. Our purpose in studying this theory is to understand

whether it can produce a non-compact scalar field after integrating out the radial mode.

We find that the answer is no, because even before integrating out the radial mode, we see

that there is a nearly-flat, periodic valley at the minimum of the potential.

The potential, within the UV theory of two real scalar fields, has a periodic valley

because of the form of the radial dependence of each of the contributions to the potential.

In order for the valley to unwind into a non-compact flat direction, a cross section of the

potential at fixed theta would have to oscillate as a function of the radial mode. However,

in each of the contributions to the potential in this example, the radial dependence is

polynomial. In general, models of this form will generate potentials that are a sum of

periodic functions of theta each multiplied by an envelope function that is a polynomial

in the radial model. This means that while PQ-breaking terms can generate complicated

– 21 –



J
H
E
P
0
5
(
2
0
2
0
)
0
6
6

Figure 3. An example potential from mixing an axion with a radial higgs mode through a KSVZ-

like model, including additional PQ breaking terms. Lines of constant r (defined to be the radial

mode of φ) are shown in blue. Both the quark couplings and the PQ-breaking terms generate a

potential along the θ (the phase of φ) direction, but are unable to produce a non-compact valley at

the minimum of the potential.

radial dependence for the precise location of the minimum of the potential, they cannot

make the valley unwind into a non-compact direction without fine-tuning the coefficients

of the radial polynomials to approximate a periodic function.

4.2 Mixing with a monodromy axion

The simple four-dimensional theory that we considered in the previous subsection is not

sufficient to allow the valley at the base of the potential to become a non-compact direction.

Our discussion suggests that this is more likely to occur in a potential that mixes the

radial and angular modes inside a periodic function. To generate this type of potential,

we will consider the case where a monodromy axion mixes with an ordinary, compact

axion. In this model, the nearly-flat valley at the base of the potential is non-compact

because of mixing with the non-compact monodromy axion. On the other hand, there is

still an underlying periodicity, which is reflected in quantized aGG̃ couplings. The mixing

between one monodromy axion and a second compact axion can lead to a low energy

EFT of a monodromy axion which is lighter and has a larger field range than the original

monodromy axion on its own. This type of potential and string theory completions have

been discussed previously in [35]. Instead of a string theory construction, we will instead

illustrate the core concepts using a simpler mechanism for generating the potential from

dimensional reduction of a higher dimensional QFT.

We consider the simplest toy example that has this effect: a five dimensional theory

of two U(1) gauge fields, where one has been higgsed (Hµ) and the other remains massless

(Aµ). The use of massive U(1) gauge fields in higher dimensions to produce monodromy

axions in a compactified theory has been discussed previously in [74, 77, 78]. After com-

pactifying the fifth dimension on a circle of radius R, we obtain axions as the Wilson loop

phases θi :=
∮

dx5G5i of the fifth component of each gauge field around the compactified

dimension. We can see that the axion is normalized here to have period 2π because G5i and

G5i + 1
R are related by a large gauge transformation. The higgsed field alone will generate

a monodromy potential for θH . To generate a periodic potential that mixes θH and θA, we

couple both gauge fields to the same form of matter. For simplicity, we take this matter to
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be a massless scalar and take the 5d spin-1 field to have a simple Stückelberg mass term,

but these choices do not qualitatively change our results. (In particular, our qualitative

conclusions should carry over to the other shapes of monodromy potentials that are known

to arise in string models, e.g., [25, 72, 79].) The action in this theory takes the form

S=

∫
d5x

(
− 1

4g2
5H

HMN (x)HMN (x)− m2

2g2
5H

HµHµ−
1

4g2
5A

AMN (x)AMN (x)+DMχ
†(x)DMχ(x)

)
(4.2)

where the covariant derivative is

DMχ(x) := ∂Mχ(x)− iqAAM (x)χ(x)− iqHHM (x)χ(x) (4.3)

and following [77] we have defined

HM (x) := HM (x)− ieiθ(x)∂Me−iθ(x), (4.4)

where the Stückelberg field θ(x) is a periodic scalar. Since θ is an angular variable it can

have nontrivial winding around the extra dimension, wx
5

R for integer w, which is responsible

for the monodromy after compactification.

The potential obtained after compactification contains two distinct contributions. At

tree level, we only see the monodromy potential of the higgsed gauge field from the mass

terms [77]

L4 ⊃ −Vmon(θH) := − m2

2g2
4HR

2

(
θH
2π
− w

)2

= −1

2
m2F 2

H (θH − 2πw)2 , (4.5)

where we have defined the 4d gauge couplings g4i = g5i/
√

2πR as well as the decay constants

of the 4d axion fields, Fi = 1/(2πg4iR). Since the kinetic terms are 1
2F

2
i (∂θi)

