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1 Introduction and summary

Consider N' = 1 supersymmetric SU(N + M) x SU(N) gauge theory with two chiral
superfields A1, Ay in the (N + M, N) representation, and two chiral superfields By, Bo
in the (N + M, N) representation, in four dimensional Minkowski space-time R*!. This
theory has two gauge couplings g1, go associated with the two gauge group factors, and a
quartic superpotential

W ~ Tr(A;BjALBy) ™. (1.1)

When M = 0, both gauge couplings are exactly marginal, and the theory flows to a strongly
coupled superconformal fixed point — the Klebanov-Witten (KW) theory [3]. KW infrared
(IR) fixed point global symmetry

G:  SU@)xSU@) x U@1) (1.2)
—_— ~—~—
flavour R—symmetry

together with the superconformal invariance implies non-perturbatively large anomalous
dimensions for the chiral superfields:

94 =2(B)) = =7 (13)

When M # 0, conformal invariance of SU(N + M) x SU(N) gauge theory is broken: while
the sum of the gauge coupling remains exactly marginal [2],
4% An?
% iQ =T = const , (1.4)
91 93 gs
where g, is the asymptotic string coupling of the gravitational dual [4], the perturbative
B-function of the difference of the couplings is nonzero [4]:
8m?  8m? A A M?
———len—(S—i—Zl—’yTrAB- )—6M1n<1+0<>). 1.5
. ~ (320 - (1x(AB) : ich (15)

A is the strong coupling scale of the theory. Given (1.4) and (1.5), the effective weakly
coupled description of SU(N 4+ M) x SU(N) gauge theory exists only in a finite-width
energy band centered about A — one encounters Landau poles both in the IR

g5 — 00 as W= IR = Ae Fasit | (1.6)



and the ultraviolet (UV),
g2 — 00 as W= pyy = Aet ) (1.7)

to leading order in M?2/N?2. As explained in [2], to extend the theory past the strong
coupling regions one must perform the self-similar transformations (Seiberg dualities [5]):
N = N —M for p < pyr and N = N + M for p 2 pyy. Thus, extension of the effective
SU(N + M) x SU(N) description to all energy scales involves an infinite sequence — a
cascade — of Seiberg dualities with the renormalization group flow of the effective rank [6-8]

N =N(u) ~ gsM? ln%. (1.8)

Although there are infinitely many duality steps in the UV, there is only a finite number
of the duality transformations as one flows to the IR, — when N is an integer multiple of
M (plus 1) one ends up in the IR with the SU(M + 1) gauge theory. The latter theory
confined in the IR with a spontaneous breaking of the U(1)g (chiral symmetry),

U(l)r — Zo. (1.9)

The IR properties of the cascading gauge theories were reviewed in [4] (see also [9]); an
important feature of the theory is the characteristic scale in the glueball mass spectrum:

(2/3

—_— 1.1
Mgsa/ ’ ( O)

Mglueball =
where ¢ is a conifold deformation parameter of the holographic dual [2], and o/ = /2 is the
string scale.

Previous studies focused on the fate of the chiral symmetry and the confinement in the
cascading gauge theory at finite temperature. At finite temperature, there are three differ-
ent spatially homogeneous and isotropic phases of the theory. We classify them as follows:

e PhaseA; — the deconfined phase with the unbroken chiral symmetry, i.e., U(1),
see [6, 10-12];

e PhaseA;, — the deconfined phase with the broken chiral symmetry, i.e., Zsa, see [13,
14];

e PhaseB — the confined phase with the broken chiral symmetry, i.e., Zo, see [2].

Notice that confinement triggers the spontaneous breaking of the chiral symmetry [2]: there
is no spatially homogeneous and isotropic phase which is confined with U(1) chiral sym-
metry. It will be instructive to have a geometrical classification of these phases, in the
warped-deformed conifold holographic dual of the theory [2, 13, 15]. To this end, consider
analytical continuation along the time direction ¢ — ¢t = it. Euclidean time tg is then
periodically identified as

tp o~  tp+ (1.11)



where T is the equilibrium temperature of the phase. Topologically, the compact directions
of the holographic dual are

unbroken chiral symmetry : St X Stx §%x 8%
~—~ —_——
thermal circle U(1)—symmetric T1:1 (1 12)
broken chiral symmetry : St X 5% x 83
thermal circle Zo—symmetric T1:1

We can thus geometrically characterize different phases depending on which cycle shrinks
to zero size in the interior of the ten-dimensional Euclidean type IIB supergravity dual:

PhaseA, : St —0 & St x 8% x §2 is finite;
=~

thermal circle

PhaseAy : -0 & 52 x 83 is finite;

1
S (1.13)

thermal circle

PhaseB : St is finite & S% 0 & 3 is finite .
=~

thermal circle

According to [12] there is the first-order confinement/deconfinement phase transition be-
tween PhaseA, and PhaseB at!
31/2,1/3  2/3

A
thermal _ 0614(1)

T, = 0.614(1) S
c Pg;/Q 97/12 Pg;/Q

=0.220(2) g} *mguueban,  (1.14)
where the relation between P and M is given by (2.7) and mgyeban is defined as in (1.10).

At temperature T' < T, the phase PhaseA; is metastable — it becomes perturbatively
unstable below T\sp < T, [13],

At hermal

Tysp = 0.542(0) poll?

- 0194(3) g;/zmglueball . (115)

The symmetry broken deconfined phase PhaseA; exists only for T > T,sp or for energy
densities £ < E,gp [14],

£ 1.270(1) Adbermal 1.270(1) 2Pl (Mgy)* mi
= . = . m
XSB 167G 19274 95/ Melueball (1.16)

= 4.089(6) x 107" x (Mgs)" myjuehan -

where G5 is given by (2.8). PhaseAy has larger thermal free energy density than that of the
chirally symmetric deconfined phase PhaseA; at the corresponding temperature, and thus
it does not dominate the canonical ensemble. On the other hand, PhaseAy is entropically
favored over PhaseA; at the corresponding energy density, and thus is the dominant phase
in the microcanonical ensemble. According to [14] the phase PhaseA; is thermodynam-
ically unstable, and thus it is dynamically (perturbatively) unstable towards developing
spatial inhomogeneities [17].

!The precise expression for Aghermal Was reported in [16].



In this paper we would like to understand vacua of the cascading gauge theories in de
Sitter space-time (flat or closed spatial slicing)?

1
ds? = —dt® + *Hldx? or ds? = —dt* + e cosh?(Ht) (dS3)2 , (1.17)

where H is a Hubble constant. Specifically, we would like to provide the classification of
late-time states of the cascading gauge theory akin to spatially homogeneous and isotropic
thermal phases {PhaseAg, PhaseA;, PhaseB} reviewed above. Of course there are crucial
differences between the thermal equilibrium physics and the late time de Sitter dynamics:

= Thermodynamics can be studied in canonical or microcanonical ensembles.? The latter
one is suitable to study the dynamics of the equilibration process. The de Sitter evolution
of the gauge theory states is eternally sourced by the space-time accelerated expansion and
thus is (loosely) equivalent to the microcanonical ensemble; there is no correspondence to
the canonical ensemble.

®  Insisting on spatial homogeneity and isotropy, an initial state typically? relaxes to a
thermal equilibrium configuration, which can be assigned a thermal (time-independent)
entropy density. The holographic dynamics of the conformal gauge theories with a simple
scale transformation can be mapped to an evolution in Minkowski space-time [19] — here
the late-time de Sitter vacua are conformally equivalent to the equilibrium states of the
microcanonical ensemble. There is no equilibration of non-conformal gauge theories at late-
times in de Sitter [19]:> the comoving entropy density production rate is nonzero. In [21]
it was pointed out that the comoving entropy production rate R can be attribute entirely
to the spatial expansion

volume = 3" yolume ,

physical comoving

while the physical entropy density s approaches a constant (time-independent) entangle-
ment entropy Sent:
lim s = Seny = H> R. (1.18)

t—o00

In holography, the non-equilibrium entropy density s = s(t) is associated with the Beken-
stein entropy of the dynamical apparent horizon (AH) [22, 23]. In [24] an example of
a fully nonlinear holographic evolution from initially homogeneous and isotropic state in
de Sitter was presented where the late-time dynamics approaches de Sitter vacuum with
entanglement entropy (1.18).

Implementing de Sitter holographic dynamics as in [24] for the cascading gauge the-
ories is outside the scope of this paper. Rather, as in [19] and [20], we assume that we

2There is no difference between them at late times as the curvature effects are diluted as o exp(—2H¢).

3As we emphasized above the thermal equilibrium phase structure is different in the two ensembles of
the cascading gauge theory.

4Not all strongly interacting systems equilibrate. See [18] for a holographic example.

5See also [20] for a detailed recent analysis.



specify a well-defined spatially homogeneous and isotropic initial state® (a well-defined ini-
tial condition for the gravitation evolution) in a holographic dual. This would correspond
to some coarse grained state in the gauge theory specified with the density matrix p. We
identify the von Neumann entropy S

§=-Tr(plnp),

with the Bekenstein entropy of the AH in the holographic dual.” Partial differential equa-
tion of the gravitational dual at late times reduce to system of ordinary differential equa-
tions [24] which we analyze in details here. Inequivalent de Sitter vacua of the cascading
gauge theory are characterized with different values of the entanglement entropy density
Sent- The true (dominant) vacuum is the one which results in the largest sen for a fixed
Hubble constant H and a fixed strong coupling scale of the theory A, see (B.80),

91/6,1/3,1/2
- 337/298 Mglueball ~ 0'3951/2mg1ueba11- (1.19)

Parallel to classification of the thermal equilibrium states, we now explain topologi-
cal/symmetry considerations to classify de Sitter vacua of cascading gauge theory — the
discussion is more intuitive for the closed spatial slicing in (1.17). To access AH (and thus
to evaluate Sept), the dual gravitational bulk must be described in Eddington-Finkelstein
(EF) coordinates. Fefferman-Graham (FG) coordinates cover only a patch of the former,
which is outside of the EF frame AH [24], and thus is not suitable for the computation
of the vacuum entanglement entropy. Still, FG frame is useful to implement analytical
continuation to Euclidean (Bunch-Davies) vacuum

1 1 1
—dr’ 4 cosh®(Hr) (4S%)° o <(d9)2 +sin?(0) (dS3)2> = (as)’.
T—>i79+;/2

(1.20)
Topologically, the compact directions of the Euclidean FG frame holographic dual are
(compare with (1.12))

unbroken chiral symmetry : S X Stx 5% x 8%
- —
dSE“C:dea“ U(l)—s;/mmet;ic T1.1 (121)
broken chiral symmetry : S X S xS
~ N——

dSZlE“CHdean Zs—symmetric T11

Parallel to (1.13), we can geometrically characterize different de Sitter vacua of the cas-
cading gauge theory depending on which cycle shrinks to zero size in the interior of the

SWe believe that restriction to homogeneity and isotropy is not relevant for the late-time dynamics,
given the accelerated background space-time expansion.

"This procedure is implicit in all examples of holographic evolutions in Chesler-Yaffe framework [25].
Besides ‘holographic quenches’ of background space-time [26] (similar to de Sitter ‘quenches’ of interest
here) it was successfully applied to quenches of the coupling constants of relevant operators in [27, 28].



ten-dimensional FEuclidean FG frame type IIB supergravity dual:

TypeA, : St 50 & S'x 5% x 8% is finite;
dsg)uclidean

TypeA, : St 50 & 5% x 83 is finite ;
dsfuclidean

TypeB : S is finite & 5250 & S3 is finite .
K~

dSA];]uclidean

(1.22)

To evaluate Sene we proceed in two steps:®

e first, we construct the FG frame vacua, subject to the ‘boundary conditions’ (1.22)
(see appendix B.1 for the technical details);

e second, we use coordinate transformation to the EF frame for each of these vacua
(see [24] and appendix B.2 for the technical details), and access the corresponding
AH.

We summarize now our results:

e TypeA, de Sitter vacua were studied previously in [29-31]. These vacua share resem-
blance with the thermal deconfined chirally symmetric states of the cascading gauge
theory, i.e., PhaseA;. We find here that

Sent (A, H) #0, (1.23)
TypeA,
and vanishes as
Sent (A, H) o« H3 (m 2) as  H > A, (1.24)
TypeA, A

i.e., in the conformal limit. TypeA, de Sitter vacua exist only when

H > HS,, S =0.7A ~ 0.2 g > mgueban - (1.25)
As %22 decreases, the Kretschmann scalar at the AH in the holographic dual increases,
making supergravity approximation less reliable. H?. in (1.25) should be interpreted
as the value of the Hubble constant at which the supergravity approximation breaks
down. We identify the rapid growth of the curvature in the gravitational dual to
TypeA, de Sitter vacua with collapsing of the compact manifold (a deformed T'!) at

the location of the apparent horizon — as a result, seyt vanishes in this limit as well.

8The same two-step procedure was also used in computation of the de Sitter vacuum entanglement
entropy in A = 2* gauge theory in [20].



e TypeA, de Sitter vacua are constructed here for the first time.” These vacua share
resemblance with the thermal deconfined states of the cascading gauge theory with
the spontaneously broken chiral symmetry, i.e., PhaseAy. We find here that

Sent (A, H) £0. (1.26)
TypeA,

TypeA, de Sitter vacua exist only when

H > HY HY

min min

= 0.92(1)A ~ 0.276 g2/ *mguebal - (1.27)

As 5{—22 increases, the Kretschmann scalar at the AH in the holographic dual increases,
making the supergravity approximation less reliable.

e We find that while

Sent(Av Hb in)

m

= Sent(A, H2,) , (1.28)

m
TypeA, TypeA,

de Sitter vacua with the spontaneously broken chiral symmetry are entropically fa-
vored within a narrow window for the values of the Hubble constant

Sent(Aa H) > Sent(Aa H) s Hypax > H > Hrl;ina (129)

TypeA, TypeA,

where
Hpax = 0.92(5)A ~ 0.278 g2 *myguchal - (1.30)

TypeA, de Sitter vacua continue to exist for H > Hyyax, however they have smaller
Sent compare to the corresponding TypeA, de Sitter vacua.

e TypeB de Sitter vacua were studied previously in [31]. These vacua share resemblance
with the thermal confined states of the cascading gauge theory with the spontaneously
broken chiral symmetry, i.e., PhaseB. We find here that

Sent(A, H) =0. (1.31)
TypeB

We emphasize that (1.31) does not mean that the coarse grained entropy of the
cascading gauge theory vanishes — in fact, during de Sitter evolution the entropy
production rate is always positive (see section 3.3). What (1.31) states is that the
comoving entropy production rate in TypeB vacuum vanishes at late times (much
like it does in conformal gauge theories [24]). As a result, TypeB vacuum is never
realized as the late-time attractor of a dynamical evolution for a generic cascading
gauge theory state in de Sitter, provided vacua TypeAg or TypeAy exist. Neither of
the latter vacua exists for H < H?. | see (1.25), thus!?

min’

TypeB de Sitter vacum is a late — time attractor provided H < H (1.32)

min *

9We introduce a novel technique used to identify phases/vacua with spontaneously broken symmetry.
10While this is likely to be true in general, the statement is strictly precise for the de Sitter evolution of
spatially homogeneous and isotropic states of the cascading gauge theory.



Of cause, (1.32) implies that TypeB vacua must exist at least for H > H?. ; in fact we
find (see section 6.2) that TypeB vacua exist!! for
H < HB | HB =0.966(5)A > HS, =0.7A. (1.33)

Egs. (1.29) and (1.32) represents our main, and somewhat unexpected result:

SU(N) x SU(N 4+ M) cascading gauge theory with a strong coupling scale A
undergoes spontaneous chiral symmetry breaking in de Sitter space time with
a Hubble constant H provided

H S Hrsnin < Hrlilin & Hglin < H < Hmax .
The critical values H;; , Hglin and Hy,.y are of order the strong coupling scale

of the theory A.

The rest of the paper is organized as follows. In section 2 we discuss holographic dual
effective action of cascading gauge theory. Section 2 contains a guide to set of appendices
with technical details. Cascading gauge theory de Sitter vacuum entanglement entropy is
identified with the Bekenstein entropy of the AH in the holographic dual at late times,
see section 3. In section 3.1 we identify AH in ten dimensional holographic dual and
compute its area density. In section 3.2 we establish that both the location of the AH and
its associated entropy density is invariant upon Kaluza-Klein reduction on the warped-
deformed 7!, In section 3.3 we prove a theorem that as long as the background geometry
of the holographic dual is nonsingular, the area density of the AH does not decrease with
time. In section 3.4 we show that whenever vacua of TypeB exist, their entanglement
entropy vanishes, see (1.31). Section 4 devoted to TypeAg de Sitter vacua. Numerical
results are presented in section 4.1: we construct first the dual holographic backgrounds in
the FG frame, transform them to the EF frame, identify the location of the apparent horizon
and compute the vacuum entanglement entropy, see figure 6. At each step we triple-check
the numerical results by making use of distinct and independent computational schemes,
see appendix C. Comparison of the results from the different computational schemes in the
overlapping regions of the parameter space is shown in figures 2, 4, 7. In section 4.2 we
make use of the computational Schemell to discuss the conformal limit of TypeAg vacua,
i.e., H > A, and establish (1.24). The validity of the supergravity approximation of the
holographic dual to TypeA; de Sitter vacua is discussed in section 4.3. We establish a rapid
growth of the Kretschmann scalar of the background geometry (2.13) evaluated at the AH
for small values of IX—;, and associate this growth with “collapsing” of the deformed T, see
figures 11 and 12. Extrapolating the numerical data, we estimate the value of the Hubble

S
constant H . .

see (1.25), when the Kretschmann scalar diverges — we take this value as
a limiting value of H below which TypeA; vacua stop existing. We study TypeA;, vacua
with the spontaneously broken chiral symmetry in section 5. We begin in section 5.1 with

identification of the critical value Hglin,

see (1.27), below which TypeA; vacua do not exist.

