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1 Introduction and summary

Consider N = 1 supersymmetric SU(N + M) × SU(N) gauge theory with two chiral

superfields A1, A2 in the (N + M,N) representation, and two chiral superfields B1, B2

in the (N +M,N) representation, in four dimensional Minkowski space-time R
3,1. This

theory has two gauge couplings g1, g2 associated with the two gauge group factors, and a

quartic superpotential

W ∼ Tr (AiBjAkBℓ) ǫ
ikǫjℓ . (1.1)

WhenM = 0, both gauge couplings are exactly marginal, and the theory flows to a strongly

coupled superconformal fixed point — the Klebanov-Witten (KW) theory [3]. KW infrared

(IR) fixed point global symmetry

G : SU(2)× SU(2)︸ ︷︷ ︸
flavour

× U(1)︸︷︷︸
R−symmetry

, (1.2)

together with the superconformal invariance implies non-perturbatively large anomalous

dimensions for the chiral superfields:

γ(Ai) = γ(Bj) = −1

4
. (1.3)

When M 6= 0, conformal invariance of SU(N +M)× SU(N) gauge theory is broken: while

the sum of the gauge coupling remains exactly marginal [2],

4π2

g21
+

4π2

g22
=

π

gs
= const , (1.4)

where gs is the asymptotic string coupling of the gravitational dual [4], the perturbative

β-function of the difference of the couplings is nonzero [4]:

8π2

g21
− 8π2

g22
= M ln

Λ

µ

(
3 + 2(1− γ(Tr(AiBj)))

)
= 6M ln

Λ

µ

(
1 +O

(
M2

N2

))
. (1.5)

Λ is the strong coupling scale of the theory. Given (1.4) and (1.5), the effective weakly

coupled description of SU(N + M) × SU(N) gauge theory exists only in a finite-width

energy band centered about Λ — one encounters Landau poles both in the IR

g22 → ∞ as µ → µIR ≡ Λe−
π

3gsM , (1.6)
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and the ultraviolet (UV),

g21 → ∞ as µ → µUV ≡ Λe+
π

3gsM , (1.7)

to leading order in M2/N2. As explained in [2], to extend the theory past the strong

coupling regions one must perform the self-similar transformations (Seiberg dualities [5]):

N → N −M for µ . µIR and N → N +M for µ & µUV . Thus, extension of the effective

SU(N + M) × SU(N) description to all energy scales involves an infinite sequence — a

cascade —of Seiberg dualities with the renormalization group flow of the effective rank [6–8]

N = N(µ) ∼ gsM
2 ln

µ

Λ
. (1.8)

Although there are infinitely many duality steps in the UV, there is only a finite number

of the duality transformations as one flows to the IR — when N is an integer multiple of

M (plus 1) one ends up in the IR with the SU(M + 1) gauge theory. The latter theory

confined in the IR with a spontaneous breaking of the U(1)R (chiral symmetry),

U(1)R → Z2 . (1.9)

The IR properties of the cascading gauge theories were reviewed in [4] (see also [9]); an

important feature of the theory is the characteristic scale in the glueball mass spectrum:

mglueball ≡
ǫ2/3

Mgsα′
, (1.10)

where ǫ is a conifold deformation parameter of the holographic dual [2], and α′ = ℓ2s is the

string scale.

Previous studies focused on the fate of the chiral symmetry and the confinement in the

cascading gauge theory at finite temperature. At finite temperature, there are three differ-

ent spatially homogeneous and isotropic phases of the theory. We classify them as follows:

• PhaseAs — the deconfined phase with the unbroken chiral symmetry, i.e., U(1),

see [6, 10–12];

• PhaseAb — the deconfined phase with the broken chiral symmetry, i.e., Z2, see [13,

14];

• PhaseB — the confined phase with the broken chiral symmetry, i.e., Z2, see [2].

Notice that confinement triggers the spontaneous breaking of the chiral symmetry [2]: there

is no spatially homogeneous and isotropic phase which is confined with U(1) chiral sym-

metry. It will be instructive to have a geometrical classification of these phases, in the

warped-deformed conifold holographic dual of the theory [2, 13, 15]. To this end, consider

analytical continuation along the time direction t → tE ≡ it. Euclidean time tE is then

periodically identified as

tE ∼ tE +
1

T
, (1.11)
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where T is the equilibrium temperature of the phase. Topologically, the compact directions

of the holographic dual are

unbroken chiral symmetry : S1
︸︷︷︸

thermal circle

× S1 × S2 × S2
︸ ︷︷ ︸

U(1)−symmetric T 1,1

;

broken chiral symmetry : S1
︸︷︷︸

thermal circle

× S2 × S3
︸ ︷︷ ︸

Z2−symmetric T 1,1

.
(1.12)

We can thus geometrically characterize different phases depending on which cycle shrinks

to zero size in the interior of the ten-dimensional Euclidean type IIB supergravity dual:

PhaseAs : S1
︸︷︷︸

thermal circle

→ 0 & S1 × S2 × S2 is finite ;

PhaseAb : S1
︸︷︷︸

thermal circle

→ 0 & S2 × S3 is finite ;

PhaseB : S1
︸︷︷︸

thermal circle

is finite & S2 → 0 & S3 is finite .

(1.13)

According to [12] there is the first-order confinement/deconfinement phase transition be-

tween PhaseAs and PhaseB at1

Tc = 0.614(1)
Λthermal

Pg
1/2
s

= 0.614(1)
31/2e1/3

27/12
ǫ2/3

Pg
1/2
s

= 0.220(2) g1/2s mglueball , (1.14)

where the relation between P and M is given by (2.7) and mglueball is defined as in (1.10).

At temperature T < Tc the phase PhaseAs is metastable — it becomes perturbatively

unstable below TχSB < Tc [13],

TχSB = 0.542(0)
Λthermal

Pg
1/2
s

= 0.194(3) g1/2s mglueball . (1.15)

The symmetry broken deconfined phase PhaseAb exists only for T ≥ TχSB or for energy

densities E ≤ EχSB [14],

EχSB = 1.270(1)
Λ4
thermal

16πG5
= 1.270(1)

22/3e4/3

192π4
(Mgs)

4 m4
glueball

= 4.089(6)× 10−4 × (Mgs)
4 m4

glueball ,

(1.16)

where G5 is given by (2.8). PhaseAb has larger thermal free energy density than that of the

chirally symmetric deconfined phase PhaseAs at the corresponding temperature, and thus

it does not dominate the canonical ensemble. On the other hand, PhaseAb is entropically

favored over PhaseAs at the corresponding energy density, and thus is the dominant phase

in the microcanonical ensemble. According to [14] the phase PhaseAb is thermodynam-

ically unstable, and thus it is dynamically (perturbatively) unstable towards developing

spatial inhomogeneities [17].

1The precise expression for Λthermal was reported in [16].
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In this paper we would like to understand vacua of the cascading gauge theories in de

Sitter space-time (flat or closed spatial slicing)2

ds24 = −dt2 + e2Htdx2 , or ds24 = −dt2 +
1

H2
cosh2(Ht)

(
dS3

)2
, (1.17)

where H is a Hubble constant. Specifically, we would like to provide the classification of

late-time states of the cascading gauge theory akin to spatially homogeneous and isotropic

thermal phases {PhaseAs, PhaseAb, PhaseB} reviewed above. Of course there are crucial

differences between the thermal equilibrium physics and the late time de Sitter dynamics:

Thermodynamics can be studied in canonical or microcanonical ensembles.3 The latter

one is suitable to study the dynamics of the equilibration process. The de Sitter evolution

of the gauge theory states is eternally sourced by the space-time accelerated expansion and

thus is (loosely) equivalent to the microcanonical ensemble; there is no correspondence to

the canonical ensemble.

Insisting on spatial homogeneity and isotropy, an initial state typically4 relaxes to a

thermal equilibrium configuration, which can be assigned a thermal (time-independent)

entropy density. The holographic dynamics of the conformal gauge theories with a simple

scale transformation can be mapped to an evolution in Minkowski space-time [19] — here

the late-time de Sitter vacua are conformally equivalent to the equilibrium states of the

microcanonical ensemble. There is no equilibration of non-conformal gauge theories at late-

times in de Sitter [19]:5 the comoving entropy density production rate is nonzero. In [21]

it was pointed out that the comoving entropy production rate R can be attribute entirely

to the spatial expansion

volume

∣∣∣∣
physical

= e3Ht volume

∣∣∣∣
comoving

,

while the physical entropy density s approaches a constant (time-independent) entangle-

ment entropy sent:

lim
t→∞

s ≡ sent = H3 R . (1.18)

In holography, the non-equilibrium entropy density s = s(t) is associated with the Beken-

stein entropy of the dynamical apparent horizon (AH) [22, 23]. In [24] an example of

a fully nonlinear holographic evolution from initially homogeneous and isotropic state in

de Sitter was presented where the late-time dynamics approaches de Sitter vacuum with

entanglement entropy (1.18).

Implementing de Sitter holographic dynamics as in [24] for the cascading gauge the-

ories is outside the scope of this paper. Rather, as in [19] and [20], we assume that we

2There is no difference between them at late times as the curvature effects are diluted as ∝ exp(−2Ht).
3As we emphasized above the thermal equilibrium phase structure is different in the two ensembles of

the cascading gauge theory.
4Not all strongly interacting systems equilibrate. See [18] for a holographic example.
5See also [20] for a detailed recent analysis.
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specify a well-defined spatially homogeneous and isotropic initial state6 (a well-defined ini-

tial condition for the gravitation evolution) in a holographic dual. This would correspond

to some coarse grained state in the gauge theory specified with the density matrix ρ. We

identify the von Neumann entropy S

S = −Tr(ρ ln ρ) ,

with the Bekenstein entropy of the AH in the holographic dual.7 Partial differential equa-

tion of the gravitational dual at late times reduce to system of ordinary differential equa-

tions [24] which we analyze in details here. Inequivalent de Sitter vacua of the cascading

gauge theory are characterized with different values of the entanglement entropy density

sent. The true (dominant) vacuum is the one which results in the largest sent for a fixed

Hubble constant H and a fixed strong coupling scale of the theory Λ, see (B.80),

Λ =
21/6e1/3g

1/2
s

33/2
mglueball ≈ 0.3g1/2s mglueball . (1.19)

Parallel to classification of the thermal equilibrium states, we now explain topologi-

cal/symmetry considerations to classify de Sitter vacua of cascading gauge theory — the

discussion is more intuitive for the closed spatial slicing in (1.17). To access AH (and thus

to evaluate sent), the dual gravitational bulk must be described in Eddington-Finkelstein

(EF) coordinates. Fefferman-Graham (FG) coordinates cover only a patch of the former,

which is outside of the EF frame AH [24], and thus is not suitable for the computation

of the vacuum entanglement entropy. Still, FG frame is useful to implement analytical

continuation to Euclidean (Bunch-Davies) vacuum

− dτ2 +
1

H2
cosh2(Hτ)

(
dS3

)2 −→︸︷︷︸
τ→i

θ+π/2
H

1

H2

(
(dθ)2 + sin2(θ)

(
dS3

)2
)

=
1

H2

(
dS4

)2
.

(1.20)

Topologically, the compact directions of the Euclidean FG frame holographic dual are

(compare with (1.12))

unbroken chiral symmetry : S4
︸︷︷︸

dSEuclidean
4

× S1 × S2 × S2
︸ ︷︷ ︸

U(1)−symmetric T 1,1

;

broken chiral symmetry : S4
︸︷︷︸

dSEuclidean
4

× S2 × S3
︸ ︷︷ ︸

Z2−symmetric T 1,1

.
(1.21)

Parallel to (1.13), we can geometrically characterize different de Sitter vacua of the cas-

cading gauge theory depending on which cycle shrinks to zero size in the interior of the

6We believe that restriction to homogeneity and isotropy is not relevant for the late-time dynamics,

given the accelerated background space-time expansion.
7This procedure is implicit in all examples of holographic evolutions in Chesler-Yaffe framework [25].

Besides ‘holographic quenches’ of background space-time [26] (similar to de Sitter ‘quenches’ of interest

here) it was successfully applied to quenches of the coupling constants of relevant operators in [27, 28].
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ten-dimensional Euclidean FG frame type IIB supergravity dual:

TypeAs : S4
︸︷︷︸

dSEuclidean
4

→ 0 & S1 × S2 × S2 is finite ;

TypeAb : S4
︸︷︷︸

dSEuclidean
4

→ 0 & S2 × S3 is finite ;

TypeB : S4
︸︷︷︸

dSEuclidean
4

is finite & S2 → 0 & S3 is finite .

(1.22)

To evaluate sent we proceed in two steps:8

• first, we construct the FG frame vacua, subject to the ‘boundary conditions’ (1.22)

(see appendix B.1 for the technical details);

• second, we use coordinate transformation to the EF frame for each of these vacua

(see [24] and appendix B.2 for the technical details), and access the corresponding

AH.

We summarize now our results:

• TypeAs de Sitter vacua were studied previously in [29–31]. These vacua share resem-

blance with the thermal deconfined chirally symmetric states of the cascading gauge

theory, i.e., PhaseAs. We find here that

sent(Λ, H)

∣∣∣∣
TypeAs

6= 0 , (1.23)

and vanishes as

sent(Λ, H)

∣∣∣∣
TypeAs

∝ H3

(
ln

H2

Λ2

)−3/4

as H ≫ Λ , (1.24)

i.e., in the conformal limit. TypeAs de Sitter vacua exist only when

H & Hs
min , Hs

min = 0.7Λ ≈ 0.2 g1/2s mglueball . (1.25)

As H2

Λ2 decreases, the Kretschmann scalar at the AH in the holographic dual increases,

making supergravity approximation less reliable. Hs
min in (1.25) should be interpreted

as the value of the Hubble constant at which the supergravity approximation breaks

down. We identify the rapid growth of the curvature in the gravitational dual to

TypeAs de Sitter vacua with collapsing of the compact manifold (a deformed T 1,1) at

the location of the apparent horizon — as a result, sent vanishes in this limit as well.

8The same two-step procedure was also used in computation of the de Sitter vacuum entanglement

entropy in N = 2∗ gauge theory in [20].
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• TypeAb de Sitter vacua are constructed here for the first time.9 These vacua share

resemblance with the thermal deconfined states of the cascading gauge theory with

the spontaneously broken chiral symmetry, i.e., PhaseAb. We find here that

sent(Λ, H)

∣∣∣∣
TypeAb

6= 0 . (1.26)

TypeAb de Sitter vacua exist only when

H ≥ Hb
min , Hb

min = 0.92(1)Λ ≈ 0.276 g1/2s mglueball . (1.27)

As H2

Λ2 increases, the Kretschmann scalar at the AH in the holographic dual increases,

making the supergravity approximation less reliable.

• We find that while

sent(Λ, H
b
min)

∣∣∣∣
TypeAs

= sent(Λ, H
b
min)

∣∣∣∣
TypeAb

, (1.28)

de Sitter vacua with the spontaneously broken chiral symmetry are entropically fa-

vored within a narrow window for the values of the Hubble constant

sent(Λ, H)

∣∣∣∣
TypeAb

≥ sent(Λ, H)

∣∣∣∣
TypeAs

, Hmax ≥ H ≥ Hb
min , (1.29)

where

Hmax = 0.92(5)Λ ≈ 0.278 g1/2s mglueball . (1.30)

TypeAb de Sitter vacua continue to exist for H > Hmax, however they have smaller

sent compare to the corresponding TypeAs de Sitter vacua.

• TypeB de Sitter vacua were studied previously in [31]. These vacua share resemblance

with the thermal confined states of the cascading gauge theory with the spontaneously

broken chiral symmetry, i.e., PhaseB. We find here that

sent(Λ, H)

∣∣∣∣
TypeB

= 0 . (1.31)

We emphasize that (1.31) does not mean that the coarse grained entropy of the

cascading gauge theory vanishes — in fact, during de Sitter evolution the entropy

production rate is always positive (see section 3.3). What (1.31) states is that the

comoving entropy production rate in TypeB vacuum vanishes at late times (much

like it does in conformal gauge theories [24]). As a result, TypeB vacuum is never

realized as the late-time attractor of a dynamical evolution for a generic cascading

gauge theory state in de Sitter, provided vacua TypeAs or TypeAb exist. Neither of

the latter vacua exists for H . Hs
min, see (1.25), thus10

TypeB de Sitter vacum is a late− time attractor provided H . Hs
min . (1.32)

9We introduce a novel technique used to identify phases/vacua with spontaneously broken symmetry.
10While this is likely to be true in general, the statement is strictly precise for the de Sitter evolution of

spatially homogeneous and isotropic states of the cascading gauge theory.
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Of cause, (1.32) implies that TypeB vacua must exist at least for H > Hs
min; in fact we

find (see section 6.2) that TypeB vacua exist11 for

H . HB
max , HB

max = 0.966(5)Λ > Hs
min = 0.7Λ . (1.33)

Eqs. (1.29) and (1.32) represents our main, and somewhat unexpected result:

SU(N) × SU(N + M) cascading gauge theory with a strong coupling scale Λ

undergoes spontaneous chiral symmetry breaking in de Sitter space time with

a Hubble constant H provided

H . Hs
min < Hb

min & Hb
min ≤ H ≤ Hmax .

The critical values Hs
min, H

b
min and Hmax are of order the strong coupling scale

of the theory Λ.

The rest of the paper is organized as follows. In section 2 we discuss holographic dual

effective action of cascading gauge theory. Section 2 contains a guide to set of appendices

with technical details. Cascading gauge theory de Sitter vacuum entanglement entropy is

identified with the Bekenstein entropy of the AH in the holographic dual at late times,

see section 3. In section 3.1 we identify AH in ten dimensional holographic dual and

compute its area density. In section 3.2 we establish that both the location of the AH and

its associated entropy density is invariant upon Kaluza-Klein reduction on the warped-

deformed T 1,1. In section 3.3 we prove a theorem that as long as the background geometry

of the holographic dual is nonsingular, the area density of the AH does not decrease with

time. In section 3.4 we show that whenever vacua of TypeB exist, their entanglement

entropy vanishes, see (1.31). Section 4 devoted to TypeAs de Sitter vacua. Numerical

results are presented in section 4.1: we construct first the dual holographic backgrounds in

the FG frame, transform them to the EF frame, identify the location of the apparent horizon

and compute the vacuum entanglement entropy, see figure 6. At each step we triple-check

the numerical results by making use of distinct and independent computational schemes,

see appendix C. Comparison of the results from the different computational schemes in the

overlapping regions of the parameter space is shown in figures 2, 4, 7. In section 4.2 we

make use of the computational SchemeII to discuss the conformal limit of TypeAs vacua,

i.e., H ≫ Λ, and establish (1.24). The validity of the supergravity approximation of the

holographic dual to TypeAs de Sitter vacua is discussed in section 4.3. We establish a rapid

growth of the Kretschmann scalar of the background geometry (2.13) evaluated at the AH

for small values of H2

Λ2 , and associate this growth with “collapsing” of the deformed T 1,1, see

figures 11 and 12. Extrapolating the numerical data, we estimate the value of the Hubble

constant Hs
min, see (1.25), when the Kretschmann scalar diverges — we take this value as

a limiting value of H below which TypeAs vacua stop existing. We study TypeAb vacua

with the spontaneously broken chiral symmetry in section 5. We begin in section 5.1 with

identification of the critical value Hb
min, see (1.27), below which TypeAb vacua do not exist.

11This should be understood in the same sense as existence of TypeAs vacua: the supergravity approxi-

mation used to construct TypeB vacua is robust against higher-derivative α′ corrections from the full string

theory.
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This is done computing the linearized chiral symmetry breaking perturbations on top of

TypeAs vacua with the explicit symmetric breaking parameter — the gaugino mass term.

At this critical value H = Hb
min all the symmetry breaking expectation values diverge,

see figure 13. We explain how TypeAb vacua, with the spontaneous symmetry breaking,

can be constructed at values of the Hubble constant close to Hb
min using the linearized

perturbations on top of TypeAs vacua with the explicit symmetry breaking. Numerical

construction of TypeAb vacua in section 5.2 follows the discussion of section 4.1. Section 5.2

contains the central result of the paper — figure 21: it establishes that the chiral symmetry

breaking of the cascading gauge theory in de Sitter space-time occurs in a narrow range of

values of the Hubble constant, see (1.29). The validity of the supergravity approximation of

the holographic dual to TypeAb de Sitter vacua is discussed in section 5.3. TypeB de Sitter

vacua are discussed in section 6. These vacua have vanishing entanglement entropy (1.31);

however, they exist for arbitrary small H
Λ , approaching the extremal Klebanov-Strassler

solution [2] as H
Λ → 0. We discuss TypeB vacua, first as a deformation of the extremal KS

solution, and followed later by the numerical construction in two different computational

schemes in section 6.1. In section 6.2 we present an indication that TypeB vacua exist

only for H . HB
max (1.33) — in this limit the 3-cycle of the dual geometry supporting

the RR 3-form flux becomes vanishingly small in string units, making the supergravity

approximation not reliable as indicated by the rapid growth of the Kretschmann scalar

of the background geometry evaluated at the AH, see figure 26. Since both TypeAs and

TypeAb vacua cease to exist below certain value of the Hubble constant, specifically for

H . Hs
min, and HB

max > Hs
min, TypeB vacua become late-time attractors of the dynamical

evolution of the cascading gauge theory in de Sitter for H . Hs
min. We conclude in section 7

highlighting open questions and future directions.

2 Dual effective actions of the cascading gauge theory

Consider SU(2) × SU(2) × Z2 invariant states of the cascading gauge theory on a 4-

dimensional manifold M4 ≡ ∂M5. In the planar limit and at large ’t Hooft coupling, one

can consistently truncate the theory to a finite number of operators [13]: a stress-energy

tensor Tij , a pair of dimension-3 operators Oα={1,2}
3 (dual to gaugino condensates for each

of the gauge group factors), a pair of dimension-4 operators Oβ={1,2}
4 , and dimension-6,7,8

operators O6,O7,O8. Effective gravitational action on a 5-dimensional manifold M5 de-

scribing holographic dual of such states was derived in [13]:

S5

[
gµν ↔ Tij , {Ωi, hi,Φ} ↔ {Oα

3 ,Oβ
4 ,O6,O7,O8}

]
=

108

16πG5

∫

M5

volM5
Ω1Ω

2
2Ω

2
3 ×

×
{
R10 −

1

2
(∇Φ)2 − 1

2
e−Φ

(
(h1 − h3)

2

2Ω2
1Ω

2
2Ω

2
3

+
1

Ω4
3

(∇h1)
2 +

1

Ω4
2

(∇h3)
2

)

− 1

2
eΦ

(
2

Ω2
2Ω

2
3

(∇h2)
2 +

1

Ω2
1Ω

4
2

(
h2 −

P

9

)2

+
1

Ω2
1Ω

4
3

h22

)

− 1

2Ω2
1Ω

4
2Ω

4
3

(
4Ω0 + h2 (h3 − h1) +

1

9
Ph1

)2}
, (2.1)
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where Ω0 is a constant in the definition of the 5-form flux,12 see (2.5), R10 is given by

R10 = R5 +

(
1

2Ω2
1

+
2

Ω2
2

+
2

Ω2
3

− Ω2
2

4Ω2
1Ω

2
3

− Ω2
3

4Ω2
1Ω

2
2

− Ω2
1

Ω2
2Ω

2
3

)
− 2� ln

(
Ω1Ω

2
2Ω

2
3

)

−
{
(∇ lnΩ1)

2 + 2 (∇ lnΩ2)
2 + 2 (∇ lnΩ3)

2 +
(
∇ ln

(
Ω1Ω

2
2Ω

2
3

))2
}
,

(2.2)

and R5 is the five-dimensional Ricci scalar of the metric

ds25 = gµν(y)dy
µdyν , (2.3)

that forms part of the ten dimensional full metric

ds210 = ds25 + ds2T 1,1 , ds2T 1,1 = Ω2
1(y)g

2
5 +Ω2

2(y)(g
2
3 + g24) + Ω2

3(y)(g
2
1 + g22). (2.4)

One-forms {gi} (for i = 1, · · · , 5) are the usual forms defined in the warp-squashed T 1,1

and are given as in [13], for coordinates 0 ≤ ψ ≤ 4π, 0 ≤ θa ≤ π and 0 ≤ φa ≤ 2π (a = 1, 2).

All the covariant derivatives ∇λ are with respect to the metric (2.3). Fluxes (and dilaton

Φ) are parameterized in such a way that functions h1(y), h2(y), h3(y) appear as

F5 = F5 + ⋆F5 ,

F5 =

(
4Ω0 + h2(y)(h3(y)− h1(y)) +

P

9
h1(y)

)
g1 ∧ g2 ∧ g3 ∧ g4 ∧ g5 ,

B2 = h1(y)g1 ∧ g2 + h3(y)g3 ∧ g4,

F3 =
1

9
P g5 ∧ g3 ∧ g4 + h2(y) (g1 ∧ g2 − g3 ∧ g4) ∧ g5

+ (g1 ∧ g3 + g2 ∧ g4) ∧ d (h2(y)) ,

Φ = Φ(y),

(2.5)

Parameter P must be appropriately quantized [4, 12]:

1

4π2α′

∫

3−cycle: θ2=φ2=0
F3 =

2P

9α′
∈ Z , (2.6)

thus

P =
9

2
Mα′ , (2.7)

corresponding to the number M of fractional branes (the difference of ranks of the cascad-

ing gauge theory gauge group factors) on the conifold. Finally, G5 is the five dimensional

effective gravitational constant

G5 ≡
G10

volT 1,1

=
27

16π3
G10 , (2.8)

where 16πG10 = (2π)7(α′)4 is 10-dimensional gravitational constant of type IIB supergrav-

ity.

12In the limit of vanishing 3-form fluxes, Ω0 = L4

108
, where L is the asymptotic AdS5 radius.

– 10 –



J
H
E
P
0
5
(
2
0
2
0
)
0
3
5

Chirally symmetric states of the cascading gauge theory correspond to enhancement

of the global symmetry13 SU(2)× SU(2)× Z2 → SU(2)× SU(2)×U(1), and are described

by the gravitational configurations of (2.1) subject to constraints14

h1 = h3 , h2 =
P

18
, Ω2 = Ω3 , (2.9)

or in the boundary QFT language [13],

Oα
3 = 0 , O7 = 0 . (2.10)

We find it convenient to introduce

h1 =
1

P

(
K1

12
− 36Ω0

)
, h2 =

P

18
K2 , h3 =

1

P

(
K3

12
− 36Ω0

)
,

Ω1 =
1

3
f1/2
c h1/4 , Ω2 =

1√
6
f1/2
a h1/4 , Ω3 =

1√
6
f
1/2
b h1/4 .