2, we see that m

is the canonically normalized mass of θH . As is typical with monodromy, for the Lagrangian

to remain invariant under a shift by the axion period, we must also shift w. On any given

branch of fixed w, the potential is effectively not periodic, so θH behaves as a non-compact

scalar. In addition to the tree level potential, both gauge fields get one-loop potentials

from their couplings to matter. Since they are coupled to the same form of matter, the

one loop potential will be a periodic potential that mixes the monodromy axion with the

ordinary axion. In particular, the potential generated by integrating out the mass terms

for the tower of scalar Fourier modes

χ†(n) 1

R2

(
n− qA

θA
2π
− qH

θH
2π

)2

χ(n) (4.6)

will simply be a sum of cosines in the case where χ is massless (e.g., [65]),

Vper(θA, θH) = − 3

64π6R4

∞∑
n=1

cos(nqAθA + nqHθH)

n5
. (4.7)

In the case where χ is massive the exact form the potential is more complicated [64, 66, 67],

but will still be periodic and produce qualitatively the same effect.
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Figure 4. The two-axion potential in the case where a monodromy axion θH (horizontal axis)

mixes with a compact axion θA (vertical axis). The front and back edges of the surface correspond

to θA = 0 and θA = 2π and are identified. In the left plot, we have chosen parameters so that

∂2HVmon > |∂2HVper|. In this case, the monodromy axion is heavy and can be integrated out; the

light axion θA has a smaller cosine potential along the periodic valley at the base of the monodromy

axion’s potential. In the right plot, the opposite limit |∂2HVper| > ∂2HVmon is taken. In this case, the

cosine potential is large enough to produce a series of ridges. The light axion mode is neither θA nor

θH , but the mode that traverses the valley in between ridges, along which θA = −qHθH/qA (mod 2π).

The colored arrows show the path of the minimum down the potential, where arrows of a particular

color should be identified together.

Although Vper is a one-loop effect and Vmon is a tree-level effect in this model, it need

not be the case that the monodromy potential dominates. This is because Vmon originates

from spontaneous breaking of the discrete shift symmetry, which is preserved by Vper, so it

is of parametrically different (potentially much smaller) size. It is interesting to consider

two different limits, one in which ∂2
HVmon > |∂2

HVper| throughout the field space, and one

with the opposite inequality. (Here ∂H denotes ∂/∂θH .) These are depicted in the left-

and right-hand panels of figure 4, respectively. The left panel shows the case where the

monodromy potential dominates over the periodic potential. The periodic potential creates

a small perturbation, but there is no obstruction to any nonzero value of θH rolling down

the potential toward θH = 0. The right panel shows the more interesting case, in which

|∂2
HVper| > ∂2

HVmon. This creates a series of ridges in the potential; it is conceivable that

the field could be localized (for instance, during inflation) in a valley between ridges far

up the potential, and will evolve toward the minimum by following the winding path down

the valley rather than moving directly in the θH direction.

The phenomenon exhibited in the case with a ridged potential might be thought of

as “monodromy realignment.” In the effective theory containing both θH and θA, it is

θH that carries the monodromy. This is because the Stückelberg field that produced the

monodromy shifted only under shifts of Hµ. Nonetheless, the low-energy effective theory

is that of a monodromy axion that is a nontrivial linear combination of θH and θA. One

way to see this is by noting that we could first integrate out the linear combination of fields

that obtains a mass from Vper. As in section 2.1.1, we could choose an alternative lattice
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basis (θ1, θ2) in which this field is θ1. Specifically, we can find integers rA, rH such that(
θ1

θ2

)
=

(
pA pH
rA rH

)(
θA
θH

)
, (4.8)

where

pA :=
qA

gcd(qA, qH)
, pH :=

qH
gcd(qA, qH)

, and pArH − pHrA = 1. (4.9)

In this basis, the potential is (choosing the branch where w = 0)

V (θ1, θ2) = Vper(θ1) +
1

2
m2F 2

H (pAθ2 − rAθ1)2 . (4.10)

The effective theory along the valley in the potential is obtained by taking θ1 = 0 (or a

2π shift thereof), so that we can integrate it out to obtain an effective theory of the light

field θ2,
1

2
F 2

2 ∂µθ2∂
µθ2 −

1

2
m2p2

AF
2
Hθ

2
2 + (terms proportional to �θ2), (4.11)

where, using (2.6), the kinetic term of θ2 is proportional to

F 2
2 = p2

AF
2
H + p2

HF
2
A. (4.12)

From this we can read off the canonically normalized mass of the light field,

m2
2 = m2 p2

AF
2
H

p2
AF

2
H + p2

HF
2
A

. (4.13)

The nonperiodic potential for θ2 indicates that, in the low-energy effective theory, it is a

monodromy axion; we say that the monodromy has realigned from θH to θ2 = rAθA+rHθH .

Monodromy realignment has both increased the effective decay constant and, correspond-

ingly, decreased the mass of the monodromy axion. Both of these features are intuitively

apparent from the winding valley in figure 4.

We could also ask if couplings to external gauge fields are quantized the way that we

expect them to be. To study this we consider adding Chern-Simons terms to the theory,

LCS =
cA

16π2
εMNPQRAMTr[GNPGQR] +

cH
16π2

εMNPQRHMTr[GNPGQR], (4.14)

where G is an arbitrary gauge field (which could be one of the two already in the theory).