"This should be understood in the same sense as existence of TypeA, vacua: the supergravity approxi-
mation used to construct TypeB vacua is robust against higher-derivative o’ corrections from the full string
theory.



This is done computing the linearized chiral symmetry breaking perturbations on top of
TypeAs vacua with the explicit symmetric breaking parameter — the gaugino mass term.
At this critical value H = H?

min all the symmetry breaking expectation values diverge,
see figure 13. We explain how TypeA; vacua, with the spontaneous symmetry breaking,

can be constructed at values of the Hubble constant close to H?

min Using the linearized
perturbations on top of TypeAg vacua with the explicit symmetry breaking. Numerical
construction of TypeA; vacua in section 5.2 follows the discussion of section 4.1. Section 5.2
contains the central result of the paper — figure 21: it establishes that the chiral symmetry
breaking of the cascading gauge theory in de Sitter space-time occurs in a narrow range of
values of the Hubble constant, see (1.29). The validity of the supergravity approximation of
the holographic dual to TypeAy de Sitter vacua is discussed in section 5.3. TypeB de Sitter
vacua are discussed in section 6. These vacua have vanishing entanglement entropy (1.31);
however, they exist for arbitrary small %, approaching the extremal Klebanov-Strassler
solution [2] as % — 0. We discuss TypeB vacua, first as a deformation of the extremal KS
solution, and followed later by the numerical construction in two different computational
schemes in section 6.1. In section 6.2 we present an indication that TypeB vacua exist
only for H < HB

max

(1.33) — in this limit the 3-cycle of the dual geometry supporting
the RR 3-form flux becomes vanishingly small in string units, making the supergravity
approximation not reliable as indicated by the rapid growth of the Kretschmann scalar
of the background geometry evaluated at the AH, see figure 26. Since both TypeA; and
TypeA, vacua cease to exist below certain value of the Hubble constant, specifically for
H<H ,and HE > H?

o ax o LypeB vacua become late-time attractors of the dynamical

evolution of the cascading gauge theory in de Sitter for H < H?. . We conclude in section 7

min-*
highlighting open questions and future directions.

2 Dual effective actions of the cascading gauge theory

Consider SU(2) x SU(2) x Zg invariant states of the cascading gauge theory on a 4-
dimensional manifold My = OMs5. In the planar limit and at large 't Hooft coupling, one

can consistently truncate the theory to a finite number of operators [13]: a stress-energy

={1.2} (dual to gaugino condensates for each

{1.2}

tensor Tj;, a pair of dimension-3 operators Og
of the gauge group factors), a pair of dimension-4 operators Of - , and dimension-6,7,8
operators Og, O7, Og. Effective gravitational action on a 5-dimensional manifold My de-

scribing holographic dual of such states was derived in [13]:

108
167G5

Ss [g;w < Ty, {Q, hi, @} < {03705706,07,08}} = /M volag, Q3035 x

1 o 1 _g ((h1— h3)? 1 5 1 9
— (VD) — = 9 (Y — (VY
X{Rw 2( ) 2¢ <29§Q§Q§ Qg( ) Qg( hs)

1g( 2 5 1 P\* 1
N Y LRI § Wi R
3¢ (ang (Vha)"+ Grea ( 2 9) Tzl
1

1 2
- QQ%Q%Qg <4QO + ho (]’Lg — hl) + 9Ph1) } , (2.1)



where (g is a constant in the definition of the 5-form flux,'? see (2.5), Ryq is given by

2 2 2
o = ff5 (2512% ! 5% ! Si% B 499%2% B 4%395 B Q§§§> - 20 (%) 22)
— {(V]n Q)2 +2(VInQ)? +2(VInQs)> + (Vin (919393))2} ,
and Rs is the five-dimensional Ricci scalar of the metric
ds? = g (y)dy"dy” , (2.3)
that forms part of the ten dimensional full metric
dsio =ds3 +dstun,  dstun = Qi(y)gs + Q3(y)(g5 +g7) + QB()(of +93).  (24)

One-forms {g;} (fori = 1,--- | 5) are the usual forms defined in the warp-squashed 7!
and are given as in [13], for coordinates 0 < ¢ < 47,0 <60, < mand 0 < ¢, <27 (a = 1,2).
All the covariant derivatives V) are with respect to the metric (2.3). Fluxes (and dilaton
®) are parameterized in such a way that functions hq(y), ha(y), h3(y) appear as

Fy = F5 4+ *Fs,
P
Fs = (490 + ha(y)(hs(y) — ha(y)) + 9h1(y)> GLANG2AG3NGaNGs,
By = h1(y)g1 A g2 + h3(y)gs A ga, (2.5)
1
Fy =3P 95N gs ANga+ha(y) (g1 ANg2—g3Nga)Ags
+ (g1 N g3+ g2 A ga) Nd(ha(y)) ,
b = P(y),
Parameter P must be appropriately quantized [4, 12]:
1 2P
— / F3 = — €7, (26)
47‘(‘20/ 3—cycle: Oa=¢p2=0 9o/
thus
9.

corresponding to the number M of fractional branes (the difference of ranks of the cascad-
ing gauge theory gauge group factors) on the conifold. Finally, G5 is the five dimensional
effective gravitational constant

GlO N 27
V01T1,1 - 1671'3

5= GlO , (2.8)

where 167G = (27)7(a/)* is 10-dimensional gravitational constant of type IIB supergrav-
ity.

2In the limit of vanishing 3-form fluxes, Qo = %, where L is the asymptotic AdSs radius.

,10,



Chirally symmetric states of the cascading gauge theory correspond to enhancement
of the global symmetry'® SU(2) x SU(2) x Zy — SU(2) x SU(2) x U(1), and are described
by the gravitational configurations of (2.1) subject to constraints'*

P
hi1 = hs, hgzl—g, Oy = O3, (2.9)
or in the boundary QFT language [13],
03 =0, O;=0. (2.10)
We find it convenient to introduce
1 /K, P 1 (K3
= — | — — 3692 ho = — K = — | — — 3602
h1 Iz <12 36 0) y he =2 K, hs3 D <12 36 0) ; o)
1 1 1 ’
O = - f1/2p1/4 Oy = — f12p1/4 Q= — 1/2p1/4
1 3fc 2 \/éfa 3 \/6fb

The ultimate goal is to compute the entanglement entropy of the cascading gauge
theory — using the dual holographic picture with the effective gravitational action (2.1)
— in distinct vacua (see (1.22)) in four dimensional de Sitter space-time. As explained in
the introduction, this is done in two steps:

B constructing de Sitter vacua in Fefferman-Graham coordinate frame

d2 _ d 2 2H7'd 2 h1/2 d 2
$10 = (—dr’ +e m)+7(ﬁ)

foh!/?
6

1
hi/2p2
feht/? fah!/?
g9 T =g
h="h(p), fape = fape(p),

subject to appropriate topological /symmetry restrictions (1.22);

(2.12)

+ (95 +93) + (g5 + 93)

®  using diffeomorphism transformation to represent the FG frame vacua in Eddington-

Finkelstein coordinate frame

1 1 1
dsiy = 2dt (dr —a dt) + o?e*™" dx® + gl 92 + a2 (95 +g3) + swn (97 + 93)

a=a(r), o=0(r),  Wa2p2c2=wa2p2.c2(r). (2.13)

It is important to keep in mind that EF frame vacua (2.13) are the late-time limits of the
evolution in EF frame:
sty =2dt (dr — A dt) + X2 da® + QF g2 + Q3 (g5 + g3) + Q3 (97 + 63),

(2.14)
A= A(t,r), Y =X(tr), Q23 =23t 7).

We now summarize technical details delegated to various appendices.

13In the planar limit.
! This is a consistent truncation of the cascading gauge theory to U(1) symmetric sector constructed
in [15].
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e In appendix A we derive the equations of motion in the holographic bulk for the
evolution of generic spatially homogeneous and isotropic state of the cascading gauge
theory in de Sitter space-time, see (A.3)—(A.13). We explain how to take the late time
limit ¢t — oo in (2.14) to obtain (2.13). The EF frame vacuum equations of motion
are given by (A.16)—(A.26). The latter equations of motion have symmetries SEF1-
SEF4 (A.27)—(A.30), which are used to set up and validate numerics (see appendix C).

e We begin appendix B presenting gravitational bulk equations of motion in FG
frame (B.3)—(B.11). These equations of motion have (corresponding to SEF1-SEF4)
symmetries SFG1-SFG4 (A.27)-(A.30), which are used to set up and validate nu-
merics (see appendix C). In appendix B.1 we explain the near boundary (UV) p — 0
and the interior (IR) p — oo asymptotics. UV asymptotics are used to classify
non-normalizable coefficients (defining parameters of the cascading gauge theory):
the asymptotic string coupling gs (1.4) and the strong coupling scale A of the the-
ory (1.19), and the normalizable coefficients: the expectation values of boundary
gauge theory operators:*> {T};, (9?:{1’2}, Of:{m}, Og,07,08}. IR asymptotics are
used to classify the distinct de Sitter vacua of the theory (1.22), as well to ensure
that the bulk geometry is smooth as the corresponding cycles shrinks to zero size (S*
for TypeA, and TypeAy, and S? for TypeB vacua).

e TypeA; vacua enjoy unbroken chiral symmetry; appendix B.1.1 presents the UV and
IR asymptotics in FG frame obtained in [31] and translates the coefficients governing
the expansion to those used for the characterization of TypeA;, vacua, see (B.47)—
(B.51).

e Appendix B.2 establishes the map between EF and FG frame description for each
type of the vacua: TypeAs, TypeA and TypeB.

e In the limit H — 0, TypeB vacuum in FG frame represents the extremal KS solu-
tion [2]. We use this limit in appendix B.3 to related the strong coupling scale A of
the cascading gauge theory to the complex structure conifold deformation parameter
€ used in [2], see (B.80).

e Appendix C covers numerical procedures for construction of FG frame dual back-
grounds (see C.1) and EF frame dual backgrounds (see C.2). We introduce three
different computational schemes — Schemel, Schemell and Schemelll (C.6) — ex-
plain how they are related and outline their computational advantages in accessing
different regions of the parameter space of the model. We introduce the AH location
function L4 (C.8), used to identify the apparent horizon.

e Appendix D presents technical details for construction of TypeA; de Sitter vacua in
computational scheme Schemell in the conformal limit, i.e., b — 0.

5Developing the precise holographic dictionary between these normalizable coefficients and the corre-
sponding expectation values, while interesting, is not important for the results presented, and thus is outside
the scope of the paper.
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e Appendix E collects the expression for the Kretschmann scalar (E.1) of the back-
ground geometry (2.13). It is used to test the validity of the supergravity approxi-
mation.

e Appendix F contains equations of motion and the asymptotic expansions for the chiral
symmetry breaking perturbations about FG frame TypeA; de Sitter vacua with ex-
plicit symmetry breaking parameter — the gaugino mass term. These perturbations
are used to identify TypeA, vacua “close” to TypeA; vacua.

3 Apparent horizon in de Sitter evolution of the cascading gauge theory

16 in holographic dual is crucial for identifying the attractor vacuum

Apparent horizon
for the evolution of generic homogeneous and isotropic states of the cascading gauge the-
ory in de Sitter: given competing trajectories for the evolution, dynamics proceeds along
trajectory resulting in the maximum entropy at late times. We identify AH directly in
ten-dimensional EF frame gravitational dual in section 3.1. We reproduce the same result
in EF gravitational dual of the effective five-dimensional description in section 3.2. Both
in ten-dimensions and upon Kaluza-Klein reduction to five dimensions the area of the AH
stays the same. In section 3.3 we use equations of motion (A.3)—(A.13) to prove that the
area of the AH is nondecreasing upon evolution. We identify the (dynamical) area density

of the AH Ajo(t) with the dynamical entropy density s of the boundary gauge theory as

A 47
3. _ ,3Ht _ 0
a’s =e’"ls(t) = 1Gry @0 (a) A1o(t), (3.1)

H

where a = e'! is the boundary spatial metric scale factor, see (1.17). The entanglement

entropy Sent is related to the late-time limit of s as

. 1 d 35\ _
e (a%) =3H xR, (3.2)
lim s(t) = Sent = H3R,
t—o0

where R is the comoving entropy production rate in de Sitter vacuum first introduced
in [19]. Finally, in section 3.4 we show that

R =0 — Sent =0. (3.3)
TypeB TypeB
3.1 AH in ten dimensions

The apparent horizon of the bulk gravitational dual to the cascading gauge theory dynamics
in de Sitter is located at the radius r = ray where the expansion 8 of a congruence of
outward pointing null vectors vanishes (i.e., it stops expanding outwards). Working in

1611 general AH is observer dependent. It is natural to define AH with respect to an observer reflecting the
symmetries of the spatial slices — homogeneity and isotropy in @ in (2.14), see [25]. Such an identification
correctly reproduces the hydrodynamic limit [32] and can be proven to comply with the second law of
thermodynamics [19, 24], thus serving as a useful definition of the dynamical (nonequilibrium) entropy.
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the coordinates of equation (2.14), we characterize such a congruence with the null vector
k = 0 + A0Q,. The null vector k points toward the boundary of the space-time outside of
the initial black hole, and points inward inside the initial horizon.
Following [33], the expansion of a congruence of affine parameterized null vectors n is
given by
0 =V,n®. (3.4)

However, it turns out that & Vgk® = 0,A k%, ie., kisnot affine. To remedy this, we rescale
k by exp{ [ ;A d\}, where X is the parameter along which the congruence k evolves. This
ensures that the rescaled null vector satisfies the geodesic equation with A as an affine
parameter. Reference [33] then gives the expansion of k to be

0 = exp [ / 0, A d/\] (Vok® — 0, 4). (3.5)

Substituting in for V,k* computed in the metric (2.14)
1
v—9

We see that 6 = 0, when

Vak® = Oa (V—gk®) = 0, In (2*01Q303) + A 9, In (232, 0303) + 0,A.  (3.6)

O (20 Q303) + A 0, (Z219303) =0. (3.7)

T=TAH

Eq. (3.7) determines the location of the AH, i.e., rag = rapg(t). The area density of the
AH AlO is

Ao = 2300302 / g5 AN g3 AgiAgr A gs = 64m° %30 Q303 , (3.8)
T=TAH T=TAH
leading to (see (3.1))
6473 1
3Ht 3 2092 3 292
= 3201050 = —— 108%°Q1 0502 3.9
S 1G1o 1382343 R TeR 1342343 i (3.9)

3.2 AH in Kaluza-Klein reduction to five dimensions

We would like to reproduce (3.7) and (3.9) from the five-dimensional perspective.
While the effective action (2.1) is five dimensional, the metric frame used is not Ein-
stein:

108
~ 167Gs

This can be fixed with a simple conformal rescaling: introducing

; / volug, Q10202 x {R5 +} (3.10)
Ms

d3? = Gudytdy” = Q3 dst = Q108 g dyrdy”,  Q° = 00202, (3.11)

and defining
- Gs
=2 A2
G5 108 ) (3 )
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the effective action S5 in (3.10) has now a standard Einstein-Hilbert term with respect to g

1 — N
= - vol X SRs+--- 3. 3.13
= o /M5 ws < Bt (3.13)

The new EF frame (compare with (2.14)) becomes

ds? = 0193\ 2dt (dr — A dt) + 22 de] = 2dtdi — 2A0'3 di? + Q1O3%? da? (314

di = Q3 dr |

where the second equality defines a new radial coordinate 7. The congruence of null
geodesics is now characterized with

k=0, + AQ'Y3 5, (3.15)
so that
WPV ke = 05 (A910/3) ke (3.16)
Since
V—g =093, (3.17)
we have

Vak® = 0y In (Q757) + Q' 91 (°57) + 0, (4010 . (3.18)

For the expansion  of the congruence of affine parameterized null vectors we have (compare
with (3.5))

0 o <@a12:a s (A910/3)) — 9 In (PP + AQ!%3 9, 1n (Q°%)
(3.19)
=0, In (2°2%) + A 9, In (°L%) = 9, In (2 Q303) + A 9, In (2°210503) |

where in the second line we used the definition of 7 (3.14) and € (3.11). Note that = 0
in (3.19) is equivalent to # = 0 reproducing (3.7).
The five dimensional area density Aj of the AH in (3.14) is given by

3
As = (95/32> = 30,0202 , (3.20)
T=TrAH r=TrAH
leading to the dynamical entropy density
1
ity _ As 1 108230, 0303 : (3.21)
4G5 4G5 T=TAH

reproducing (3.9).
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3.3 Area theorem for the AH

Following [19] and using the equations of motion (A.3)—(A.13) we prove now that the
dynamical entropy density s defined as in (3.21) grows with time ¢, i.e.,

dAs  d

A5 4 [ 2002
dt — dt (E e

> > 0. (3.22)
r=TrAH

Note that the AH location is determined from (see (3.19))

0=d, (230:9303) = 0,(Z3 0302) + A 0,(230,0302) (3.23)

r=TrAH T=TAH

Taking % we have
d
0= (at(z?’szmg@g) + A a,,(2391(2§9§)>

dr (3.24)

- {at + df‘;H X ar} <at(z391939§) +A 8T(E3(21S2§Q§)> ,

T=TAH

which is used to algebraically solve for de*;H . The latter expression is then substituted
_ T=TAH
in
dA d
=20 = {at 4 AR ar} 30,0302 (3.25)
dt dt r—ran

We use equations of motion (A.3)—(A.13) to eliminate all second order derivative in (3.25);
we further eliminate 9;% using (3.23) to arrive at

dAs  8,(TP00202) ,
_ ( F , 3.26
dt 0, (dy (330202 (3:26)

T=TAH

where F? is manifestly positive

23
T 259202020, 2P?

F? X (Q% (8(d+K2)ZQ§Q§g3P4 + 1296(d 1 g)* Q3043 P?