(2.11)

The ultimate goal is to compute the entanglement entropy of the cascading gauge

theory — using the dual holographic picture with the effective gravitational action (2.1)

— in distinct vacua (see (1.22)) in four dimensional de Sitter space-time. As explained in

the introduction, this is done in two steps:

constructing de Sitter vacua in Fefferman-Graham coordinate frame

ds210 =
1

h1/2ρ2
(
−dτ2 + e2Hτdx2

)
+

h1/2

ρ2
(dρ)2

+
fch

1/2

9
g25 +

fah
1/2

6
(g23 + g24) +

fbh
1/2

6
(g21 + g22) ,

h = h(ρ) , fa,b,c = fa,b,c(ρ) ,

(2.12)

subject to appropriate topological/symmetry restrictions (1.22);

using diffeomorphism transformation to represent the FG frame vacua in Eddington-

Finkelstein coordinate frame

ds210 = 2dt (dr − a dt) + σ2e2Ht dx2 +
1

9
wc2 g25 +

1

6
ωa2 (g23 + g24) +

1

6
ωb2 (g21 + g22) ,

a = a(r) , σ = σ(r) , ωa2,b2,c2 = ωa2,b2,c2(r) . (2.13)

It is important to keep in mind that EF frame vacua (2.13) are the late-time limits of the

evolution in EF frame:

ds210 = 2dt (dr −A dt) + Σ2 dx2 +Ω2
1 g25 +Ω2

2 (g23 + g24) + Ω2
3 (g21 + g22) ,

A = A(t, r) , Σ = Σ(t, r) , Ω1,2,3 = Ω1,2,3(t, r) .
(2.14)

We now summarize technical details delegated to various appendices.

13In the planar limit.
14This is a consistent truncation of the cascading gauge theory to U(1) symmetric sector constructed

in [15].
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• In appendix A we derive the equations of motion in the holographic bulk for the

evolution of generic spatially homogeneous and isotropic state of the cascading gauge

theory in de Sitter space-time, see (A.3)–(A.13). We explain how to take the late time

limit t → ∞ in (2.14) to obtain (2.13). The EF frame vacuum equations of motion

are given by (A.16)–(A.26). The latter equations of motion have symmetries SEF1-

SEF4 (A.27)–(A.30), which are used to set up and validate numerics (see appendix C).

• We begin appendix B presenting gravitational bulk equations of motion in FG

frame (B.3)–(B.11). These equations of motion have (corresponding to SEF1-SEF4)

symmetries SFG1-SFG4 (A.27)–(A.30), which are used to set up and validate nu-

merics (see appendix C). In appendix B.1 we explain the near boundary (UV) ρ → 0

and the interior (IR) ρ → ∞ asymptotics. UV asymptotics are used to classify

non-normalizable coefficients (defining parameters of the cascading gauge theory):

the asymptotic string coupling gs (1.4) and the strong coupling scale Λ of the the-

ory (1.19), and the normalizable coefficients: the expectation values of boundary

gauge theory operators:15 {Tij ,Oα={1,2}
3 ,Oβ={1,2}

4 ,O6,O7,O8}. IR asymptotics are

used to classify the distinct de Sitter vacua of the theory (1.22), as well to ensure

that the bulk geometry is smooth as the corresponding cycles shrinks to zero size (S4

for TypeAs and TypeAb, and S2 for TypeB vacua).

• TypeAs vacua enjoy unbroken chiral symmetry; appendix B.1.1 presents the UV and

IR asymptotics in FG frame obtained in [31] and translates the coefficients governing

the expansion to those used for the characterization of TypeAb vacua, see (B.47)–

(B.51).

• Appendix B.2 establishes the map between EF and FG frame description for each

type of the vacua: TypeAs, TypeAb and TypeB.

• In the limit H → 0, TypeB vacuum in FG frame represents the extremal KS solu-

tion [2]. We use this limit in appendix B.3 to related the strong coupling scale Λ of

the cascading gauge theory to the complex structure conifold deformation parameter

ǫ used in [2], see (B.80).

• Appendix C covers numerical procedures for construction of FG frame dual back-

grounds (see C.1) and EF frame dual backgrounds (see C.2). We introduce three

different computational schemes — SchemeI, SchemeII and SchemeIII (C.6) — ex-

plain how they are related and outline their computational advantages in accessing

different regions of the parameter space of the model. We introduce the AH location

function LAH (C.8), used to identify the apparent horizon.

• Appendix D presents technical details for construction of TypeAs de Sitter vacua in

computational scheme SchemeII in the conformal limit, i.e., b → 0.

15Developing the precise holographic dictionary between these normalizable coefficients and the corre-

sponding expectation values, while interesting, is not important for the results presented, and thus is outside

the scope of the paper.
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• Appendix E collects the expression for the Kretschmann scalar (E.1) of the back-

ground geometry (2.13). It is used to test the validity of the supergravity approxi-

mation.

• Appendix F contains equations of motion and the asymptotic expansions for the chiral

symmetry breaking perturbations about FG frame TypeAs de Sitter vacua with ex-

plicit symmetry breaking parameter — the gaugino mass term. These perturbations

are used to identify TypeAb vacua “close” to TypeAs vacua.

3 Apparent horizon in de Sitter evolution of the cascading gauge theory

Apparent horizon16 in holographic dual is crucial for identifying the attractor vacuum

for the evolution of generic homogeneous and isotropic states of the cascading gauge the-

ory in de Sitter: given competing trajectories for the evolution, dynamics proceeds along

trajectory resulting in the maximum entropy at late times. We identify AH directly in

ten-dimensional EF frame gravitational dual in section 3.1. We reproduce the same result

in EF gravitational dual of the effective five-dimensional description in section 3.2. Both

in ten-dimensions and upon Kaluza-Klein reduction to five dimensions the area of the AH

stays the same. In section 3.3 we use equations of motion (A.3)–(A.13) to prove that the

area of the AH is nondecreasing upon evolution. We identify the (dynamical) area density

of the AH A10(t) with the dynamical entropy density s of the boundary gauge theory as

a3s = e3Hts(t) =
A10

4G10
=

4π

(2π)7(α′)4
A10(t) , (3.1)

where a = eHt is the boundary spatial metric scale factor, see (1.17). The entanglement

entropy sent is related to the late-time limit of s as

lim
t→∞

1

H3a3
d

dt

(
a3s

)
≡ 3H ×R ,

lim
t→∞

s(t) ≡ sent = H3R ,
(3.2)

where R is the comoving entropy production rate in de Sitter vacuum first introduced

in [19]. Finally, in section 3.4 we show that

R
∣∣∣∣
TypeB

= 0 =⇒ sent

∣∣∣∣
TypeB

= 0 . (3.3)

3.1 AH in ten dimensions

The apparent horizon of the bulk gravitational dual to the cascading gauge theory dynamics

in de Sitter is located at the radius r = rAH where the expansion θ of a congruence of

outward pointing null vectors vanishes (i.e., it stops expanding outwards). Working in

16In general AH is observer dependent. It is natural to define AH with respect to an observer reflecting the

symmetries of the spatial slices — homogeneity and isotropy in x in (2.14), see [25]. Such an identification

correctly reproduces the hydrodynamic limit [32] and can be proven to comply with the second law of

thermodynamics [19, 24], thus serving as a useful definition of the dynamical (nonequilibrium) entropy.
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the coordinates of equation (2.14), we characterize such a congruence with the null vector

k = ∂t + A∂r. The null vector k points toward the boundary of the space-time outside of

the initial black hole, and points inward inside the initial horizon.

Following [33], the expansion of a congruence of affine parameterized null vectors n is

given by

θ = ∇αn
α. (3.4)

However, it turns out that kβ∇βk
α = ∂rA kα, i.e., k is not affine. To remedy this, we rescale

k by exp{
∫
∂rA dλ}, where λ is the parameter along which the congruence k evolves. This

ensures that the rescaled null vector satisfies the geodesic equation with λ as an affine

parameter. Reference [33] then gives the expansion of k to be

θ = exp

[∫
∂rA dλ

]
(∇αk

α − ∂rA) . (3.5)

Substituting in for ∇αk
α computed in the metric (2.14)

∇αk
α =

1√−g
∂α

(√−gkα
)
= ∂t ln

(
Σ3Ω1Ω

2
2Ω

2
3

)
+A ∂r ln

(
Σ3Ω1Ω

2
2Ω

2
3

)
+ ∂rA . (3.6)

We see that θ = 0, when

∂t
(
Σ3Ω1Ω

2
2Ω

2
3

)
+A ∂r

(
Σ3Ω1Ω

2
2Ω

2
3

) ∣∣∣∣
r=rAH

= 0 . (3.7)

Eq. (3.7) determines the location of the AH, i.e., rAH = rAH(t). The area density of the

AH A10 is

A10 = Σ3Ω1Ω
2
2Ω

2
3

∣∣∣∣
r=rAH

∫
g5 ∧ g3 ∧ g4 ∧ g1 ∧ g2 = 64π3Σ3Ω1Ω

2
2Ω

2
3

∣∣∣∣
r=rAH

, (3.8)

leading to (see (3.1))

e3Hts =
64π3

4G10
Σ3Ω1Ω

2
2Ω

2
3

∣∣∣∣
r=rAH

=
1

4G5
108Σ3Ω1Ω

2
2Ω

2
3

∣∣∣∣
r=rAH

. (3.9)

3.2 AH in Kaluza-Klein reduction to five dimensions

We would like to reproduce (3.7) and (3.9) from the five-dimensional perspective.

While the effective action (2.1) is five dimensional, the metric frame used is not Ein-

stein:

S5 =
108

16πG5

∫

M5

volM5
Ω1Ω

2
2Ω

2
3 ×

{
R5 + · · ·

}
. (3.10)

This can be fixed with a simple conformal rescaling: introducing

ds̃25 ≡ g̃µνdy
µdyν = Ω10/3 ds25 = Ω10/3 gµνdy

µdyν , Ω5 = Ω1Ω
2
2Ω

2
3 , (3.11)

and defining

G̃5 =
G5

108
, (3.12)
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the effective action S5 in (3.10) has now a standard Einstein-Hilbert term with respect to g̃

S5 =
1

16πG̃5

∫

M5

ṽolM5
×
{
R̃5 + · · ·

}
. (3.13)

The new EF frame (compare with (2.14)) becomes

ds̃25 = Ω10/3

[
2dt (dr −A dt) + Σ2 dx2

]
= 2dtdr̂ − 2AΩ10/3 dt2 +Ω10/3Σ2 dx2 ,

dr̂ = Ω10/3 dr ,

(3.14)

where the second equality defines a new radial coordinate r̂. The congruence of null

geodesics is now characterized with

k̃ = ∂t +AΩ10/3 ∂r̂ , (3.15)

so that

k̃β∇̃β k̃
α = ∂r̂

(
AΩ10/3

)
k̃α . (3.16)

Since √
−g̃ = Ω5Σ3 , (3.17)

we have

∇̃αk̃
α = ∂t ln

(
Ω5Σ3

)
+AΩ10/3 ∂r̂ ln

(
Ω5Σ3

)
+ ∂r̂

(
AΩ10/3

)
. (3.18)

For the expansion θ̃ of the congruence of affine parameterized null vectors we have (compare

with (3.5))

θ̃ ∝
(
∇̃αk̃

α − ∂r̂

(
AΩ10/3

))
= ∂t ln

(
Ω5Σ3

)
+AΩ10/3 ∂r̂ ln

(
Ω5Σ3

)

= ∂t ln
(
Ω5Σ3

)
+A ∂r ln

(
Ω5Σ3

)
= ∂t ln

(
Σ3Ω1Ω

2
2Ω

2
3

)
+A ∂r ln

(
Σ3Ω1Ω

2
2Ω

2
3

)
,

(3.19)

where in the second line we used the definition of r̂ (3.14) and Ω (3.11). Note that θ̃ = 0

in (3.19) is equivalent to θ = 0 reproducing (3.7).

The five dimensional area density A5 of the AH in (3.14) is given by

A5 =

(
Ω5/3Σ

)3∣∣∣∣
r=rAH

= Σ3Ω1Ω
2
2Ω

2
3

∣∣∣∣
r=rAH

, (3.20)

leading to the dynamical entropy density

e3Hts =
A5

4G̃5

=
1

4G5
108Σ3Ω1Ω

2
2Ω

2
3

∣∣∣∣
r=rAH

, (3.21)

reproducing (3.9).
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3.3 Area theorem for the AH

Following [19] and using the equations of motion (A.3)–(A.13) we prove now that the

dynamical entropy density s defined as in (3.21) grows with time t, i.e.,

dA5

dt
=

d

dt

(
Σ3Ω1Ω

2
2Ω

2
3

∣∣∣∣
r=rAH

)
≥ 0 . (3.22)

Note that the AH location is determined from (see (3.19))

0 = d+(Σ
3Ω1Ω

2
2Ω

2
3)

∣∣∣∣
r=rAH

≡ ∂t(Σ
3Ω1Ω

2
2Ω

2
3) +A ∂r(Σ

3Ω1Ω
2
2Ω

2
3)

∣∣∣∣
r=rAH

. (3.23)

Taking d
dt we have

0 =
d

dt

(
∂t(Σ

3Ω1Ω
2
2Ω

2
3) +A ∂r(Σ

3Ω1Ω
2
2Ω

2
3)

)

=

{
∂t +

drAH

dt
× ∂r

}(
∂t(Σ

3Ω1Ω
2
2Ω

2
3) +A ∂r(Σ

3Ω1Ω
2
2Ω

2
3)

)∣∣∣∣
r=rAH

,

(3.24)

which is used to algebraically solve for drAH
dt

∣∣∣∣
r=rAH

. The latter expression is then substituted

in
dA5

dt
=

{
∂t +

drAH

dt
× ∂r

}
Σ3Ω1Ω

2
2Ω

2
3

∣∣∣∣
r=rAH

. (3.25)

We use equations of motion (A.3)–(A.13) to eliminate all second order derivative in (3.25);

we further eliminate ∂tΣ using (3.23) to arrive at

dA5

dt
=

∂r(Σ
3Ω1Ω

2
2Ω

2
3)

∂r(d+(Σ3Ω1Ω2
2Ω

2
3))

×F2

∣∣∣∣
r=rAH

, (3.26)

where F2 is manifestly positive

F2 =
Σ3

2592Ω2
2Ω

2
3Ω1g2P 2

×
(
Ω2
1

(
8(d+K2)

2Ω2
2Ω

2
3g

3P 4 + 1296(d+g)
2Ω4

2Ω
4
3P

2

+ 9(d+K3)
2Ω4

3g + 9(d+K1)
2Ω4

2g

)
+ 1728Ω2

1Ω
4
2Ω

4
3g

2P 2

((
2d+Ω2

Ω2
+

d+Ω3

Ω3

)2

+

(
d+Ω1

Ω1
+

d+Ω2

Ω2

)2

+

(
d+Ω1

Ω1
+

d+Ω3

Ω3

)2

+
3(d+Ω3)

2

Ω2
3

))
.

(3.27)

Constraint (A.12) can be integrated (once) to obtain

∂r
(
Σ3Ω1Ω

2
2Ω

2
3

)
= Σ3Ω1Ω

2
2Ω

2
3

∫ ∞

r
dr M2

M2 =
2(∂rΩ2)

2

Ω2
2

+
2(∂rΩ3)

2

Ω2
3

+
(∂rΩ1)

2

Ω2
1

+
3(∂rΣ)

2

Σ2
+

(∂rg)
2

2g2
+

gP 2(∂rK2)
2

324Ω2
3Ω

2
2

+
(∂rK3)

2

288gP 2Ω4
2

+
(∂rK1)

2

288gP 2Ω4
3

, (3.28)
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which implies that

∂r
(
Σ3Ω1Ω

2
2Ω

2
3

)
≥ 0 , (3.29)

provided the integral in (3.28) is convergent and Σ3Ω1Ω
2
2Ω

2
3 ≥ 0.

Note that (see appendix B.2)

lim
r→∞

d+
(
Σ3Ω1Ω

2
2Ω

2
3

)
= lim

r→∞
A∂r

(
Σ3Ω1Ω

2
2Ω

2
3

)

= lim
ρ→0

1

2h1/2ρ2︸ ︷︷ ︸
A

× (−ρ2)∂ρ︸ ︷︷ ︸
∂r


h−3/4ρ−3 exp(3H

∫ ρ

0
h1/2(s)ds)

︸ ︷︷ ︸
Σ3

× h5/4f
1/2
c fafb
108︸ ︷︷ ︸

Ω1Ω2
2
Ω2

3




= lim
ρ→0

(
1

72ρ4
+ subleading

)
→ +∞ ,

(3.30)

where we transformed first to FG frame and used the boundary asymptotic expan-

sions (B.17)–(B.20). Thus,

d+
(
Σ3Ω1Ω

2
2Ω

2
3

)
> 0 , r > rAH =⇒ ∂r

(
d+

(
Σ3Ω1Ω

2
2Ω

2
3

)) ∣∣∣∣
r=rAH

≥ 0 , (3.31)

since the quantity d+
(
Σ3Ω1Ω

2
2Ω

2
3

)
changes sign at r = rAH , see (3.23). Combin-

ing (3.26), (3.29) and (3.31) we arrive at (3.22).

For future reference we present the expressions for the location of the AH and the en-

tanglement entropy density in de Sitter vacua. Using (A.14) and (A.15) we find from (3.23)

and (3.9)

AH location :

(
3H σ3ω

1/2
c2 ωa2ωb2 + a

d

dr

{
σ3ω

1/2
c2 ωa2ωb2

})∣∣∣∣
r=rAH

= 0 ;

vacum entanglement entropy : sent =
1

4G5
σ3ω

1/2
c2 ωa2ωb2

∣∣∣∣
r=rAH

.

(3.32)

3.4 Entanglement entropy of TypeB de Sitter vacua

We demonstrate here that entanglement entropy of TypeB de Sitter vacuum vanishes —

this implies that the corresponding comoving entropy production rate vanishes. de Sitter

comoving entropy production rate vanishes in conformal field theories as well [20]. In

CFTs the reason is simple: de Sitter vacuum is a conformal transformation of a thermal

equilibrium state and entropy production is invariant under conformal transformations [19].

We do not understand the physical reason why the same is true for a de Sitter vacuum in

nonconformal gauge theory (TypeB vacuum in the cascading gauge theory).

– 17 –



J
H
E
P
0
5
(
2
0
2
0
)
0
3
5

Using the asymptotic expansion (B.67) (recall that z = −r (B.56)) we find for (3.32)

AH location :
33/2

2
(hh0)

3/4(fh
a,0)

3/2(sh0)
3 r

(
1 + 3H(hh0)

1/2r +O(r2)

)∣∣∣∣
r=rAH

= 0

=⇒ rAH = 0 ;

vacum entanglement entropy : sent =
1

4G5

33/2

2
(hh0)

5/4(fh
a,0)

3/2(sh0)
3 r2 +O(r3)

∣∣∣∣
r=rAH

=⇒ sent

∣∣∣∣
TypeB

= 0 . (3.33)

The result (3.33) stands as long as vacua TypeB exist — we find in section 6.2 that this is

true provided H . HB
max, see (1.33).

4 TypeAs de Sitter vacua

TypeAs vacua in FG frame were discussed in details in [31]. As emphasized in [19] and [20]

this is not enough to access vacuum entanglement entropy — one needs the holographic

construction in EF frame. In section 4.1 we present numerical results for TypeAs vacua for

generic values of H2

Λ2 , in particular the results for the entanglement entropy, see figure 6.

We discuss TypeAs in the conformal limit Λ ≪ H in section 4.2. In section 4.3 we estimate

Hs
min (see (1.25)) below which TypeAs vacua construction in type IIB supergravity becomes

unreliable. We identify the source of breaking of the supergravity approximation.

4.1 Numerical results: TypeAs

To begin, we numerically construct TypeAs de Sitter vacua in FG frame (2.12). This

involves solving ODEs (B.3)–(B.11) in the chirally symmetric limit (B.38), subject to UV

asymptotics (the radial coordinate ρ → 0) (B.39)–(B.43) and IR asymptotics (the radial

coordinate ρ → +∞) (B.45). There are 8 second order equations (B.3)–(B.10) and 1 first

order equation (B.11). Imposing the chirally symmetric limit (B.38), this set of coupled

ODEs is reduced to 5 second order equations for the three metric warp factors f2 = fc, f3 =

fa = fb and h, the single 3-form flux function K = K1 = K3 (K2 = 1 in the chiral limit)

and the string coupling g. The first order equation (B.11) involves (linearly) f ′
2 and can

be used instead of one of the second order equations (namely, the one involving f ′′
2 ). Thus,

altogether we have a coupled system of 4 second order ODEs (linear in {f ′′
3 , h

′′,K ′′, g′′})
and a single first order equation (linear in f ′

2). As a result, a unique solution must be

characterized by 9 = 2× 4 + 1 parameters; these are the UV/IR parameters

UV : {f2,1,0 , g4,0 , f2,4,0 , f2,6,0 , f2,8,0} ;
IR : {fh

2,0 , fh
3,0 , Kh

0 , gh0} .
(4.1)

The external parameters {P,K0, H, gs} (the gauge group rank differenceM of the cascading

gauge theory (2.7), its strong coupling scale Λ (B.26), the Hubble constant (1.17), the

renormalization group flow invariant sum of the gauge couplings (1.4)) labeling the vacuum

are fixed with the choice of the computational scheme (C.6). Of cause, as emphasized in
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Figure 1. Infrared parameters {f̂h
2,0, f̂

h
3,0, K̂

h
0 , ĝ

h
0 } of the Fefferman-Graham coordinate frame of

TypeAs de Sitter vacua of the cascading gauge theory as functions of ln H2

Λ2 in different computa-

tional schemes (C.6): SchemeI (blue), SchemeII (red) and Scheme III (green).

appendix C.1, the results must not depend on which computational scheme is adopted. We

illustrate now that this is indeed the case using the IR parameters in (4.1) as an example.17

Comparison of the different computational schemes is done using dimensionless and rescaled

quantities: ln H2

Λ2 (as a vacuum label) (C.2) and {f̂h
2,3,0 , K̂

h
0 , ĝh0} (C.4). Explicitly:

SchemeI : ln
H2

Λ2
= ks , f̂h

2,3,0 = fh
2,3,0 , K̂h

0 = Kh
0 , ĝh0 = gh0 ;

SchemeII : ln
H2

Λ2
=

1

b
+ ln b , f̂h

2,3,0 =
1

b1/2
fh
2,3,0 , K̂h

0 =
1

b
Kh

0 , ĝh0 = gh0 ;

SchemeIII : ln
H2

Λ2
=

1

4
+ lnα , f̂h

2,3,0 =
1

α1/2
fh
2,3,0 , K̂h

0 = Kh
0 , ĝh0 = gh0 .

(4.2)

Following (4.2), we collect (subset of the) results of {f̂h
2,0, f̂

h
3,0, K̂

h
0 , ĝ

h
0} as functions of

ln H2

Λ2 in different computational schemes in figure 1: SchemeI (blue curves), SchemeII (red

curves) and Scheme III (green curves). The accuracy of the collapsed results in different

schemes is highlighted in figure 2 for f̂h
2,0 — the remaining parameters follow the same trend.

Next, FG frame TypeAs de Sitter vacua have to be reinterpreted in EF frame, see

appendix B.2. The diffeomorphism transformation is performed at the radial location

{
FG :

1

ρ
≡ y = 0

}
⇐⇒

{
EF : r ≡ −z = 0

}
. (4.3)

17The same is true for the UV parameters as well.
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with f̂h
2,0 (the computational scheme SchemeI).
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Figure 3. Parameters ŝh0 of TypeAs de Sitter vacua of the cascading gauge theory as functions

of ln H2

Λ2 in different computational schemes (C.6): SchemeI (blue), SchemeII (red) and Scheme III

(green).

Details of numerical construction of EF frame vacua from FG frame vacua are collected in

appendix C.2. An important quantity is the parameter sh0 , see (2.13),

sh0 = σ

∣∣∣∣
FG frame

y=0

= σ

∣∣∣∣
EF frame

z=0

. (4.4)

As with FG frame UV/IR parameters (4.1), results for sh0 should not depend on the choice

of the computational scheme, provided we compare properly dimensionless and rescaled

quantities, i.e., ln H2

Λ2 and ŝh0 (C.15),

SchemeI : ln
H2

Λ2
= ks , ŝh0 = sh0 ;

SchemeII : ln
H2

Λ2
=

1

b
+ ln b , ŝh0 =

1

b1/4
sh0 ;

SchemeIII : ln
H2

Λ2
=

1

4
+ lnα , ŝh0 =

1

α1/2
sh0 .

(4.5)

Following (4.5), we collect (subset of the) results of ŝh0 as functions of ln H2

Λ2 in different

computational schemes in figure 3: SchemeI (blue curve), SchemeII (red curve) and Scheme
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1.0
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Figure 5. Apparent horizon location function LAH(z) in computational scheme SchemeI at ks = 0,

i.e., at H = Λ, see (C.8). The red dot is LAH(0), see (C.9). Notice that L′

AH(0) < 0, see (C.10).

The vertical green dashed line is the first zero of LAH(z): zAH = 0.163346.

III (green curve). The accuracy of the collapsed results in different schemes is highlighted

in figure 4.

EF frame equations of motion (A.17)–(A.25) are solved subject to the initial conditions

set by the asymptotic expansions (B.57) at z = 0. These equations have to be integrated

on the interval

z ∈ [0, zAH ] , (4.6)

where zAH = −rAH is the location of the apparent horizon at asymptotically late times,

see (3.32). To determine the location of the apparent horizon, along with integrating

the gravitational background functions {a, σ, wc2, wa2,K1, g} (remember that wb2 = wc2,

K3 = K1 and K2 = 1 when the chiral symmetry is unbroken), we evaluate the AH location

function LAH(z), see (C.8). AH is located at the first zero of this function for z > 0. A

typical profile of the AH location function is shown in figure 5. Once the AH is identified,

TypeAs vacua entanglement entropy is computed following (3.32):

sent =
H3P 4g2s
4G5

{
σ̂3ŵ

1/2
c2 ω̂2

a2

}∣∣∣∣
ẑ=ẑAH

=
35M4g2s
25π3

H3

{
σ̂3ŵ

1/2
c2 ω̂2

a2

}∣∣∣∣
ẑ=ẑAH

, (4.7)

where following (C.1) we introduced dimensionless and rescaled functions and the radial
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Figure 6. Left panel: entanglement entropy ŝent (4.9) of TypeAs de Sitter vacua of the cascad-

ing gauge theory as functions of ln H2

Λ2 in different computational schemes (C.6): SchemeI (blue),

SchemeII (red) and Scheme III (green). Right panel: entanglement entropy ŝent (4.9) for small

values of H2

Λ2 — at the limit of validity of the supergravity approximation, see section 4.3.

coordinate:

{z , a , σ , wc2 , wa2 , K1 , g} =⇒ {ẑ , â , σ̂ , ω̂c2 , ω̂a2 , K̂1 , ĝ} ;
z = HPg1/2s ẑ , a = H2Pg1/2s â , σ = HP 1/2g1/4s σ̂ ,

wc2,a2 = Pg1/2s ω̂c2,a2 , K1 = P 2gs K̂1 , g = gs ĝ .