Gauge invariance requires that the coefficients ci be integers. After dimensionally reducing,

these Chern-Simons terms will contain θiGµG̃
µ couplings of the axions to the four dimen-

sional gauge fields with quantized couplings: gauge invariance required us to start with

ci quantized, and dimensionally reducing won’t change that. Just as in earlier sections,

the change of lattice basis from (θA, θH) to (θ1, θ2) does not change the quantization of

the θGG̃ couplings. However, even though we chose our (θA, θH) basis to have diagonal

kinetic terms (which need not be true, in general), the kinetic terms in the (θ1, θ2) basis

are generally not diagonal. As in section 2.1.3, when we integrate out θ1, we will generally

obtain terms ∝ (�θ2)GG̃ in the low-energy EFT. When we consider the mass that θ2

obtains from Vmod, these will appear as effectively non-quantized couplings. Just as in our

earlier discussion, these contributions are all proportional to the mass parameter m2
2 of the

light axion.
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5 Non-compact symmetries should not emerge in the IR

We can summarize our results by saying that if we start with a theory of several axions

and, in one way or another, decouple some linear combinations of them while leaving others

massless, the massless fields will still be axions, i.e., their field space will be compact and

their couplings will be quantized accordingly. In cases where we found non-quantized

couplings of a light axion field, we found that the field also obtained a mass, and the

deviation of the axion’s couplings from their quantized values were proportional to the mass

squared of the axion. As we noted in the introduction, this has the same flavor as a well-

known fact about gauge theory: if we begin with a compact gauge group and then Higgs it,

the surviving infrared gauge group will be compact (and hence will have quantized charges).

Such a result is known to hold in many different contexts with compact gauge groups in the

UV, in cases where we decouple gauge fields via confinement, via Chern-Simons mass terms

in (2+1)d gauge theory, or even when we alter the gauge group entirely in the infrared, as

in Seiberg duality. It is also known to be robust against kinetic mixing [36, 37].

Our observations about axions and the corresponding observations about gauge fields

are linked in more than a vague qualitative manner. In the case of (2+1)d theories, they

are identical, because a massless axion field θ in (2+1)d is Hodge dual to a gauge field Aµ
defined by dA = 2πeFθ ? dθ, where 2πFθ is the distance in field space around the θ circle

and e is the gauge field coupling. The scenario discussed in section 3.1, where θ is eaten to

provide a Stückelberg mass to another gauge field B, maps to precisely the case where the

gauge field A dual to θ obtains a mass through a mixed Chern-Simons term B ∧ dA. The

low-energy theory contains a massless gauge field for a compact gauge group with finite

coupling, which is dual to a compact axion field.

One reason to expect that a theory with a compact gauge group in the UV flows to a

theory with a compact gauge group in the IR is that any effective field theory that contains a

non-compact gauge group, such as R, is believed to be inconsistent when coupled to gravity.

In such theories, one can generally construct black holes of irrational charge [80], which

violate entropy bounds that are believed to be true in all theories of quantum gravity [81]. If

it were possible to construct UV theories with compact gauge groups that flow to IR theories

with non-compact gauge groups, the UV theory would lie in the Swampland [82]. This

would be an interesting new Swampland constraint, but we are unaware of any examples

that realize such RG flows.

One possible reason why such RG flows do not exist in general is that they lead to IR

theories with a continuum of operators that did not exist in the UV. In theories with a

compact gauge group that has an associated p-form gauge field Ap, Wilson line or surface

operators of the form exp(iq
∫

ΣAp), where Σ is a p-dimensional submanifold of spacetime,

are defined for discrete choices of charge q ∈ Z. If the gauge group is R, then there is

a continuum of well-defined operators with arbitrary q. A similar statement holds for

axions: if θ is a 2π-periodic boson, then θ itself is not a well-defined operator, but exp(iqθ)

for q ∈ Z is a sensible local operator. On the other hand, in the non-compact limit, there

is no obstruction to constructing such operators for arbitrary q ∈ R. This suggests a

possible general argument against the emergence of either non-compact gauge groups or
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non-compact bosons from theories with compact gauge groups and axions in the UV: this

would be an RG flow from a UV theory with a discrete operator spectrum to an IR theory

with a continuous operator spectrum. It seems plausible that such RG flows are forbidden

in sensible theories.

In this paper, we will not go further in attempting to make these suggestions rigorous,

but we believe that they point toward a deeper understanding of why our results hold.

The properties that arise in many different effective field theories of axions are very closely

akin to properties arising in gauge theories, and are likely to be enforced by very general

principles of quantum field theory.

6 Conclusions

Periodicity imposes strong constraints on the axion couplings and field ranges, even in

cases where axions mix with other axions or a non-compact scalar. Given our results, it

appears the options for generating significantly different axion couplings or field ranges

than naively expected are: generating a large integer in the effective theory of a single light

axion, as in the clockwork scenario [28, 38–40, 57, 58]; building an effective theory that

intrinsically involves multiple axions (e.g., kinetically mixing the axion of interest with an

even lighter one); or relaxing these constraints through effects proportional to the mass of

the light axion (e.g., realignment of monodromy). While the clockwork scenario has been

explored extensively, further studying kinetic mixing with a lighter axion and realignment

of monodromy could have potentially interesting phenomenological prospects.
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