2d,Q  d Q3>
3.27
0 93> (3.27)

deQy  diQ\?  [(de diQ3\? 3(dis)?
+<Q1+Q2)+Q1+Q3 + Q% .

+9(dy K3)*Q3g + 9(d+Kl)QQ§g> + 17280203504 g P2 <<

Constraint (A.12) can be integrated (once) to obtain

0, (Z2Q:10303) = 23010303 / dr M?
MQ — 2(81“92)2 2(81“93)2 (87“91)2 3(87‘2)2 (arg)Q gPQ(aTK2)2

02 02 02 2 242 3240203

(0, K3)? (0, K1)
288gP%Q);  288gP2Q)3

(3.28)
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which implies that

Oy (Z310303) >0, (3.29)

provided the integral in (3.28) is convergent and ¥30,Q303 > 0.
Note that (see appendix B.2)

lim dy (B*Q10503) = lim A9, (2°Q10503)

=00

1 o p5/4 ,;1/2 ;
= lir% SYRVEY) X (—,02)8,, h_3/4p_3 exp(3H/ h1/2(s)ds) X # (3.30)
p— '
N 0 —
Y r = 010202

1
= lim (72/)4 + subleading) — 400,

where we transformed first to FG frame and used the boundary asymptotic expan-
sions (B.17)—(B.20). Thus,

dy (2200303) >0,  r>rap = 0 (dy (Z200303)) >0, (3.31)

T=TAH

since the quantity dy (2391039?)’) changes sign at r = rapg, see (3.23). Combin-
ing (3.26), (3.29) and (3.31) we arrive at (3.22).
For future reference we present the expressions for the location of the AH and the en-

tanglement entropy density in de Sitter vacua. Using (A.14) and (A.15) we find from (3.23)
and (3.9)

d
AH location : <3H 03w22/2wa2wbg + ad{03w012/2wa2(,Ub2}) =0;
' A (3.32)
_ b5
vacum entanglement entropy : Sent = E 0 W5 Wa2Wp2
5 T=TAH

3.4 Entanglement entropy of TypeB de Sitter vacua

We demonstrate here that entanglement entropy of TypeB de Sitter vacuum vanishes —
this implies that the corresponding comoving entropy production rate vanishes. de Sitter
comoving entropy production rate vanishes in conformal field theories as well [20]. In
CF'Ts the reason is simple: de Sitter vacuum is a conformal transformation of a thermal
equilibrium state and entropy production is invariant under conformal transformations [19].
We do not understand the physical reason why the same is true for a de Sitter vacuum in
nonconformal gauge theory (TypeB vacuum in the cascading gauge theory).
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Using the asymptotic expansion (B.67) (recall that z = —r (B.56)) we find for (3.32)

3/2
AH location : %(hg)?’/‘*(fcﬁo)?’/?(sg)?’ r <1 + 3H(hM)Y?r + O(r2)> =0
T=TAH
= rag =0;
L 3% hs/ay ph 320 3 2 3
vacum entanglement entropy : Sent = Ten T(hO) / (fa0) / (sg)” 4+ O(r°)
5 T=TAH
= Sems ~0. (3.33)

TypeB

The result (3.33) stands as long as vacua TypeB exist — we find in section 6.2 that this is
true provided H < HB_ | see (1.33).

max?

4 TypeA; de Sitter vacua

TypeA; vacua in FG frame were discussed in details in [31]. As emphasized in [19] and [20]
this is not enough to access vacuum entanglement entropy — one needs the holographic
construction in EF frame. In section 4.1 we present numerical results for TypeA vacua for
generic values of IK—;, in particular the results for the entanglement entropy, see figure 6.
We discuss TypeA; in the conformal limit A < H in section 4.2. In section 4.3 we estimate
HS

5 (see (1.25)) below which TypeA vacua construction in type IIB supergravity becomes

unreliable. We identify the source of breaking of the supergravity approximation.

4.1 Numerical results: TypeA,

To begin, we numerically construct TypeA; de Sitter vacua in FG frame (2.12). This
involves solving ODEs (B.3)—(B.11) in the chirally symmetric limit (B.38), subject to UV
asymptotics (the radial coordinate p — 0) (B.39)—(B.43) and IR asymptotics (the radial
coordinate p — +00) (B.45). There are 8 second order equations (B.3)—(B.10) and 1 first
order equation (B.11). Imposing the chirally symmetric limit (B.38), this set of coupled
ODE:s is reduced to 5 second order equations for the three metric warp factors fo = f., f3 =
fa = f» and h, the single 3-form flux function K = K; = K3 (K3 = 1 in the chiral limit)
and the string coupling g. The first order equation (B.11) involves (linearly) f} and can
be used instead of one of the second order equations (namely, the one involving f5). Thus,
altogether we have a coupled system of 4 second order ODEs (linear in {f,h", K", ¢"})
and a single first order equation (linear in f}). As a result, a unique solution must be
characterized by 9 = 2 x 4 + 1 parameters; these are the UV /IR parameters

UV {f210, 940, f240, f260, f2s0}:
h h ho h
IR : {f2,07 f3,0’ Ky, 90}-
The external parameters { P, K¢, H, gs} (the gauge group rank difference M of the cascading

gauge theory (2.7), its strong coupling scale A (B.26), the Hubble constant (1.17), the
renormalization group flow invariant sum of the gauge couplings (1.4)) labeling the vacuum

(4.1)

are fixed with the choice of the computational scheme (C.6). Of cause, as emphasized in
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Figure 1. Infrared parameters { fgh;o, fgh 0> RS , 90} of the Fefferman-Graham coordinate frame of

TypeA; de Sitter vacua of the cascading gauge theory as functions of In IX—; in different computa-
tional schemes (C.6): Schemel (blue), Schemell (red) and Scheme IIT (green).

appendix C.1, the results must not depend on which computational scheme is adopted. We
illustrate now that this is indeed the case using the IR parameters in (4.1) as an example.!”
Comparison of the different computational schemes is done using dimensionless and rescaled
quantities: In f{—; (as a vacuum label) (C.2) and {f2h,3,07 Kl g} (C.4). Explicitly:

H? . . X
Schemel = In G = ks f230 = f230 Ky =Kg, g5=90;
H? 1 A 1 . 1 R
Schemell : lnng—i—lnb, f2h’3’0:7b1/2f2h’3’07 KS:EKSL, gh=gl, (42
Schemelll : IH—Q—E ] oL Kh— Kh sho_
chemelll : nA2 = 4+ no, f2,3,0— a1/2f2’3’0’ 0 = Ky, do = 9o -

Following (4.2), we collect (subset of the) results of { féﬁo, fgo, Kg, gt} as functions of
In %22 in different computational schemes in figure 1: Schemel (blue curves), Schemell (red
curves) and Scheme III (green curves). The accuracy of the collapsed results in different
schemes is highlighted in figure 2 for f£0 — the remaining parameters follow the same trend.

Next, FG frame TypeA; de Sitter vacua have to be reinterpreted in EF frame, see
appendix B.2. The diffeomorphism transformation is performed at the radial location

{FG: ;Ey:()} — {EF: rE—z:O}. (4.3)

"The same is true for the UV parameters as well.
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-1.x10° |-

-2.x10° |-

-3.x10° |-

-4.x10°

Figure 2. Left panel: comparison of fﬁ’.[ , (the computational scheme SchemelII) with le,o (the com-
putational scheme Schemel). Right panel: comparison of fgho (the computational scheme Schemell)

with f2h,0 (the computational scheme Schemel).

"
: ; : : 5 In i

Figure 3. Parameters 8 of TypeA, de Sitter vacua of the cascading gauge theory as functions
of In f\l—j in different computational schemes (C.6): Schemel (blue), Schemell (red) and Scheme III

(green).

Details of numerical construction of EF frame vacua from FG frame vacua are collected in
appendix C.2. An important quantity is the parameter s?, see (2.13),

FG frame EF frame

(4.4)

2=0

As with FG frame UV/IR parameters (4.1), results for s} should not depend on the choice
of the computational scheme, provided we compare properly dimensionless and rescaled

quantities, i.e., In ’X—; and §6‘ (C.15),

2
Schemel : In e ks, §6‘ = 56‘;
H? 1 R 1
Schemell : In— = & +1nb, gh = bﬂsg; (4.5)
H? 1 - 1,
Schemelll : lnp =1 +Ina, 5 = mso .

Following (4.5), we collect (subset of the) results of 3% as functions of In IX—; in different
computational schemes in figure 3: Schemel (blue curve), Schemell (red curve) and Scheme
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Figure 4. Left panel: comparison of 5/ (the computational scheme Schemelll) with 5! (the com-

putational scheme Schemel). Right panel: comparison of 5 (the computational scheme Schemell)
with 3! (the computational scheme Schemel).

LAH

Figure 5. Apparent horizon location function £ 4 (z) in computational scheme Schemel at ks = 0,
ie., at H = A, see (C.8). The red dot is Lax(0), see (C.9). Notice that L', ;(0) < 0, see (C.10).
The vertical green dashed line is the first zero of Lap(2): zag = 0.163346.

IIT (green curve). The accuracy of the collapsed results in different schemes is highlighted
in figure 4.

EF frame equations of motion (A.17)—(A.25) are solved subject to the initial conditions
set by the asymptotic expansions (B.57) at z = 0. These equations have to be integrated
on the interval

z€[0,zam], (4.6)

where zap = —rap is the location of the apparent horizon at asymptotically late times,
see (3.32). To determine the location of the apparent horizon, along with integrating
the gravitational background functions {a, o, weo, wa2, K1, g} (remember that wyy = wea,
K3 = K; and Ky = 1 when the chiral symmetry is unbroken), we evaluate the AH location
function L4 (z), see (C.8). AH is located at the first zero of this function for z > 0. A
typical profile of the AH location function is shown in figure 5. Once the AH is identified,
TypeAg vacua entanglement entropy is computed following (3.32):

H*P'g? {&3 1/2.2 }

Sent = T W,h Who , (4.7)

Z=ZAH

where following (C.1) we introduced dimensionless and rescaled functions and the radial
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-0.6 -0.4 70‘42 04‘2 0‘.4 ln
Figure 6. Left panel: entanglement entropy Sent (4.9) of TypeAg de Sitter vacua of the cascad-
ing gauge theory as functions of In IK—; in different computational schemes (C.6): Schemel (blue),
Schemell (red) and Scheme IIT (green). Right panel: entanglement entropy 8ens (4.9) for small
values of 5\1—22 — at the limit of validity of the supergravity approximation, see section 4.3.

coordinate:
{Zaaaaaw027wa27Klag} = {2,&,&,@62,(,&@2,1%1,@;
z=HPgl/? z, a=H?Pgl?a, o=HPY?¢/ 5, (4.8)
We2,a2 = P.g;/2 ch,aQa K, = P2gs f{ly g=gs g

In the last equality in (4.7) we used expressions for G5 (2.8) and P (2.7). We compute
entanglement entropy in different computational schemes; results must agree, provided we
compare dimensionless and rescaled quantities,

Sent = H3P1g? Sons . (4.9)
Explicitly,
2
Schemel : In Az ks, Sent = Sent ;
H? 1 1
Schemell : In e +1nb, Sent = 32 Sent (4.10)
H? 1 . 1
Schemelll : In o1 +Ina, Sent = Wsent'

Following (4.10), we collect (subset of the) results of (4G5 Sent) as functions of In IX—; in
different computational schemes in figure 6: Schemel (blue curves), Schemell (red curves)
and Scheme III (green curves). The accuracy of the collapsed results in different schemes
is highlighted in figure 7.

4.2 TypeA; de Sitter vacua in the conformal limit

The cascading gauge theory is not conformal — it has a strong coupling scale A. Thermal
states of the cascading gauge theory in Minkowski space-time at temperature T > A enjoy
conformal equation of state, £ = 3P, up to O (W) corrections, see [12]. On the gravity
side the conformal limit is realized as P — 0 (or Klebanov-Witten [3]) limit. We show here

that exactly the same limit on the gravity side of TypeAs de Sitter vacua captures the
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Figure 7. Left panel: comparison of 5.,,; (the computational scheme SchemellIl) with §ep¢ (the com-
putational scheme Schemel). Right panel: comparison of S, (the computational scheme SchemelT)
with Sent (the computational scheme Schemel).

H > A limit of the cascading gauge theory, resulting in de Sitter vacuum entanglement
entropy density (1.24), vanishing, as appropriate, for the conformal gauge theory [19, 20].

To study the conformal limit it is convenient to use the computational scheme Schemell
(see (C.6)), i.e., we use the symmetry transformations SFG2-SFG4 of (B.13)—(B.15) to set
H = g, = Ko = 1 and allow b = P? to vary. The FG frame equations of motion (B.3)-
(B.11) describing TypeA; vacua (see also (B.38)) can be solved perturbatively as a series
expansion in b:

fa=(1+p) (1+Zb fan(p ) f3=(1+p) (HZb Fanlp ) (4.11)
1 n 7 = n
h:m <1+nzlb hn(p)>, K=1+nzlb kn(p) , g=1+nzlb 9n(p)

Explicit equations for { fon, f3n, hn, kn, gn} for n = 1,2 along with the UV /IR asymptotics
are presented in appendix D.1. Numerically solving these equations we find perturbative
in b predictions for the UV/IR parameters (4.1). As explained in appendix C.2 we also
need the FG frame parameter sf, see (B.68). Given (4.11) we find from (C.15)

b [ h B 8(1 + s)hg — (1 + 25)h?
h 1 3
=Vv2(1+- d d b
50 f( —1—4/0 s 1+S+32 s 112 + O( )>

(4.12)
= f2<1 + 50 b+ s(y U7 + (9(63)> :
Using results of appendix 4.2 we evaluate the integrals in (4.12) to find
sy = 0.828534,  s(, = —0.284396. (4.13)

Figures 8-9 present comparison of the results for the IR parameters { fél,o , f?ffo, Kb, gty
and s{ in the computational Schemell (blues curves), and independent perturbative O(b)
(red curves) and O(b?) (green curves) computations. The agreement is excellent.
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Figure 8. Infrared parameters {f5, {0, K, g4} in the conformal limit b — 0. Blue curves:
results in computational scheme Schemell; red curves: perturbative approximation to order O(b);
green curves: perturbative approximation to order O(b?); see (D.11) with (D.17).
h
S0
2‘6f

24 -

22f

Figure 9. Infrared parameter 38 in the conformal limit b — 0. Blue curve: results in computational
scheme Schemell; red curve: perturbative approximation to order O(b); green curve: perturbative
approximation to order O(b?); see (4.12) with (4.13).

Following appendix B.2 we convert perturbative FG frame construction (4.11) to EF
frame:

a=—z(1-2) <1+§:1b” an(z)>, o=v2(1-2) <1+§:1b" sn(z)>,

1 =N 1 — 1
We2 = 5 <1 +> b wc2n(z)> ; Wa2 = 5 (1 + Z_:lb wa2n(z)> ; (4.14)

n=1
K=1+) b"kn(2), g=1+> V" gn(2).
n=1 n=1
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Explicit equations for {an, Sn,vn = Wean + 4Wa2n, Wa2n, kn, gn} for n = 1,2 along with
the initial conditions are presented in appendix D.2. The equations for k1 and g; ((D.18)
and (D.23) correspondingly) can be solved analytically; in fact the solutions are just the
FG — EF frame transformations of (D.13) and (D.15):

22—z41 1 1623 — 2422 + 62+ 1

z
kp="—"—" —— —4In2 t 4.15
YT a(z-1) 4 new 423/2(1 — 2)3/2 e Vi, (4.15)
1324 — 262% + 2922 — 162 + 1 N 13 22 — 1 . z
= — - — arctan 4 / ——
o 3222(1 — )2 32 1625/2(1 — 2)5/2 1-2
1222 — 122 — 1 5 z
- = " arct : 4.16
32:5(z — 18 O T (4.16)

We will show now that the location of the AH z4p, as determined from the zero of
the AH location function Lag (C.8), is

124 =0 (b1/4> , (4.17)

and can be determined analytically (in perturbative expansion in b) as it is controlled
by the singularities of the EOMs (D.19)—(D.22) and (D.25)-(D.29) as u = 1 — z — 04,
provided we use (4.15) and (4.16). From (4.15), (4.16):

m 15 ™ s 15w

_ T =32 _ 19T _—1/2 0/2 __ T _
hi=—gu et HOWT, g =—pogu 128

leading to'® (from direct asymptotic analysis of (D.19)-(D.22) and (D.25)-(D.29))

+Ow™3?), (4.18)

3m% _,  blx?