(4.8)

In the last equality in (4.7) we used expressions for G5 (2.8) and P (2.7). We compute

entanglement entropy in different computational schemes; results must agree, provided we

compare dimensionless and rescaled quantities,

sent = H3P 4g2s ŝent . (4.9)

Explicitly,

SchemeI : ln
H2

Λ2
= ks , ŝent = sent ;

SchemeII : ln
H2

Λ2
=

1

b
+ ln b , ŝent =

1

b2
sent ;

SchemeIII : ln
H2

Λ2
=

1

4
+ lnα , ŝent =

1

α3/2
sent .

(4.10)

Following (4.10), we collect (subset of the) results of (4G5 ŝent) as functions of ln
H2

Λ2 in

different computational schemes in figure 6: SchemeI (blue curves), SchemeII (red curves)

and Scheme III (green curves). The accuracy of the collapsed results in different schemes

is highlighted in figure 7.

4.2 TypeAs de Sitter vacua in the conformal limit

The cascading gauge theory is not conformal — it has a strong coupling scale Λ. Thermal

states of the cascading gauge theory in Minkowski space-time at temperature T ≫ Λ enjoy

conformal equation of state, E = 3P, up to O
(

1
ln(T/Λ)

)
corrections, see [12]. On the gravity

side the conformal limit is realized as P → 0 (or Klebanov-Witten [3]) limit. We show here

that exactly the same limit on the gravity side of TypeAs de Sitter vacua captures the
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ŝent/ŝent − 1

Figure 7. Left panel: comparison of ŝent (the computational scheme SchemeIII) with ŝent (the com-

putational scheme SchemeI). Right panel: comparison of ŝent (the computational scheme SchemeII)

with ŝent (the computational scheme SchemeI).

H ≫ Λ limit of the cascading gauge theory, resulting in de Sitter vacuum entanglement

entropy density (1.24), vanishing, as appropriate, for the conformal gauge theory [19, 20].

To study the conformal limit it is convenient to use the computational scheme SchemeII

(see (C.6)), i.e., we use the symmetry transformations SFG2-SFG4 of (B.13)–(B.15) to set

H = gs = K0 = 1 and allow b ≡ P 2 to vary. The FG frame equations of motion (B.3)–

(B.11) describing TypeAs vacua (see also (B.38)) can be solved perturbatively as a series

expansion in b:

f2 = (1 + ρ)

(
1 +

∞∑

n=1

bn f2n(ρ)

)
, f3 = (1 + ρ)

(
1 +

∞∑

n=1

bn f3n(ρ)

)
, (4.11)

h =
1

4(1 + ρ)2

(
1 +

∞∑

n=1

bn hn(ρ)

)
, K = 1 +

∞∑

n=1

bn kn(ρ) , g = 1 +

∞∑

n=1

bn gn(ρ) .

Explicit equations for {f2n, f3n, hn, kn, gn} for n = 1, 2 along with the UV/IR asymptotics

are presented in appendix D.1. Numerically solving these equations we find perturbative

in b predictions for the UV/IR parameters (4.1). As explained in appendix C.2 we also

need the FG frame parameter sh0 , see (B.68). Given (4.11) we find from (C.15)

sh0 =
√
2

(
1 +

b

4

∫ ∞

0
ds

h1
1 + s

+
b2

32

∫ ∞

0
ds

8(1 + s)h2 − (1 + 2s)h21
(1 + s)2

+O(b3)

)

≡
√
2

(
1 + sh0;1 b+ sh0;2 b2 +O(b3)

)
.

(4.12)

Using results of appendix 4.2 we evaluate the integrals in (4.12) to find

sh0;1 = 0.828534 , sh0;2 = −0.284396 . (4.13)

Figures 8–9 present comparison of the results for the IR parameters {fh
2,0 , fh

3,0 , Kh
0 , gh0}

and sh0 in the computational SchemeII (blues curves), and independent perturbative O(b)

(red curves) and O(b2) (green curves) computations. The agreement is excellent.
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h
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h
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h
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results in computational scheme SchemeII; red curves: perturbative approximation to order O(b);
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Figure 9. Infrared parameter sh0 in the conformal limit b → 0. Blue curve: results in computational

scheme SchemeII; red curve: perturbative approximation to order O(b); green curve: perturbative

approximation to order O(b2); see (4.12) with (4.13).

Following appendix B.2 we convert perturbative FG frame construction (4.11) to EF

frame:

a = −z(1− z)

(
1 +

∞∑

n=1

bn an(z)

)
, σ =

√
2(1− z)

(
1 +

∞∑

n=1

bn sn(z)

)
,

wc2 =
1

2

(
1 +

∞∑

n=1

bn wc2n(z)

)
, wa2 =

1

2

(
1 +

∞∑

n=1

bn wa2n(z)

)
,

K = 1 +
∞∑

n=1

bn kn(z) , g = 1 +
∞∑

n=1

bn gn(z) .

(4.14)
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Explicit equations for {an, sn, vn ≡ wc2n + 4wa2n, wa2n, kn, gn} for n = 1, 2 along with

the initial conditions are presented in appendix D.2. The equations for k1 and g1 ((D.18)

and (D.23) correspondingly) can be solved analytically; in fact the solutions are just the

FG → EF frame transformations of (D.13) and (D.15):

k1 =
z2 − z + 1

4z(z − 1)
− 1

4
− 4 ln 2 +

16z3 − 24z2 + 6z + 1

4z3/2(1− z)3/2
arctan

√
z

1− z
, (4.15)

g1 = −13z4 − 26z3 + 29z2 − 16z + 1

32z2(1− z)2
+

13

32
− 2z − 1

16z5/2(1− z)5/2
arctan

√
z

1− z

− 12z2 − 12z − 1

32z3(z − 1)3
arctan2

√
z

1− z
. (4.16)

We will show now that the location of the AH zAH , as determined from the zero of

the AH location function LAH (C.8), is

1− zAH = O
(
b1/4

)
, (4.17)

and can be determined analytically (in perturbative expansion in b) as it is controlled

by the singularities of the EOMs (D.19)–(D.22) and (D.25)–(D.29) as u ≡ 1 − z → 0+,

provided we use (4.15) and (4.16). From (4.15), (4.16):

k1 = −π

8
u−3/2 − 15π

16
u−1/2 +O(u0/2) , g1 = − π2

128
u−3 − 15π2

128
u−2 +O(u−3/2) , (4.18)

leading to18 (from direct asymptotic analysis of (D.19)–(D.22) and (D.25)–(D.29))

v1=−3π2

256
u−3+

51π2

256
u−2+O(u−3/2) , a1=

3π2

1024
u−3− 177π2

1024
u−2+O(u−3/2) ,

s1=
π2

512
u−3− 33π2

256
u−2+O(u−3/2) , wa21=− π2

256
u−3+

9π2

256
u−2+O(u−3/2) ,

(4.19)

k2 =
35π3

49152
u−9/2 − 2985π3

229376
u−7/2 +O(u−6/2) ,

g2 =
23π4

393216
u−6 − 571π4

573440
u−5 +O(u−9/2) ,

v2 =
21π4

262144
u−6 − 1097π4

327680
u−5 +O(u−9/2) ,

a2 = − 13π4

1310720
u−6 +

751π4

2621440
u−5 +O(u−9/2) ,

s2 = − 53π4

7864320
u−6 +

143π4

524288
u−5 +O(u−9/2) ,

wa22 =
17π4

786432
u−6 − 2599π4

2293760
u−5 +O(u−9/2) .

(4.20)

In fact, from the general structure of the perturbative equations we expect

kn = O(u−3n+3/2) , {a, s, v, wa2, g}n = O(u−3n) , (4.21)

18Subleading terms depend on coefficients that have to be determined numerically.

– 25 –



J
H
E
P
0
5
(
2
0
2
0
)
0
3
5

-4

-3

-2

-1

0

-14 -12 -10 -8 -6 -4

ln b
ln
(1

−
z A

H
)

-14

-12

-10

-8

-6

-4

-2

0

-14 -12 -10 -8 -6 -4

ln b

ln
(4
G

5
s e

n
t)

Figure 10. Location of the apparent horizon zAH (left panel) and the entanglement entropy sent
(right panel) of TypeAs de Sitter vacua in the conformal limit b → 0. Blue curves: results in

computational scheme SchemeII; red curves: leading perturbative approximation; green curves:

next-to-leading perturbative approximation, see (4.24) and (4.25).

so that

bn kn

∣∣∣∣
u=uAH=O(b1/4)

= O(bn/4+3/8) , bn {a, s, v, wa2, g}n
∣∣∣∣
u=uAH=O(b1/4)

= O(bn/4) ,

(4.22)

rendering successive higher order perturbative corrections in (4.14) at z = zAH small despite

the singular behavior of {an, sn, wc2n, wa2n, kn, gn} in this limit.19

Given (4.19) and (4.20) we find from (C.8):

LAH(u ≡ 1− z) =
3

2
u3

(
u+ b

(
− 3π2

1024
u−3 − π2

64
u−2 +O(u−3/2)

)

+ b2
(
0 · u−6 +

349π4

3932160
u−5 +O(u−9/2)

)
+O

(
b3 u−9

))
,

(4.23)

so that the first zero of the apparent horizon location function occurs at

1− zAH = uAH =
1

8
31/4(2π)1/2 b1/4

(
1 +

1

6
31/4(2π)1/2 b1/4 +O(b1/2)

)
. (4.24)

From (3.32) we find perturbative predictions in the conformal limit for the TypeAs de

Sitter vacua entanglement entropy:

4G5 sent =
1

1024
33/4(2π)3/2 b3/4

(
1 +

1

2
31/4(2π)1/2 b1/4 +O(b1/2)

)
. (4.25)

In figure 10 we compare numerical results for zAH and sent in computational scheme

SchemeII (blue curves) with the perturbative predictions (4.24) and (4.25) at leading (red

curves) and next-to-leading (green curves) orders in the conformal limit: b → 0. Restoring

dimensional parameters, from (4.25),

sent

∣∣∣∣
TypeAs

∝ H3

(
ln

H2

Λ2

)−3/4

as H ≫ Λ . (4.26)

19This is similar to the behavior of the phenomenological model [24] in the conformal limit.
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Figure 11. Left panel: Kretschmann scalar of (2.13) evaluated at the apparent horizon as functions

of ln H2

Λ2 in different computation schemes (C.6): SchemeI (blue), SchemeII (red) and Scheme III

(green). Right panel: we use order-3 polynomial fit (orange dashed curve) and order-4 polynomial

fit (black dashed curve) to 1

K̂AH

, see (4.29).
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1/2
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Figure 12. The curvature growth at the apparent horizon of the TypeAs de Sitter vacua gravi-

tational dual for small H2

Λ2 is due to collapsing the compact manifold: the size of deformed T 1,1,

see (4.31) (left panel). Right panel: the T 1,1 deformation parameter δT 1,1 , see (4.32). Results are

presented in different computation schemes (C.6): SchemeI (blue), SchemeII (red) and Scheme III

(green).

4.3 Validity of supergravity approximation for TypeAs vacua

Results for the entanglement entropy sent of TypeAs de Sitter vacua of the cascading gauge

theory are presented in section 4.1, see figure 6. Notice that it is a monotonically decreasing

function of H2

Λ2 . We have been able to obtain reliable numerical results for

ln
H2

Λ2
≥ −0.59 =⇒ 4G5 ŝent & 4.1× 10−4 . (4.27)

Besides numerical (technical) difficulties associated with construction of these vacua, there

are conceptual ones, associated with the breakdown of the supergravity approximation

— the effective action (2.1) becomes less reliable as the background space-time curvature

of (2.13) grows. In figure 11 (left panel) we present the Kretschmann scalar of (2.13)
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evaluated at the apparent horizon in different computations schemes, see appendix E:

SchemeI : ln
H2

Λ2
= ks , K̂ = K ;

SchemeII : ln
H2

Λ2
=

1

b
+ ln b , K̂ = bK ;

SchemeIII : ln
H2

Λ2
=

1

4
+ lnα , K̂ = K .

(4.28)

Notice the fast growth of KAH for small values of H2

Λ2 — in figure 11 (right panel) we fit

the values of 1
K̂AH

with order-3 (orange dashed curve) and order-4 (black dashed curve)

polynomials. The fits suggest that the curvature is divergent at

ln
H2

Λ2

∣∣∣∣
orange fit

≈ −0.64 , ln
H2

Λ2

∣∣∣∣
black fit

≈ −0.72 . (4.29)

We take (4.29) as an indication that TypeAs vacua do not exist20 for

ln
(Hs

min)
2

Λ2
. −0.8 =⇒ Hs

min . 0.7Λ . (4.30)

In figure 12 (left panel) we identify the rapid curvature growth with the fact that the size

of (deformed) T 1,1, R2
T 1,1 , evaluated at the apparent horizon

R2
T 1,1 ≡ wa2

∣∣∣∣
AH

= Pg1/2s ω̂a2

∣∣∣∣
AH

, (4.31)

becomes vanishingly small in string units, P ∝ Mα′ = M ℓ2s. Note that in the limit R2
T 1,1 →

0 TypeAs vacua entanglement entropy vanishes, see (4.7). Right panel shows the deforma-

tion parameter δT 1,1 of the T 1,1: the size of the U(1) fiber compare to the S2 × S2 base,

δT 1,1 ≡ 1− w2
c2

w2
a2

∣∣∣∣
AH

= 1− ω̂2
c2

ω̂2
a2

∣∣∣∣
AH

. (4.32)

5 TypeAb de Sitter vacua

TypeAb vacua have the same topology in Euclidean FG frame as TypeAs vacua (1.22);

they differ in global symmetry: TypeAs vacua have unbroken U(1) chiral symmetry (in the

supergravity approximation), while the latter symmetry is broken spontaneously to Z2 in

TypeAb vacua. The following table highlights the differences between the dual backgrounds

in FG frame and EF frame:

Unlike TypeAs vacua, TypeAb vacua have never been constructed in the literature

before — morally, they are similar to Klebanov-Strassler black holes, constructed only

recently [14]. We begin in section 5.1 with perturbative construction of TypeAb vacua.

Specifically, we study static linearized perturbations about TypeAs vacua responsible for

the chiral symmetry breaking U(1) → Z2. The symmetry breaking is associated with three

20It would be interesting to rigorously establish this.
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chiral symmetry FG frame (2.12) EF frame (2.13) fluxes (2.11)

TypeAs U(1) fa = fb wa2 = wb2 K1 = K3 & K2 = 1

TypeAb Z2 fa 6= fb wa2 6= wb2 K1 6= K3 & K2 6= 1

Table 1. TypeA de Sitter vacua with broken/unbroken (b / s) chiral symmetry.

operators Oα=1,2
3 and O7 (see section 2) developing nonzero expectation values. We break

the chiral symmetry explicitly, by turning on a non-normalizable component for one of the

dim-3 operators21 (a mass term for one of the gaugino bilinears). We vary H2

Λ2 keeping the

gaugino mass parameter fixed and nonzero — the signature of the spontaneous chiral sym-

metry breaking is the divergence of all the condensates Oα=1,2
3 and O7 for a particular value

of H2

Λ2 , see figure 13. Once the bifurcation point of TypeAb vacua off TypeAs vacua is iden-

tified as a function of H2

Λ2 , we construct fully nonlinear solution with spontaneous symmetry

breaking slowing increasing the amplitudes of the symmetry breaking expectation values,

using the linearized solution as a seed. Numerical results for TypeAb vacua are presented in

section 5.2, in particular the results for the entanglement entropy sent

∣∣∣∣
TypeAb

compare to the

entanglement entropy sent

∣∣∣∣
TypeAs

at corresponding values of H2

Λ2 are presented in figure 21.

Validity of supergravity approximation for TypeAb vacua is a subject of section 5.3.

5.1 TypeAb vacua from perturbative chiral symmetry breaking of TypeAs

vacua

We will use computational scheme SchemeI (C.6). Consider static, linearized chiral sym-

metry breaking fluctuation about TypeAs in FG frame, see table 1:

fa = f3 + δf , fb = f3 − δf , K1 = K + δk1 , K2 = 1 + δk2 , K1 = K − δk1 , (5.1)

with the remaining metric functions and the string coupling as in TypeAs vacua, i.e.,

{fc = f2, h, g}. It is straightforward to verify that truncation to {δf, δk1,2} is consistent

(at the linearized level). Equations of motion for the fluctuations and their asymptotic

expansions in the UV (ρ → 0) and the IR (y = 1
ρ) are collected in appendix F. Once the non-

normalizable coefficient (the explicit chiral symmetry breaking parameter, i.e., the gaugino

mass term) is fixed to δf1,0 = 1, the expansions are characterized by 6 UV/IR parameters

UV : {δf3,0 , δk1,3,0 , δf7,0} ;
IR : {δfh

0 , δkh1,0 , δkh2,0} ,
(5.2)

which is the correct number of parameters to find a unique solution of 3 second-order differ-

ential equations (F.1)–(F.3) for {δf, δk1,2} on the TypeAs background parameterized by ks.

In figure 13 we assemble results for the fluctuation parameters (5.2) as ks label of

TypeAs vacua is varied. A signature of the spontaneous symmetry breaking is the diver-

gence of all the parameters, once the scale of the explicit chiral symmetry breaking, i.e.,

21This was discussed earlier in [13].
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Figure 13. Parameters {δf3,0 , δk1,3,0 , δf7,0 , δfh
0 , δkh1,0 , δk

h
2,0} of the chiral symmetry breaking

fluctuations over TypeAs vacua parameterized by ks, evaluated at fixed explicit chiral symmetry

breaking scale δf1,0 = 1, diverge at kcrits (5.3), indicated by a vertical red dashed line. kcrits identifies

the bifurcation point of spontaneous symmetry broken TypeAb de Sitter vacua off chirally symmetric

TypeAs de Sitter vacua parameterized by ln H2

Λ2 .
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Figure 14. Sample susceptibilities, see (5.5), of the linearized chiral symmetry breaking fluctua-

tions. The red dashed vertical line denotes kcrits , see (5.3).

the non-normalizable parameter δf1,0, is kept fixed. This occurs at

ln
(Hb

min)
2

Λ2
= kcrits = −16363(2) =⇒ Hb

min = 0.92(1)Λ , (5.3)

represented by vertical dashed red lines. We denote the critical value of H corresponding

to kcrits as Hb
min — we will see in section 5.2 that TypeAb vacua exist only for H ≥ Hb

min,

hence the name. The value of kcrits can be computed separately of each of the parameters

— the fractional differences are of order ∝ 10−6, excepts for



kcrits

∣∣∣∣
δf7,0

kcrits

∣∣∣∣
δf3,0

− 1


 ∝ 10−4 . (5.4)

To use the critical fluctuations as a seed for TypeAb vacua, we need to know the

‘susceptibilities’

{
χk1,3,0 , χf7,0 , χfh

0
, χkh

1,0
, χkh

2,0

}
≡ lim

ks→kcrits

{
δk1,3,0
δf3,0

,
δf7,0
δf3,0

,
δfh

0

δf3,0
,
δkh1,0
δf3,0

,
δkh2,0
δf3,0

}
. (5.5)
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Figure 15. Sample of the UV parameters of TypeAb de Sitter vacua constructed from the

‘seed’ (5.11). The linearized approximations in λ are represented by dashed red lines.
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Figure 16. Sample of the IR parameters of TypeAb de Sitter vacua constructed from the

‘seed’ (5.11). The linearized approximations in λ are represented by dashed red lines.

In figure 14 we present susceptibilities χk1,3,0 and χfh
0
— notice that they are finite at kcrits ,

represented by vertical dashed red lines. The other susceptibilities are finite as well; we find:

χk1,3,0 = 0.8749(7) , χf7,0 = −0.2373(6) , χfh
0
= 5.230(0) ,

χkh
1,0

= 0.3034(2) , χkh
2,0

= −18.12(6) .
(5.6)

Given (5.6), fully nonlinear TypeAb vacua, with ks close to kcrits , can be constructed

following the same procedure as the one employed in construction of Klebanov-Strassler

black hole in [14]. We highlight the main steps:

• We set ks = kcrits and compute the corresponding TypeAs vacuum. This vacuum is

characterized by (see (B.44) and (B.46))

UV : {K0 = kcrits , H = 1 , gs = 1 , f crit
2,1,0 , g

crit
4,0 , f crit

2,4,0 , f
crit
2,6,0 , f

crit
2,8,0} ;

IR : {fh,crit
2,0 , fh,crit

3,0 , Kh,crit
0 , gh,crit0 } .

(5.7)

Next, we use (B.47)–(B.51) to compute the corresponding

UV : {fs,crit
a,1,0 , fs,crit

a,3,0 , ks,crit2,3,0 , gs,crit4,0 , fs,crit
c,4,0 , fs,crit

a,6,0 , fs,crit
a,7,0 , fs,crit

a,8,0 } ;
IR : {fh,s,crit

a,0 , fh,s,crit
b,0 , fh,s,crit

c,0 , Kh,s,crit
1,0 , Kh,s,crit

2,0 , Kh,s,crit
3,0 , gh,s,crit0 } .

(5.8)

We use superscript s to indicate that UV/IR parameters of TypeAb vacua (B.25)

and (B.30) are obtained from the critical TypeAs vacuum.

• Let’s denote the amplitude of the symmetry breaking condensate (see (5.1))

δf3,0 ≡
1

2
(fa,3,0 − fb,3,0) = λ . (5.9)
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Then,

{
δk1,3,0 , δf7,0 , δf

h
0 , δkh1,0 , δk

h
2,0

}
= λ {χk1,3,0 , χf7,0 , χfh

0
, χkh

1,0
, χkh

2,0
}+O(λ2) .

(5.10)

• Using (5.1) and (F.4)–(F.6), (F.8), with δf1,0 = 0, in asymptotic expansions (B.17)–

(B.24) and (B.30) we find

ks= kcrits +O(λ2) , fa,1,0= fs,crit
a,1,0 +O(λ2) , fa,3,0= fs,crit

a,3,0 +λ+O(λ2) ,

k2,3,0= ks,crit2,3,0 −λ

(
1− 3

2
χk1,3,0

)
+O(λ2) , g4,0= gs,crit4,0 +O(λ2) ,

fc,4,0= fs,crit
c,4,0 +O(λ2) ,

fa,6,0= fs,crit
a,6,0 −

f crit
2,1,0

64

(
8(f crit

2,1,0)
2+18χk1,3,0 +12kcrits −35

)
λ+O(λ2) ,

fa,7,0= fs,crit
a,7,0 +λ χf7,0 +O(λ2) ,

fa,8,0= fs,crit
a,8,0 −

f crit
2,1,0

1536

(
550−192(f crit

2,1,0)
4−720χk1,3,0(f

crit
2,1,0)

2−480(f crit
2,1,0)

2kcrits

+36χk1,3,0k
crit
s +1184(f crit

2,1,0)
2+3840χf7,0 −45χk1,3,0 +2304f crit

2,4,0+21kcrits

)
λ

+O(λ2) ,

fh
a,0= fh,s,crit

a,0 +χfh
0
λ+O(λ2) , fh

b,0= fh,s,crit
b,0 −χfh

0
λ+O(λ2) ,

fh
c,0= fh,s,crit

c,0 +O(λ2) , Kh
1,0=Kh,s,crit

1,0 +χkh
1,0

λ+O(λ2) ,

Kh
2,0=Kh,s,crit

2,0 +χkh
2,0

λ+O(λ2) , Kh
3,0=Kh,s,crit

3,0 −χkh
1,0

λ+O(λ2) ,

gh0 = gh,s,crit0 +O(λ2) . (5.11)

• We construct fully nonlinear in λ TypeAb vacua using the linearized approxima-

tion (5.11) as a seed. Select UV/IR parameters, along with the corresponding lin-

earized approximations (dashed red lines) are shown in figures 15–16.

5.2 Numerical results: TypeAb

Numerical construction of TypeAb vacua follows the steps of section 4.1. In FG frame,

there are 8 second order equations (B.3)–(B.10) and 1 first order equation (B.11). The

first order equation (B.11) involves (linearly) f ′
c and can be used instead of one of the

second order equations (namely, the one involving f ′′
c ). Thus, altogether we have a coupled

system of 7 second order ODEs (linear in {f ′′
a , f

′′
b , h

′′,K ′′
1 ,K

′′
2 ,K

′′
3 , g

′′}) and a single first

order equation (linear in f ′
c). As a result, a unique solution must be characterized by

15 = 2× 7 + 1 parameters; these are the UV/IR parameters

UV : {fa,1,0 , fa,3,0 , k2,3,0 , g4,0 , fc,4,0 , fa,6,0 , fa,7,0 , fa,8,0} ;
IR : {fh

a,0 , fh
b,0 , fh

c,0 , Kh
1,0 , Kh

2,0 , Kh
3,0 , gh0} .

(5.12)
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Figure 17. Infrared parameters {f̂h
a,0 − f̂h

b,0, K̂
h
1,0} of the Fefferman-Graham coordinate frame of

TypeAb de Sitter vacua of the cascading gauge theory as functions of ln H2

Λ2 in different computa-

tional schemes (5.14): SchemeI (blue), SchemeII (red) and Scheme III (green).

It is rather challenging to find the solutions of the corresponding system of ODEs in 15-

dimensional parameter space by brute force — fortunately, we already know some solutions

which are close to kcrits , see section 5.1.

As for the construction of TypeAs we use three different computation schemes, see

appendix C.1. There are some differences though: both in SchemeII and SchemeIII we use

as a pivot value22

K⋆
0 = −0.161344 . (5.13)

Numerical results must not depend on which computational scheme is adopted. We il-

lustrate now that this is indeed the case using a sample of IR parameters in (5.12) as an

example.23 Comparison of the different computational schemes is done using dimensionless

and rescaled quantities: ln H2

Λ2 (as a vacuum label) (C.2) and {f̂h
a,b,c,0 , K̂

h
1,2,3,0 , ĝ

h
0} (C.4).

Explicitly:

SchemeI : ln
H2

Λ2
= ks , f̂h

a,b,c,0 = fh
a,b,c,0 , K̂h

1,2,3,0 = Kh
1,2,3,0 , ĝh0 = gh0 ;

SchemeII : ln
H2

Λ2
=

K⋆
0

b
+ ln b , f̂h

a,b,c,0 =
1

b1/2
fh
a,b,c,0 , K̂h

1,2,3,0 =
1

b
Kh

1,2,3,0 , ĝh0 = gh0 ;

SchemeIII : ln
H2

Λ2
= K⋆

0 + lnα , f̂h
a,b,c,0 =

1

α1/2
fh
a,b,c,0 , K̂h

1,2,3,0 = Kh
1,2,3,0 , ĝh0 = gh0 .

(5.14)

Following (5.14), we collect results of {f̂h
a,0− f̂h

b,0, K̂
h
1,0} as functions of ln H2

Λ2 in different

computational schemes in figure 17: SchemeI (blue curves), SchemeII (red curves) and

Scheme III (green curves). The accuracy of the collapsed results in different schemes is

highlighted in figure 18 for K̂h
1,0 — the remaining parameters follow the same trend. Notice

that TypeAb vacua exist only for H ≥ Hb
min (5.3); furthermore, in the limit H → Hb

min+0,

all the chiral symmetry breaking condensates (5.2) vanish as ∝ (H −Hb
min)

1/2, typical for

a spontaneous symmetry breaking with a mean-field exponent 1
2 .

22As will be clear from the presented results this is a convenient value.
23The same is true for the rest of IR parameters and the UV parameters as well.
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Figure 18. Left panel: comparison of K̂h
1,0 (the computational scheme SchemeIII) with K̂h

1,0

(the computational scheme SchemeI). Right panel: comparison of K̂h
1,0 (the computational scheme

SchemeII) with K̂h
1,0 (the computational scheme SchemeI).
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Figure 19. Parameters ŝh0 of TypeAs de Sitter vacua of the cascading gauge theory as functions

of ln H2

Λ2 in different computational schemes (5.14): SchemeI (blue), SchemeII (red) and Scheme III

(green).

Next, FG frame TypeAb de Sitter vacua have to be reinterpreted in EF frame, see

appendix B.2. The diffeomorphism transformation is performed at the radial location

as in (4.3). Details of numerical construction of EF frame vacua from FG frame vacua

are collected in appendix C.2. An important quantity is the parameter sh0 , see (2.13),

and (4.4). As with FG frame UV/IR parameters (5.12), results for sh0 should not depend

on the choice of the computational scheme, provided we compare properly dimensionless

and rescaled quantities, i.e., ln H2

Λ2 and ŝh0 (C.15),

SchemeI : ln
H2

Λ2
= ks , ŝh0 = sh0 ;

SchemeII : ln
H2

Λ2
=

K⋆
0

b
+ ln b , ŝh0 =

1

b1/4
sh0 ;

SchemeIII : ln
H2

Λ2
= K⋆

0 + lnα , ŝh0 =
1

α1/2
sh0 .

(5.15)

Following (5.15), we collect (subset of the) results of ŝh0 as functions of ln H2

Λ2 in different

computational schemes in figure 19: SchemeI (blue curves), SchemeII (red curves) and

Scheme III (green curves). The accuracy of the collapsed results in different schemes is

highlighted in figure 20.
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Figure 20. Left panel: comparison of ŝh0 (the computational scheme SchemeIII) with ŝh0 (the com-

putational scheme SchemeI). Right panel: comparison of ŝh0 (the computational scheme SchemeII)

with ŝh0 (the computational scheme SchemeI).

EF frame equations of motion (A.17)–(A.25) are solved subject to the initial conditions

set by the asymptotic expansions (B.58)–(B.66) at z = 0. These equations have to be

integrated on the interval

z ∈ [0, zAH ] , (5.16)

where zAH = −rAH is the location of the apparent horizon at asymptotically late times,

see (3.32). To determine the location of the apparent horizon, along with integrating the

gravitational background functions {a, σ, wa,b,c,2,K1,2,3, g}, we evaluate the AH location

function LAH(z), see (C.8). AH is located at the first zero of this function for z > 0. Once

the AH is identified, TypeAb vacua entanglement entropy is computed following (3.32):

sent =
H3P 4g2s
4G5

{
σ̂3ŵ

1/2
c2 ω̂a2ω̂b2

}∣∣∣∣
ẑ=ẑAH

=
35M4g2s
25π3

H3

{
σ̂3ŵ

1/2
c2 ω̂a2ω̂b2

}∣∣∣∣
ẑ=ẑAH

, (5.17)

where following (C.1) we introduced dimensionless and rescaled functions and the radial

coordinate:

{z , a , σ , wa2,b2,c2 , K1,2,3 , g} =⇒ {ẑ , â , σ̂ , ω̂a2,b2,c2 , K̂1,2,3 , ĝ} ;
z = HPg1/2s ẑ , a = H2Pg1/2s â , σ = HP 1/2g1/4s σ̂ ,

wa2,b2,c2 = Pg1/2s ω̂a2,b2,c2 , K1,3 = P 2gs K̂1,3 , K2 = K̂2 , g = gs ĝ .

(5.18)

In the last equality in (5.17) we used expressions for G5 (2.8) and P (2.7). We compute

entanglement entropy in different computational schemes; results must agree, provided we

compare dimensionless and rescaled quantities, see (4.9). Explicitly,

SchemeI : ln
H2

Λ2
= ks , ŝent = sent ;

SchemeII : ln
H2

Λ2
=

K⋆
0

b
+ ln b , ŝent =

1

b2
sent ;

SchemeIII : ln
H2

Λ2
= K⋆

0 + lnα , ŝent =
1

α3/2
sent .

(5.19)
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Figure 21. Entanglement entropy ŝent (4.9) of TypeAs (black curve) and TypeAb (different com-

putational schemes (5.19): SchemeI (blue), SchemeII (red) and Scheme III (green)) de Sitter vacua

of the cascading gauge theory as functions of ln H2

Λ2 . Dashed vertical magenta lines indicate the

range of the Hubble constant H such that sent
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, see (5.20).
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Figure 22. Left panel: comparison of ŝent (the computational scheme SchemeIII) with ŝent
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SchemeII) with ŝent (the computational scheme SchemeI).
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Figure 23. Kretschmann scalar of (2.13) evaluated at the apparent horizon as functions of ln H2

Λ2

for TypeAb vacua in different computation schemes (5.22): SchemeI (blue), SchemeII (red) and

Scheme III (green). The black curve is the Kretschmann scalar of (2.13) evaluated at the apparent

horizon as a function of ln H2

Λ2 for TypeAs vacua. Vertical dashed magenta lines indicate the range

of dominance of TypeAb vacua over TypeAs, see (5.20).

Following (5.19), we collect (subset of the) results of (4G5 ŝent) as functions of ln
H2

Λ2 in

different computational schemes in figure 21: SchemeI (blue curves), SchemeII (red curves)

and Scheme III (green curves). Additionally, we replot the results for the entanglement

entropy of TypeAs vacua (black curve). Figure 21 is the main result of the paper: it

demonstrates that the entanglement entropy of TypeAb vacua is larger than that of TypeAs

vacua provided (the values Hb
min and Hmax are denoted by vertical dashed magenta lines)

Hb
min ≤ H ≤ Hmax , (5.20)

where
Hb

min

Λ
= 0.92(1) ,

Hmax

Λ
= 0.92(5) . (5.21)

This is an unexpected result, as it implies that SU(N) × SU(N + M) cascading gauge

theory with a strong coupling scale Λ undergoes spontaneous chiral symmetry breaking in

de Sitter space time with a Hubble constant H in the interval (5.20).

The accuracy of the collapsed results for TypeAb vacua in different schemes is high-

lighted in figure 22.

5.3 Validity of supergravity approximation for TypeAb vacua

In this section we briefly comment on the validity of the supergravity approximation in

construction of TypeAb vacua. In figure 23 we present the Kretschmann scalar of (2.13)

evaluated at the apparent horizon in different computations schemes for the TypeAb vacua,

see appendix E:

SchemeI : ln
H2

Λ2
= ks , K̂ = K ;

SchemeII : ln
H2

Λ2
=

K⋆
0

b
+ ln b , K̂ = bK ;

SchemeIII : ln
H2

Λ2
= K⋆

0 + lnα , K̂ = K .

(5.22)
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Vertical dashed magenta lines indicate the range of dominance of TypeAb vacua over

TypeAs, see (5.20). Additionally, we replot the Kretschmann scalar of (2.13) evaluated at

the apparent horizon for TypeAs vacua (black curve). KAH is the same for TypeAb and

TypeAs vacua at H = Hb
min; the former is about 13 times larger for TypeAb vacuum at

H = Hmax and continues to increase as H
Λ increases. We do not study the breakdown of the

supergravity approximation for TypeAb vacua for H > Hmax, as these vacua are irrelevant.

6 TypeB de Sitter vacua

TypeB de Sitter vacua were studied previously in [31]. We showed in section 3.4 that the

entanglement entropy of these vacua vanishes. Thus, these vacua can arise as late-time

dynamical attractors of the cascading gauge theory in de Sitter only when neither TypeAs

nor TypeAb vacua exist (for the corresponding values H
Λ ). Recall that TypeAs vacua exist

only for H & Hs
min (4.30), and TypeAb vacua exist only when H ≥ Hb

min (5.21). In this

section we establish that TypeB vacua do exist for H . HB
max with HB

max > {Hs
min, H

b
min},

see (1.33). In section 6.1 we present numerical results for TypeB vacua for generic values

of H2

Λ2 . In section 6.2 we estimate HB
max above which TypeB vacua construction in type IIB

supergravity becomes unreliable/does not exist. We identify the source of breaking of the

supergravity approximation.

6.1 Numerical results: TypeB

To establish the existence of TypeB vacua it is sufficient to construct them in FG

frame (2.12). The construction follows the steps implemented for TypeAs vacua in sec-

tion 4.1. There are 8 second order equations (B.3)–(B.10) and 1 first order equation (B.11).

The first order equation (B.11) involves (linearly) f ′
c and can be used instead of one of the

second order equations (namely, the one involving f ′′
c ). Thus, altogether we have a cou-

pled system of 7 second order ODEs (linear in {f ′′
a , f

′′
b , h

′′,K ′′
1 ,K

′′
2 ,K

′′
3 , g

′′}) and a single

first order equation (linear in f ′
c). As a result, a unique solution must be characterized by

15 = 2× 7 + 1 parameters; these are the UV/IR parameters

UV : {fa,1,0 , fa,3,0 , k2,3,0 , g4,0 , fc,4,0 , fa,6,0 , fa,7,0 , fa,8,0} ;
IR : {fh

a,0 , hh0 , kh1,3 , kh2,2 , kh2,4 , kh3,1 , gh0} .
(6.1)

It is rather challenging to find the solutions of the corresponding system of ODEs in 15-

dimensional parameter space by brute force — fortunately, a special case of TypeB vacua,

namely, the limit H → 0, is the supersymmetric Minkowski space-time Klebanov-Strassler

solution [2], see appendix B.3. Using this extremal KS solution as a seed, we can construct

TypeB vacua turning on the deformation parameter α ≡ H2 in the ODEs (B.3)–(B.11).

To validate our results, we use two different computation schemes: SchemeI and

SchemeIII, see (C.6). Numerical results must not depend on which computational scheme

is adopted. We illustrate now that this is indeed the case using a sample of IR param-

eters in (6.1) as an example.24 Comparison of the different computational schemes is

24The same is true for the rest of IR parameters and the UV parameters as well.
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Figure 24. TypeB vacua IR parameters and select UV parameters (6.1) in computational

SchemeIII as functions of α ≡ H2 (solid blue curves). Red dashed horizontal lines represent

comparison with extremal KS solution, see (6.3), at α = 0.

done using dimensionless and rescaled quantities: ln H2

Λ2 (as a vacuum label) (C.2) and

{f̂h
a , ĥh0 , k̂

h
1,3 , k̂

h
2,2 , k̂

h
2,4 , k̂

h
3,1 , ĝ

h
0} (C.5). Explicitly:

SchemeI : ln
H2

Λ2
= ks , f̂h

a = fh
a , ĥ

h
0 =hh0 , k̂

h
1,3= kh1,3 , k̂

h
2,2= kh2,2 , k̂

h
2,4= kh2,4 ,

k̂h3,1= kh3,1 , ĝh0 = gh0 ;

SchemeIII : ln
H2

Λ2
=

1

4
+lnα, f̂h

a =
1

α
fh
a , ĥ

h
0 =α2hh0 , k̂

h
1,3=α3/2kh1,3 , (6.2)

k̂h2,2=αkh2,2 , k̂h2,4=α2kh2,4 , k̂
h
3,1=α1/2kh3,1 , ĝ

h
0 = gh0 .

Figure 24 presents all the IR parameters and select UV parameters (fa,3,0 and k2,3,0),

see (6.1), of TypeB vacua in computational SchemeIII as functions of α. Extremal KS

parameters are represented by dashed horizontal red lines and must agree with the corre-

sponding TypeB parameters at α = 0. While negative values of α are not physical, we run

numerical codes for α < 0 to extract more precisely this comparison at α = 0. Extremal

KS parameters in computational SchemeIII can be determined from (B.78) and (B.79)
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Figure 25. Left panel: infrared parameter k̂h1,3 of the Fefferman-Graham coordinate frame of

TypeB de Sitter vacua of the cascading gauge theory as functions of ln H2

Λ2 in different computational

schemes (6.2): SchemeI (blue) and Scheme III (green). Right panel: comparison of k̂h1,3 (the

computational scheme SchemeIII) with k̂h1,3 (the computational scheme SchemeI).

provided we set

K0 = P 2gs

(
− ln 3 +

5

3
ln 2− 4

3
ln ǫ− 2

3

)∣∣∣∣
SchemeIII

=
1

4

=⇒

ǫ

∣∣∣∣
SchemeIII

=
2

3
61/4 e−11/16 .

(6.3)

We find remarkable agreements, e.g.,

fh
a,0(α = 0)

fh
a,0(KS)

− 1 ∼ 5× 10−10 ,
kh2,4(α = 0)

kh2,4(KS)
− 1 ∼ 2× 10−10 . (6.4)

The remaining parameters are validated at ∼ 10−6 level or better.

Following (6.2), we collect results of k̂h1,3 as functions of ln
H2

Λ2 in different computational

schemes in figure 25: SchemeI (blue curves) and Scheme III (green curves) (left panel);

the accuracy of the collapsed results in different schemes is highlighted in right panel.

Comparison of the remaining parameters follows the same trend. Note the degradation in

accuracy as H
Λ increases — in section 6.2 we relate this to the breakdown of the supergravity

approximation.

6.2 Validity of supergravity approximation for TypeB vacua

As clear from figure 25 the accuracy in constructing TypeB vacua deteriorates as H in-

creases; we have been able to construct TypeB vacua for

ln
H2

Λ2
≤ −0.06(8) =⇒ H ≤ HB

max = 0.966(5)Λ . (6.5)

Besides numerical (technical) difficulties associated with construction of these vacua, there

are conceptual ones, associated with the breakdown of the supergravity approximation

— the effective action (2.1) becomes less reliable as the background space-time curvature
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Figure 26. Left panel: inverse Kretschmann scalar of (2.13) evaluated at the apparent horizon

for TypeB vacua as functions of ln H2

Λ2 in different computation schemes (C.6): SchemeI (blue)

and Scheme III (green). Horizontal red dashed line represents 1

K̂AH

for the extremal KS solution,

which is recovered in the limit H
Λ

→ 0. Right panel: the divergence of the Kretschmann scalar

as H → HB
max is associated with the collapse of the 3-cycle, see (6.7). Vertical black dashed lines

represent
HB

max

Λ
.

of (2.13) grows. In figure 26 (left panel) we present the inverse Kretschmann scalar of (2.13)

evaluated at the apparent horizon in different computations schemes, see appendix E,

specifically (E.4):

SchemeI : ln
H2

Λ2
= ks , K̂ = K ;

SchemeIII : ln
H2

Λ2
=

1

4
+ lnα , K̂ = K .

(6.6)

In the limit H
Λ → 0 we recover the inverse Kretschmann scalar of the extremal KS solu-

tion (E.5), represented by a horizontal red dashed line. AsH approachedHB
max, represented

by vertical dashed black line, the Kretschmann scalar at the AH of the holographic dual

to TypeB de Sitter vacua of the cascading gauge theory appears to grow faster than any

polynomial of Λ/(HB
max−H) — we take HB

max in (6.5) as the limiting value for the existence

of TypeB vacua. In the right panel of figure 26 we associate the growth of the Kretschmann

scalar in the limit H → HB
max with the collapse of the 3-cycle (the S3 supporting the RR

3-form flux (2.6)) at the horizon, see (B.37),

R2
S3 =

fh
a,0(h

h
0)

1/2

3
= Pg1/2s

f̂h
a,0(ĥ

h
0)

1/2

3
, (6.7)

where in the second equality we used (C.5).

7 Conclusion

In this paper we presented a comprehensive analysis of the vacua structure of the cas-

cading gauge theory in de Sitter. The cascading gauge theory in Minkowski space-time

is characterized by a single modulus gs and the strong coupling scale Λ; it confines with

the spontaneous breaking of the chiral symmetry. de Sitter space-time presents a new

mass scale — the Hubble constant H. There are three distinct types of de Sitter vacua
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of the theory — TypeAs (resembling the thermal deconfined states of KS theory with the

unbroken chiral symmetry), TypeAb (resembling the thermal deconfined states of KS the-

ory with the spontaneously broken chiral symmetry) and TypeB (resembling the thermal

confined states of KS theory with the spontaneously broken chiral symmetry) — with the

different (Euclidean) topology, and the global symmetry. All three types play a role of

being an attractor of the late-time de Sitter dynamics, depending on the interplay of the

strong coupling scale Λ and the Hubble constant H. We discover an intriguing pattern of

the chiral symmetry breaking in the theory depending on the ratio H
Λ . While it is natural

to expect that the chiral symmetry is spontaneously broken for sufficiently small H
Λ (in

fact, the extremal KS solution is a limiting case H
Λ → 0), we find that the chiral symmetry

is spontaneously broken as well when H ∈ [Hb
min, Hmax], with {Hb

min, Hmax} ∼ Λ. In the

former case, TypeB de Sitter vacua, the vacuum entanglement entropy density vanishes25

much like for the confining thermal states, while in the latter, TypeAb de Sitter vacua,

the vacuum entanglement entropy is finite, much like for the thermal deconfined states.

Since Hs
min < Hb

min, the chiral symmetry breaking and the confinement/deconfinement are

two separate transitions in the cascading gauge theory in de Sitter. This is in contrast

to thermal transitions in the cascading gauge theory in Minkowski space-time, where the

chiral symmetry breaking is always accompanied by the confinement [13, 14].

There is a number of open questions and future directions:

We argued that vacua TypeAs do not exist for sufficiently small H
Λ . It is important to

rigorously establish this fact. Indeed, TypeAs vacua, unlike TypeB vacua, are characterized

by the nonzero entanglement entropy density, and thus, when exist, will always dominate

over TypeB vacua as the late-time dynamical attractors.

We mentioned that TypeAb vacua resemble the thermal states of the deconfined cas-

cading gauge theory with Z2 chiral symmetry. The holographic dual of these states is a

Klebanov-Strassler black hole [14], which is unstable to local energy density perturbations

— the sound waves in the cascading gauge theory plasma. It would be interesting to study

the fate of spatial inhomogeneities in TypeAb de Sitter vacua.

Ideally, we would like to develop numerical simulations of the cascading gauge theory

in de Sitter, akin to the model studied in [24]. As a first step, it would be interesting to com-

pute the spectrum (the quasinormal modes) of the chiral symmetry breaking fluctuations

about TypeAs vacua for H ∈ [Hb
min, Hmax].

It is important to explore the spontaneous symmetry breaking and the role played

by the de Sitter vacuum entanglement entropy in other top-down examples of massive

holography.

In this paper we studied confinement/deconfinement and chiral symmetry breaking of

strongly coupled gauge theories in de Sitter. It would be extremely interesting to pursue

these questions in other curved background space-times, and specifically in anti-de Sitter.

25More precisely it is order O(N0).
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There is an ample literature on the subject,26 mostly from the field theory perspective. A

natural starting point would be to understand the dynamics of N = 2∗ gauge theory in

AdS4, expanding on [35].
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A EF frame equations of motion

Within Eddington-Finkelstein metric ansatz (with spatially homogeneous and isotropic

background metric of the cascading gauge theory — dx2)

ds210 = 2dt (dr −A dt) + Σ2 dx2 +Ω2
1 g25 +Ω2

2 (g23 + g24) + Ω2
3 (g21 + g22) , (A.1)

with

A = A(t, r) , Σ = Σ(t, r) , Ωi = Ωi(t, r) , Ki = Ki(t, r) , Φ = ln g(t, r) , (A.2)

we find from (2.1) the following evolution (′ ≡ ∂r and d+ ≡ ∂t +A∂r):

0= (d+Σ)
′+

(
d+Ω2

Ω2
+
d+Ω3

Ω3
+
d+Ω1

2Ω1

)
Σ′+

(
Ω′
2

Ω2
+
Ω′
3

Ω3
+2

Σ′

Σ
+

Ω′
1

2Ω1

)
d+Σ (A.3)

− P 2gΣK ′
2

1296Ω2
2Ω

2
3

d+K2−
ΣK ′

1

1152Ω4
3P

2g
d+K1−

ΣK ′
3

1152Ω4
2P

2g
d+K3−

Σ(K1−K3)
2

4608Ω2
3Ω

2
2Ω

2
1P

2g

− P 2gK2
2Σ(Ω

4
2+Ω4

3)

5184Ω4
2Ω

2
1Ω

4
3

+
P 2gK2Σ

1296Ω4
2Ω

2
1

− P 2gΣ

1296Ω4
2Ω

2
1

− Σ(K1K2−K3K2−2K1)
2

373248Ω2
1Ω

4
2Ω

4
3

,

0= (d+Ω1)
′+

(
3Σ′

2Σ
+
Ω′
2

Ω2
+
Ω3

Ω3

)
d+Ω1+

(
d+Ω2

Ω2
+
d+Ω3

Ω3
+
3d+Σ

2Σ

)
Ω′
1 (A.4)

− K ′
1Ω1

1152P 2gΩ4
3

d+K1−
Ω1P

2gK ′
2

1296Ω2
3Ω

2
2

d+K2−
Ω1K

′
3

1152Ω4
2P

2g
d+K3+

(K3−K1)
2

1536Ω2
3Ω

2
2Ω1P 2g

+
(K3K2−K1K2+2K1)

2
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3Ω1Ω4

2
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1−Ω2

2+Ω2
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4
2+Ω4
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3Ω1Ω4

2

− P 2gK2

432Ω1Ω4
2

+
P 2g

432Ω1Ω4
2

,

0= (d+Ω2)
′+

(
Ω′
2

Ω2
+
Ω′
3

Ω3
+
3Σ′

2Σ
+

Ω′
1

2Ω1

)
d+Ω2+

(
d+Ω3

Ω3
+
d+Ω1

2Ω1
+
3d+Σ

2Σ

)
Ω′
2 (A.5)

+
P 2gK ′

2

1296Ω2Ω2
3

d+K2−
Ω2K

′
1

1152Ω4
3P

2g
d+K1+

K ′
3

384Ω3
2P

2g
d+K3+

(K1−K3)
2

4608Ω2
3Ω2Ω2

1P
2g

26See e.g., [34] and references/citations there.
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−K2
2P

2g(Ω4
2−3Ω4

3)

5184Ω3
2Ω

2
1Ω

4
3

− K2P
2g

432Ω3
2Ω

2
1

+
P 2g

432Ω3
2Ω

2
1

+
(K1K2−K3K2−2K1)

2

373248Ω3
2Ω

2
1Ω

4
3

+
4Ω4

1−8Ω2
1Ω

2
3−Ω4

2+Ω4
3

16Ω2
3Ω2Ω2

1

,

0= (d+Ω3)
′+

(
Ω′
2

Ω2
+
Ω′
3

Ω3
+
3Σ′

2Σ
+

Ω′
1

2Ω1

)
d+Ω3+

(
d+Ω2

Ω2
+
d+Ω1

2Ω1
+
3d+Σ

2Σ

)
Ω′
3 (A.6)

+
P 2gK ′

2

1296Ω2
2Ω3

d+K2+
K ′

1

384Ω3
3P

2g
d+K1−

Ω3K
′
3

1152Ω4
2P

2g
d+K3+

(K1−K3)
2

4608Ω3Ω2
2Ω

2
1P

2g

+
P 2gK2

2 (3Ω
4
2−Ω4

3)

5184Ω4
2Ω

2
1Ω

3
3

+
P 2gK2Ω3

1296Ω4
2Ω

2
1

− P 2gΩ3

1296Ω4
2Ω

2
1

+
(K1K2−K3K2−2K1)

2

373248Ω4
2Ω

2
1Ω

3
3

+
4Ω4

1−8Ω2
1Ω

2
2+Ω4

2−Ω4
3

16Ω3Ω2
2Ω

2
1

,

0= (d+K1)
′+

(
d+Ω2

Ω2
− d+Ω3

Ω3
+
d+Ω1

2Ω1
+
3d+Σ

2Σ
− d+g

2g

)
K ′

1+

(
Ω′
2

Ω2
− Ω′

3

Ω3
+
3Σ′

2Σ
(A.7)

+
Ω′
1

2Ω1
− g′

2g

)
d+K1−

Ω2
3(K1−K3)

4Ω2
2Ω

2
1

− P 2g(K2−2)(K1K2−K3K2−2K1)

648Ω4
2Ω

2
1

,

0= (d+K2)
′+

(
d+Ω1

2Ω1
+
3d+Σ

2Σ
+
d+g

2g

)
K ′

2+

(
Ω′
1

2Ω1
+

g′

2g
+
3Σ′

2Σ

)
d+K2 (A.8)

− (K3−K1)(K3K2−K1K2+2K1)

576Ω2
1Ω

2
2Ω

2
3P

2g
−K2(Ω

4
2+Ω4

3)

4Ω2
1Ω

2
2Ω

2
3

+
Ω2
3

2Ω2
1Ω

2
2

,

0= (d+K3)
′+

(
3d+Σ

2Σ
− d+g

2g
− d+Ω2

Ω2
+
d+Ω3

Ω3
+
d+Ω1

2Ω1

)
K ′

3+

(
Ω′
3

Ω3
− Ω′

2

Ω2
+

Ω′
1

2Ω1
(A.9)

− g′

2g
+
3Σ′

2Σ

)
d+K3−

Ω2
2(K3−K1)

4Ω2
3Ω

2
1

− P 2gK2(K3K2−K1K2+2K1)

648Ω2
1Ω

4
3

,

0= (d+g)
′+

(
d+Ω2

Ω2
+
d+Ω3

Ω3
+
d+Ω1

2Ω1
+
3d+Σ

2Σ

)
g′− P 2g2K ′

2

324Ω2
2Ω

2
3

d+K2 (A.10)

+
K ′

3

288Ω4
2P

2
d+K3+

K ′
1

288Ω4
3P

2
d+K1+

(
Ω′
2

Ω2
+
Ω′
3

Ω3
+

Ω′
1

2Ω1
− g′

g
+
3Σ′

2Σ

)
d+g

+
(K3−K1)

2

1152Ω2
3Ω

2
2Ω

2
1P

2
− P 2g2K2

2 (Ω
4
2+Ω4

3)

1296Ω2
1Ω

4
2Ω

4
3

+
P 2g2K2

324Ω2
1Ω

4
2

− P 2g2

324Ω2
1Ω

4
2

,

0=A′′−
(

2Ω′
2

Ω1Ω2
+

2Ω′
3

Ω1Ω3
+

3Σ′

ΣΩ1

)
d+Ω1−

(
2Ω′

2

Ω2
2

+
4Ω′

3

Ω2Ω3
+

6Σ′

ΣΩ2
+

2Ω′
1

Ω1Ω2

)
d+Ω2 (A.11)

−
(

4Ω′
2

Ω2Ω3
+
2Ω′

3

Ω2
3

+
6Σ′

ΣΩ3
+

2Ω′
1

Ω1Ω3

)
d+Ω3−

(
6Ω′

2

Ω2Σ
+

6Ω′
3

Ω3Σ
+
6Σ′

Σ2
+

3Ω′
1

Ω1Σ

)
d+Σ

+
g′

2g2
d+g+

P 2gK ′
2

648Ω2
2Ω

2
3

d+K2+
K ′

1

576Ω4
3P

2g
d+K1+

K ′
3

576Ω4
2P

2g
d+K3

− (K1−K3)
2

768Ω2
3Ω

2
2Ω

2
1P

2g
− P 2gK2

2 (Ω
4
2+Ω4

3)

864Ω4
2Ω

2
1Ω

4
3

+
P 2gK2

216Ω4
2Ω

2
1

− P 2g

216Ω4
2Ω

2
1

− (K1K2−K3K2−2K1)
2

93312Ω2
1Ω

4
2Ω

4
3

− 4Ω4
1−8Ω2

1Ω
2
2−8Ω2

1Ω
2
3+Ω4

2−2Ω2
2Ω

2
3+Ω4

3

8Ω2
2Ω

2
3Ω

2
1

;
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and the constraint equations

0=Σ′′+
Σ

6

(
(g′)2

g2
+
4Ω′′

3

Ω3
+
4Ω′′

2

Ω2
+
2Ω′′

1

Ω1
+
P 2g(K ′

2)
2

162Ω2
3Ω

2
2

+
(K ′

3)
2

144P 2gΩ4
2

+
(K ′

1)
2

144P 2gΩ4
3

)
, (A.12)

0= d2+Σ+
Σ

3Ω1
d2+Ω1+

2Σ

3Ω2
d2+Ω2+

2Σ

3Ω3
d2+Ω3−

(
Σ

3Ω1
d+Ω1+

2Σ

3Ω2
d+Ω2 (A.13)

+
2Σ

3Ω3
d+Ω3+d+Σ

)
A′+

ΣP 2g

972Ω2
2Ω

2
3

(d+K2)
2+

Σ

864Ω4
2P

2g
(d+K3)

2

+
Σ

864Ω4
3P

2g
(d+K1)

2+
Σ

6g2
(d+g)

2 .