2 1 2
uB a0 ), a S s 10T

u 24+ 0wW™3?),

T Ta56" T 256 T 1024 1024 (4.19)
m° -3 337 _2+(’)( —3/2) w° —34_9772 _2+O( —3/2) .
S1=—UuU — U u w, = ——— U —U u
D) 256 ’ @2l 956 256 ’
3573 298573
ko — -9/2 =7/2 L (4~ 6/2
27 49152 smozre” oW,
237t 4 57lmt g o
- -6 _ -5 L oW 2
%= 39316 530 O
217 109774
Vg = LI T+ Ou™?),
137 6, 7517 5 4 O
a4 = —————u —u U
2 1310720 2621440 ’
53rt 4 1437t
e - - 10) -9/2
2= “gema0” oot TOWTT)
17t g 25997t
= -6 _ 4L OwW ).
Waz2 = Zeermt T gag370 T O )
In fact, from the general structure of the perturbative equations we expect
by = O(u™3"13/2) | {a,s,v,Wa2, g}n = O(W™>"), (4.21)

18Subleading terms depend on coefficients that have to be determined numerically.
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Figure 10. Location of the apparent horizon z4 g (left panel) and the entanglement entropy Sent
(right panel) of TypeA; de Sitter vacua in the conformal limit & — 0. Blue curves: results in
computational scheme Schemell; red curves: leading perturbative approximation; green curves:
next-to-leading perturbative approximation, see (4.24) and (4.25).

so that

bk = O3 b {a, 8,0, W02, 9 n

u=uag=0(bl/4)

= O™y,

u=uag=0(bl/4)

(4.22)
rendering successive higher order perturbative corrections in (4.14) at z = z 4 small despite
the singular behavior of {a,, $n, Wean, Wa2n, kn, gn} in this limit. '

Given (4.19) and (4.20) we find from (C.8):

2 2
CAH(uzl—z):;u3(u+b< 3m7 3T _2+(’)(u_3/2))

T1024" 64" (123)
52 (0.4 30T s o)) Lo (5 u) |
3932160 ’
so that the first zero of the apparent horizon location function occurs at
1 1
1 —zag = uag = g31/4(27r)1/2 b'/4 (1 + 631/4(27r)1/2 bt/ 0(b1/2)> : (4.24)

From (3.32) we find perturbative predictions in the conformal limit for the TypeA; de
Sitter vacua entanglement entropy:

4G5 Sent = L33/4(27r)3/2 b3/ <1 + 131/4(27r)1/2 bl/4 4 O(b1/2)> : (4.25)
1024 2

In figure 10 we compare numerical results for z4g and sent in computational scheme

Schemell (blue curves) with the perturbative predictions (4.24) and (4.25) at leading (red

curves) and next-to-leading (green curves) orders in the conformal limit: b — 0. Restoring

dimensional parameters, from (4.25),

2\ —3/4
x H? <ln A2> as  H>A. (4.26)
TypeA,

Sent

!9This is similar to the behavior of the phenomenological model [24] in the conformal limit.
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Figure 11. Left panel: Kretschmann scalar of (2.13) evaluated at the apparent horizon as functions
of In IX—; in different computation schemes (C.6): Schemel (blue), Schemell (red) and Scheme III
(green). Right panel: we use order-3 polynomial fit (orange dashed curve) and order-4 polynomial
fit (black dashed curve) to ﬁ, see (4.29).
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Figure 12. The curvature growth at the apparent horizon of the TypeA, de Sitter vacua gravi-
tational dual for small 5\1—22 is due to collapsing the compact manifold: the size of deformed T,
see (4.31) (left panel). Right panel: the 71! deformation parameter d71.1, see (4.32). Results are
presented in different computation schemes (C.6): Schemel (blue), Schemell (red) and Scheme III

(green).

4.3 Validity of supergravity approximation for TypeA; vacua

Results for the entanglement entropy sent of TypeAs de Sitter vacua of the cascading gauge
theory are presented in section 4.1, see figure 6. Notice that it is a monotonically decreasing
function of IZ—; We have been able to obtain reliable numerical results for

H2
1nF > —0.59 — 4G5 8ent = 4.1 x 1074, (4.27)

Besides numerical (technical) difficulties associated with construction of these vacua, there
are conceptual ones, associated with the breakdown of the supergravity approximation
— the effective action (2.1) becomes less reliable as the background space-time curvature
of (2.13) grows. In figure 11 (left panel) we present the Kretschmann scalar of (2.13)
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evaluated at the apparent horizon in different computations schemes, see appendix E:

H? .

Schemel : lnﬁzks, K=K,
H? 1 A

Schemell : mF:anb, K =bK; (4.28)
H? 1 .

Schemelll : lnﬁzz—i—lna, K=K.

Notice the fast growth of K g for small values of IX—; — in figure 11 (right panel) we fit
the values of % with order-3 (orange dashed curve) and order-4 (black dashed curve)
AH
polynomials. The fits suggest that the curvature is divergent at
H? H?
In — ~—064, In-—— ~ —0.72. (4.29)
A2 2
orange fit black fit

We take (4.29) as an indication that TypeA, vacua do not exist?" for

HS. 2
ln(Am;n) < 08 — s S 07A. (4.30)

In figure 12 (left panel) we identify the rapid curvature growth with the fact that the size
of (deformed) T, R2T1,1, evaluated at the apparent horizon

= Pgy/?
AH

, (4.31)
AH

2 —
RTM = Wqa2

becomes vanishingly small in string units, P oc Mo’ = M (2. Note that in the limit R?FLI —
0 TypeA; vacua entanglement entropy vanishes, see (4.7). Right panel shows the deforma-
tion parameter dp1.1 of the TH1: the size of the U(1) fiber compare to the S? x S? base,

2

~2
Wea

:1_wc2

AH Wa2

Spia=1-— (4.32)

Wao AH

5 TypeA, de Sitter vacua

TypeA, vacua have the same topology in Euclidean FG frame as TypeAg vacua (1.22);
they differ in global symmetry: TypeA; vacua have unbroken U(1) chiral symmetry (in the
supergravity approximation), while the latter symmetry is broken spontaneously to Zs in
TypeAy vacua. The following table highlights the differences between the dual backgrounds
in FG frame and EF frame:

Unlike TypeA, vacua, TypeA, vacua have never been constructed in the literature
before — morally, they are similar to Klebanov-Strassler black holes, constructed only
recently [14]. We begin in section 5.1 with perturbative construction of TypeA, vacua.
Specifically, we study static linearized perturbations about TypeAs vacua responsible for
the chiral symmetry breaking U(1) — Zy. The symmetry breaking is associated with three

20Tt would be interesting to rigorously establish this.
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chiral symmetry | FG frame (2.12) | EF frame (2.13) fluxes (2.11)
TypeAs U(l) fa = fb Wa2 = WhH2 K1 = Kg & K2 =1
TypeAy Ly Ja 7# Jo Wa2 7 Wh2 Ky # K3 & Ky # 1

Table 1. TypeA de Sitter vacua with broken/unbroken (5 / 5) chiral symmetry.

operators (9?:1’2 and Oy (see section 2) developing nonzero expectation values. We break
the chiral symmetry explicitly, by turning on a non-normalizable component for one of the
dim-3 operators®! (a mass term for one of the gaugino bilinears). We vary IK—; keeping the
gaugino mass parameter fixed and nonzero — the signature of the spontaneous chiral sym-
metry breaking is the divergence of all the condensates OF =12 and O; for a particular value
of IZ—;, see figure 13. Once the bifurcation point of TypeA; vacua off TypeA; vacua is iden-
tified as a function of IK—;, we construct fully nonlinear solution with spontaneous symmetry
breaking slowing increasing the amplitudes of the symmetry breaking expectation values,
using the linearized solution as a seed. Numerical results for TypeA; vacua are presented in

section 5.2, in particular the results for the entanglement entropy sent compare to the
TypeA,

entanglement entropy Sent at corresponding values of IZ—; are presented in figure 21.
TypeA,
Validity of supergravity approximation for TypeA; vacua is a subject of section 5.3.

5.1 TypeA;, vacua from perturbative chiral symmetry breaking of TypeA;
vacua

We will use computational scheme Schemel (C.6). Consider static, linearized chiral sym-
metry breaking fluctuation about TypeA; in FG frame, see table 1:

fa=fs+6f, fo=f3—=0f, Ki =K+ 6k, Ko =14 0ky, K1 = K — 6k, (5.1)

with the remaining metric functions and the string coupling as in TypeAg vacua, i.e.,
{fe = f2,h,g}. It is straightforward to verify that truncation to {0f,dk1 2} is consistent
(at the linearized level). Equations of motion for the fluctuations and their asymptotic
expansions in the UV (p — 0) and the IR (y = %) are collected in appendix F. Once the non-
normalizable coefficient (the explicit chiral symmetry breaking parameter, i.e., the gaugino

mass term) is fixed to d f1 90 = 1, the expansions are characterized by 6 UV/IR parameters

UV: {0f3,0, 6k130,0f70};

(5.2)
IR:  {ofl, okiy, 0kb,},

which is the correct number of parameters to find a unique solution of 3 second-order differ-
ential equations (F.1)—(F.3) for {df, dk1 2} on the TypeA background parameterized by k.

In figure 13 we assemble results for the fluctuation parameters (5.2) as ks label of
TypeAg vacua is varied. A signature of the spontaneous symmetry breaking is the diver-
gence of all the parameters, once the scale of the explicit chiral symmetry breaking, i.e.,

*'This was discussed earlier in [13].
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fluctuations over TypeA; vacua parameterized by ks, evaluated at fixed explicit chiral symmetry
breaking scale § f1 o = 1, diverge at k¢t (5.3), indicated by a vertical red dashed line. k<t identifies
the bifurcation point of spontaneous symmetry broken TypeA, de Sitter vacua off chirally symmetric
TypeA, de Sitter vacua parameterized by In 5\1—22
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Figure 14. Sample susceptibilities, see (5.5), of the linearized chiral symmetry breaking fluctua-
tions. The red dashed vertical line denotes kS, see (5.3).

the non-normalizable parameter 0 fi o, is kept fixed. This occurs at

(}¥gﬁn)2
A2

represented by vertical dashed red lines. We denote the critical value of H corresponding

f{b

min’

= kIt = —16363(2) —  H’. =092(1)A, (5.3)

In

to kSt as ngin — we will see in section 5.2 that TypeA; vacua exist only for H >
hence the name. The value of k' can be computed separately of each of the parameters
— the fractional differences are of order o< 1079, excepts for

crit
ks

Sfro 1

crit
ks

x 1074, (5.4)

3f3,0

To use the critical fluctuations as a seed for TypeA; vacua, we need to know the
‘susceptibilities’

h §kh. Okh
lim {5k1,3,0 dfro 0fy 1,0 2,0}' (55)

{Xkl’s’o’xﬁ’o R Xkﬁo’ng*o} - 6f30 " 0f30 0f30 dfs0 6f30

ks — kTt
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Figure 15. Sample of the UV parameters of TypeA;, de Sitter vacua constructed from the
‘seed’ (5.11). The linearized approximations in A are represented by dashed red lines.
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Figure 16. Sample of the IR parameters of TypeA; de Sitter vacua constructed from the
‘seed’ (5.11). The linearized approximations in A are represented by dashed red lines.

In figure 14 we present susceptibilities x, , , and x ¢» — notice that they are finite at k't
3 0
represented by vertical dashed red lines. The other susceptibilities are finite as well; we find:

Xk a0 = 0-8749(7), Xfr, = —0.2373(6), Xz = 5.230(0),

(5.6)
Xih, = 0.3034(2), Xih, = —18.12(6) .
Given (5.6), fully nonlinear TypeA; vacua, with ks close to k&, can be constructed
following the same procedure as the one employed in construction of Klebanov-Strassler
black hole in [14]. We highlight the main steps:

e We set ks = kSt and compute the corresponding TypeA, vacuum. This vacuum is
characterized by (see (B.44) and (B.46))

. __ p.crit _ _ crit crit crit crit crit \ .
UV {Ko=k", H=1,9s=1, f3N0, 950 > fa40> f36.0> 280}
IR : h,crit h,crit Kh,crit h,crit (57)
. {f270 » J3,0 ’ 0 ’ gO } .
Next, we use (B.47)—(B.51) to compute the corresponding
. s,crit s,crit s,crit s,crit s,crit s,crit s,crit s,crity |
Uv {fa,l,(] » Ja,3,0 0 k2,3,0 v 940 > Jea0 0 Ja60 0 Ja,7,0 0 Ja,80 55 (5 8)
h,s,crit h,s,crit h,s,crit h,s,crit h,s,crit h,s,crit h,s,crit :
IR : {fa,o ) fb,o J fc,o Ky Ky Kyt 90 }

We use superscript * to indicate that UV /IR parameters of TypeA; vacua (B.25)
and (B.30) are obtained from the critical TypeA, vacuum.

e Let’s denote the amplitude of the symmetry breaking condensate (see (5.1))

dfs0 = % (fa3.0 = fb30) = A (5.9)
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Then,

{5k1307 5f707 5f[) 5 5k10a 5k20} = {Xk130a Xf7()7th7th anh }+O()‘2)
(5.10)

e Using (5.1) and (F.4)—(F.6), (F.8), with § f10 = 0, in asymptotic expansions (B.17)—
(B.24) and (B.30) we find

ks =k 0N, faro=fT0 OO, faso=fr5n +A+O?),
S Tl 3 S Tl
k2,3,0 k2§()t A (1_2X’€1,3,0) +O<)‘2)7 ga,0 948 t+0()‘2)7

foan= 50 + O,

crit
o= £~ T2 (US4 180,00 #1267 -35) A+O0Y),

far0=FI50 X X g0+ O(N),
crit

i 2,1,0 i Ti i i
faso =150 — 1255 (550 —192(f5110)" = 720k 5.0 (F5110)” — 480(f511lo)*AE™

+ 36Xk, 50k 4+ 1184( f51170)% +3840x ;. o — 45Xk, 4.0 + 2304 5540 + 21k§rit> A

+0(N?),
fo:fh’s’cm-i-th A+O(NY), fbo*fhscnt_xf” A+OW),
fc() fh,s,cr1t+0(>\2) KlO_Khscrlt+Xk’L )\—G—O()\Q)

K3o= Kg’(f’cm R A0V, Kio= K?},Lég ot — Xkh, A+O(N?),
g =95 +O). (5.11)

e We construct fully nonlinear in A TypeA; vacua using the linearized approxima-
tion (5.11) as a seed. Select UV/IR parameters, along with the corresponding lin-
earized approximations (dashed red lines) are shown in figures 15-16.

5.2 Numerical results: TypeA,

Numerical construction of TypeA; vacua follows the steps of section 4.1. In FG frame,
there are 8 second order equations (B.3)—(B.10) and 1 first order equation (B.11). The
first order equation (B.11) involves (linearly) f. and can be used instead of one of the
second order equations (namely, the one involving f/). Thus, altogether we have a coupled
system of 7 second order ODEs (linear in {f/, f//,h", K}, K}, K%, ¢"}) and a single first
order equation (linear in f!). As a result, a unique solution must be characterized by
15 =2 x 7+ 1 parameters; these are the UV/IR parameters

Uv: {far0, fa3,05 k2,30, 94,05 fea05 fa6,05 fa7,0, faso}s

5.12)
h h h h (
IR : {f(ZO’ fb,Ov fc,Ov Kfoa K2,07 K3,o» gg}.
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Figure 17. Infrared parameters { ff,o - fbh,O’ K 1o} of the Fefferman-Graham coordinate frame of

TypeAy; de Sitter vacua of the cascading gauge theory as functions of In IK—; in different computa-
tional schemes (5.14): Schemel (blue), Schemell (red) and Scheme IIT (green).

It is rather challenging to find the solutions of the corresponding system of ODEs in 15-
dimensional parameter space by brute force — fortunately, we already know some solutions
which are close to k%'t see section 5.1.

As for the construction of TypeAg we use three different computation schemes, see
appendix C.1. There are some differences though: both in Schemell and Schemelll we use
as a pivot value??

K} =—0.161344 . (5.13)

Numerical results must not depend on which computational scheme is adopted. We il-
lustrate now that this is indeed the case using a sample of IR parameters in (5.12) as an
example.?® Comparison of the different computational schemes is done using dimensionless
and rescaled quantities: In 11—22 (as a vacuum label) (C.2) and {fé"hqo, K{L,Z?),Ov gty (C.4).
Explicitly:

2

th h h h ~h h
Schemel :  In IV ks, Jabeo = Tabeos Kios30=HK1230: 90 =290;
§ 0 ih L n >h Lo h h
Schemell : In-r7 = =% +Inb, fopc0=7nfapcor Kizzo=7Ki230. 90 =905
2
. 1 .
h h h h ~h h
Schemelll :  In VA Ki+Ina, fabeo= o2 fabeo: Kioszo=HKi230. 90 =200-
(5.14)

Following (5.14), we collect results of { ff,o — flffo, K fo} as functions of In f{—; in different
computational schemes in figure 17: Schemel (blue curves), Schemell (red curves) and
Scheme IIT (green curves). The accuracy of the collapsed results in different schemes is
highlighted in figure 18 for K fo — the remaining parameters follow the same trend. Notice
that TypeA; vacua exist only for H > ngin (5.3); furthermore, in the limit H — H? im0,

m

all the chiral symmetry breaking condensates (5.2) vanish as o (H — H?. )Y/, typical for

min
a spontaneous symmetry breaking with a mean-field exponent %

22 As will be clear from the presented results this is a convenient value.
23The same is true for the rest of IR parameters and the UV parameters as well.
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Figure 18. Left panel: comparison of /' (the computational scheme Schemelll) with IA({L,O
(the computational scheme Schemel). Right panel: comparison of K {”70 (the computational scheme
Schemell) with K I'o (the computational scheme Schemel).
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Figure 19. Parameters 5} of TypeA, de Sitter vacua of the cascading gauge theory as functions
2
of In £ in different computational schemes (5.14): Schemel (blue), Schemell (red) and Scheme III

(green).

Next, FG frame TypeA; de Sitter vacua have to be reinterpreted in EF frame, see
appendix B.2. The diffeomorphism transformation is performed at the radial location
as in (4.3). Details of numerical construction of EF frame vacua from FG frame vacua
are collected in appendix C.2. An important quantity is the parameter sg, see (2.13),
and (4.4). As with FG frame UV/IR parameters (5.12), results for s should not depend
on the choice of the computational scheme, provided we compare properly dimensionless
and rescaled quantities, i.e., In IZ—; and §3 (C.15),

2
Schemel : In Az ks, §6L = 53 ;
H? K} 1
Schemell : In e TO +Inb, &= ng; (5.15)
H? R 1
Schemelll : In i Kj+Ina, 36‘ = msg.

Following (5.15), we collect (subset of the) results of 8 as functions of In %22 in different
computational schemes in figure 19: Schemel (blue curves), Schemell (red curves) and
Scheme IIT (green curves). The accuracy of the collapsed results in different schemes is
highlighted in figure 20.
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Figure 20. Left panel: comparison of 5] (the computational scheme SchemelIl) with §(’} (the com-
putational scheme Schemel). Right panel: comparison of 5/ (the computational scheme Schemell)
with 5 (the computational scheme Schemel).