To derive the late-time geometry dual to the cascading gauge theory vacuum in de

Sitter, we introduce following [19]

lim
t→∞

{
A(t, r) ,

Σ(t, r)

eHt
, Ki(t, r) , g(t, r)

}
= {a(r) , σ(r) , Ki(r) , g(r)} ; (A.14)

furthermore,

lim
t→∞

{
Ω2
1(t, r) , Ω

2
2(t, r) , Ω

2
3(t, r)

}
=

{
1

9
wc2(r) ,

1

6
wa2(r) ,

1

6
wb2(r)

}
. (A.15)

We find from (A.3)–(A.13) in the t → ∞ limit 9 second order ODEs:

0=σ′′+
5(σ′)2

4σ
+
5a′σ′

8a
+

σ

16

(
2σ′

σ
− a′

a

)(
w′
c2

wc2
+
2w′

a2

wa2
+
2w′

b2

wb2

)
+

Hσ

16a

(
30σ′

σ
+
w′
c2

wc2
(A.16)

+
2w′

a2

wa2
+
2w′

b2

wb2

)
− σ

8

(
1

2

(
w′
a2

wa2
+
w′
b2

wb2

)2

+
w′
a2w

′
b2

wa2wb2
+
w′
a2w

′
c2

wa2wc2
+
w′
c2w

′
b2

wc2wb2

)
+
σ(g′)2

16g2

− 2gP 2(K ′
2)

2

9wb2wa2
− (K ′

3)
2

4gP 2w2
a2

− (K ′
1)

2

4gP 2w2
b2

− 27σ(K3−K1)
2

256wb2wa2awc2gP 2
− σ

128aw2
b2w

2
a2wc2

×
(
5K2

2 (K3−K1)
2+2wb2wa2(9w

2
b2−18wb2wa2−48wb2wc2+9w2

a2−48wa2wc2+16w2
c2)

+20K1(K3K2−K1K2+K1)

)
− 3σgP 2(K2(w

2
b2K2+w2

a2K2−4w2
b2)+4w2

b2)

32aw2
b2w

2
a2wc2

;

0= a′′+
21a′σ′

4σ
+
a

8

(
18σ′

σ
+
7a′

a

)(
w′
c2

wc2
+
2w′

a2

wa2
+
2w′

b2

wb2

)
+
3H

8

(
26σ′

σ
+
3w′

c2

wc2
(A.17)

+
6w′

a2

wa2
+
6w′

b2

wb2

)
+
3a

8

(
12(σ′)2

σ2
+
2w′

a2w
′
c2

wa2wc2
+
2w′

c2w
′
b2

wc2wb2
+
2w′

a2w
′
b2

wa2wb2
+

(
wa2

wa2
+
w′
b2

wb2

)2 )

− 3(g′)2a

8g2
− 5a

32

(
8gP 2(K ′

2)
2

9wb2wa2
+

(K ′
3)

2

gP 2w2
a2

+
(K ′

1)
2

gP 2w2
b2

)
+

9(K3−K1)
2

128wb2wa2wc2gP 2

− 1

64wc2w2
a2w

2
b2

(
K2

2 (K3−K1)
2−6wb2wa2(9w

2
b2−18wb2wa2−48wb2wc2+9w2

a2

−48wa2wc2+16w2
c2)+4K1((K3−K1)K2+K1)

)
+

gP 2

16wc2w2
b2w

2
a2

(
(w2

a2+w2
b2)K

2
2

+4(1−K2)w
2
b2

)
;
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0=w′′
a2+

wa2a
′

8a

(
6w′

a2

wa2
− 6σ′

σ
− 2w′

b2

wb2
− w′

c2

wc2

)
− wa2

8

(
(w′

a2)
2

w2
a2

− 4w′
a2w

′
b2

wa2wb2
+
(w′

b2)
2

w2
b2

(A.18)

− 12w′
a2σ

′

wa2σ
+
12w′

b2σ
′

σwb2
+
12(σ′)2

σ2
− 2w′

a2w
′
c2

wa2wc2)
+
2w′

c2w
′
b2

wc2wb2
+
6w′

c2σ
′

σwc2

)
+
(g′)2wa2

8g2

+
gP 2(K ′

2)
2

12wb2
− wa2(K

′
1)

2

32w2
b2gP

2
+

7(K ′
3)

2

32wa2gP 2
+
3Hwa2

8a

(
2w′

a2

wa2
− 2w′

b2

wb2
− 6σ′

σ
− w′

c2

wc2

)

+
9(K3−K1)

2

128wb2wc2agP 2
+

3

64w2
b2wc2wa2a

(
K2

2 (K3−K1)
2+2wb2wa2(16w

2
c2−48wc2wb2

+16wa2wc2+9w2
b2+6wa2wb2−15w2

a2)+4K1(K3K2−K1K2+K1)

)

+
gP 2

16w2
b2wc2wa2a

(
K2

2 (5w
2
b2−3w2

a2)+20(1−K2)w
2
b2

)
;

0=w′′
b2+

a′wb2

8a

(
6w′

b2

wb2
− 6σ′

σ
− 2w′

a2

wa2
− w′

c2

wc2

)
− wb2

8

(
(w′

a2)
2

w2
a2

− 4w′
a2w

′
b2

wa2wb2
+
(w′

b2)
2

w2
b2

(A.19)

+
12w′

a2σ
′

wa2σ
− 12w′

b2σ
′

σwb2
+
12(σ′)2

σ2
+
2w′

a2w
′
c2

wa2wc2
− 2w′

c2w
′
b2

wc2wb2
+
6w′

c2σ
′

σwc2

)
+
(g′)2wb2

8g2

+
gP 2(K ′

2)
2

12wa2
+

7(K ′
1)

2

32wb2gP 2
− wb2(K

′
3)

2

32w2
a2gP

2
− 3Hwb2

8a

(
2w′

a2

wa2
− 2w′

b2

wb2
+
6σ′

σ
+
w′
c2

wc2

)

+
9(K3−K1)

2

128wa2gP 2wc2a
+

3

64wb2w
2
a2wc2a

(
K2

2 (K3−K1)
2+2wa2wb2(16w

2
c2+16wc2wb2

−48wa2wc2−15w2
b2+6wa2wb2+9w2

a2)+4K1(K3K2−K1K2+K1)

)

− gP 2

16wb2w
2
a2wc2a

(
K2

2 (3w
2
b2−5w2

a2)+12(1−K2)w
2
b2

)
;

0=w′′
c2−

wc2a
′

8a

(
2w′

b2

wb2
+
6σ′

σ
− 7w′

c2

wc2
+
2w′

a2

wa2

)
− wc2

8

(
(w′

a2)
2

w2
a2

+
4w′

a2w
′
b2

wa2wb2
+
(w′

b2)
2

w2
b2

(A.20)

+
12w′

a2σ
′

wa2σ
+
12w′

b2σ
′

σwb2
+
12(σ′)2

σ2
− 6w′

a2w
′
c2

wa2wc2
− 6w′

c2w
′
b2

wc2wb2
− 18w′

c2σ
′

σwc2
+
4(w′

c2)
2

w2
c2

)

+
(g′)2wc2

8g2
− wc2gP

2(K ′
2)

2

36wb2wa2
− wc2(K

′
1)

2

32w2
b2gP

2
− wc2(K

′
3)

2

32w2
a2gP

2
− 3Hwc2

8a

(
2w′

a2

wa2
+
2w′

b2

wb2
+
6σ′

σ

− 3w′
c2

wc2

)
+

45(K3−K1)
2

128wa2wb2gP 2a
+

3

64w2
b2w

2
a2a

(
K2

2 (K3−K1)
2−2wa2wb2(48w

2
c2

−16wc2wb2−16wa2wc2−21w2
b2+42wa2wb2−21w2

a2)+4K1(K3K2−K1K2+K1)

)

+
5gP 2

16w2
b2w

2
a2a

(
K2

2 (w
2
b2+w2

a2)+4(1−K2)w
2
b2

)
;

0=K ′′
1 +

(
3H

2a
+
w′
a2

wa2
+

w′
c2

2wc2
− w′

b2

wb2
+
3σ′

σ
+
a′

a
− g′

g

)
K ′

1−
9wb2(K1−K3)

4wa2awc2
(A.21)

− (K2−2)(K2K1−K2K3−2K1)gP
2

2awc2w2
a2

;
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0=K ′′
2 +

(
a′

a
+
3H

2a
+

w′
c2

2wc2
+
g′

g
+
3σ′

σ

)
K ′

2−
9(K1−K3)(K2(K1−K3)−2K1)

16wa2wb2gP 2wc2a
(A.22)

− 9((w2
a2+w2

b2)K2−2w2
b2)

4wa2wb2wc2a
;

0=K ′′
3 +

(
3H

2a
− w′

a2

wa2
+
3σ′

σ
+

w′
c2

2wc2
+
w′
b2

wb2
+
a′

a
− g′

g

)
K ′

3+
9wa2(K1−K3)

4wb2awc2
(A.23)

+
K2(K2(K1−K3)−2K1)gP

2

2aw2
b2wc2

;

0= g′′+

(
3H

2a
+
a′

a
+

w′
c2

2wc2
− g′

g
+
w′
b2

wb2
+
w′
a2

wa2
+
3σ′

σ

)
g′− g2P 2(K ′

2)
2

9wb2wa2
+

(K ′
1)

2

8P 2w2
b2

(A.24)

+
(K ′

3)
2

8P 2w2
a2

+
9(K1−K3)

2

32awb2wc2wa2P 2
− g2P 2(K2

2 (w
2
a2+w2

b2)+4(1−K2)w
2
b2)

4w2
b2awc2w2

a2

,

and 2 first order ODEs:

0=σ′+
σ

2a

(
H−a′

)
; (A.25)

0=
(g′)2

g2
− 3H

a

(
2w′

b2

wb2
+
4σ′

σ
+
2w′

a2

wa2
+
w′
c2

wc2
+
a′

a
−H

a

)
− 2w′

a2a
′

awa2
− 6σ′a′

σa
− 4w′

b2w
′
a2

wb2wa2
(A.26)

− 12w′
b2σ

′

σwb2
− 12w′

a2σ
′

σwa2
− 2w′

b2a
′

awb2
− 6w′

c2σ
′

σwc2
− w′

c2a
′

awc2
− 2w′

b2w
′
c2

wb2wc2
− 2w′

c2w
′
a2

wc2wa2
− (w′

b2)
2

w2
b2

− 12(σ′)2

σ2
− (w′

a2)
2

w2
a2

+
2P 2g(K ′

2)
2

9wb2wa2
+

(K ′
1)

2

4w2
b2P

2g
+

(K ′
3)

2

4w2
a2P

2g
− 9(K1−K3)

2

16awc2gP 2wb2wa2

− 1

8aw2
b2wc2w2

a2

(
K2

2 (K1−K3)
2+2wa2wb2(9w

2
a2−18wb2wa2−48wc2wa2+9w2

b2

−48wb2wc2+16w2
c2)−4K1((K1−K3)K2−K1)

)
− P 2g

2w2
b2awc2w2

a2

(
K2

2 (w
2
a2+w2

b2)

+4(1−K2)w
2
b2

)
.

It is straightforward to verify the (A.16)–(A.24) are consistent with (A.25)–(A.26); thus

the latter ODEs can be used for drop (A.16) and (A.20) and eliminate σ′ and w′
c2 in the

remaining second order ODEs.

The cascading gauge theory de Sitter vacuum equations of motion (A.16)–(A.26) are

invariant under the following symmetries (λ ≡ const),

symmetry SEF1:

r → r+λ , {H,P, a, σ, wa2,b2,c2,K1,2,3, g} → {H,P, a, σ, wa2,b2,c2,K1,2,3, g} ; (A.27)

symmetry SEF2:

P → λP , g → g

λ
, {r,H, a, σ, wa2,b2,c2,K1,2,3} → {r,H, a, σ, wa2,b2,c2,K1,2,3} ;

(A.28)
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symmetry SEF3:

{P, r, a, wa2,b2,c2} → λ{P, r, a, wa2,b2,c2} , σ → λ1/2σ , {K1,3} → λ2{K1,3} ,
{H,K2, g} → {H,K2, g} ; (A.29)

symmetry SEF4:

{r,H} → λ{r,H} , {P, σ, wa2,b2,c2,K1,2,3, g} → {P, σ, wa2,b2,c2,K1,2,3, g}
a → λ2a .

(A.30)

B FG frame equations of motion, asymptotics, relation to EF frame and

extremal Klebanov-Strassler solution

Fefferman-Graham frame can be used to describe only (the patch of) the gravitational dual

to the cascading gauge theory de Sitter vacua. It is useful to setup the asymptotic boundary

conditions, analytical continuation to Euclidean (Bunch-Davies) vacua, and study the H →
0 limit in which one recovers the KS solution [2].

Within the metric ansatz

ds210=
1

h1/2ρ2

(
dMf,c

4

)2
+
h1/2

ρ2
(dρ)2+

fch
1/2

9
g25+

fah
1/2

6
(g23+g24)+

fbh
1/2

6
(g21+g22)

(
dMf

4

)2
=−dτ2+e2Hτdx2 , (dMc

4)
2=−dτ2+

1

H2
cosh2(Hτ)

(
dS3

)2
, (B.1)

where we used the FG frame time τ and the radial coordinate ρ to distinguish them from

the EF frame time t and the radial coordinate r in (A.1),

fa,b,c = fa,b,c(ρ) , h = h(ρ) , K1,2,3 = K1,2,3(ρ) , g = g(ρ) , (B.2)

we find the following equations of motion (independent of whether we use the flat boundary

spatial slicing
(
dMf

4

)2
or the closed boundary spatial slicing (dMc

4)
2) describing de Sitter

vacuum of the cascading gauge theory [31]:

0 = f ′′
c − 3f ′

c

ρ
− 3hfcH

2 − (f ′
c)

2

2fc
+

5fc
ρ2

+
fc(g

′)2

8g2
+

3f ′
bf

′
c

4fb
+

63fa
16fbρ2

+
63fb

16faρ2
+

3fc
faρ2

− fc(f
′
a)

2

8f2
a

+
3f ′

af
′
c

4fa
+

fc(h
′)2

8h2
− fc(f

′
b)

2

8f2
b

+
3fc
fbρ2

− 63

8ρ2
− K2

1

8f2
ah

2f2
b ρ

2
+

3gP 2

2f2
ahρ

2

− fcf
′
af

′
b

2fafb
− 27K1K3

32fahfbgP 2ρ2
− K2

2K
2
1

32f2
ah

2f2
b ρ

2
+

K2K
2
1

8f2
ah

2f2
b ρ

2
− K2

2K
2
3

32f2
ah

2f2
b ρ

2
− 3fc(K

′
1)

2

32hf2
b gP

2

− 3fc(K
′
3)

2

32f2
ahgP

2
+

3gP 2K2
2

8hf2
b ρ

2
+

3gP 2K2
2

8f2
ahρ

2
− 3gP 2K2

2f2
ahρ

2
− 9f2

c

fafbρ2
+

fch
′

hρ
+

K2
2K1K3

16f2
ah

2f2
b ρ

2

− K2K1K3

8f2
ah

2f2
b ρ

2
− gP 2fc(K

′
2)

2

12fahfb
+

27K2
1

64fahfbgP 2ρ2
+

27K2
3

64fahfbgP 2ρ2
, (B.3)

0 = f ′′
a − 45f2

a

16fcfbρ2
+

fah
′

hρ
+

gP 2(K ′
2)

2

36hfb
+

5(K ′
3)

2

32fahgP 2
− faf

′
bf

′
c

4fcfb
− (f ′

a)
2

8fa
+

5fa
ρ2

− 3f ′
a

ρ

− K2
2K

2
1

32fcfah2f2
b ρ

2
+

K2K
2
1

8fcfah2f2
b ρ

2
− K2

2K
2
3

32fcfah2f2
b ρ

2
− 3gP 2K2

2fcfahρ2
+

3gP 2K2
2

8fcfahρ2
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− 9K2
3

64fchfbgP 2ρ2
− 9K2

1

64fchfbgP 2ρ2
+

3fa
fbρ2

+
3fc
fbρ2

+
9K1K3

32fchfbgP 2ρ2
+

K2
2K1K3

16fcfah2f2
b ρ

2

− K2K1K3

8fcfah2f2
b ρ

2
− 5fagP

2K2
2

8fchf2
b ρ

2
− K2

1

8fcfah2f2
b ρ

2
+

3gP 2

2fcfahρ2
− 3fa(K

′
1)

2

32hf2
b gP

2
− 9

ρ2
+

fa(g
′)2

8g2

− 3fahH
2 +

f ′
af

′
b

2fb
+

f ′
cf

′
a

4fc
− fa(f

′
b)

2

8f2
b

+
9fa
8fcρ2

+
fa(h

′)2

8h2
+

27fb
16fcρ2

, (B.4)

0 = f ′′
b − 3f ′

b

ρ
− (f ′

b)
2

8fb
+

5fb
ρ2

− 45f2
b

16fcfaρ2
+

fbh
′

hρ
− K2

1

8fch2f2
afbρ

2
− 3fb(K

′
3)

2

32hgf2
aP

2

− K2
2K

2
1

32fch2f2
afbρ

2
+

K2K
2
1

8fch2f2
afbρ

2
− K2

2K
2
3

32fch2f2
afbρ

2
− 9K2

1

64fchgfaP 2ρ2
+

3gP 2K2
2

fchfbρ2

− 9K2
3

64fchgfaP 2ρ2
− 5gfbP

2

2fchf2
aρ

2
+

3fb
faρ2

+
3fc
faρ2

− fbf
′
cf

′
a

4fcfa
+

5(K ′
1)

2

32hgfbP 2
+

gP 2(K ′
2)

2

36hfa

− 9

ρ2
+

27fa
16fcρ2

+
9fb
8fcρ2

+
K2

2K1K3

16fch2f2
afbρ

2
− K2K1K3

8fch2f2
afbρ

2
+

5gfbP
2K2

2fchf2
aρ

2
− 5gfbP

2K2
2

8fchf2
aρ

2

+
9K1K3

32fchgfaP 2ρ2
+

fb(g
′)2

8g2
− 3hfbH

2 +
f ′
af

′
b

2fa
− fb(f

′
a)

2

8f2
a

+
f ′
bf

′
c

4fc
+

fb(h
′)2

8h2
, (B.5)

0 = h′′ +
K2

2K
2
1

4fcf2
af

2
b hρ

2
− K2K

2
1

fcf2
af

2
b hρ

2
+

K2
2K

2
3

4fcf2
af

2
b hρ

2
+

9K2
1

16fcfafbρ2gP 2
+

9K2
3

16fcfafbρ2gP 2

+
2hf ′

c

fcρ
+

4hf ′
b

fbρ
+

4hf ′
a

faρ
+

(K ′
1)

2

8f2
b gP

2
+

(K ′
3)

2

8f2
agP

2
+

gP 2K2
2

2fcf2
b ρ

2
+

gP 2K2
2

2fcf2
aρ

2
− 2gP 2K2

fcf2
aρ

2
+

f ′
ch

′

2fc

+
h′f ′

b

fb
+

h′f ′
a

fa
− 16h

ρ2
− (h′)2

h
+ 12h2H2 − K2

2K1K3

2fcf2
af

2
b hρ

2
+

K2K1K3

fcf2
af

2
b hρ

2
+

K2
1

fcf2
af

2
b hρ

2

+
2gP 2

fcf2
aρ

2
+

gP 2(K ′
2)

2

9fafb)
− 9K1K3

8fcfafbρ2gP 2
− 3h′

ρ
, (B.6)

0 = K ′′
1 − gK2

2K1P
2

fcf2
ahρ

2
+

gK2
2K3P

2

fcf2
ahρ

2
+

4gK2K1P
2

fcf2
ahρ

2
− 2gK2K3P

2

fcf2
ahρ

2
− 9fbK1

2fcfaρ2
+

9fbK3

2fcfaρ2

− 4gK1P
2

fcf2
ahρ

2
+

K ′
1f

′
c

2fc
− K ′

1g
′

g
− K ′

1h
′

h
+

f ′
aK

′
1

fa
− 3K ′

1

ρ
− K ′

1f
′
b

fb
, (B.7)

0 = K ′′
3 +

gK2
2K1P

2

fcf2
b hρ

2
− gK2

2K3P
2

fcf2
b hρ

2
− 2gK2K1P

2

fcf2
b hρ

2
+

9faK1

2fcfbρ2
− 9faK3

2fcfbρ2
+

K ′
3f

′
c

2fc

− K ′
3g

′

g
+

f ′
bK

′
3

fb
− K ′

3h
′

h
− 3K ′

3

ρ
− K ′

3f
′
a

fa
, (B.8)

0 = K ′′
2 − 9fbK2

2fcfaρ2
− 9faK2

2fcfbρ2)
+

9fb
fcfaρ2

− 9K2K
2
1

8fcgP 2hfbfaρ2
+

9K2K1K3

4fcgP 2hfbfaρ2

− 9K2K
2
3

8fcgP 2hfbfaρ2
+

9K2
1

4fcgP 2hfbfaρ2
− 9K1K3

4fcgP 2hfbfaρ2
+

K ′
2f

′
c

2fc
+

K ′
2g

′

g
− K ′

2h
′

h

− 3K ′
2

ρ
, (B.9)
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0 = g′′ − g2P 2K2
2

2fcf2
ahρ

2
− g2P 2K2

2

2fcf2
b hρ

2
+

2g2P 2K2

fcf2
ahρ

2
+

9K2
1

16fcfafbhρ2P 2
+

9K2
3

16fcfafbhρ2P 2

− (g′)2

g
− 9K1K3

8fcfafbhρ2P 2
+

(K ′
3)

2

8f2
ahP

2
+

(K ′
1)

2

8f2
b hP

2
− 2g2P 2

fcf2
ahρ

2
− g2P 2(K ′

2)
2

9fafbh
+

g′f ′
c

2fc

+
g′f ′

a

fa
+

g′f ′
b

fb
− 3g′

ρ
. (B.10)

Additionally, we have the first order constraint

0 =
8

9
g2(K ′

2)
2fbfaP

4 + (K ′
3)

2f2
b + (K ′

1)
2f2

a − 4g2K2
2f

2
aP

4

fcρ2
+

4gf2
af

2
b P

2(h′)2

h

+
4h(g′)2f2

af
2
b P

2

g
+

96hgf2
afbP

2

ρ2
+

96hgfaf
2
b P

2

ρ2
− 96hgf2

af
2
b P

2

ρ2
− 4gK2

1P
2

fchρ2

+ 96h2gf2
af

2
b P

2H2 +
9K1K3fbfa

fcρ2
+

32gf2
af

2
b P

2h′

ρ
+

16g2K2f
2
b P

4

fcρ2
− 4g2K2

2f
2
b P

4

fcρ2

− gK2
2K

2
1P

2

fchρ2
+

4gK2K
2
1P

2

fchρ2
− gK2

2K
2
3P

2

fchρ2
+

64hgf2
afbP

2f ′
b

ρ
+

64hgfaf
2
b P

2f ′
a

ρ

− 16hgfafbP
2f ′

af
′
b −

32fchgfafbP
2

ρ2
− 18hgfaf

3
b P

2

fcρ2
− 18hgf3

afbP
2

fcρ2
+

36hgf2
af

2
b P

2

fcρ2

− 9K2
3fbfa
fcρ2

− 4hgf2
b P

2(f ′
a)

2 − 4hgf2
aP

2(f ′
b)

2 − 16g2f2
b P

4

fcρ2
+

2gK2
2K1K3P

2

fchρ2
(B.11)

− 4gK2K1K3P
2

fchρ2
− 8hgf2

b faP
2f ′

cf
′
a

fc
+

32hgf2
af

2
b P

2f ′
c

fcρ
− 8hgf2

afbP
2f ′

bf
′
c

fc
− 9K2

1fbfa
2fcρ2

.