EF frame equations of motion (A.17)-(A.25) are solved subject to the initial conditions
set by the asymptotic expansions (B.58)—(B.66) at z = 0. These equations have to be
integrated on the interval

2 €0, zam], (5.16)

where za = —rapg is the location of the apparent horizon at asymptotically late times,
see (3.32). To determine the location of the apparent horizon, along with integrating the
gravitational background functions {a, o, wepc2, K123,9}, we evaluate the AH location
function Lap(z), see (C.8). AH is located at the first zero of this function for z > 0. Once
the AH is identified, TypeA;, vacua entanglement entropy is computed following (3.32):

H3P'g? {A3 ~1/2 . } - 735M4g§ 3 {&312);2/2%2@52}

0o 45" Waolps
4Gs 2 e P 2573
=<AH

. (5.17)

Z=ZAH

Sent =

where following (C.1) we introduced dimensionless and rescaled functions and the radial

coordinate:
{z, a, 0, wa2p2.2, K123, 9} = {2, 4,0, 0upe, K23, §};
z=HPgl/? 3, a=H*Pg!/? a, o=HPY?gl/* ¢ (5.18)
1/2 ~ 2 7 - .
Wa2,b2,c2 = Pgl/ Wa2,b2,c2 5 Ki3=Pgs K13, Ky = Ko, 9g=9s G-

In the last equality in (5.17) we used expressions for G5 (2.8) and P (2.7). We compute
entanglement entropy in different computational schemes; results must agree, provided we
compare dimensionless and rescaled quantities, see (4.9). Explicitly,

H2
SChemeI : In F = ks y §ent = Sent »
H? K} 1
Schemell : In i TO +1Inb, Sent = 53 Sent (5.19)
H? . R 1
Schemelll : In i Ki+Ina, Sent = msent .
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Figure 21. Entanglement entropy 8ens (4.9) of TypeA; (black curve) and TypeA, (different com-

putational schemes (5.19): Schemel (blue), Schemell (red) and Scheme III (green)) de Sitter vacua
2
of the cascading gauge theory as functions of In % Dashed vertical magenta lines indicate the

range of the Hubble constant H such that sep > Sent , see (5.20).
TypeA, TypeA,
Sent/Sent — 1 A 2
uut/ ent nH—2 Sent/sent -1 i
01625 0120 ofe1s -0.159 -0.158 —0.15;1’l A/\T

-2.x10° -
-5.410°

-1.x107

-1.5x107

-8.x10° |-

Figure 22. Left panel: comparison of 5., (the computational scheme Schemelll) with S§ept
(the computational scheme Schemel). Right panel: comparison of $.,¢ (the computational scheme
Schemell) with Sen (the computational scheme Schemel).
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Figure 23. Kretschmann scalar of (2.13) evaluated at the apparent horizon as functions of In IX—;
for TypeA; vacua in different computation schemes (5.22): Schemel (blue), Schemell (red) and
Scheme III (green). The black curve is the Kretschmann scalar of (2.13) evaluated at the apparent
horizon as a function of In f{—; for TypeA, vacua. Vertical dashed magenta lines indicate the range
of dominance of TypeA, vacua over TypeAg, see (5.20).

Following (5.19), we collect (subset of the) results of (4G5 Sent) as functions of In %22 in
different computational schemes in figure 21: Schemel (blue curves), Schemell (red curves)
and Scheme III (green curves). Additionally, we replot the results for the entanglement
entropy of TypeA;, vacua (black curve). Figure 21 is the main result of the paper: it
demonstrates that the entanglement entropy of TypeA vacua is larger than that of TypeA;

vacua provided (the values H®. and Hp,., are denoted by vertical dashed magenta lines)

Hglin S H S Hmax; (520)
where ,
H’ . H,
—min _ ().92(1 X —0.92(5). 21
mn = 0.92(1), R = 0.92(5) (5.21)

This is an unexpected result, as it implies that SU(N) x SU(N + M) cascading gauge
theory with a strong coupling scale A undergoes spontaneous chiral symmetry breaking in
de Sitter space time with a Hubble constant H in the interval (5.20).

The accuracy of the collapsed results for TypeA; vacua in different schemes is high-
lighted in figure 22.

5.3 Validity of supergravity approximation for TypeA; vacua

In this section we briefly comment on the validity of the supergravity approximation in
construction of TypeA;, vacua. In figure 23 we present the Kretschmann scalar of (2.13)
evaluated at the apparent horizon in different computations schemes for the TypeAy vacua,

see appendix E:
H2

Schemel : lnpzks, K=K,
2 *
Schemell: In % = % +1Indb, K =0K,; (5.22)
H? R
Schemelll : lnp =Kj+ha, K=K.
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Vertical dashed magenta lines indicate the range of dominance of TypeA, vacua over
TypeAyg, see (5.20). Additionally, we replot the Kretschmann scalar of (2.13) evaluated at
the apparent horizon for TypeA; vacua (black curve). K4y is the same for TypeA; and
TypeAs vacua at H = H®. ; the former is about 13 times larger for TypeA, vacuum at
H = H,,,x and continues to increase as % increases. We do not study the breakdown of the
supergravity approximation for TypeA; vacua for H > Hypax, as these vacua are irrelevant.

6 TypeB de Sitter vacua

TypeB de Sitter vacua were studied previously in [31]. We showed in section 3.4 that the
entanglement entropy of these vacua vanishes. Thus, these vacua can arise as late-time
dynamical attractors of the cascading gauge theory in de Sitter only when neither TypeAq
nor TypeA, vacua exist (for the corresponding values %) Recall that TypeA; vacua exist
only for H > HS. (4.30), and TypeA, vacua exist only when H > H?. (5.21). In this
section we establish that TypeB vacua do exist for H < HE.  with HB > {HS.  Hb. 1,
see (1.33). In section 6.1 we present numerical results for TypeB vacua for generic values
of %22 In section 6.2 we estimate H2, above which TypeB vacua construction in type IIB
supergravity becomes unreliable/does not exist. We identify the source of breaking of the

supergravity approximation.

6.1 Numerical results: TypeB

To establish the existence of TypeB vacua it is sufficient to construct them in FG
frame (2.12). The construction follows the steps implemented for TypeAg vacua in sec-
tion 4.1. There are 8 second order equations (B.3)—(B.10) and 1 first order equation (B.11).
The first order equation (B.11) involves (linearly) f. and can be used instead of one of the
second order equations (namely, the one involving f/). Thus, altogether we have a cou-
pled system of 7 second order ODEs (linear in {f/, f{/,h", K{, Ky, K¥,¢"}) and a single
first order equation (linear in f/). As a result, a unique solution must be characterized by
15 =2 x 7+ 1 parameters; these are the UV /IR parameters

UV: {far0, fa3,05 k2,30, 94,05 fea05 fa6,05 fa7,0, faso}s

(6.1)
IR : {fc}zl,O’ hg? kf37 kg,Qﬂ kgAv kg,l ) gg} .

It is rather challenging to find the solutions of the corresponding system of ODEs in 15-
dimensional parameter space by brute force — fortunately, a special case of TypeB vacua,
namely, the limit H — 0, is the supersymmetric Minkowski space-time Klebanov-Strassler
solution [2], see appendix B.3. Using this extremal KS solution as a seed, we can construct
TypeB vacua turning on the deformation parameter a = H? in the ODEs (B.3)—(B.11).
To validate our results, we use two different computation schemes: Schemel and
Schemelll, see (C.6). Numerical results must not depend on which computational scheme
is adopted. We illustrate now that this is indeed the case using a sample of IR param-
eters in (6.1) as an example.?* Comparison of the different computational schemes is

24The same is true for the rest of IR parameters and the UV parameters as well.
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Figure 24. TypeB vacua IR parameters and select UV parameters (6.1) in computational
Schemelll as functions of o = H? (solid blue curves). Red dashed horizontal lines represent
comparison with extremal KS solution, see (6.3), at a = 0.

done using dimensionless and rescaled quantities: hﬂ%2 (as a vacuum label) (C.2) and

{fl, hf Kby, Ky, khy, KRy, gh} (C.5). Explicitly:

H? rh h 7h h 1h h  1h h  1h h
SChemeI: IHF:]CS, fa :fa, h :h , k173:k173, k272:k’2’2, k2’4:k2’4,
kY =k, =90
. H2_1 Ah_l h 3h_ _23h $h _ _3/21h
Schemelll: In A2 —4+lna, fo=—1, ho=a’hy, ki's=a’ k{5, (6.2)
a b b}
7.h h 7.h 21.h 7.h 21.h ~h h
k2,2:04k72,2, k?2,4:0¢ k2,4a k3,1: Y k3,1v 90 = Yo -

Figure 24 presents all the IR parameters and select UV parameters (fq 30 and k230),
see (6.1), of TypeB vacua in computational Schemelll as functions of a. Extremal KS
parameters are represented by dashed horizontal red lines and must agree with the corre-
sponding TypeB parameters at « = 0. While negative values of a are not physical, we run
numerical codes for o < 0 to extract more precisely this comparison at o = 0. Extremal
KS parameters in computational Schemelll can be determined from (B.78) and (B.79)
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Figure 25. Left panel: infrared parameter I%{Lg of the Fefferman-Graham coordinate frame of

TypeB de Sitter vacua of the cascading gauge theory as functions of In IX—; in different computational
schemes (6.2): Schemel (blue) and Scheme IIT (green). Right panel: comparison of (the

computational scheme SchemelIl) with fc{’3 (the computational scheme Schemel).

provided we set

5 4 2 1
K0:P2gs<ln3+ln2lne> = -
3 3 3 Schemelll
— (6.3)
. _ 2 gy 116
Schemelll
We find remarkable agreements, e.g.,
h h
a=0 ks (=10
%—1%)“0*10, %—L\Qxlo’lo. (6.4)
a0(KS) kg 4(KS)

The remaining parameters are validated at ~ 1076 level or better.

Following (6.2), we collect results of 12:{13 as functions of In 5\[—22 in different computational
schemes in figure 25: Schemel (blue curves) and Scheme III (green curves) (left panel);
the accuracy of the collapsed results in different schemes is highlighted in right panel.
Comparison of the remaining parameters follows the same trend. Note the degradation in
accuracy as % increases — in section 6.2 we relate this to the breakdown of the supergravity
approximation.

6.2 Validity of supergravity approximation for TypeB vacua

As clear from figure 25 the accuracy in constructing TypeB vacua deteriorates as H in-
creases; we have been able to construct TypeB vacua for

2

H
In 5 < —0.06(8) —  H<HE_=0966(5A. (6.5)

Besides numerical (technical) difficulties associated with construction of these vacua, there
are conceptual ones, associated with the breakdown of the supergravity approximation
— the effective action (2.1) becomes less reliable as the background space-time curvature
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Figure 26. Left panel: inverse Kretschmann scalar of (2.13) evaluated at the apparent horizon
for TypeB vacua as functions of lnf—j in different computation schemes (C.6): Schemel (blue)
and Scheme IIT (green). Horizontal red dashed line represents %M for the extremal KS solution,
which is recovered in the limit % — 0. Right panel: the divergence of the Kretschmann scalar
as H — HB__is associated with the collapse of the 3-cycle, see (6.7). Vertical black dashed lines

max

HE
3 Z“max
reprebent A -

of (2.13) grows. In figure 26 (left panel) we present the inverse Kretschmann scalar of (2.13)
evaluated at the apparent horizon in different computations schemes, see appendix E,
specifically (E.4):

H? .
Schemel : lnp:ks, K=K;
6.6
H? 1 . (6.6)
Schemelll : lnpzi—i—lna, K=K.

In the limit % — 0 we recover the inverse Kretschmann scalar of the extremal KS solu-

tion (E.5), represented by a horizontal red dashed line. As H approached H, B represented

max?
by vertical dashed black line, the Kretschmann scalar at the AH of the holographic dual
to TypeB de Sitter vacua of the cascading gauge theory appears to grow faster than any

polynomial of A/(HE, —H) — we take H

oax 10 (6.5) as the limiting value for the existence

of TypeB vacua. In the right panel of figure 26 we associate the growth of the Kretschmann
scalar in the limit H — HJB _ with the collapse of the 3-cycle (the S3 supporting the RR
3-form flux (2.6)) at the horizon, see (B.37),
o P ()
3 3

= Pgi/? : (6.7)

where in the second equality we used (C.5).

7 Conclusion

In this paper we presented a comprehensive analysis of the vacua structure of the cas-
cading gauge theory in de Sitter. The cascading gauge theory in Minkowski space-time
is characterized by a single modulus ¢g; and the strong coupling scale A; it confines with
the spontaneous breaking of the chiral symmetry. de Sitter space-time presents a new
mass scale — the Hubble constant H. There are three distinct types of de Sitter vacua
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of the theory — TypeA; (resembling the thermal deconfined states of KS theory with the
unbroken chiral symmetry), TypeA; (resembling the thermal deconfined states of KS the-
ory with the spontaneously broken chiral symmetry) and TypeB (resembling the thermal
confined states of KS theory with the spontaneously broken chiral symmetry) — with the
different (Euclidean) topology, and the global symmetry. All three types play a role of
being an attractor of the late-time de Sitter dynamics, depending on the interplay of the
strong coupling scale A and the Hubble constant H. We discover an intriguing pattern of
the chiral symmetry breaking in the theory depending on the ratio % While it is natural
to expect that the chiral symmetry is spontaneously broken for sufficiently small % (in
fact, the extremal KS solution is a limiting case % — 0), we find that the chiral symmetry
is spontaneously broken as well when H € [Hrbnin, Hpnax], with {Hgn Hpax} ~ A. In the
former case, TypeB de Sitter vacua, the vacuum entanglement entropy density vanishes?®

in?

much like for the confining thermal states, while in the latter, TypeA; de Sitter vacua,
the vacuum entanglement entropy is finite, much like for the thermal deconfined states.
Since HS. < H®

min min?

the chiral symmetry breaking and the confinement/deconfinement are
two separate transitions in the cascading gauge theory in de Sitter. This is in contrast
to thermal transitions in the cascading gauge theory in Minkowski space-time, where the
chiral symmetry breaking is always accompanied by the confinement [13, 14].

There is a number of open questions and future directions:

B We argued that vacua TypeA; do not exist for sufficiently small % It is important to
rigorously establish this fact. Indeed, TypeA; vacua, unlike TypeB vacua, are characterized
by the nonzero entanglement entropy density, and thus, when exist, will always dominate
over TypeB vacua as the late-time dynamical attractors.

®  We mentioned that TypeA;, vacua resemble the thermal states of the deconfined cas-
cading gauge theory with Zs chiral symmetry. The holographic dual of these states is a
Klebanov-Strassler black hole [14], which is unstable to local energy density perturbations
— the sound waves in the cascading gauge theory plasma. It would be interesting to study
the fate of spatial inhomogeneities in TypeA; de Sitter vacua.

®  [deally, we would like to develop numerical simulations of the cascading gauge theory
in de Sitter, akin to the model studied in [24]. As a first step, it would be interesting to com-
pute the spectrum (the quasinormal modes) of the chiral symmetry breaking fluctuations
about TypeAg vacua for H € [HY. | Hyax)-

min’

m [t is important to explore the spontaneous symmetry breaking and the role played
by the de Sitter vacuum entanglement entropy in other top-down examples of massive
holography.

®=  In this paper we studied confinement/deconfinement and chiral symmetry breaking of
strongly coupled gauge theories in de Sitter. It would be extremely interesting to pursue
these questions in other curved background space-times, and specifically in anti-de Sitter.

Z>More precisely it is order O(N?).
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There is an ample literature on the subject,?® mostly from the field theory perspective. A

natural starting point would be to understand the dynamics of N' = 2* gauge theory in
AdSy, expanding on [35].
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A EF frame equations of motion

Within Eddington-Finkelstein metric ansatz (with spatially homogeneous and isotropic
background metric of the cascading gauge theory — dax?)

dsty = 2dt (dr — A dt) + X* da® + QF g3 + Q3 (95 + 97) + 3 (97 + 93) , (A1)
with
A= A(t,?“) ) Y= E(t,T’) ) Q'L = Qi(t>r) ) K; = Ki(tar) ) ¢ = lng(tar) ) (A2)

we find from (2.1) the following evolution (' = 8, and dy = 9; + A0,):

di Qe  dyQs  diy Q Y o
=(dy2) + (243422 4 L) gy A.
0=(d+ H( A TN o, Ta, TPy Tan, ) & (A:3)
P2gy K} YK YK} (K — K3)?

_ - J=e =L g =3 _
12060202 "7 115204P2 TP 115204P2 T 4608020202 P2

P2gK3%(Q3+Q3) P2gKsY P?gy. Y(K1Ky— K3Ky —2K1)?