The cascading gauge theory de Sitter vacuum equations of motion (B.3)–(B.11) are

invariant under the following symmetries (λ ≡ const) (compare with (A.27)–(A.30)):

symmetry SFG1:




ρ

H

P

h

fa,b,c

K1,2,3

g




−→




ρ/(1 + λ ρ)

H

P

(1 + λ ρ)4 h

(1 + λ ρ)−2 fa,b,c

K1,2,3

g




; (B.12)

symmetry SFG2:

P → λP , g → g

λ
, {ρ,H, fa,b,c, h,K1,2,3} → {ρ,H, fa,b,c, h,K1,2,3} ; (B.13)

symmetry SFG3:

P → λP , ρ → ρ

λ
, {h,K1,3} → λ2{h,K1,3} , {H, fa,b,c,K2, g} → {H, fa,b,c,K2, g} ;

(B.14)
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symmetry SFG4:

ρ → λρ , H → H

λ
, {P, fa,b,c, h,K1,2,3, g} → {P, fa,b,c, h,K1,2,3, g} . (B.15)

FG frame makes analytical continuation to Euclidean Bunch-Davies vacuum obvious:

(dMc
4)

2 −→︸︷︷︸
τ→i

θ+π/2
H

1

H2

(
(dθ)2 + sin2(θ)

(
dS3

)2
)

=
1

H2

(
dS4

)2
. (B.16)

B.1 Asymptotics

The general UV (as ρ → 0) asymptotic solution of (B.3)–(B.11) describing the phase of

the cascading gauge theory with spontaneously broken chiral symmetry takes the form

fc=1+fa,1,0ρ+

(
−3

8
P 2gsH

2− 1

4
K0H

2+
1

4
f2
a,1,0+

1

2
P 2gsH

2 lnρ

)
ρ2

− 1

4
P 2gsH

2fa,1,0ρ
3+

∞∑

n=4

∑

k

fc,n,k ρn lnk ρ, (B.17)

fa=1+fa,1,0ρ+

(
−1

2
P 2gsH

2− 1

4
K0H

2+
1

4
f2
a,1,0+

1

2
P 2gsH

2 lnρ

)
ρ2+fa,3,0ρ

3

+
∞∑

n=4

∑

k

fa,n,k ρn lnk ρ, (B.18)

fb=1+fa,1,0ρ+

(
−1

2
P 2gsH

2− 1

4
K0H

2+
1

4
f2
a,1,0+

1

2
P 2gsH

2 lnρ

)
ρ2

−
(
1

2
P 2gsH

2fa,1,0+fa,3,0

)
ρ3+

∞∑

n=4

∑

k

fb,n,k ρn lnk ρ, (B.19)

h=
1

8
P 2gs+

1

4
K0−

1

2
P 2gs lnρ+

(
P 2gs lnρ−

1

2
K0

)
fa,1,0ρ+

((
−1

4
P 2gs

− 5

4
P 2gs lnρ+

5

8
K0

)
f2
a,1,0+

119

576
P 4g2sH

2+
31

96
P 2gsH

2K0+
1

8
H2K2

0 +
1

2
P 4g2sH

2 lnρ2

− 31

48
P 4g2sH

2 lnρ− 1

2
P 2gsH

2K0 lnρ

)
ρ2+

((
5

4
P 2gs lnρ+

11

24
P 2gs−

5

8
K0

)
f3
a,1,0

+

(
−3

2
P 4g2s lnρ

2+
23

16
P 4g2s lnρ−

19

64
P 4g2s +

3

2
P 2gsK0 lnρ−

23

32
P 2gsK0

− 3

8
K2

0

)
H2fa,1,0

)
ρ3+

∞∑

n=4

∑

k

hn,k ρn lnk ρ, (B.20)

K1=K0−2P 2gs lnρ+P 2gsfa,1,0ρ+

(
−1

4
P 2f2

a,1,0gs−
1

4
P 4g2sH

2 lnρ+
9

16
P 4g2sH

2

+
1

8
P 2gsH

2K0

)
ρ2+

(
1

12
f3
a,1,0P

2gs+
1

48
P 2gs

(
36P 2gs lnρ−13P 2gs

−6K0

)
H2fa,1,0+

2

3
P 2gs

(
3fa,3,0 lnρ+fa,3,0+k2,3,0

))
ρ3

+
∞∑

n=4

∑

k

k1,n,k ρn lnk ρ, (B.21)
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K2=1+

(
k2,3,0+

3

4
H2fa,1,0P

2gs lnρ+3fa,3,0 lnρ

)
ρ3+

∞∑

n=4

∑

k

k2,n,k ρn lnk ρ, (B.22)

K3=K0−2P 2gs lnρ+P 2gsfa,1,0ρ+

(
−1

4
P 2gsf

2
a,1,0−

1

4
P 4g2sH

2 lnρ+
9

16
P 4g2sH

2

+
1

8
P 2gsH

2K0

)
ρ2+

(
1

12
f3
a,1,0P

2gs−
1

48
P 2gs

(
12P 2gs lnρ+29P 2gs

+6K0

)
H2fa,1,0−

2

3
P 2gs

(
3fa,3,0 lnρ+fa,3,0+k2,3,0

))
ρ3

+

∞∑

n=4

∑

k

k3,n,k ρn lnk ρ, (B.23)

g= gs

(
1− 1

2
P 2gsH

2ρ2+
1

2
fa,1,0P

2gsH
2ρ3+

∞∑

n=4

∑

k

gn,k ρn lnk ρ

)
. (B.24)

It is characterized by 11 parameters:

{K0 , H , gs , fa,1,0 , fa,3,0 , k2,3,0︸ ︷︷ ︸
Oα

3

, g4,0 , fc,4,0︸ ︷︷ ︸
Oβ

4

, fa,6,0︸ ︷︷ ︸
O6

, fa,7,0︸ ︷︷ ︸
O7

, fa,8,0︸ ︷︷ ︸
O8

} , (B.25)

where we indicated the dual cascading gauge theory operators which expectation values

these parameters characterize. gs is the asymptotic string coupling, and K0 is related to

strong coupling scale Λ of the cascading gauge theory (see appendix B.3) as [31]

Λ2 =
1

P 2gs
e
−

K0

P2gs . (B.26)

Finally, fa,1,0 corresponds to a diffeomorphism parameter (−2λ) in symmetry transforma-

tion SFG1, see (B.12).

To understand IR asymptotics of the FG frame solutions it is convenient to consider

Euclidean continuation of the background geometry (B.1). For a fixed radial coordinate

ρ the resulting Euclidean space is topologically S4 × S2 × S3, where S4 is an analytical

continuation ofMc (B.16), and S2×S3 is a compact part of the warped deformed conifold.27

Without loss of generality we assume that the radial coordinate

ρ ∈ [0,+∞) , (B.27)

so that y ≡ 1
ρ corresponds to the IR asymptotic. The range (B.27) can always be enforced

with an appropriate symmetry transformation SFG1 (B.12). Ten dimensional Euclidean

manifold is geodesically complete if one of the compact factors S4 or S2 smoothly shrinks

to zero size as y → 0. Note that S3 can not shrink to zero size without causing a naked

singularity since it supports nonzero (when P 6= 0) RR 3-form flux (2.5). Thus, from purely

topological considerations we expect several inequivalent de Sitter vacua of the cascading

gauge theory: TypeA (shrinking S4) and TypeB (shrinking S2).

27See [4] for a nice review.
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• TypeA de Sitter vacua of the cascading gauge theory. To identify smooth Euclidean

FG frame geometries with vanishing S4 as y → 0 we introduce28

hh ≡ y−2 h , fh
a,b,c ≡ y fa,b,c . (B.28)

The IR asymptotic expansion

fh
a,b,c =

∑

n=0

fh
a,b,c,ny

n , hh =
1

4H2
+

∑

n=1

hhny
n ,

K1,2,3 =
∑

n=0

Kh
1,2,3,ny

n , g =
∑

n=0

ghny
n ,

(B.29)

is characterized by 7 parameters:

{fh
a,0 , fh

b,0 , fh
c,0 , Kh

1,0 , Kh
2,0 , Kh

3,0 , gh0} . (B.30)

Note that given (B.29),

1

h1/2ρ2
(dMc

4)
2 +

h1/2

ρ2
(dρ)2 −→︸︷︷︸

τ→i
θ+π/2

H

1

h1/2ρ2
1

H2
(dS4)2 +

h1/2

ρ2
(dρ)2

=
y

(hh)1/2
1

H2
(dS4)2 +

(hh)1/2

y
(dy)2 −→︸︷︷︸

y≡z2→0

2

H

(
z2(dS4)2 + (dz)2

)
,

(B.31)

i.e., S4 indeed smoothly shrinks to zero size as y → 0. It is important to emphasize

that TypeA vacua defined by (B.29) have either U(1) or Z2 chiral symmetry — chiral

symmetry is unbroken in the former (TypeAs), and spontaneously broken in the latter

(TypeAb).

• TypeB de Sitter vacua of the cascading gauge theory. To identify smooth Euclidean

FG frame geometries with vanishing S2 as y → 0 we introduce [31]

hh ≡ y−4 h , fh
a,b,c ≡ y2 fa,b,c . (B.32)

The IR asymptotic expansion

fh
a = fh

a,0 +
∑

n=1

fh
a,ny

2n , fh
b = 3y2 +

∑

n=2

fh
b,ny

2n , fh
c =

3

4
fh
a,0 +

∑

n=1

fh
c,ny

2n ,

K1 = kh1,3y
3 +

∑

n=2

kh1,ny
2n+1 , K2 = kh2,2y

2 + kh2,4y
4 +

∑

n=3

kh2,ny
2n , (B.33)

K3 = kh3,1y +
∑

n=1

kh3,ny
2n+1 , hh = hh0 +

∑

n=1

hhny
2n , g = gh0 +

∑

n=1

ghny
2n ,

is characterized by 7 parameters:

{fh
a,0 , hh0 , kh1,3 , kh2,2 , kh2,4 , kh3,1 , gh0} . (B.34)

28Other holographic models in this class were discussed earlier in [29, 30, 36–38].
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Note that given (B.33),

h1/2

ρ2
(dρ)2 +

fbh
1/2

6
(g21 + g22) = (hh)1/2 (dy)2 + (hh)1/2y2

1

2
(g21 + g22)

∣∣∣∣
2−cycle

−→︸︷︷︸
y→0

(
hh0

)1/2
(
y2(dS2)2 + (dy)2

)
,

(B.35)

where

∣∣∣∣
S2

means restriction to a 2-cycle. Following [4], this means setting ψ = 0,

φ2 = −φ1, θ2 = −θ1 in one-forms {gi} on T 1,1:

(
g21 + g22

) ∣∣∣∣
2−cycle

= 2
(
(dθ1)

2 + sin2 θ1 (dφ1)
2
)
= 2

(
dS2

)2
. (B.36)

On the other hand, the 3-cycle supporting RR flux remains finite, provided fh
a,0h

h
0 6= 0:

fch
1/2

9
g25 +

fah
1/2

6
(g23 + g24) =

fh
c (h

h)1/2

9
g25 +

fh
a (h

h)1/2

6
(g23 + g24) (B.37)

−→︸︷︷︸
y→0

fh
a,0(h

h
0)

1/2

6

(
1

2
g25 + g23 + g24

) ∣∣∣∣
3−cycle: θ2=φ2=0,θ1=2η,ψ=ξ1+ξ2,φ1=ξ1−ξ2

=
fh
a,0(h

h
0)

1/2

6
2
(
(dη)2 + cos2 η(dξ1)

2 + sin2 η(dξ2)
2
)
=

fh
a,0(h

h
0)

1/2

3

(
dS3

)2
.

From (B.35), S2 indeed smoothly shrinks to zero size as y → 0. Because fa 6= fb as

y → 0, TypeB vacua defined by (B.33) have Z2 chiral symmetry — chiral symmetry

is spontaneously broken.

B.1.1 TypeAs vacua asymptotics

We provide here connection with the extensive earlier studies of TypeAs vacua in [31].

Chirally symmetric de Sitter vacua of the cascading gauge theory (TypeAs) correspond

to a consistent truncation

fc ≡ f2 , fa = fb ≡ f3 , K1 = K3 ≡ K , K2 = 1 . (B.38)

We find:

in the UV, i.e., as ρ → 0,

f2 = 1 + f2,1,0 ρ+

(
−3

8
H2P 2gs −

1

4
H2K0 +

1

4
f2
2,1,0 +

1

2
H2P 2gs ln ρ

)
ρ2

− 1

4
H2P 2gsf2,1,0 ρ3 +

∞∑

n=4

∑

k

f2,n,k ρn lnk ρ , (B.39)

f3 = 1 + f2,1,0 ρ+

(
−1

2
H2P 2gs −

1

4
H2K0 +

1

4
f2
2,1,0 +

1

2
H2P 2gs ln ρ

)
ρ2

− 1

4
H2P 2gsf2,1,0 ρ3 +

∞∑

n=4

∑

k

f3,n,k ρn lnk ρ , (B.40)
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h =
1

8
P 2gs +

1

4
K0 −

1

2
P 2gs ln ρ−

1

2
f2,1,0(−2P 2gs ln ρ+K0) ρ+

(
119

576
H2P 4g2s

+
31

96
H2K0P

2gs −
1

4
P 2gsf

2
2,1,0 +

1

8
H2K2

0 +
5

8
f2
2,1,0K0 −

1

96
P 2gs(62H

2P 2gs

+ 48H2K0 + 120f2
2,1,0) ln ρ+

1

2
H2P 4g2s ln

2 ρ

)
ρ2 − 1

192
f2,1,0

(
288H2P 4g2s ln

2 ρ

+

(
−276H2P 4g2s − 288H2K0P

2gs − 240P 2gsf
2
2,1,0

)
ln ρ+ 57H2P 4g2s

+ 138H2K0P
2gs − 88P 2f2

2,1,0gs + 72H2K2
0 + 120f2

2,1,0K0

)
ρ3

+

∞∑

n=4

∑

k

hn,k ρn lnk ρ , (B.41)

K = K0 − 2P 2gs ln ρ+ P 2gsf2,1,0 ρ+
1

16
P 2gs(−4H2P 2gs ln ρ+ 9H2P 2gs + 2H2K0

− 4f2
2,1,0) ρ

2 − 1

48
P 2gsf2,1,0(−12H2P 2gs ln ρ+ 21H2P 2gs + 6H2K0 − 4f2

2,1,0) ρ
3

+
∞∑

n=4

∑

k

kn,k ρn lnk ρ , (B.42)

g = gs

(
1− 1

2
H2P 2gs ρ2 +

1

2
H2P 2gsf2,1,0 ρ3 +

∞∑

n=4

∑

k

gn,kρ
n lnk ρ

)
, (B.43)

characterized by 8 parameters:

{K0 , H , gs , f2,1,0 , g4,0 , f2,4,0 , f2,6,0f2,8,0} ; (B.44)

in the IR, i.e., as y ≡ 1
ρ → 0,

fh
2,3 =

∑

n=0

fh
2,3,ny

n , hh =
1

4H2
+

∑

n=1

hhny
n ,

K =
∑

n=0

Kh
ny

n , g =
∑

n=0

ghny
n ,

(B.45)

characterized by 4 parameters:

{fh
2,0 , fh

3,0 , Kh
0 , gh0} . (B.46)
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Comparing (B.17)–(B.24) with (B.39)–(B.43) to O(ρ8) we identify

fa,1,0= f2,1,0 , fa,3,0=−1

4
H2P 2gsf2,1,0 , k2,3,0=0 , fc,4,0= f2,4,0 , (B.47)

fa,6,0=

(
− 96087

4096000
K0P

4g2s −
3409

409600
K2

0P
2gs−

11056513

245760000
P 6g3s

)
H6

+

(
1171

20480
P 4g2sf

2
2,1,0−

13

10240
K0P

2gsf
2
2,1,0

)
H4+

(
− 1

512
P 2gsf

4
2,1,0−

307

1280
P 2gsf2,4,0

+
31

320
P 2gsg4,0−

87

640
K0f2,4,0

)
H2− 1

4
f2,6,0+

3

16
f2
2,1,0f2,4,0 , (B.48)

fa,7,0=

(
13331

196608
P 6g3sf2,1,0+

753

16384
P 4g2sf2,1,0K0+

547

24576
K2

0f2,1,0P
2gs

)
H6

+

(
− 2077

18432
P 4g2sf

3
2,1,0−

77

3072
K0P

2gsf
3
2,1,0

)
H4+

(
21

1280
P 2gsf

5
2,1,0+

19

64
K0f2,1,0f2,4,0

+
61

128
f2,1,0P

2gsf2,4,0−
7

32
f2,1,0P

2gsg4,0

)
H2− 3

8
f3
2,1,0f2,4,0+

1

2
f2,1,0f2,6,0 , (B.49)

fa,8,0=
1

70K0−141P 2gs

[(
−40244584228943

5689958400000
K0P

8g4s −
12213914790101

3034644480000
K2

0P
6g3s

− 931679

4915200
K4

0P
2gs−

9161577517

7225344000
K3

0P
4g2s +

25292565670124671

19118260224000000
P 10g5s

)
H8

+

(
−173957

81920
P 2gsK

3
0f

2
2,1,0−

5131309293043

303464448000
P 8g4sf

2
2,1,0−

12991428547

1032192000
K0P

6g3sf
2
2,1,0

+
504197

1433600
P 4g2sf

2
2,1,0K

2
0

)
H6+

(
1892623

92160
P 4g2sK0f

4
2,1,0+

63

8
P 2gsK

2
0f

4
2,1,0

+
2093

768
P 2gsK

2
0g4,0−

11179

2560
K3

0f2,4,0+
176710639657

4741632000
P 6g3sf2,4,0−

2470057

1290240
P 6g3sf

4
2,1,0

− 259362731

33868800
P 6g3sg4,0−

132413627

16128000
K0P

4g2sf2,4,0−
6266917

537600
K2

0P
2gsf2,4,0

+
698651

80640
P 4g2sK0g4,0

)
H4+

(
−15365

3072
P 4g2sf

6
2,1,0−

69139

960
P 4g2sf2,6,0

− 2751

128
K2

0f
2
2,1,0f2,4,0−

3675

512
P 2gsK0f

6
2,1,0−

1215

128
P 4g2sf

2
2,1,0g4,0−

1699

16
P 2gsK0f2,6,0

− 14827

320
P 2gsK0f

2
2,1,0f2,4,0+

2177

64
P 2gsK0f

2
2,1,0g4,0−

385

16
K2

0f2,6,0 (B.50)

− 1540367

17920
P 4g2sf

2
2,1,0f2,4,0

)
H2+

3085

32
P 2gsf

4
2,1,0f2,4,0−

1375

8
P 2gsf

2
2,1,0f2,6,0

+21P 2gsf2,4,0g4,0−
2527

10
K0f

2
2,4,0+70K0f2,8,0−

63

2P 2gs
K2

0f
2
2,4,0+

2275

16
K0f

4
2,1,0f2,4,0

− 875

4
K0f

2
2,1,0f2,6,0+42K0f2,4,0g4,0+14P 2gsg

2
4,0+104P 2gsf2,8,0−

45539

280
P 2gsf

2
2,4,0

]
.

Comparing (B.29) with (B.45) we identify

fh
c,0 = fh

2,0 , fh
a,0 = fh

b,0 = fh
3,0 , Kh

1,0 = Kh
3,0 = Kh

0 , Kh
2,0 = 1 . (B.51)
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B.2 From FG to EF frame

A general map between the FG and EF frame de Sitter vacua of the holographic duals was

worked out in [19]. Specifically, given

ds2
∣∣∣∣
EF

= 2dt (dr − a(r) dt) + σ(r)2e2Ht dx2 + · · · ,

ds2
∣∣∣∣
FG

= c1(ρ)
2
(
−dτ2 + e2Hτ dx2

)
+ c2(ρ)

2 (dρ)2 + · · · ,
(B.52)

where · · · are metric components along the compact directions,

r = −
∫ ρ

ds c1(s)c2(s) + const , t = τ −H

∫ ρ

0
ds

c2(s)

c1(s)
,

a(r) =
1

2
c1(ρ)

2 , σ(r) = c1(ρ) exp

[
H

∫ ρ

0
ds

c2(s)

c1(s)

]
.

(B.53)

Using (B.1), we find from (B.53):

r =
1

ρ
+ const = y + const , a =

1

2h1/2ρ2
, t = τ −H

∫ ρ

0
ds h(s)1/2 . (B.54)

Note that asymptotically in UV, i.e., as ρ → 0, the EF and the FG times coincide:

t− τ ∼ −H

∫ ρ

0
ds

(
−1

2
P 2gs ln s

)1/2

−→ 0 . (B.55)

Without loss of generality we fix const in (B.54) so that r = 0 ⇐⇒ 1
ρ ≡ y = 0.

Introducing

z ≡ −r , (B.56)

we find from (B.28)–(B.29), (B.32)–(B.33), and (B.33) the following asymptotic expansions

for the EF frame vacua:

TypeAs vacua:

a = −Hz +
H((fh

2,0)
2(fh

3,0)
2 − 6fh

2,0(f
h
3,0)

3 + 3H2P 2(fh
3,0)

2gh0 + 10H4(Kh
0 )

2)

5(fh
3,0)

4fh
2,0

z2 +O(z3) ,

σ = sh0

(
1−

(fh
2,0)

2(fh
3,0)

2 − 6fh
2,0(f

h
3,0)

3 + 3H2P 2(fh
3,0)

2gh0 + 10H4(Kh
0 )

2

5(fh
3,0)

4fh
2,0

z +O(z2)

)
,

wc2 ≡ fh
2

(
hh

)1/2
=

fh
2,0

2H
− 2

5H

4(fh
2,0)

2(fh
3,0)

2 − 3H2P 2(fh
3,0)

2gh0 − 4H4(Kh
0 )

2

(fh
3,0)

4
z +O(z2) ,

wa2 = wb2 ≡ fh
3

(
hh

)1/2
=

fh
3,0

2H
(B.57)

+
2

5H

2(fh
2,0)

2(fh
3,0)

2 − 6fh
2,0(f

h
3,0)

3 +H2P 2(fh
3,0)

2gh0 + 4H4(Kh
0 )

2

(fh
3,0)

3fh
2,0

z +O(z2) ,

K1 = K3 ≡ K = Kh
0 − 16

5

H2P 2Kh
0 g

h
0

(fh
3,0)

2fh
2,0

z +O(z2) , K2 = 1 ,

g = gh0 − 8

5

H2P 2(gh0 )
2

(fh
3,0)

2fh
2,0

z +O(z2) ;
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TypeAb vacua:

a=−Hz+
H

80(fh
a,0)

2(fh
b,0)

2gh0f
h
c,0P

2

(
24H2(gh0 )

2((Kh
2,0)

2(fh
a,0)

2+(Kh
2,0)

2(fh
b,0)

2

−4Kh
2,0(f

h
b,0)

2+4(fh
b,0)

2)P 4+gh0 (40H
4(Kh

1,0)
2(Kh

2,0)
2−80H4Kh

1,0(K
h
2,0)

2Kh
3,0

+40H4(Kh
2,0)

2(Kh
3,0)

2−160H4(Kh
1,0)

2Kh
2,0+160H4Kh

1,0K
h
2,0K

h
3,0

+160H4(Kh
1,0)

2+9(fh
a,0)

3fh
b,0−18(fh

a,0)
2(fh

b,0)
2−48(fh

a,0)
2fh

b,0f
h
c,0+9fh

a,0(f
h
b,0)

3

−48fh
a,0(f

h
b,0)

2fh
c,0+16fh

a,0f
h
b,0(f

h
c,0)

2)P 2+27H2fh
a,0f

h
b,0(K

h
1,0−Kh

3,0)
2

)
z2

+O(z3) , (B.58)

σ= sh0

(
1− 1

80(fh
a,0)

2(fh
b,0)

2gh0f
h
c,0P

2)

(
24H2(gh0 )

2((Kh
2,0)

2(fh
a,0)

2+(Kh
2,0)

2(fh
b,0)

2

−4Kh
2,0(f

h
b,0)

2+4(fh
b,0)

2)P 4+gh0 (40H
4(Kh

1,0)
2(Kh

2,0)
2−80H4Kh

1,0(K
h
2,0)

2Kh
3,0

+40H4(Kh
2,0)

2(Kh
3,0)

2−160H4(Kh
1,0)

2Kh
2,0+160H4Kh

1,0K
h
2,0K

h
3,0

+160H4(Kh
1,0)

2+9(fh
a,0)

3fh
b,0−18(fh

a,0)
2(fh

b,0)
2−48(fh

a,0)
2fh

b,0f
h
c,0+9fh

a,0(f
h
b,0)

3

−48fh
a,0(f

h
b,0)

2fh
c,0+16fh

a,0f
h
b,0(f

h
c,0)

2)P 2+27H2fh
a,0f

h
b,0(K

h
1,0−Kh

3,0)
2

)
z

+O(z2)

)
, (B.59)

wc2≡ fh
c (h

h)1/2=
fh
c,0

2H
+

1

H(fh
a,0)

2(fh
b,0)

2gh0P
2

(
3

5
H2(gh0 )

2((Kh
2,0)

2(fh
a,0)

2

+(Kh
2,0)

2(fh
b,0)

2−4Kh
2,0(f

h
b,0)

2+4(fh
b,0)

2)P 4+
1

10
gh0 (4H

4(Kh
1,0)

2(Kh
2,0)

2

−8H4Kh
1,0(K

h
2,0)

2Kh
3,0+4H4(Kh

2,0)
2(Kh

3,0)
2−16H4(Kh

1,0)
2Kh

2,0

+16H4Kh
1,0K

h
2,0K

h
3,0+16H4(Kh

1,0)
2+9(fh

a,0)
3fh

b,0−18(fh
a,0)

2(fh
b,0)

2

+9fh
a,0(f

h
b,0)

3−16fh
a,0f

h
b,0(f

h
c,0)

2)P 2+
27

40
H2fh

a,0f
h
b,0(K

h
1,0−Kh

3,0)
2

)
z+O(z2) , (B.60)

wa2≡ fh
a (h

h)1/2=
fh
a,0

2H
+

1

fh
a,0H(fh

b,0)
2gh0f

h
c,0P

2

(
−1

5
H2(gh0 )

2((Kh
2,0)

2(fh
a,0)

2

−3(Kh
2,0)

2(fh
b,0)

2+12Kh
2,0(f

h
b,0)

2−12(fh
b,0)

2)P 4+
1

20
gh0 (8H

4(Kh
1,0)

2(Kh
2,0)