5184040201 12060407 12060407 373248020104 ’
3 QO Ay diQz  3d.Y
=(d )+ (= +2+22) dQ + + =) o A4
0=(dy 1)+<22+Q2+93> dy 1+< 0 + 0 + 5 1 (A.4)
K 1_91P29Kg L 01 K}, o (K3 —K1)?
1152P2g0% "7 12060202 T 115208 P2 0 T 153602020, P2g
(K3Ky— K1Ky+2K1)* (207 +93 - 03)(20] - Q3 +03) | P?gK3(Q5+Q3)
373248050, 802030, 17280301 Q3
_ P2%gK, P?g
4320105 4320,03°
Q, Q 3% dyQs  diQ  3d.Y
—(di )+ 2+24+22 4+ L) 4,0 B Mt I 0 A.
0=(dy 2)+<92+93+22+291 o, Tog, TTan 2 (A-5)
Pngé QQK{ K/ (Kl—K3)2

+ K+ K3+

3
e 1l e Y
12960,092 7 115204P2 T T 38403 P29 TP 4608020,02 P2y

263ce e.g., [34] and references/citations there.
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_ K3P%g(Q25-303)  KyP?g

4 P2g +(K1K2—K3K2—2K1)2
5184030204 4320307 ' 4320302 37324803020
401 —8020% — Q1+
16020,02 ’
Q, Q) 3% O diQo  diQy  3dyXT
= (dQ3) St L) a0 as hs =) o A.
0=(d+ 3)+<QZ+Q3 +2Q1> + 5+< 0, 50, + oy 3 (A.6)
P2gK} ! 03K}, (K1 — K3)?
—— 2 Kot+-—a— d K1 —— 5 d K
1206020 2T 3RanEpzg M T Tim200p7g T 160800202 P2y
P?gK3(305—Q3)  P?’gKoQ3  P?gQ3 | (Ki1Ky— K3Ky—2K,)
51840350203 12960302 12960402 3732480350203
407 - 80302+ 01 — Q4
169230307 ’

diQy diQs di 3d.Y  dig Q, Q, 3%
=(ds K1) e - Ki4(22_3,°2 AT
(ds 1”( S T M VR PR It B Ko S oW ) (A7)
+ Qll 7g7/ d KliQ%(Kl—K:;) 7P2g(K2—2)(K1K2—K3K2—2K1)
20, 29) " 40203

d, 3d. ¥ d
—(d+K2) (+ 1+ -+ +9

6480302

Ql g/ 32/
K} d K
20, | 2% +29> 2+<2m+ o ) 2

)

o5 (A.8)
(K3 = K)(K3Ka — K1 Ko +2K1)  Ko(Q3+Q3) Q3

576030202 P2g 4020202 202037

3d;Y d diQe  diQ
0:(d+K3)'+< +& 049 +242 +°43

deSi\ o (5 Q2
— K 8 _ 12
oy 29 5 0y T 291) 3+<

A.
Q Q2 20 (2.9
_i_{_g LK _Q%(Kg—Kl) _P2gK2(K3K2—K1K2+2K1)
29 2% ) T a02q? 6480204 ’
/ d+QQ d+Qg d+Ql 3d+2 ’ PZQZKé
= -2 =2 4. K Al
0 (d+g)+< Q0 20 2 5210202 2 (A.10)
K} K  Q, o 4 3%
3 A K3t ———1—d 2422 ) d
T ogsaip? “ T oggnipe Qﬁgﬁzﬂl g Tz ) e
(K3 —K1)? _P2g2K§(Q§+Q§) P2’K, P
11520203032 P2 1296920303 3240205 32402037
20, 20, 3% 20, 49, 6% 20
=A"— 2 3 diQy—( =2 3 L) diQy (AL
0 <9192 0.0;  xo,) “h 02 T 00 30, T, ) (A-11)
_(49’2 20, 6% 20

o Tt tay
gl Pngé !
_|_

68 68, 6/ 3Q’

1 2 3

di Qs — d
00 T2 T Ea; 9193) 3 ( * ) +2
ag2 It

K] K}
6480202 drKat 57604 P2g HEt Ssiprg LI
(K1-K3)®  PPgK3(Q+Q;)  PgK P?g
CT680Q20202P%g 864040201
(K1Ky— K3Ks —2K1)?
93312020201

2160302 2160402
491 80705 — 8003 +0)
8020202

— 20202+ 0}

)

— 44 —



and the constraint equations

) (g’)2+49§+49’2’+29’1’ P?g(K)*  (K3)? (K1)
6\ 2 "3 0y 0 1620202 T 144P2g01 T 144P2g0)8
%

2% 2% by 2%
0= d22+3ﬁd291+39 d2(22+3Q di%-(m d+91+39 d+ Qs (A.13)

Y.P2g b))
s (A K)o
9720202

(drg)*.

0=%"+

> . (A.12)

diQ3+d % > A+

L=
86494 P2g

SQ

dy K1) +—
(d+ 1)+6g2

To derive the late-time geometry dual to the cascading gauge theory vacuum in de
Sitter, we introduce following [19]

i { A, S50 K)ot | = (o) o), Kl g5 (A9
furthermore,
Jim {Qf(t,r), Q2(t, 7)., Qg(t,r)} - {;wcg(r), éw@(r), éwbg(r)} . (A.15)

We find from (A.3)-(A.13) in the ¢ — oo limit 9 second order ODEs:

O:U,l+5(al)2+5a’gl+ 21_&/ w7’62+2wf12+2w22 +HO’ 300" wpy (A.16)
4o 8a 16 a Wes  Weo Wp2 16a \ o wcg
2
4 2ws 4 2“’22) g (1 <w;2 T 1”22) 4 WaoWhy + w:z2w02 2wb2>
We2 W2 8\ 2 \wa2  wp2 Wa2Wp2 — Wa2We2 wczwbz 169
29P*(Ky)*  (K3)? (K7)? 270(K3— K1)*
QwpaWes 4gP?w?, 4gP2wg2 256wWpaWe2aweogP? 128awb2wa2wcg

X <5K§ (K3 —K1)? 4+ 2wppwas (9w, — 18wiptwas — 48wpowes + 9wy — 48waowen + 16w

30gP?(Ka(wi K> +w22K274w22)+4w22)‘

+20K1(K3K2—K1K2+K1)> —

32awlwi wes ’
21 ! ! 1 / / 2 / 2 / H 2 / /
0= gy 2100 +a( 80 +7a>< cz+waz+wbz>+3< 6o’  Swey (A7)
4o 8 o a We2  We2 Wp2 8 o We2

+ 6twes n 6“’22) +3£ (12(0/)2 I 2WeoWeo n 2w Wiy i 2Wg9 Wy i (wa2+w£2>2 )

We2 — Wp2 8 o? WaaWe2  WeWp2  Wa2Wh2 Wa2  Wh2
3(¢9')%a 5a (89P2(Ké)2 n (K%)* | (K7)? > 9(K3—K1)®
8g2 32\ Ywpwse  gP%w?,  gP%wi, 128w wa2weogP?
1
64wcgw 2w62

<K2 (Kg — Kl) — wagwa2(9w§2 - 18wb2wa2 — 48wb2w02 + 9w22

P2
—48wa2wcg+16w§2)+4K1((K3—Kl)KQ—l—Kl))+ g > <(w§2+w§2)K§

2
L16weawiywiy

+4<1—K2>w§2) ;
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Wa2a' (6“’22 60" 2wy u;j:2> _ Wa2 <(wz/z2)2  Awgowiy i (why)? (A.18)
8 w2, Wa2Wp2 w, '

_ 12wgy0 4 12wjy0” 4 12(02,)2 - 2WeoWeo i 2weaWhy 4 6w220’> 4 (9/)212%2
Wa20 oWy o WaaWe2)  We2Wh2 OWe2 8g
gP?(K3)? _ waz (K1) T(K3)? BHway (2wyy 2wy, 60" wgy

12w 32w2,gP?  32wa29P? Sa
9(K3—Kq)? 3
128wpaweoagP? 64wl2,2wcgwa2a

Wqa?2 Wp2 g We2

<K§ (K3 —K1)? + 2wppwas (16w?, — 48wewpy

+ 16waowes + 9wy + 6wawpy — 15w2,) + 4K, (K3 Ko — K1 Ko +K1))

2
gP
602 oot aa <K22(5w22 —3wly) +20(1— K?)“’z%) ;
wbzwcgwaga
2 2
0=wl,+ a’wyy <6w{,2 _ 670/ _ 2wgy _ wé2> _ We2 ((w;22) _ dwgowhy 4 (whe) (A.19)
8a Wpa o We2  We 8 Wiy Wa2Wp2 Wiy
120 0" 12wl,0’ 12(¢")2 2w w', 2wow, 6w.,o’ 2w
+ a29 2% (2)+ a2We2 _ “e2®p2 | DWe2 >+(9)2b2
Wa20 TWp2 o WeaWe2 — WeWp2 — OWe2 8g

GPAY? | T (K47 3Huwis (2ufy 2wl 60 wly
12w,9 R2wpgP?  32wi,gP? Sa Wa2  Wp2 o W
9(Ks— K1)?2 3

128wa2gP?wera  6dwppw2yweaa

<K§ (K3 —K1)? 4+ 2waowp (16w2, + 16weowpy

— 48Wa2Wez — 15w + 6waawpy +9w2y) + 4K (K3 Ky — K1 Ko+ K1)>

gP? 2 2 2 2
————— | K5(3w;y, —bw?y) +12(1 — Ko)wisy | ;
o K30ty —uty) 1201 Koy
2
0=w,— weaad <2w£2 4 6o’ _ Twey T 2“’:12) _ We2 <(w222)2 T dwgowiy i (Whe) (A.20)
8a Wp2 o We2 Wea2 8 Wiy W2 Wh2 Wiy

N 12w/ 50" N 12wp,0’ N 12(0')*  bwpowgy  bwowy,  18wlyo’ N 4(11);2)2)

2
Waq20 O Wp2 o? Waq2We2 We2WhH2 OWc2 Weo

+

(e wogPUD? _ walKD? _ walKy? 8w (2wl | 20, 6o
892 36wpawWe2 32w§29P2 32w2,gP? 8a o
_3’(0(/32 45(K3—K1)2 3
128waowp2gP%a 64w§2w22a

Wq?2 Wp2

(K%(Kg — K1)? — 2waowyy (48w,
We2

— 16w Wy — 16Wanwes — 21wy + 42wanwyy — 21w?y) + 4K (K3 Ky — K1 Ko +K1)>

59P? 2, 2 2 2
m K5 (wyy +wgg) +4(1— Ka)wpy | 5
a
o:K;f+(w+%+ Wy _%ﬁw’ﬁ_g’)[({_%ﬂfr@
20 we2 2w wp o a g
(Ko —2)(KaoK1 — Ko K3 —2K;)gP?

)

(A.21)
dwg2awe2

2
2aweowsy
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a’ 3H ’U)/ g/ 30'/ 9(K1—K3 K2 Kl—Kg)—QKl
0=FKy+ <a+za+ 2y +g+g>K5‘ mu)](m(?gpzw a L
C a C
9((“}22 +w§2)K2 - 2“’1%2) .
dwa2wpwea ’
3H / 3 / / / !/ / 9 K —K
0:K§/+<_%+0 %+%+G_Q>Ké+uw2<13> (A.23)
20 wWgo o 22 Wy a g dwpaawes
N Ky(Ka(Ki — K3) —2K1)gP?
20w, we ’
3H a/ w/ g/ w/ w/ 301 92P2 (K’ )2 (K, )2
/i 2 b2 2 / 2 1
0=g"+ <za+a+ D —g%m;m)g T Swpwe sz
LUK UG Ky PRl bud) 140~ Kol
8P2w?,  32awpweowyoP? qwi,aweaow?, ’
and 2 first order ODEs:
O=0c'+—(H-d ; (A.25)
2a
0= (¢")? _3H (2w}, _,_47‘7,_’_ 2wes +w722+ﬂ/ _H\ _2wped 60'a’ dwpuwi, (A.26)
g2 a \ wp o Wa2 Wea G G aWg2 oa WpaWa2 '
L Rwpyo’ 12wly0’ 2wia Bwlpo!  wihd' 2wpwi,  2wlhwl,  (wi)?
OWp2 0Wa2 awp2 OWc2 AWc2 Wp2We2 We2Wa2 wgz
C12(0')* (why)? N 2P%g(K5)* | (K})® (K3)*  9(K;—K3)?
o2 w2, JwpaWe2 4w§2P2g w2, P2g  16aweagP?wrwes
1

— (K22 (K1 — K3)? 4+ 2waowyy (9w22 — 18wprweo — 48Wepweo + 9w§2
BaWiH W2 Wy

P2
_48wb2wcz+16w§2)—4K1((K1—Kg)KQ—K1)>— g 5 <K§(wg2+w§2)

2w§2awcgwa2
+4(1—K2)w§2> :

It is straightforward to verify the (A.16)—(A.24) are consistent with (A.25)-(A.26); thus

the latter ODEs can be used for drop (A.16) and (A.20) and eliminate o’ and w., in the

remaining second order ODEs.

The cascading gauge theory de Sitter vacuum equations of motion (A.16)—(A.26) are
invariant under the following symmetries (A = const),

= symmetry SEF1:
ro— rtA, {H, P a,0,wa2p2,c2, K123, 9} — {H, P, a,0,wa2p2.c2, K123,9}; (A.27)
= symmetry SEF2:

P — AP, g = =, {rH,a0,wepneo K23} = {rHaowape Ki23};

(A.28)

>
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= symmetry SEF3:

{PvryaawaQ,bQ,CZ} — )‘{ParaavaQ,bQ,CQ}a o — >\1/20', {K173} — )\2{[(173},
{H,KQ,Q} — {H7K27g}a (A29)

= symmetry SEF4:

{r,H} — Mr, H}, {P,0,wa202,c2, K123, 9} — {P,0,Wa22,c2, K123,9} (A.30)

a — \Na. .

B FG frame equations of motion, asymptotics, relation to EF frame and
extremal Klebanov-Strassler solution

Fefferman-Graham frame can be used to describe only (the patch of) the gravitational dual
to the cascading gauge theory de Sitter vacua. It is useful to setup the asymptotic boundary
conditions, analytical continuation to Euclidean (Bunch-Davies) vacua, and study the H —
0 limit in which one recovers the KS solution [2].

Within the metric ansatz

1 . 9 h1/2 fch1/2 fah1/2 fbh1/2
dsT e (def) o (dp)* +==5— g3+ = (g +91) + (91 +93)
2 1
(d/\/lj:) = —dr?+eMMda?, (AMG)’ = —dr?+ 1 cosh(H7) (ds®)? (B.1)

where we used the FG frame time 7 and the radial coordinate p to distinguish them from
the EF frame time ¢t and the radial coordinate r in (A.1),

fape = fapclp), h = h(p), Kip3=Ki23(p), g=y9(p), (B.2)

we find the following equations of motion (independent of whether we use the flat boundary

2
spatial slicing (de: ) or the closed boundary spatial slicing (d./\/lfl)z) describing de Sitter

vacuum of the cascading gauge theory [31]:

0= - 3/, CShpH? (f)* | Bfe  felg)®  3fife | 63fa . 63fy . 3fc
P 2fc p2 892 4fb 16fbp2 16fa,02 fap2
fe(fa)?  3fafl | fe(W)*  fo(f})?  3fc 63 K} 39’
TSR TTaf, Tosw2 s R 87 SP2RRfER 2f2he
fefift 27K 1 K3 K2K? KyK? K2K?2 3f(K})?
C 2fufy  32fuhfogP2p?  B2fI2fFp7  8[IRA[EP B2f2h2[Fp? 32N fPgP?
3f.(K5)?  3gP?°K2 3gP?K2 3gP’K,  9f%} f.h'  KiKi1Kj
- 32f2hgP? " 8hf2p? | 8f2hp>  2f2hp>  fafep®  hp | 16f2h2f2p?
KoK1Ks  gP?f.(K})? 2TK? 27K ?
TSP 12fuhfy | GAfahfogPPp? | 64fuhfogP2p? (B3)
o= pr_ S8 S gPAEY? | S(KY?  fufife  (f)° | 5fa _3M
¢ 16fcfbp2 hp 36N fp 32fahgp2 Afefo 8fa PQ p
K2K? Ky K? K2K? 3gP2Ky  3gP%K?

32fufuh2f202 " 8fufub2f2p2  32fcfah®f2p?  2fefahp? | 8fefahp?

— 48 —



9K? 3fa , 3fe , _ 9IKiKs K3K K3
fop® " 32fchfogP?p> " 16fc fah? f2p?
3gP2  3fu(K)? 9 | fulg)?
,02 892

B 9K?2 B
64 fhfogP?p?  64fchfogP?p*  fyp?
_ KoKiKz  5fugP?K3 K} _
8fefal®f2p?  SfchfZp?  8fcfah®f2p?  2fcfahp®  32hflgP?
! £/ ! ¢! 1\ 2 "2
a 9f, o(h 27
fafb+fcfa_f(fg) + f2+f( 2) + be’ (B4)
2fb 4fc 8fb 8fcp 8h 16fcp
3fy ()2 5f  A5fF AP KP 3fi(KY)’
hp  8fch*f2fep®  32hgf2P?
3gP2K?2

— 3f,hH? +

0 — /A _ b
b 1% 8fb /72 16fcfap2
K3K? KK} K3K? 9K?
— _|_ — —
32fch2fa2fbp2 8fch2f¢%fbp2 32fch2f3fbp2 64fch9fap2p2 fchfbp2
~ 9K3  5ghP* | 3fy | 3fe  Sfifi | B(ED? | gP*(E})?
64fchgfap2p2 2fchf§p2 fap2 fap2 4fcfa 32hgfbp2 36hfa
L9 2T Oy KSKGKy  KoKiKg | 59fyP’K>  5gfyP?K3
p?  16fcp?  8fep? 16 fch2f2 fop?  8fch2f2fep?  2fchf2p?  8fchfip?
9K K3 fo(g)? o Sofh R fufl o fe(R)?
—3hfH — a c B.5
T Shgf T e M T g tun e (B
Y K3K?  KoK? K2K3 9IK? 9K?
4fcfg bZhPQ fcfg b2h;02 4fcf3 b2h'02 16fcfafbp29p2 16fcfafb,02gp2
(K3)? | gP’K3  gP*K3  2gP*K, L el

2hf; +4hfé +4th (K7)? N 4
fer — fop fap - 8f2gP%  8f2gP%  2f.fip®  2fcf20*  fef20? 0 2fe
i Wy n Wf, 16h  (h)? L 12R2H? — K3K K3 KK K3 K}
fo o fa PP h 2fcf2fehp®  fef2fihp®  fef2fEh0?
N 29P*  gP*(K3)® 9K K3 3K (B.6)
fcf(%/)Q 9fafb) 8fcfafbp29p2 P ’
0= K- gK3K \P?  gKJK3P?  4gKoK P®  29KsK3P°  9f i | 9f1K3
fefdhp? fefdhp? fef3hp? fef2hp® 2fcfap?  2fcfap®
_4gFKaP?  Kif. Kig Kl n faK1 3Ky Kify (B.7)
fefdhp?* — 2fe g h fa p fo '
K1  9fuK3 | Kif!

gK§K1P2 gK%KgPZ 2gK2K1P2
fefgho* 2fcfop®  2fefor® T 2fe

g
0= Rt e L

K RKL KWW 3Ky Ky ..

g Jo h P fa ’ '
0= K" _ K2  9faK> . 9f 9K K7 9K, K1 K3
2fcfap®  2fcfop?)  fefap®  8fcgP2hfofap® — AfegP2hfofap?
. 9KKG N 9K? KK Kb f! N Kyg Kl
8fegP?hfofap® ~ AfegP?hfofap®  AfegP?hfofap®  2fc g h

_ 3K , (B.9)

P
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¢*P’K3  ¢?P?’K3  2¢°P?K, 9IK? 9K3
TSR 2fofThp? | FofZh? | 16fofufohp® P2 16fufa fuh? P2
(0)? 9K K (K2 (K2 2°P*  @PXK)?  gf.
0 Sffafohp?P? T8RP T RZRP? T TfZheE . Ofufoh | 2fe
qr +9’fz§ _3g
fa fb P ‘

Additionally, we have the first order constraint

O:g//

+

+

(B.10)

0= 22K fyfu P + ()12 + (K22

4¢° K3 f2p* N Agf2 f2P% ()
9

fcp2 h
An(g PLIEP? | 96hgffoP® | 96hgfafiP?  96hgfifiP?  AgKiP?
g p? p? p? fehp?
K\ Ksfyfa  329f2f2P%h  16g°Kof2P* 4g°K2f2P4
+ 96h2 2 2P2H2 + + a b + b o b
9lats fep? p fep? fep?
_ gK3K3P? 49Ky KiP? B gK3K3P?  64hgf2 P2 f; + 64hg fo fEP2 S
fehp? fehp? fehp? p p
32f.h P2 18h 3P 18hgf2f, P2  36hgf?f2P?
P fcp fcp fcp
9K§fbfa 2 2/ p1\2 2 2/ 2 1692f1;2P4 29K22K1K3P2
— 23 phgfPP — 4hgf?P -
prQ gfb (fa) gfa (fb) fcp2 fchp2
_ AgKoRI K P?  8hgfyfaP fefa | 32hgfafiPAfL  Shgfiho PRy 9KRfifa
fchp2 fc fcp fc 2fcp2

The cascading gauge theory de Sitter vacuum equations of motion (B.3)—(B.11) are

—+

(B.11)

invariant under the following symmetries (A = const) (compare with (A.27)—(A.30)):

= symmetry SFG1:

p p/(1+ A p)
H H
P P
h — (1+Xp)th ; (B.12)

fa,b,c (1 + A 0)72 fa,b,c

Ki23 Kio3
g Y

®  symmetry SFG2:
P — )‘Pa g — % ) {p7 H7 fa,b,C7 h, K1,2,3} — {pa H7 fa,b,c: h7 K172,3} ; (B13)

®  symmetry SFG3:

P — >‘P7 p— §7 {h7K1,3} — AQ{h7K1,3}7 {H7 fa,b,wK?)g} — {Hu fa,b,mKQvg};
(B.14)
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®  symmetry SFG4:

H
p— )‘P’ H — X ) {P’ fa,b,m ha K1,2737g} — {P7 fa,b,ca h7K1,2,3vg} . (B15)
FG frame makes analytical continuation to Euclidean Bunch-Davies vacuum obvious:
1 2 1 2
2 2 2 3 4
T—>i76+g/2

B.1 Asymptotics

The general UV (as p — 0) asymptotic solution of (B.3)—(B.11) describing the phase of
the cascading gauge theory with spontaneously broken chiral symmetry takes the form

3 1 1 1
Je=1+fa10p+ <—P2gsH2 - ZKon + Zf3,1,0+ §P29sH2 1np> P’

8
1 0o
= P29l fap0p® + Y ) femk P 0" p, (B.17)
n=4 k
1 2 2 1 2 1 2 1 2 2 2 3
fa:1+fa,1,0p+ _§P gsH _ZKOH +Zfa,170+§P gSH lnp P +fa7370p
oo
AN famr PP p, (B.18)
n=4 k

1 1 1 1
fo=1+ fa10p+ (—2P2gsH2 - ZKOH2 + ij,w + 5P?gSH? lnp> p?

1 oo
- <2P295H2fa,1,0+fa,3,0>ﬂ3+zZfb,n,k p"In* p, (B.19)
n=4 k
1 11 1 1
h=—P?g,+-Ko—-P?glnp+ | P’gslnp— Ko | fa 00+ | | —=P%gs
8 147073 2 1
5 5 119 31 1 1
_4P2981np+8K0) 371,0+%pélgg}p+%P298H2K0+§H2Kg+§p4g§[{21np2
31 1 5 11 5
— P H np— S Pig H' K lnp> P’ + <<4P295 Inp+ o Pgs— 8Ko> faio
3 23 19 3 23
+ (—2P4931HP2+16P49§1HP—MP495+2P295K01UP—32P295K0
3.2\ 2 e n1.k
— K8 ) H far0 )P+ Y hm 0", (B.20)

n=4 k
1

1 9
4P2f3’1,ogs - ZP‘{qEH2 Inp+—Plg?H?

KlZKO—2P2951DP+P293fa,1,0P+< 16

1 1 1
+ 8P295H2K0> PP+ (12 f210P%gs+ 4—8P295 (3613295 Inp—13P2g,

2
- 6K0> H?fo10+ gngs <3fa,3,0 Inp+ fa30+ k2,3,0> ) p*

AN ki oI p, (B.21)

n=4 k
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3 o
Ky=1+ (k2,3,0 + ZH2fa,1,0P2gs Inp+3fas0 111,0) PP kg p" " p, (B.22)
n=4 k

1 1 9
Ky =Ko—2P?%g, lnp+P2g3fa,170p+ <—4P2gsf371,0 — ZP49§H2 Inp+ EP4QEH2
1 1 1
+ 8P293H2Ko> P+ <12 ar0P?9s— 1 P95 (12P295 In p+29P%g,
2
+ 6K0> H?fa10— §P2gs (3fa,3,0 Inp+ fa30+ k«’2,3,0> > p*

AN kg oI p, (B.23)

n=4 k
1 1 R
g=gs <1 - §P295H2P2 + 5fa,1,0p2gsH2p3 + Z Zgn,k pn lnk P> . (B'24)
n=4 k
It is characterized by 11 parameters:
{Ko, H, gs, fa10, fa30, k230, 940, feao, fa60, fa70, faso}, (B.25)
N N
og Of Og O Og

where we indicated the dual cascading gauge theory operators which expectation values
these parameters characterize. g, is the asymptotic string coupling, and Ky is related to
strong coupling scale A of the cascading gauge theory (see appendix B.3) as [31]

1 _
A% = e P%gs . B.26
P2g (B-26)

Finally, f, 1,0 corresponds to a diffeomorphism parameter (—2\) in symmetry transforma-
tion SFG1, see (B.12).

To understand IR asymptotics of the FG frame solutions it is convenient to consider
Euclidean continuation of the background geometry (B.1). For a fixed radial coordinate
p the resulting Euclidean space is topologically S* x S? x 83, where S* is an analytical
continuation of M€ (B.16), and S?x S? is a compact part of the warped deformed conifold.?”
Without loss of generality we assume that the radial coordinate

p € [0,400), (B.27)

so that y = % corresponds to the IR asymptotic. The range (B.27) can always be enforced
with an appropriate symmetry transformation SFG1 (B.12). Ten dimensional Euclidean
manifold is geodesically complete if one of the compact factors S* or S? smoothly shrinks
to zero size as y — 0. Note that S% can not shrink to zero size without causing a naked
singularity since it supports nonzero (when P # 0) RR 3-form flux (2.5). Thus, from purely
topological considerations we expect several inequivalent de Sitter vacua of the cascading

gauge theory: TypeA (shrinking S%) and TypeB (shrinking S?).

*TSee [4] for a nice review.
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e TypeA de Sitter vacua of the cascading gauge theory. To identify smooth Euclidean
FG frame geometries with vanishing S* as y — 0 we introduce®®

nh=y2 h, Fre =Y fape- (B.28)
The IR asymptotic expansion
abc Zfabcny ) 4H2+Zhny )
(B.29)
Ki93= ZKLQ,S,ny ) g= Zgny )
n=0

is characterized by 7 parameters:

{ff,o’ fgfo’ ng’ Kan Kg,(w K??,o, 98}- (B.30)

Note that given (B.29),

1 h1/2 9 1 A hl/Q 9
hi/2p2 (AMS)” + 2 (dp) 50_,::/2 nizp2 H2 (ds)? + 2 (dp)
TTH (B.31)
S (dS4) M (dy)* — 2 22(dSh? + (dz)?
(w12 H? o, A |
y=z2—

i.e., S* indeed smoothly shrinks to zero size as y — 0. It is important to emphasize
that TypeA vacua defined by (B.29) have either U(1) or Zy chiral symmetry — chiral
symmetry is unbroken in the former (TypeA,), and spontaneously broken in the latter

(TypeAb)-

e TypeB de Sitter vacua of the cascading gauge theory. To identify smooth Euclidean
FG frame geometries with vanishing S? as y — 0 we introduce [31]

W=yt h, ;ﬁbﬁ =9 fabe- (B.32)

The IR asymptotic expansion

3
o+Zf3ny Iy =3y"+ Y Bow™, =0+ Dy
n=2 n=1
Ky = ki sy’ + Z K2t Ky =Koy + Kyt + Z kS " (B.33)
n=2
Ks=k§y+> K p>, = hg + Z hw, g=gb+ Z gy,
n=1

is characterized by 7 parameters:

{fC}LL,O ) hg ’ k?ﬁ ’ kg,Q ) kg,4 ) k:};,l ’ g(})l} : (B'34)

280ther holographic models in this class were discussed earlier in [29, 30, 36-38].
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Note that given (B.33),

h1/2 2 foh'/? 2 2 Ry\1/2 2 my/2,2 L, 2 2
—y (dp)” + (g1 +g2) = (K) 77 (dy)” + (h*) "7y 5 (91 + 62)
P 2—cycle
w2 2/ 7022 2 (B:35)
g/ (ho) <y (dS%)” + (dy) ) ,
y—0
where means restriction to a 2-cycle. Following [4], this means setting ¢ = 0,
52

$2 = —¢1, 02 = —01 in one-forms {g;} on TH!:

(62 + ¢3) =2((d0n)? +sin? 0y (do1)?) =2(d5?)” . (B.36)

2—cycle
On the other hand, the 3-cycle supporting RR flux remains finite, provided fgohg #0:

fch1/2 ) fah1/2 f?(hh)lﬂ ) fg(hh)lﬂ

o9t T (gt al) = g+ T (95 + 1) (B.37)
ffo(hg)lﬂ 1
— T (29§ —+ gg + 92)
y; 0 3—cycle: Oa=¢2=0,01=2n,p=E1+&2,01=E1—E&2
fho(h)? . fho(h)? 2
= Ja0v 07 60 2 ((dn)2 + cos? 77(d§1)2 + sin? n(d£2)2) — 7a0v 07 30 (dS3) .

From (B.35), S? indeed smoothly shrinks to zero size as y — 0. Because f, # f5 as
y — 0, TypeB vacua defined by (B.33) have Zy chiral symmetry — chiral symmetry
is spontaneously broken.

B.1.1 TypeA, vacua asymptotics

We provide here connection with the extensive earlier studies of TypeA, vacua in [31].
Chirally symmetric de Sitter vacua of the cascading gauge theory (TypeA,) correspond
to a consistent truncation

fe = fa, fo=fo =13, Ki=Ks;=K, Koy=1. (B.38)
We find:

®  in the UV, ie., as p — 0,

3 1 1 1
fo=14 far0p+ <—H2P29s - ZHQKO + 1f22,1,0 + §H2P293 lnp> P

8
1 (o)
= P P29f200 07+ ) ) fonk P " p, (B.39)
n=4 k
1 2 p2 1 2 1 2 1 2 p2 2
f3=1+fo10p+ _iH Prgs — ZH Ko + 1f2’1’0 + §H P?gsInp | p
1 (o)
~ JHPP0uf210 0%+ D0 a0 p, (B.40)
n=4 k
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1 1 1 1 119
h = -P? ~Ky— -P?g,Inp — = —2P%g,1 K, —“H?P*g?
gP79s + (Ko = 5 PogsInp 2fz,l,o( gsInp+ Ko) p+ = q;

31 1 1 5 1
+ %HZKOPQQS - ZP295f22,1,0 + §H2Kg + §f22,1,0K0 - %P2g3(62H2P2gS

1 1
+48H? Ko + 1203, ) Inp + §H2P4g§ In? p> i 03 f2.1.0 <288H2P4g§ In? p

+ (—276H2P4g§ — 288H?K(P%g, — 240P?¢, f2271,0) Inp + 57H?Pg?

+ 138H?KoP?gs — 88P% 31 ogs + T2H* K§ 4+ 120f3 | K0> o’

+ i > hng p" " p, (B.41)
n=4 k
K = Ko —2P%gsInp + P%gsfo10 p+ %PQQS(—AlePzgS Inp+ 9H?P2%g, + 2H?K,
~A310) 9 — 5P 0o o F12H g I+ 212 PRg, 4 6Ky — 413, o) p°
+ i > g p" I p, (B.42)
n=4 k
9= 9s (1 - %HQPQgs P+ éHQPQQSfZl,O P+ i D gnpp" In* p> : (B.43)
n=4 k

characterized by 8 parameters:

{Ko, H, gs, f210, 940, f240, f260f280}; (B.44)

®  in the IR, ie,asy = % — 0,

1
g =) Fany". W= g+ 2 hay"
n=0 n=1 (B.45)
K=Y K", 9= _an",
n=0 n=0

characterized by 4 parameters:

{f2h,0» f??,(b K(I)lv gg} (B.46)
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Comparing (B.17)—(B.24) with (B.39)—(B.43) to O(p®) we identify

1
fa1,0=f2,1,0, fa3,0= —ZH2P2gsf2,1,o, k230=0, fea0=f240, (B.47)
96087 3409 11056513
fa60:< 4 2 2 p2 P6 g)Hﬁ

T 1096000 %7 95T 100600 0" 9T 245760000

1171 13 . 507
+<20480P49§f22,1,010240K0P2gsf2271,0>ﬂ4+< 3 P2gsfai0— 1280P298f2’4’0

31 7 1 3
207 95910 = 15 K H? —f3 B.48
320" 99107 51 &ﬁAQ 1260+ 75 210f240 (B.48)
13331 (GER 547 ;
= Ko+ —K P H
fa’7’0 <196608 f2:170 + 16384 gS f2,1,0 0 + 24576 Of2,1,0 gs>
077 oy 7T ) )
p? i (2l p 195
+ ( 18432 Pgsfii0— 3072 Ko gsf2 1,0 1230 gsf2 1,0 64 0f2,1,0f2,4,0

3 1
P?g, - P?g, H?>—=f3 - , B.49
128f2’1’0 gsf2,40 32f2,1,0 g 94,0> 8f2,1,0f2,4,0+ 2f2,1,0f2,670 (B.49)
fiom 1 | 40244584228043 g 4 12213914790101 5
@807 70K, — 141 P2g, 5689958400000 95 3034644480000
931679 4y 9L615TTSIT gy 5  25292565670124671 1 5>}¥8

T 4915200707 957 7925344000 0" 95 T 19118260224000000

173957 3 2 5131309203043 ¢ py 12991428547 KoPgl 12
81920 = JsH0lz107 303464448000 21,07 71032192000 Ko 2,1,0
504197 1892623 63
" 1433600 gsz,l,oKé) ( o210 | 9 oluiot g oKL
2093 11179 176710639657 2470057
27 p2, K2 il 7 g 2P0PPPOI0I p6 3 _ 2RO 56,3
t e T 9sKa9a0 — e Ko fauo+ —meeange s /240~ 1909007 9:F210
259362731 _, 4 132413627 2 6266917 ;
33868800 = 79407 16128000 ° *2 S0 537600 P*g:fa40
698651 _, , A 15365 1 550 69139,
K Hip(—222p 22207
80640 - 9 “g&°> *‘( so72 L 9s 200~ g0 T 9260
2751 3675 1215 1699
—ngfg,l,osz,o—mP 9sKof510— 128 P2 f51,0940— T6P 9sKo f2,6,0
14827 2177 38
—WP295K0f22,1,0f2,4,0+ 61 P295K0f2 1,094,0 — Kng 6,0 (B.50)
1540367 3085 1375
—W P! 2f210f240>H +— 3 Pzgsf210f24o g P298f210f260
9527 63 92975
+21P%g, 24,0940 — —— Ko f3 40+ T0Ko f2,80— TKngQA,g-I- Kofs1,0f2.40
10 2P4g, 16
875 45539
—7K0f21of260+42K0f240940+14P 9s9a0+104P%gs o0 — ———P?gs f3 4.0 -
280 4,
Comparing (B.29) with (B.45) we identify
f(ZO = fél,o» fél,o = ftffo = f3l,1,07 Kﬁo = Kg,o = K(})la Kg,o =1. (B-51)
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B.2 From FG to EF frame

A general map between the FG and EF frame de Sitter vacua of the holographic duals was
worked out in [19]. Specifically, given

ds*|  =2dt (dr —a(r) dt) +o(r)?e*H dz® + - - |
. (B.52)

ds?|  =ci(p)? (=dr®+ e da?) + ea(p)” (dp)* + -+,
FG

where - -+ are metric components along the compact directions,
P p
r= —/ ds c1(s)ca(s) + const t=1— H/ ds ca(s) ’
0 ci1(s)
1 P ea(s) (B.53)
2
=5 = H d )
a(r) 201(,0) ) o(r)=-ci(p) exp[ /0 s cl(s)]

Using (B.1), we find from (B.53):

r—j)—i—const—y—i—const, G_M’ t—T—H/Opdsh(s)l/Z, (B.54)
Note that asymptotically in UV, i.e., as p — 0, the EF and the FG times coincide:
P 1 1/2
t—T ~ —H/O ds (—2P295 In s> — 0. (B.55)
Without loss of generality we fix const in (B.54) so that r = 0 < % =y =0.
Introducing
z2=-—r, (B.56)

we find from (B.28)-(B.29), (B.32)-(B.33), and (B.33) the following asymptotic expansions
for the EF frame vacua:

m TypeA; vacua:
H((f%,o)z(f:)fﬁo)Q - 6f2h,o(f:§l,o)3 + 3H?P2(f)?g6 + 10H*(K()?)