2

−16H4Kh
1,0(K

h
2,0)

2Kh
3,0+8H4(Kh

2,0)
2(Kh

3,0)
2−32H4(Kh

1,0)
2Kh

2,0+32H4Kh
1,0K

h
2,0K

h
3,0

+32H4(Kh
1,0)

2−9(fh
a,0)

3fh
b,0+9fh

a,0(f
h
b,0)

3−48fh
a,0(f

h
b,0)

2fh
c,0+16fh

a,0f
h
b,0(f

h
c,0)

2)P 2

+
9

40
H2fh

a,0f
h
b,0(K

h
1,0−Kh

3,0)
2

)
z+O(z2) , (B.61)

wb2≡ fh
b (h

h)1/2=
fh
b,0

2H
+

1

fh
b,0H(fh

a,0)
2gh0f

h
c,0P

2

(
1

5
H2(gh0 )

2(3(Kh
2,0)

2(fh
a,0)

2

−(Kh
2,0)

2(fh
b,0)

2+4Kh
2,0(f

h
b,0)

2−4(fh
b,0)

2)P 4+
1

20
gh0 (8H

4(Kh
1,0)

2(Kh
2,0)

2

−16H4Kh
1,0(K

h
2,0)

2Kh
3,0+8H4(Kh

2,0)
2(Kh

3,0)
2−32H4(Kh

1,0)
2Kh

2,0+32H4Kh
1,0K

h
2,0K

h
3,0
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+32H4(Kh
1,0)

2+9(fh
a,0)

3fh
b,0−48(fh

a,0)
2fh

b,0f
h
c,0−9fh

a,0(f
h
b,0)

3+16fh
a,0f

h
b,0(f

h
c,0)

2)P 2

+
9

40
H2fh

a,0f
h
b,0(K

h
1,0−Kh

3,0)
2

)
z+O(z2) , (B.62)

K1=Kh
1,0−

1

5(fh
a,0)

2fh
c,0

(
8H2gh0 (K

h
2,0−2)(Kh

1,0K
h
2,0−Kh

2,0K
h
3,0−2Kh

1,0)P
2

+9fh
a,0f

h
b,0(K

h
1,0−Kh

3,0)

)
z+O(z2) , (B.63)

K2=Kh
2,0−

9

5fh
a,0f

h
b,0g

h
0f

h
c,0P

2

(
gh0 (K

h
2,0(f

h
a,0)

2+Kh
2,0(f

h
b,0)

2−2(fh
b,0)

2)P 2

+H2(Kh
1,0−Kh

3,0)(K
h
1,0K

h
2,0−Kh

2,0K
h
3,0−2Kh

1,0)

)
z+O(z2) , (B.64)

K3=Kh
3,0+

1

5(fh
b,0)

2fh
c,0

(
8H2Kh

2,0g
h
0 (K

h
1,0K

h
2,0−Kh

2,0K
h
3,0−2Kh

1,0)P
2

+9fh
a,0f

h
b,0(K

h
1,0−Kh

3,0)

)
z+O(z2) , (B.65)

g= gh0 −
H2

10(fh
a,0)

2(fh
b,0)

2fh
c,0P

2

(
8(gh0 )

2((Kh
2,0)

2(fh
a,0)

2+(Kh
2,0)

2(fh
b,0)

2−4Kh
2,0(f

h
b,0)

2

+4(fh
b,0)

2)P 4−9fh
a,0(K

h
1,0−Kh

3,0)
2fh

b,0)z+O(z2) ; (B.66)

TypeB vacua:

a =
1

2(hh0)
1/2

+O(z2) , σ = sh0

(
1 + (hh0)

1/2Hz +O(z2)

)
,

wc2 ≡ fh
c (h

h)1/2 =
3

4
fh
a,0(h

h
0)

1/2 +O(z2) , wa2 ≡ fh
a (h

h)1/2 = fh
a,0(h

h
0)

1/2 +O(z2) ,

wb2 ≡ fh
b (h

h)1/2 = 3(hh0)
1/2z2 +O(z4) , K1 = −kh1,3z

3 +O(z5) , (B.67)

K2 = kh2,2z
2 +O(z4) , K3 = −kh3,1z +O(z3) , g = gh0 +O(z2) ,

where

sh0 = σ

∣∣∣∣
FG frame

y=0

. (B.68)

B.3 Extremal KS solution limit H → 0

We review here extremal KS solution [2] following [31] and identify the relation of the

strong coupling scale Λ (B.26) to the conifold deformation parameter ǫ (B.70).
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We use the radial coordinate r̂ ∈ [0,∞) to describe KS solution:

ds25 = H
−1/2
KS

(
−dt2 + dx2

)
+H

1/2
KS ω2

1,KS dr̂2 ,

Ωi = ωi,KS H
1/4
KS , Ki = Ki,KS , (B.69)

K1,KS =
2

3
P 2gs

cosh r̂ − 1

sinh r̂

(
r̂ cosh r̂

sinh r̂
− 1

)
, K2,KS = 1− r̂

sinh r̂
,

K3,KS =
2

3
P 2gs

cosh r̂ + 1

sinh r̂

(
r̂ cosh r̂

sinh r̂
− 1

)
, g = gs , (B.70)

ω1,KS =
ǫ2/3√
6K̂KS

, ω2,KS =
ǫ2/3K̂

1/2
KS√
2

cosh
r̂

2
, ω3,KS =

ǫ2/3K̂
1/2
KS√
2

sinh
r̂

2
,

with

K̂KS =
(sinh(2r̂)− 2r̂)1/3

21/3 sinh r̂
, H ′

KS =
2

27

(K1,KS −K3,KS)K2,KS − 2K1,KS

ǫ8/3K̂2
KS sinh2 r̂

, (B.71)

where now r̂ → ∞ is the boundary and r̂ → 0 is the IR.

Comparing the metric ansatz in (B.69) and (B.1) we identify

(dρ)2

ρ4
= (w1,KS(r̂))

2(dr̂)2 . (B.72)

Introducing

z ≡ e−r̂/3 , (B.73)

we find from (B.72)

1

ρ
=

√
6 (2ǫ)2/3

4

∫ z

1
du

u6 − 1

u2(1− u12 + 12u6 lnu)1/3
. (B.74)

In the UV, r̂ → ∞, z → 0 and ρ → 0 we have

e−r̂/3≡ z=

√
6 (2ǫ)2/3

4
ρ

(
1+Qρ+Q2ρ2+Q3ρ3+Q4ρ4+Q5ρ5+

(
27

80
ǫ4 ln3+Q6

+
27

800
ǫ4− 9

16
ǫ4 ln2+

9

20
ǫ4 lnǫ+

27

40
ǫ4 lnρ

)
ρ6+

(
−63

16
ǫ4Q ln2+

189

80
ǫ4Q ln3+Q7

+
729

800
Qǫ4+

63

20
ǫ4Q lnǫ+

189

40
Qǫ4 lnρ

)
ρ7+

(
2403

400
ǫ4Q2− 63

4
ǫ4Q2 ln2+

189

20
ǫ4Q2 ln3

+
63

5
ǫ4Q2 lnǫ+Q8+

189

10
ǫ4Q2 lnρ

)
ρ8+

(
189

5
ǫ4Q3 lnǫ+

9729

400
ǫ4Q3− 189

4
ǫ4Q3 ln2

+
567

20
ǫ4Q3 ln3+Q9+

567

10
ǫ4Q3 lnρ

)
ρ9+O(ρ10 lnρ)

)
, (B.75)

where

Q =

√
6 (2ǫ)2/3

4

{∫ 1

0
du

(
1− u6

u2(1− u12 + 12u6 lnu)1/3
− 1

u2

)
− 1

}

= −
√
6 (2ǫ)2/3

4
× 0.839917(9) .

(B.76)
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In the IR, r̂ → 0, z → 1− and 1
ρ → 0 we have

r̂ =

√
6 21/3

31/3 ǫ2/3
y

(
1− 22/3 31/3

15 ǫ4/3
y2 +

71 32/3 21/3

2625 ǫ8/3
y4 +O(y6)

)
. (B.77)

Using (B.75) and (B.77), and the exact analytic solution describing the Klebanov-Strassler

Minkowski vacuum of the cascading gauge theory (B.70), (B.71) we can identify parame-

ters (B.25):

K0=P 2gs

(
− ln3+

5

3
ln2− 4

3
lnǫ− 2

3

)
, fa,1,0=−2Q ,

k2,3,0=
3
√
6

8
ǫ2(3 ln3−5ln2+4lnǫ) , fc,4,0=0 , fa,3,0=

3
√
6

4
ǫ2 ,

fa,6,0=

(
−27

16
ln2+

81

50
+
81

80
ln3+

27

20
lnǫ

)
ǫ4+

3
√
6

4
Q3ǫ2 ,

fa,7,0=

(
27

5
lnǫ− 27

4
ln2+

81

20
ln3+

1701

200

)
ǫ4Q+

3
√
6

4
ǫ2Q4 ,

fa,8,0=

(
27

2
lnǫ− 135

8
ln2+

81

8
ln3+

405

16

)
Q2ǫ4+

3
√
6

4
Q5ǫ2 , g4,0=0 ,

(B.78)

in the UV, and parameters (B.34):

fh
a,0 = 21/3 32/3 ǫ4/3 , hh0 = P 2gs ǫ−8/3 × 0.056288(0) ,

kh1,3 =
4
√
6

9 ǫ2
P 2gs , kh2,2 =

22/3

32/3 ǫ4/3
, kh2,4 = −11 21/3 32/3

45 ǫ8/3
,

kh3,1 =
4
√
6 21/3 32/3

27ǫ2/3
P 2gs , gh0 = gs ,

(B.79)

in the IR.

Given (B.26), we identify from (B.78)

Λ =
31/2e1/3ǫ2/3

25/6(P 2gs)1/2
=

21/6e1/3ǫ2/3

33/2Mα′g
1/2
s

=
21/6e1/3g

1/2
s

33/2
mglueball ≈ 0.3g1/2s mglueball , (B.80)

where in the second equality we used (2.7); the glueball mass scale is defined as in (1.10).

C Numerical procedure

C.1 FG frame de Sitter vacua

Equations of motion for the FG frame de Sitter vacua of the cascading gauge theory,

along with the asymptotics and the symmetries of the dual holographic formulation, are

presented in appendix B. Generically, we have eight functions of the radial coordinate ρ,

see (B.2). When the chiral symmetry is unbroken, there are only five functions, see (B.38).

The solution to the equations of motion is unique29 once we fix the Hubble constant H, the

29Apart from the discrete choices associated with the IR boundary conditions leading to classification of

topologically distinct holographic vacua: TypeAs,b or TypeB, see appendix B.1.
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asymptotic string coupling gs, the 3-form flux P (alternatively the rank difference of gauge

group factors M in the cascading theory), see (2.6) and (2.7), and the strong coupling scale

Λ of the cascading gauge theory (alternatively K0, see (B.26), or the conifold deformation

parameter ǫ, see (B.80)). Of these, parameters H,Λ, P are dimensionful. The radial coor-

dinate ρ is dimensionful as well, albeit in units of ‘mass’. As a result, UV/IR parameters

of the solutions, see (B.25), (B.30) and (B.34), have complicated dimensional dependence.

It is possible to completely eliminate the dimensional dependence (and the gs dependence)

from all the equations of motion and the asymptotic expansions with appropriate rescaling:

{ρ , fa,b,c , h , K1,2,3 , g} =⇒ {ρ̂ , f̂a,b,c , ĥ , K̂1,2,3 , ĝ} ;

ρ =
1

HPg
1/2
s

ρ̂ , fa,b,c = f̂a,b,c , h = P 2gs ĥ ,

K1,3 = P 2gs K̂1,3 , K2 = K̂2 , g = gs ĝ .

(C.1)

Additionally we introduce a dimensionless parameter ks as

ks ≡
K0

P 2gs
+ ln

(
H2P 2gs

)
, (C.2)

leading from (B.26) to the identification

ks = ln
H2

Λ2
. (C.3)

Notice that the conformal limit in the cascading gauge theory, i.e., H ≫ Λ, corresponds to

ks → ∞.

We do not present the relations between all the UV/IR parameters stemming

from (C.1) and (C.2) — they are straightforward to work out, but too long to be illu-

minating — and instead focus on the few ones for which we are reporting the numerical

results:

TypeAs,b vacua,

fh
a,b,c,0 = HPg1/2s f̂h

a,b,c,0 , Kh
1,3,0 = P 2gs K̂h

1,3,0 , Kh
2,0 = K̂h

2,0 , gh0 = gs ĝh0 ; (C.4)

TypeB vacua,

fh
a,0 = H2P 2gs f̂h

a,0 , hh0 =
ĥh0

H4P 2gs
, kh1,3 =

k̂h1,3

H3Pg
1/2
s

, kh2,2 =
k̂h2,2

H2P 2gs

kh2,4 =
k̂h2,4

H4P 4g2s
, kh3,1 =

Pg
1/2
s

H
k̂h3,1 , gh0 = gs ĝh0 .

(C.5)

Numerical analysis of the bulk differential equations describing de Sitter vacua are

rather involved. To trust them, we would like to have various consistency checks. Here,

the symmetry transformations SFG2-SFG4 (B.13)–(B.15) are very useful: we can produce

different data sets fixing three of the four parameters {H,P, gs,K0}. As we demonstrate,
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with appropriate rescaling, the distinct data sets must collapse. We find it useful to imple-

ment three different computational schemes:

SchemeI : H = P = gs = 1 , ks is varied ;

SchemeII : H = gs = K0 = 1 , b ≡ P 2 is varied ;

SchemeIII : P = gs = 1 , K0 =
1

4
, α ≡ H2 is varied .

(C.6)

Note that:

SchemeI is equivalent to performing computations in the hatted variables in (C.1),

with (C.2);

SchemeII is convenient to take a conformal limit to Klebanov-Witten solution [3] in

TypeAs vacua: b → 0;

SchemeIII is convenient to study the extremal KS [2] limit in TypeB vacua: α → 0.

Numerical computations are done adopting the algorithms developed in [12]. Al-

together, there are 8 second order differential equations (B.3)–(B.10) and a single first

order constraint (B.11) for 8 functions {fa, fb, fc, h,K1,K2,K2, g}. Notice that the con-

straint (B.11) involves f ′
c linearly. Thus, we can use the latter equation and eliminate the

redundant equation (B.3). The final set of ODEs — 7 second order equations and 1 first

order equation — necessitates 15 = 2× 7 + 1 parameters.

TypeAs,b vacua: the result of the numerical computations are the data files with

entries for the 8 UV parameters {fa,1,0, fa,3,0, k2,3,0, g4,0, fc,4,0, fa,6,0, fa,7,0, fa,8,0} and the

7 IR parameters {fh
a,0, f

h
b,0, f

h
c,0,K

h
1,0,K

h
2,0,K

h
3,0, g

h
0} (see appendix B.1) labeled by ks (for

the computational scheme SchemeI), b (for the computational scheme SchemeII) or α (for

the computational scheme SchemeIII). The number of parameters are reduced to 5 (in the

UV) and 4 (in the IR) when chiral symmetry is unbroken (see appendix B.1.1).

TypeB vacua: the result of the numerical computations are the data files with en-

tries for the 8 UV parameters {fa,1,0, fa,3,0, k2,3,0, g4,0, fc,4,0, fa,6,0, fa,7,0, fa,8,0} and the 7

IR parameters {fh
a,0, h

h
0 , k

h
1,3, k

h
2,2, k

h
2,4, k

h
3,1, g

h
0} (see appendix B.1) labeled30 by ks (for the

computational scheme SchemeI), or α (for the computational scheme SchemeIII).

C.2 EF frame de Sitter vacua

In total, there are 11 (8 with unbroken chiral symmetry) coupled ODEs (A.16)–(A.26)

describing EF frame de Sitter vacua involving 5 metric warp factors {a, σ, wa2, wb2, wc2}
(see (2.13)), 3 flux functions {K1,K2,K3} (see (2.11)) and the string coupling g as a

function of a radial coordinate z ≡ −r, see (B.56). The full set of ODEs is redundant, and

in practice we use 9 equations (A.17)–(A.25): we drop (A.16) in favor of (A.25), and we

use (A.20) (it involves w′′
c2 linearly) instead of (A.26) (though it involves w′

c2 linearly). The

reason for this is to reduce the complexity of the system of ODEs — unlike construction

30We will not use the computation scheme SchemeII here.
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of de Sitter vacua in FG frame which is a boundary value problem, representation of de

Sitter vacua in EF frame is an initial value problem, and thus we can get away with using

a higher order system of ODEs.

The initial conditions for these equations are set at z → 0+ with asymptotic expan-

sions (B.57) for TypeAs de Sitter vacua, and with asymptotic expansions (B.58)–(B.66) for

TypeAb de Sitter vacua. The EF frame equations of motion are integrated on the interval

z ∈ [0, zAH ] , (C.7)

where zAH is the first zero of the AH location function LAH (see (3.32)):

LAH(z) ≡ 3H σ3ω
1/2
c2 ωa2ωb2 − a

d

dz

{
σ3ω

1/2
c2 ωa2ωb2

}
. (C.8)

Using (B.57)–(B.66),

TypeAs : LAH =
3
√
2

8H3/2
(sh0)

3(fh
2,0)

1/2(fh
3,0)

2 +O(z) ;

TypeAb : LAH =
3
√
2

8H3/2
(sh0)

3(fh
c,0)

1/2fh
a,0f

h
b,0 +O(z) ,

(C.9)

i.e., both for TypeAs and TypeAb vacua

LAH(z = 0) > 0 ,
d

dz
LAH(z = 0) < 0 , (C.10)

where the second inequality is a numerical observation. Notice that to set-up the initial

conditions for (A.17)–(A.25), besides the FG frame IR data (B.30) (or (B.46) when the

chiral symmetry is unbroken), one needs parameter sh0 , see (B.68),

sh0 = lim
z→0+

σ(z) = lim
ρ→+∞

{
c1(ρ) exp

[
H

∫ ρ

0
ds

c2(s)

c1(s)

]}

= lim
ρ→+∞

{
1

(h(ρ))1/4ρ
exp

[
H

∫ ρ

0
ds (h(s))1/2

]}
,

(C.11)

where we used (B.53) and explicit expressions

c1 =
1

h1/4ρ
, c2 =

h1/4

ρ
(C.12)

from comparing (B.52) and (2.12). The limit in (C.11) must be taken carefully, as the

integral is divergent at the upper limit of integration: using the asymptotic expression for

h as y ≡ 1
ρ → 0 (B.28) and (B.29) we can regulate it as follows,

∫ ρ

0
ds (h(s))1/2 =

∫ ρ

0
ds

(
(h(s))1/2− Pg

1/2
s

2(HPg
1/2
s s+ 1)

)
+

1

2H
ln
(
1 +HPg1/2s ρ

)
, (C.13)

or in dimensionless/rescaled quantities (C.1)

1

H

∫ ρ̂

0
dŝ (ĥ(ŝ))1/2 =

1

H

∫ ρ̂

0
dŝ

(
(ĥ(ŝ))1/2 − 1

2(ŝ+ 1)

)
+

1

2H
ln (1 + ρ̂) , (C.14)
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leading to

sh0 = 21/2 HP 1/2g1/4s exp

[∫ ρ̂

0
dŝ

(
(ĥ(ŝ))1/2 − 1

2(ŝ+ 1)

)]
≡ HP 1/2g1/4s ŝh0 , (C.15)

where the last equality defines dimensionless/rescaled ŝh0 .

D b → 0 of TypeAs vacua

D.1 FG frame

The conformal, i.e., H ≫ Λ, limit of TypeAs vacua is best described in computational

SchemeII (C.6). Using perturbative expansions (4.11) we find (′ = d
dρ),

for n = 1:

0 = k′′1 − ρ+ 6

2ρ(1 + ρ)
k′1 −

8

(1 + ρ)ρ2
, (D.1)

0 = g′′1 − ρ+ 6

2ρ(1 + ρ)
g′1 + (k′1)

2 − 4

(1 + ρ)ρ2
, (D.2)

0 = f ′
21 + h′1 + 4f ′

31 +
(1 + ρ)ρ

2(ρ+ 2)
(k′1)

2 +
2

ρ(ρ+ 2)
(f21 + 4f31 − 4k1 − 1)

+
(ρ+ 4)(3ρ+ 4)

2(ρ+ 2)(1 + ρ)ρ
h1 , (D.3)

0 = f ′′
31 +

1

4
(k′1)

2 +
(ρ+ 2)

2ρ(1 + ρ)
h′1 −

(ρ+ 6)

2ρ(1 + ρ)
f ′
31 +

1

(1 + ρ)ρ2
(5f21 + 8f31 − 4k1 − 1)

− 3ρ2 − 16ρ− 16

4(1 + ρ)2ρ2
h1 , (D.4)

0 = h′′1 +
1

2
(k′1)

2 − (3ρ+ 10)

2ρ(1 + ρ)
h1 +

2

(1 + ρ)ρ2
(3 + 20k1 − 9f21 − 36f31)

+
(3ρ2 − 80ρ− 80

2(1 + ρ)2ρ2
h1 ; (D.5)

for n = 2:

0= k′′2 −
ρ+6

2ρ(1+ρ)
k′2−

1

4ρ(1+ρ)(ρ+2)

(
(4g′1+6h′1+8f ′

31)ρ
3+(12g′1+18h′1+3h1

+24f ′
31)ρ

2+(8g′1+12h′1−16k1+4f21+16h1+16f ′
31+16f31)ρ−16k1+4f21

+16h1+16f31−4ρ−4

)
k′1−

(1+ρ)ρ

4(ρ+2)
(k′1)

3− 8(k1+g1−f21−h1−2f31)

(1+ρ)ρ2
, (D.6)

0= g′′2 −
ρ+6

2ρ(1+ρ)
g′2−(g′1)

2+2k′1k
′
2−

1

4ρ(ρ+2)(1+ρ)

(
(k′1)

2ρ4+(2(k′1)
2ρ3

+2h′1)ρ
3+((k′1)

2+3h1+6h′1)ρ
2+(16f31+4f21+16h1+4h′1−16k1)ρ+16f31

+4f21+16h1−16k1−4ρ−4

)
g′1−(2f31+h1)(k

′
1)

2+
4(2f31−2g1+f21+h1)

(1+ρ)ρ2
, (D.7)

0= f ′
22+4f ′

32+h′2+
1

ρ+2

(
f ′
31ρ

2+(f21−h1+f ′
31)ρ+2f21−2h1

)
h′1
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+
5ρ(1+ρ)

2(ρ+2)
(f ′

31)
2+

ρ(1+ρ)

4(ρ+2)
(g′1)

2+
ρ(1+ρ)

4(ρ+2)
(h′1)

2+
(1+ρ)ρ

2(ρ+2)2

(
f ′
31ρ

2+(f21−g1

−h1−2f31+f ′
31)ρ+2f21−2g1−2h1−4f31

)
(k′1)

2+
ρ(1+ρ)

ρ+2
k′1k

′
2

+
1

2(ρ+2)2

(
(8f21+3h1−8f31)ρ

2+(36f21−16k1+16h1−16f31)ρ+36f21−16k1

+16h1−16f31−4ρ−4

)
f ′
31+

1

2(ρ+2)ρ(1+ρ)

(
3f21h1ρ

2+(−8f21f31+32k1h1

+64k1f31+4f22−16k2)ρ−8f21f31+32k1h1+64k1f31−8k21−4f2
21+(16f32−4f2

21

−8k21−64h1f31−4g1+4h1−24h21+16h2+8f31−68f2
31)ρ−64h1f31+−4g1−16k2

+4f22+8f31+16f32+4h1+16h2−24h21−68f2
31+3h2ρ

2

)
, (D.8)

0= f ′′
32−

ρ+6

2ρ(1+ρ)
f ′
32+

ρ+2

2ρ(1+ρ)
h′2+

1

2
k′1k

′
2+

1

8
(g′1)

2+
1

8
(h′1)

2+
1

4
(f ′

31)
2− 1

4
(g1

+h1+f31)(k
′
1)

2− ρ+2

2ρ(1+ρ)
(h1−f31)h

′
1+

1

4(1+ρ)2ρ2

(
(4f21+16f21k1−16f21h1

−36f21f31+32k1h1+48k1f31+20f22−16k2−8f2
21−8k21−48h1f31−4g1+4h1

−24h21+16h2+4f31−36f2
31+32f32)ρ+16f21k1−36f21f31+32k1h1+48k1f31

−8f2
21−8k21−3h1f31ρ

2−48h1f31−4g1−16k2+4f21+20f22+4f31+32f32+4h1

+16h2−24h21−36f2
31−16f21h1−3h2ρ

2

)
, (D.9)

0=h′′2−
3ρ+10

2ρ(1+ρ)
h′2−

7

4
(h′1)

2− 5

2
(f ′

31)
2− 1

4(ρ+2)

(
(h′1+2f ′

31)ρ
2+(h′1+2g1

+4f31+2f ′
31)ρ+4g1+8f31

)
(k′1)

2− 1

4
(g′1)

2+k′1k
′
2−

1

4ρ(1+ρ)(ρ+2)

(
4f ′

31ρ
3+(3h1

+12f ′
31)ρ

2+(4f21−16k1+16h1+16f31+8f ′
31)ρ+4f21−16k1+16h1+16f31−4ρ

−4

)
h′1−

1

2ρ(1+ρ)(ρ+2)

(
3h1ρ

2+(4f21−16k1+16h1+16f31)ρ+4f21−16k1

+16h1+16f31−4ρ−4

)
f ′
31−

1

2(1+ρ)2ρ2

(
(80f21k1−44f21h1−152f21f31+80k1h1

+320k1f31+36f22−80k2−40f2
21−40k21−176h1f31−12g1−40h21+80h2+24f31

−388f2
31+144f32+12f21)ρ+80f21k1−152f21f31+80k1h1+320k1f31−40f2

21

−40k21−176h1f31−44f21h1−12g1−80k2+12f21+36f22+24f31+144f32+80h2

−40h21−388f2
31−3(h21+h2)ρ

2

)
. (D.10)

The UV (ρ → 0) and the IR (y ≡ 1
ρ → 0) asymptotic expansions can be obtained

from (B.39)–(B.43) and (B.45) correspondingly, using the SchemeII parameters (C.6),
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where

f2,1,0 = 1 + f2,1,0;1 b+ f2,1,0;2 b2 +O(b3) , g4,0 = g4,0;1 b+ g4,0;2 b2 +O(b3) ,

f2,4,0 =

(
− 1

12
+

4

3
k4,0;1

)
b+

(
− 139

1152
+

1

24
f2,1,0;1 −

22

9
k4,0;1 +

2

3
g4,0;1

+
4

3
k4,0;2

)
b2 +O(b3) ,

f2,6,0 = f2,6,0;1 b+ f2,6,0;2 b2 +O(b3) , f2,8,0 = f2,8,0;1 b+ f2,8,0;2 b2 +O(b3) ,

fh
2,0 = 1 + fh

2,0;1 b+ fh
2,0;2 b2 +O(b3) , fh

3,0 = 1 + fh
3,0;1 b+ fh

3,0;2 b2 +O(b3) ,

Kh
0 = 1 +Kh

0;1 b+Kh
0;2 b2 +O(b3) , gh0 = 1 + gh0;1 b+ gh0;2 b2 +O(b3) .

(D.11)

Note that in lieu of f2,4,0;1 and f2,4,0;2 in (D.11) we used k4,0;1 and k4,0;2:

k1 = −2 ln ρ+ ρ− 1

8
ρ2 − 1

24
ρ3 +

(
3

64
ln ρ+ k4,0;1

)
ρ4 +O(ρ5) ,

k2 = f2,1,0;1 ρ+

(
−1

4
ln ρ+

9

16
− 1

2
f2,1,0;1

)
ρ2 +

(
1

4
ln ρ− 7

16
+

1

8
f2,1,0;1

)
ρ3

+

(
− 3

16
ln2 ρ+

(
11

64
− 4k4,0;1

)
ln ρ+ k4,0;1

)
ρ4 +O(ρ5) .

(D.12)

This is done for computational convenience — the equations for k1 (see (D.1)) and k2
(see (D.6)) decouple from all the other equations at the corresponding order.

We are able to solve analytically only the equation for k1 (D.1),

k1 =
ρ

4
+

1

4 + 4ρ
− 1

4
− 4 ln 2 +

ρ3 − 6ρ2 − 24ρ− 16

8(1 + ρ)3/2
ln

√
1 + ρ− 1√
1 + ρ+ 1

, (D.13)

resulting in

k4,0;1 =
29

259
− 3

32
ln 2 , Kh

0;1 =
5

3
− 4 ln 2 , (D.14)

and the equation for g1 (D.2),

g1 = −ρ2

32
− 7ρ

16
− 1

32(1 + ρ)2
− 3

8 + 8ρ
+

13

32
− ρ4(ρ+ 2)

32(1 + ρ)5/2
ln

√
1 + ρ− 1√
1 + ρ+ 1

+

(
23

64
− ρ3

128
+

15ρ2

128
− 15ρ

64
+

9

64(1 + ρ)2
− 63

128 + 128ρ
− 1

128(1 + ρ)3

)
(D.15)

× ln2
√
1 + ρ− 1√
1 + ρ+ 1

;

g4,0;1 = −17

32
+

3

8
ln2 2 +

1

8
ln 2 , gh0;1 = −13

18
. (D.16)

All the remaining equations are solved numerically, using the shooting algorithm developed
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in [12]. We find:

f2,1,0;1 = 0.434278 , f2,1,0;2 = 0.357298 ,

g4,0;1 = −0.264437 , g4,0;2 = −0.64466 ,

k4,0;1 = 0.0482987 , k4,0;2 = 0.184174 ,

f2,6,0;1 = −0.407036 , f2,6,0;2 = −0.489017 ,

f2,8,0;1 = −0.427022 , f2,8,0;2 = −0.609369 ,

fh
2,0;1 = −0.156614 , fh

2,0;2 = 0.54009 ,

fh
3,0;1 = −0.378836 , fh

3,0;2 = 0.638051 ,

Kh
0;1 = −1.10592 , Kh

0;2 = 1.65245 ,

gh0;1 = −0.722222 , gh0;2 = 0.311658 ,

(D.17)

where we used the same numerical methods to solve (D.1) and (D.2). Comparing the

numerical results for {k4,0;1, g4,0;1, Kh
0;1, gh0;1} from (D.17) with the analytic predic-

tions (D.14) and (D.16) we find agreement at the fractional level of ∼ 10−10 or better.

D.2 EF frame

Using perturbative expansions (4.14) and wc2n ≡ vn − wa2n, we find from (A.17)–(A.25)(
′ = d

dz

)
,

for n = 1:

0 = k′′1 +
5(2z − 1)

2(z − 1)z
k′1 −

8

(z − 1)z
, (D.18)

0 = v′′1 − 27

(z − 1)z
v1 −

15(2z − 1)

2(z − 1)z
a′1 +

11

4
(k′1)

2 +
60

(z − 1)z
k1 −

15(2z2 − 2z + 1)

2z2(z − 1)2
a1

+
9

(z − 1)z
, (D.19)

0 = a′′1 +
7(2z − 1)

2(z − 1)z
a′1 +

10z2 − 10z + 3

2z2(z − 1)2
a1 −

1

4
(k′1)

2 +
9

(z − 1)z
v1 −

20

(z − 1)z
k1

− 3

(z − 1)z
, (D.20)

0 = w′′
a21 +

5(2z − 1)

2(z − 1)z
w′
a21 −

12

(z − 1)z
wa21 −

(2z − 1)

2(z − 1)z
v′1 −

3(2z − 1)

2(z − 1)z
a′1 +

3

4
(k′1)

2

− 3

(z − 1)z
v1 −

3(2z2 − 2z + 1)

2z2(z − 1)2
a1 +

12

(z − 1)z
k1 +

1

(z − 1)z
, (D.21)

0 = s′1 −
1

2
a′1 +

1

2(z − 1)z
a1 , (D.22)

0 = g′′1 +
5(1− 2z)

2z(1− z)
g′1 + (k′1)

2 +
4

z(1− z)
; (D.23)

for n = 2:

0= k′′2 +
5(2z−1)

2(z−1)z
k′2+

(
1

2
v′1+

5

2
a′1−2w′

a21−g′1

)
k′1−

8(k1−a1−v1+g1+2wa21)

(z−1)z
, (D.24)
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0= v′′2 −
27

(z−1)z
v2−

15(2z−1)

2(z−1)z
a′2+

11

2
k′1k

′
2+

60

(z−1)z
k2−

15(2z2−2z+1)

2z2(z−1)2
a2

− 1

2
(v′1)

2+

(
11

2
w′
a21−

10(2z−1)

(z−1)z
wa21+

2(2z−1)

(z−1)z
v1

)
v′1+

3(2z−1)(5a1−v1)

2(z−1)z
a′1

− 15

4
(a′1)

2−
(
11

4
g1+

1

4
v1+

3

2
wa21

)
(k′1)

2− 55

4
(w′

a21)
2− 10(2z−1)(v1−5wa21)

(z−1)z
w′
a21

+
5

8
(g′1)

2+
15v21

(z−1)z
+

30k21
(z−1)z

+
75w2

a21

(z−1)z
+
15(4z2−4z+3)a21

4z2(z−1)2
− 12(5a1+4v1)k1

(z−1)z

+

(
3(16z2−16z−1)v1

2z2(z−1)2
− 9

(z−1)z

)
a1−

2(15v1−1)wa21

(z−1)z
+
9g1−4v1
(z−1)z

, (D.25)

0= a′′2+
7(2z−1)

2(z−1)z
a′2+

10z2−10z+3

2z2(z−1)2
a2+

9

(z−1)z
v2−

1

2
k′1k

′
2−

20

(z−1)z
k2

+

(
−1

4
a1+

1

4
g1+

1

2
wa21

)
(k′1)

2+
1

8
(g′1)

2+
5

4
(w′

a21)
2+

3

4
(a′1)

2− 1

2
w′
a21v

′
1−

10k21
(z−1)z

− 105w2
a21

(z−1)z
+

20v1k1
(z−1)z

− 10v21
(z−1)z

− 3a21
4z2(z−1)2

+
6(7v1−1)wa21

(z−1)z
+
3(v1−g1)

(z−1)z
, (D.26)

0=w′′
a22+

5(2z−1)

2z(z−1)
w′
a22−

12

(z−1)z
wa22−

3(2z−1)

2z(z−1)
a′2−

2z−1

2z(z−1)
v′2

− 3(2z2−2z+1)

2z2(z−1)2
a2−

3

(z−1)z
v2+

12

(z−1)z
k2+

3

2
k′1k

′
2+

1

4
(w′

a21)
2− 3

4
(a′1)

2

− 3

4
(g1+wa21)(k

′
1)

2+
1

8
(g′1)

2+

(
5

2
a′1−

2(2z−1)(v1−5wa21)

(z−1)z

)
w′
a21

+

(
(2z−1)(v1−5wa21)

2(z−1)z
− 1

2
a′1

)
v′1+

3(2z−1)(a1−wa21)

2(z−1)z
a′1+

6v21
(z−1)z

+
3(4z2−4z+3)a21

4z2(z−1)2
+

75w2
a21

(z−1)z
+

6k21
(z−1)z

− 12(v1+a1−wa21)k1
z(z−1)

+
(3a1−33wa21−1)v1

z(z−1)
+

g1
(z−1)z

+
3(6z2−6z−1)wa21a1

2z2(z−1)2
− a1−3wa21

(z−1)z
, (D.27)

0= s′2−
1

2
a′2+

1

2(z−1)z
a2+

1

2
(a1−s1)a

′
1+

a1(a1−s1)

2(1−z)z
, (D.28)

0= g′2+
5(2z−1)

2(z−1)z
g′2+2k′1k

′
2−2wa21(k

′
1)

2−(g′1)
2+

(
1

2
v′1+5a′1

)
g′1

+
4(v1−2g1+a1−2wa21)

(z−1)z
. (D.29)
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Initial conditions for (D.18)–(D.29) can be deduced from (B.57) using (D.11)

and (4.13):

k1 = Kh
0;1 −

16

5
z +O(z2) ,

v1 = fh
2,0;1 + 4fh

3,0;1 +

(
32Kh

0;1 −
64

5
fh
2,0;1 −

256

5
fh
3,0;1 +

28

5

)
z +O(z2) ,

a1 =

(
−4Kh

0;1 +
9

5
fh
2,0;1 +

36

5
fh
3,0;1 −

3

5

)
z +O(z2) ,

wa21 = fh
3,0;1 +

(
32

5
Kh

0;1 −
8

5
fh
2,0;1 −

56

5
fh
3,0;1 +

4

5

)
z +O(z2) ,

s1 = sh0;1 +O(z) , g1 = gh0;1 −
8

5
z +O(z2) ,

(D.30)

for n = 1, and

k2=Kh
0;2+

(
32

5
fh
3,0;1−

16

5
Kh

0;1−
16

5
gh0;1+

16

5
fh
2,0;1

)
z+O(z2) ,

v2= fh
2,0;2+4fh

3,0;2+

(
224

5
fh
2,0;1f

h
3,0;1−

512

5
Kh

0;1f
h
3,0;1+16(Kh

0;1)
2+32Kh

0;2−
64

5
fh
2,0;2

− 256

5
fh
3,0;2+

28

5
gh0;1+

48

5
(fh

2,0;1)
2+

528

5
(fh

3,0;1)
2−8fh

3,0;1−
128

5
Kh

0;1f
h
2,0;1−

16

5
fh
2,0;1

)
z

+O(z2) ,

a2=

(
−2(Kh

0;1)
2+4Kh

0;1f
h
2,0;1+16Kh

0;1f
h
3,0;1−2(fh

2,0;1)
2− 38

5
fh
2,0;1f

h
3,0;1−

97

5
(fh

3,0;1)
2

−4Kh
0;2+

3

5
fh
2,0;1+

9

5
fh
2,0;2+

6

5
fh
3,0;1+

36

5
fh
3,0;2−

3

5
gh0;1

)
z+O(z2) ,

wa22= fh
3,0;2+

(
8fh

2,0;1f
h
3,0;1−

96

5
Kh

0;1f
h
3,0;1−

32

5
Kh

0;1f
h
2,0;1+

16

5
(Kh

0;1)
2+

32

5
Kh

0;2

− 8

5
fh
2,0;2−

56

5
fh
3,0;2+

4

5
gh0;1+

16

5
(fh

2,0;1)
2+

104

5
(fh

3,0;1)
2− 4

5
fh
3,0;1−

4

5
fh
2,0;1

)
z+O(z2) ,

s2= sh0;2+O(z) ,

g2= gh0;2+

(
8

5
fh
2,0;1+

16

5
fh
3,0;1−

16

5
gh0;1

)
z+O(z2) , (D.31)

for n = 2.

E Kretschmann scalar of EF frame background geometry

We collect here the expression for the Kretschmann scalar K

K ≡ RαβγδRαβγδ (E.1)

of gravitational bulk geometries (2.13) dual to de Sitter vacua of the cascading gauge

theories. Growth ofK evaluated at the apparent horizon as H2

Λ2 varies signals the breakdown
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of the supergravity approximation. Explicitly evaluating (E.1) we find, ′ = d
dr = − d

dz ,

K = 4a2
(
12(σ′′)2

σ2
+

(a′′)2

a2
+

2(w′′
a2)

2

w2
a2

+
2(w′′

b2)
2

w2
b2

+
(w′′

c2)
2

w2
c2

)
+

24(σ′′)

σ

(
H2 −Ha′

+
4Haσ′

σ
+

2aσ′a′

s

)
+

4a2w′
c2w

′′
c2

w2
c2

(
a′

a
− w′

c2

wc2

)
+

8a2w′
a2w

′′
a2

w2
a2

(
a′

a
− w′

a2

wa2

)
+

8a2w′
b2w

′′
b2

w2
b2

×
(
a′

a
− w′

b2

wb2

)
+ 3H2

(
24(σ′)2

σ2
+

(w′
c2)

2

w2
c2

+
2(w′

b2)
2

w2
b2

+
2(w′

a2)
2

w2
a2

)
+ 2(a′)2

(
12(σ′)2

σ2

+
(w′

c2)
2

w2
c2

+
2(w′

b2)
2

w2
b2

+
2(w′

a2)
2

w2
a2

)
+

12Hσ′a

σ

(
4σ′a′

aσ
+

8(σ′)2

σ2
+

(w′
c2)

2

w2
c2

+
2(w′

b2)
2

w2
b2

+
2(w′

a2)
2

w2
a2

)
− 2aa′

(
(w′

c2)
3

w3
c2

+
2(w′

b2)
3

w3
b2

+
2(w′

a2)
3

w3
a2

)
+

12a2(σ′)2

σ2

(
(w′

c2)
2

w2
c2

+
2(w′

b2)
2

w2
b2

+
2(w′

a2)
2

w2
a2

)
+

48a2(σ′)4

σ4
+ a2

(
2(w′

b2)
2(w′

c2)
2

w2
b2w

2
c2

+
2(w′

a2)
2(w′

c2)
2

w2
a2w

2
c2

+
4(w′

a2)
2(w′

b2)
2

w2
a2w

2
b2

+
(w′

c2)
4

w4
c2

+
3(w′

b2)
4

w4
b2

+
3(w′

a2)
4

w4
a2

)
+

a(w′
a2)

2

wb2wc2w3
a2

(27w2
a2 + 9w2

b2 − 36wb2wc2 + 16w2
c2)

+
a(w′

b2)
2

wa2wc2w3
b2

(9w2
a2 − 36wa2wc2 + 27w2

b2 + 16w2
c2) +

3a(w′
c2)

2

wa2wb2w
3
c2

(3w2
a2 − 6wa2wb2

+ 3w2
b2 + 16w2

c2)−
aw′

a2w
′
c2

2wb2w
2
a2w

2
c2

(63w2
a2 − 18wa2wb2 + 24wa2wc2 − 45w2

b2 − 24wb2wc2

+ 112w2
c2) +

aw′
b2w

′
c2

2wa2w2
c2w

2
b2

(45w2
a2 + 18wa2wb2 + 24wa2wc2 − 63w2

b2 − 24wb2wc2

− 112w2
c2)−

aw′
a2w

′
b2

2wc2w2
b2w

2
a2

(63w2
a2 + 18wa2wb2 − 24wa2wc2 + 63w2

b2 − 24wb2wc2 − 80w2
c2)

+
136w2

c2

w2
a2w

2
b2

− 144(wa2 + wb2)wc2

w2
a2w

2
b2

+
81(13w2

a2 + 6wa2wb2 + 13w2
b2)(wa2 − wb2)

2

32w2
c2w

2
b2w

2
a2

− 54(w2
a2 − w2

b2)(wa2 − wb2)

w2
a2w

2
b2wc2

+
9(9w2

a2 + 14wa2wb2 + 9w2
b2)

w2
a2w

2
b2

. (E.2)

Introducing the dimensionless and rescaled functions and the radial coordinate r̂ ≡ −ẑ as

in (4.8),

K =
1

P 2gs
K̂ . (E.3)

E.1 Kretschmann scalar at AH of TypeB de Sitter vacua

In section 3.4 we showed that the AH horizon of the bulk gravitational dual to TypeB

de Sitter vacua of the cascading gauge theory is located at rAH = −zAH = 0, see (3.33).
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Using (B.67) we find from (E.2):

KAH

∣∣∣∣
TypeB

= 300hh0H
4 +H2

(
16P 2gh0 (3(k

h
2,2)

2(fh
a,0)

2 + 20)

3(fh
a,0)

3hh0
+

72

(fh
a,0)

2kh2,2

(
5kh2,4(f

h
a,0)

2

+ 3kh2,2f
h
a,0 + 18

)
+

5(kh1,3)
2kh2,2(f

h
a,0)

2 − 15kh2,2(k
h
3,1)

2 − 36kh1,3k
h
3,1

kh2,2P
2(fh

a,0)
2gh0h

h
0

)

+
1

3840(fh
a,0)

4(hh0)
3P 4(gh0 )

2(kh2,2)
2

(
355(kh1,3)

4(kh2,2)
2(fh

a,0)
4 − 30(kh1,3)

2(kh2,2)
2(kh3,1)

2(fh
a,0)

2

+ 2283(kh2,2)
2(kh3,1)

4 + 6912kh1,3k
h
2,2(k

h
3,1)

3 + 6912(kh1,3)
2(kh3,1)

2

)

+
3

10(fh
a,0)

4P 2gh0 (h
h
0)

2(kh2,2)
2

(
25(kh1,3)

2(kh2,2)
2(fh

a,0)
3 − 60kh2,2k

h
2,4(k

h
3,1)

2(fh
a,0)

2

− 120kh1,3k
h
2,4k

h
3,1(f

h
a,0)

2 − 37(kh2,2)
2(kh3,1)

2fh
a,0 − 24kh1,3k

h
2,2k

h
3,1f

h
a,0 − 216kh2,2(k

h
3,1)

2

− 432kh1,3k
h
3,1

)
+

1

1080(fh
a,0)

5(hh0)
3(kh2,2)

2

(
175(kh1,3)

2(kh2,2)
4(fh

a,0)
4

+ 194400(kh2,4)
2(fh

a,0)
5(hh0)

2 − 491(kh2,2)
4(kh3,1)

2(fh
a,0)

2 + 77760kh2,2k
h
2,4(f

h
a,0)

4(hh0)
2

− 1152kh1,3(k
h
2,2)

3kh3,1(f
h
a,0)

2 + 746496(kh2,2)
2(fh

a,0)
3(hh0)

2 − 2220(kh1,3)
2(kh2,2)

2(fh
a,0)

2

+ 1399680kh2,4(f
h
a,0)

3(hh0)
2 + 279936kh2,2(f

h
a,0)

2(hh0)
2 − 3492(kh2,2)

2(kh3,1)
2

− 13824kh1,3k
h
2,2k

h
3,1 + 2519424fh

a,0(h
h
0)

2

)
+

8P 2gh0
45kh2,2(f

h
a,0)

5(hh0)
2

(
60(kh2,2)

2kh2,4(f
h
a,0)

4

+ 37(kh2,2)
3(fh

a,0)
3 + 216(kh2,2)

2(fh
a,0)

2 + 720kh2,4(f
h
a,0)

2 − 756kh2,2f
h
a,0 + 2592

)

+
P 4(gh0 )

2

3645(hh0)
3(fh

a,0)
6

(
881(kh2,2)

4(fh
a,0)

4 + 10584(kh2,2)
2(fh

a,0)
2 + 184464

)
. (E.4)

A special case of (E.4) is the Kretschmann scalar at the “AH” of the extremal KS

solution, see section B.3: setting H = 0 and using (B.79) we find

lim
H→0

KAH

∣∣∣∣
TypeB

=
1

P 2gs

32 · 122/3(110 · 121/3 + 177147δ2)

295245δ3
, (E.5)

where we denoted, see hh0 in (B.79),

δ ≡ 0.056288(0) . (E.6)
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F Static linearized χSB fluctuations about TypeAs vacua

Static linearized χSB fluctuations about TypeAs vacua in FG frame are parameterized as

in (5.1). From (B.4)–(B.5) and (B.7)–(B.9) we find, (′ = d
dρ and P = H = gs = 1):

0 = δf ′′ − 1

16ρg2f2h2f3
3 (f

′
3ρ− 2f3)

(
−48f4

3h
3f2g

2ρ2 − 2(h′)2g2f4
3 f2ρ

2 − 2(g′)2h2f2f
4
3ρ

2

+ 12g2h2(f ′
3)

2f2
3 f2ρ

2 − 16h(h′)g2f4
3 f2ρ− 16h2g2f3

3 (f
′
3)f2ρ− 48f4

3h
2g2f2

− f2ρ
2(K ′)2hf2

3 g + 16f2
3h

2f2
2 g

2 − 96f3
3h

2f2g
2 + 4g3f2

3h+ 2g2K2

)
δf ′ − K ′

2ghf3
δk′1

− 2g

f2f3hρ2
δk2 +

1

8g2f2h2ρ2f3
3 (f

′
3ρ− 2f3)

(
−48g2f ′

3f2h
3f3

3ρ
3 + 8g2(f ′

3)
3f2h

2f3ρ
3

+ 48f4
3h

3f2g
2ρ2 − 2(h′)2g2f4

3 f2ρ
2 − 2(g′)2h2f2f

4
3ρ

2 − 36g2h2(f ′
3)

2f2
3 f2ρ

2

− 16hh′g2f4
3 f2ρ+ 64h2g2f3

3 f
′
3f2ρ− 4gf ′

3(K
′)2f2hf3ρ

3 + 32g2f ′
3f

2
2h

2f3ρ− 72g2f ′
3h

2f3
3ρ

− 80f4
3h

2g2f2 + 7f2ρ
2(K ′)2hf2

3 g − 48f2
3h

2f2
2 g

2 − 96f3
3h

2f2g
2 + 144f4

3h
2g2

− 16g3f ′
3hf3ρ+ 36g3f2

3h+ 2g2K2

)
δf , (F.1)

0 = δk1
′′ − 1

16ρg2f2h2f3
3 (f

′
3ρ− 2f3)

(
−48f4

3h
3f2g

2ρ2 − 2(h′)2g2f4
3 f2ρ

2

+ 16f3
3hf2g

2ρ2f ′
3h

′ − 2(g′)2h2f2f
4
3ρ

2 + 16f3
3 f2f

′
3h

2gg′ρ2 + 12g2h2(f ′
3)

2f2
3 f2ρ

2

− 48hh′g2f4
3 f2ρ− 32f4

3 f2h
2gg′ρ− 16h2g2f3

3 f
′
3f2ρ− 48f4

3h
2g2f2 − f2ρ

2(K ′)2hf2
3 g

+ 16f2
3h

2f2
2 g

2 − 96f3
3h

2f2g
2 + 4g3f2

3h+ 2g2K2

)
δk′1 +

2K ′

f3
δf ′ − 9

ρ2f2
δk1

+
2gK

ρ2f2hf2
3

δk2 +
2(−f ′

3K
′f2hf3ρ

2 + 2gK)

f3
3ρ

2f2h
δf , (F.2)

0 = δk2
′′ − 1

16ρg2f2h2f3
3 (f

′
3ρ− 2f3)

(
−48f4

3h
3f2g

2ρ2 − 2(h′)2g2f4
3 f2ρ

2

+ 16f3
3hf2g

2ρ2f ′
3h

′ − 2(g′)2h2f2f
4
3ρ

2 − 16f3
3 f2f

′
3h

2gg′ρ2 + 12g2h2(f ′
3)

2f2
3 f2ρ

2

− 48hh′g2f4
3 f2ρ+ 32f4

3 f2h
2gg′ρ− 16h2g2f3

3 f
′
3f2ρ− 48f4

3h
2g2f2 − f2ρ

2(K ′)2hf2
3 g

+ 16f2
3h

2f2
2 g

2 − 96f3
3h

2f2g
2 + 4g3f2

3h+ 2g2K2

)
δk2

′ − 9

ρ2f2
δk2 +

9K

2ρ2f2f2
3hg

δk1

− 18

f3ρ2f2
δf . (F.3)

Performing the asymptotic expansions, we determine:

in the UV, i.e., as ρ → 0, using (B.38)–(B.43),

δf = δf1,0 ρ+
1

2
f2,1,0 δf1,0 ρ2+

(
δf3,0+

(
1

4
δf1,0 ks−

11

8
δf1,0

)
lnρ

− 1

4
δf1,0 ln

2 ρ

)
ρ3+

∑

n=4

∑

k

δfn,k ρn lnk ρ, (F.4)
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δk1=−1

2
δf1,0 ρ+

1

4
f2,1,0 δf1,0 ρ2+

(
δk1,3,0+

(
− 1

24
δf1,0 ks−

47

144
δf1,0+2δf3,0

)
lnρ

+

(
−4

3
δf1,0+

1

4
δf1,0 ks

)
ln2 ρ− 1

6
δf1,0 ln3 ρ

)
ρ3++

∑

n=4

∑

k

δk1,n,k ρn lnk ρ, (F.5)

δk2=−9

4
δf1,0 ρ+

9

8
f2,1,0 δf1,0 ρ2+

(
−13

48
δf1,0 ks−

3

8
δf1,0 f2

2,1,0+
3

2
δk1,3,0

− 163

144
δf1,0−δf3,0+

(
− 5

16
δf1,0 ks+

137

96
δf1,0+3δf3,0

)
lnρ+

(
−7

4
δf1,0

+
3

8
δf1,0 ks

)
ln2 ρ− 1

4
δf1,0 ln3 ρ

)
ρ3+

∑

n=4

∑

k

δk2,n,k ρn lnk ρ, (F.6)

characterized by 4 parameters (compare with (B.25)):

{δf1,0 , δf3,0 , δk1,3,0︸ ︷︷ ︸
Oα

3

, δf7,0︸︷︷︸
O7

} , (F.7)

where δf1,0 is an explicit chiral symmetry breaking scale (∝ the gaugino mass term),

and the remaining parameters are the expectation values of the chiral symmetry breaking

operators in the cascading gauge theory;

in the IR, i.e., as 1
ρ = y → 0, using (B.45),

δf =
1

y

∑

n=0

δfh
n yn , δk1,2 =

∑

n=0

δkn1,2,n yn , (F.8)

characterized by 3 parameters:

{δfh
0 , δkh1,0 , δk

h
2,0} . (F.9)
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