= —H 2 O 3
a z+ 5(f§”,0)4f£0 22+ 0(z7),
(o PR = B+ SHEPA P OB
’ 5(f50) f2 ’
h h \2( ¢h \2 2p2( ¢h \2 h 40 feh)2
we = fI (hh)1/2 _ @ _ i4(f2,0) (f30)* = 3H"P*(f3)"g0 — 4H"(Ky) 4+ O(2)
2H bHH (félo)4 ’
12 fh
Waz = Wy = f4 (hh) = % (B.57)
12(&0)2(]@?0)2 - 6f2h,o(f3?,0)3 + HQPQ(f?],l,o)29(l)1 +4H4(K6L)2Z L O(:2)
5H (fEo)3 120 ’
16 H2P2K[gh
Ki=Ky=K=Kh——=— 2020, 0(?), Ky=1,
T5 (02
h _ §H2P2(93)2Z + 0(22) .

g=4g
O 5 (fhe)2fh
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TypeAy, vacua:

=—Hz+

We2 =

Wea2 =

Wp2 =

H
el G R Nt Ny

_4Kg,0(f£0)2+4(fb,0) )Pt +gh (40H4(Kﬁ0)2(K§,0)2—80H4K{l,0(K3,0)2K?}},0
+A0H (K5 0)* (K% 0)® — 160H* (KT, Ky o+ 160H K] (K} K}

+160H" (K1 0)>+9(f10) 0= 18(f10) (f10)> = 48(f10) fro Lo+ 9f 2o (fil)®
AR PR ()R 16 £ Flo (i) P 2T HR £ (KKl — Ké:,oﬂ)z?

+0(2%), (B.58)

—5’5(1— ! (24H2<93>2<<K§,0>2<f5,0>2+<K§,o>2<f,ffo>2

80( go)Q(fzifo) 90 oPQ)
_4Kg,0(f£0)2+4(f£0) )P+ gl (40H4(Kﬁo)2(K§,0)2_80H4K{L,0(K5L,0)2K§,0
+A0H* (K5 0)* (K4 0)? —160H* (K1) 2 K5 o+ 160H KT K5 K4
+160H4(Kf0)2+9(ff,0)3f530*18(f£0)2(f£0)2*48(f20)2fgfofgo+9ff,o(fzﬁo)3

— 481 (flo)? fho+16 1o £l (f10)2) P2+ 2TH £ filo (KT o — Ki?,o)Q)Z

+(9(22)> : (B.59)

2 1 3
hephy1/2 _ S 10 hN2/(prh \2( ph N2
TN = 55+ e (810 0k

+(K30)* (f0)? —4K50(fli0)> +4(ff0)*) P* + 1090(4H4(K10) (K3o)
—8H4K1,0(K2,0)2K?l},0+4H4(K§0)2(K3,0) —16H4(K1,0) K2,0
+16H4K{L,0K£L,0K§L,0+16H4(K{L0)2+9(f£0)3fbh0_18(f50)2(fbh,’0)2
+97a( o) 16 L0 o Lo P+ 2 ol KLy~ K )2+ OG2) . (B.60)
hiphy1/2 _ Zf,o 1
fd (W) =5 b H(fli0)2gh £l P2
—3(K%0)?(f10)® +12K30 (i) = 12(f50)*) P* + 21090(8H4(K1 0)*(K3)
—16H K1 o(K30)* Kio+8H (K50)*(K})? = 32H' (K1 )" K3+ 32H" K1 oK} oK%
+32H4(Kﬁ0)2*9(f£0)3f£0+9f30(f£0)3*48f£0(f£0)2f£0+16f£ofszo(f£0)2)P2

(-5 PPt o

by ooy~ Kl )+ 02, (B61)
h
g2 = oo ! (5ataby a0t st

2H " [l H (1Rl [ P?

1
— (K30)* (fi0)* +4K50(f50)* = 4(f5:0)*) P* + 2090(8H4(K1 0)*(KLy)?

—16H" K1 (K3 0)* K5 +8H (K3)?(K3,)? —32H* (K1) K5 o+ 32H K1 K3 o K3 g
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+32H4(Kﬁ0)2 +9(f£,0)3f£0 - 48(f£0)2f£0fch,0 - 9f£0(f1§f0)3 + 16f£0f£0(f£0)2)P2

b gy ooty = Kl )+ 0. (B.62)
Ko = Kl s (S0 0Kk =2) 0o Kby~ Kb Ko~ 20 P

+9f¢]f,of£0(K{l,o—Kz?,o)>z+0(z2)v (B.63)
K= Ko~ s (b a0+ Kol ~2k0)) P

+H2(K{ﬁ0—Kgo)(Kfngo—Kgngo—zKﬁo)>z+O(z2), (B.64)
K3=K4§o+ m <8H2K§7096‘(K{‘70K§,0 — K} K5, —2K]) P?

#Ofkoflu(Kto Klo) ) +O(2) (B.65)

h H2 h\2 h \2/ph \2 h \2/ph \2 h h \2

0=~ g g (SO0 UL Ol a1

HA(fL)2) P =9 f R0 (KT o — Kb )2 flo) 2+ O(22) (B.66)

®  TypeB vacua:

_ 1 2 _ h hy1/2 2
G*W‘*‘O(z% 050(1+(h0) Hz+0(2") ),
3
wey = fE(NM)Y2 = ThL0 ()P + OP) . war = SR (WM)Y? = foo(h)'? + O,
wpy = (W2 =3(h) P2+ 0(2"), K1 =—k{32" +0(2%), (B.67)
Ky = kg,222 + 0(24) ) K3 = 71{7?,1'2 + 0(23) ) g = gg + 0(22) s

where

FG frame
sh=o . (B.68)

B.3 Extremal KS solution limit H — 0

We review here extremal KS solution [2] following [31] and identify the relation of the
strong coupling scale A (B.26) to the conifold deformation parameter € (B.70).
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We use the radial coordinate 7 € [0, 00) to describe KS solution:

ds? = Hd? (—di® +da?) + Hl w? g di®

Q; = wi ks H}gé, K; = Kiks, (B.69)
Kixs = %PQQS Cozm; 1 (fsizzh: - 1> ’ Kaxs=1- sirfhf ’
Kos = 520, (T 1) s=o B
W1,KS = \/;{;(s ; Wo. KS = 62/3\5;11(/; coshg , W3 KS = 62/?1/};[1(/; sinhg ,

IA( _ (Sinh(?f’) — 2?)1/3 oo 3 (KI,KS — K3,KS)K2,KS — QKI,KS (B 71)
s 21/3ginh; K9 T o7 e8/3K2 ¢ sinh? ’ '

where now 7 — oo is the boundary and # — 0 is the IR.
Comparing the metric ansatz in (B.69) and (B.1) we identify

dp)? . .
AT — (o ses (PP (B.72)
Introducing
z=e /3, (B.73)
we find from (B.72)
1 26 2/3 u® —1
il d B.74
p / B 2(1 —u!2 + 1208 Inw)t/3” ( )

In the UV, 7 — 00, 2 — 0 and p — 0 we have

R 2/3
e—r/3 \/6 (26)

Il
N
I

74
p<1+ Qp+Q%p*+Q%p* + Q*pt + Q°p° + ( etln3+Q°

4 80
27 4 9 4 9 4 27 4 6 6 A A 7
——e ——€e In2+ —€"1 1 In2 1
+8006 T —|—206 n6+406 np|p’+ Q +8 QIn3+Q
729 63 A 189 4 - (2403 4 63 402 189 402
— In 1 In2 In
SOOQ +30 Q +10 ——Qe np)p +<400 Q" — Q t50 Q°In3
2 1
+7€4Q2 +Q8 4Q21 p> +<€4Q31n€+94700964g3_8964g31n2
567 6
+30 Q33+ 9%+ 4Q31np>p +0(p mlnp)) (B.75)
where
2/3 1 _ 6
o- V6 (2¢) / " 1—u 1y
4 0 u?(1 —ul2 +12u8 Inw)/3  u? (B.76)
6 (2 2/3 ’
:-*[(46) x 0.839917(9) .
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IntheIR,f—)O,z—>1,and%—)()wehave

. \/6 21/3 < 22/3 31/3 ) 71 32/3 21/3

- - = A 6
7= 31/3 ¢2/3 Y 15 /3 Yo+ 5605 <573 y 4+ Oy )> (B.77)

Using (B.75) and (B.77), and the exact analytic solution describing the Klebanov-Strassler
Minkowski vacuum of the cascading gauge theory (B.70), (B.71) we can identify parame-
ters (B.25):

4 2
KO—P2gs<—ln3+§ ln2—§ 1H€—3> s f(l,l,O:_zQ;
3 3v6
k230= \!62(31113 —5In2+41ne), fea0=0, faz0= \4[ 2,
7 81 7 36

fa60= (—1n2+ 50 +801n3+lne>e e Qe (B.78)
27 27 1701 3v6

aZ—l——l2—1 ) 20

Ja0 < ne n+20 3—1—200)69 Q"
27 135 81 405 3

fa’870:<21n€—81 2 §1 3+ 16>Q€4+>4/>Q562, .947(]:07

in the UV, and parameters (B.34):
fho = 2l/3 323 A3, hl = P2g, %3 % 0.056288(0),
4f ) B 22/3 h 11 21/3 3%/3
ks = 92 Pg koo = 3273 (473 k4= T A5 8 (B.79)
N 4\[ 21/3 32/3 N
3,1 = 2762/3 s, g(] = s,
in the IR.
Given (B.26), we identify from (B.78)
31/241/3.2/3 91/6,1/3,.2/3 21/661/391/2 )
_ — s ~ /2

where in the second equality we used (2.7); the glueball mass scale is defined as in (1.10).

C Numerical procedure

C.1 FG frame de Sitter vacua

Equations of motion for the FG frame de Sitter vacua of the cascading gauge theory,
along with the asymptotics and the symmetries of the dual holographic formulation, are
presented in appendix B. Generically, we have eight functions of the radial coordinate p,
see (B.2). When the chiral symmetry is unbroken, there are only five functions, see (B.38).
The solution to the equations of motion is unique?” once we fix the Hubble constant H, the

29 Apart from the discrete choices associated with the IR boundary conditions leading to classification of
topologically distinct holographic vacua: TypeA;, or TypeB, see appendix B.1.
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asymptotic string coupling g5, the 3-form flux P (alternatively the rank difference of gauge
group factors M in the cascading theory), see (2.6) and (2.7), and the strong coupling scale
A of the cascading gauge theory (alternatively Ky, see (B.26), or the conifold deformation
parameter €, see (B.80)). Of these, parameters H, A, P are dimensionful. The radial coor-
dinate p is dimensionful as well, albeit in units of ‘mass’. As a result, UV/IR parameters
of the solutions, see (B.25), (B.30) and (B.34), have complicated dimensional dependence.
It is possible to completely eliminate the dimensional dependence (and the g5 dependence)
from all the equations of motion and the asymptotic expansions with appropriate rescaling:

{p, fape, b, Ki23, g} = (D, faver Py Kias, §};
1

P Fg;m /37 fa,b,c = fa,b,ca h = PZQS iL, (Cl)
K1,3:P295 f(l,:a, K2=K27 9=9s9-

Additionally we introduce a dimensionless parameter ks as
K
ks = —2 +1In (H2P?g,) , (C.2)

leading from (B.26) to the identification

H2

k8:1np.

(C.3)
Notice that the conformal limit in the cascading gauge theory, i.e., H > A, corresponds to
ks — 00.

We do not present the relations between all the UV/IR parameters stemming
from (C.1) and (C.2) — they are straightforward to work out, but too long to be illu-
minating — and instead focus on the few ones for which we are reporting the numerical
results:

® TypeA,; vacua,
h 1/2 fh h 2 h h h h ~h
f b,c,0 = HPyg / a,b,c,0 K1,3,0 = P%gs K1,3,07 KQ,O = K2,o: 90 =9s go; (C4)

a S

m TypeB vacua,

h H2P2 rh hh i"g k’h l%?,:s k‘h 1;372

oo T W g M e BTy
ih Pol/? 5)

gho— 24 gpho— 295 jh gt =g, 0.

24 = Fipig: 3,1 7 M1 90 = 9s 9o

Numerical analysis of the bulk differential equations describing de Sitter vacua are
rather involved. To trust them, we would like to have various consistency checks. Here,
the symmetry transformations SFG2-SFG4 (B.13)—(B.15) are very useful: we can produce
different data sets fixing three of the four parameters {H, P, gs, Ko}. As we demonstrate,
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with appropriate rescaling, the distinct data sets must collapse. We find it useful to imple-
ment three different computational schemes:

Schemel : H=P=g,=1, ks is varied ;
Schemell : H=g,=Ky=1, b= P? is varied ; (C.6)
1
Schemelll : P=g;,=1, Kg= 1 ° = H? is varied .

Note that:

®m  Schemel is equivalent to performing computations in the hatted variables in (C.1),
with (C.2);

®  Schemell is convenient to take a conformal limit to Klebanov-Witten solution [3] in
TypeAg vacua: b — 0;

®  Schemelll is convenient to study the extremal KS [2] limit in TypeB vacua: o — 0.

Numerical computations are done adopting the algorithms developed in [12]. Al-
together, there are 8 second order differential equations (B.3)-(B.10) and a single first
order constraint (B.11) for 8 functions {f,, fs, fc, h, K1, K2, Ko, g}. Notice that the con-
straint (B.11) involves f/ linearly. Thus, we can use the latter equation and eliminate the
redundant equation (B.3). The final set of ODEs — 7 second order equations and 1 first
order equation — necessitates 15 = 2 x 7 4+ 1 parameters.

m  TypeA;; vacua: the result of the numerical computations are the data files with
entries for the 8 UV parameters {f4 1.0, 4,30, k2,30, 94,05 fe.4.05 fa,6,05 fa,7.0, fa,8,0} and the
7 IR parameters {f(ﬁo,fgfo, QO,KﬁO,KQO,KQO,gQ} (see appendix B.1) labeled by ks (for
the computational scheme Schemel), b (for the computational scheme Schemell) or « (for
the computational scheme Schemelll). The number of parameters are reduced to 5 (in the
UV) and 4 (in the IR) when chiral symmetry is unbroken (see appendix B.1.1).

®  TypeB vacua: the result of the numerical computations are the data files with en-
tries for the 8 UV parameters {fq.1.0, fa,3,0, 5230, 94,0, fe,4,05 fa,6,0, fa,7,0, fag0} and the 7
IR parameters {f1o, hiy, k}' 5, k5 o, k% 4, k1, g0} (see appendix B.1) labeled™ by k, (for the
computational scheme Schemel), or « (for the computational scheme Schemelll).

C.2 EF frame de Sitter vacua

In total, there are 11 (8 with unbroken chiral symmetry) coupled ODEs (A.16)—(A.26)
describing EF frame de Sitter vacua involving 5 metric warp factors {a, o, wa2, Wp2, Wea }
(see (2.13)), 3 flux functions {Ki, Ko, K3} (see (2.11)) and the string coupling g as a
function of a radial coordinate z = —r, see (B.56). The full set of ODEs is redundant, and
in practice we use 9 equations (A.17)—(A.25): we drop (A.16) in favor of (A.25), and we
use (A.20) (it involves w’, linearly) instead of (A.26) (though it involves w’, linearly). The
reason for this is to reduce the complexity of the system of ODEs — unlike construction

39We will not use the computation scheme Schemell here.
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of de Sitter vacua in FG frame which is a boundary value problem, representation of de
Sitter vacua in EF frame is an initial value problem, and thus we can get away with using
a higher order system of ODEs.

The initial conditions for these equations are set at z — 0, with asymptotic expan-
sions (B.57) for TypeA; de Sitter vacua, and with asymptotic expansions (B.58)—(B.66) for
TypeA; de Sitter vacua. The EF frame equations of motion are integrated on the interval

z€[0,zam], (C.7)

where z4p is the first zero of the AH location function L4z (see (3.32)):

d
Lag(z) =3H 03w22/2wa2wb2 — adz{a3w22/2wagwb2} . (C.8)

Using (B.57)—(B.66),

3v2
TypeA, : Lan = m(%ﬁ(ﬁ,o)”z(ﬁo)z +0(2); (C9)
.9
3v2
TypeAy : Lap = 8‘,{73/2(58)3(f20)1/2f20f£0 +0(2),

i.e., both for TypeA; and TypeA, vacua

d
Lag(z=0)>0, %,CAH(ZZO) < 0, (C.10)

where the second inequality is a numerical observation. Notice that to set-up the initial
conditions for (A.17)—(A.25), besides the FG frame IR data (B.30) (or (B.46) when the
chiral symmetry is unbroken), one needs parameter sf, see (B.68),

) o

= pglﬂw{m exp [H/Opds (h(s))l/z} }

where we used (B.53) and explicit expressions

p
st = lim o(z) = lim {cl(p) exp [H/O ds

z—04 p—+o0

ca(s)
1(s)

c

1 1/4
Cy = L (0.12)

Cc1 = 7h1/4p , P

from comparing (B.52) and (2.12). The limit in (C.11) must be taken carefully, as the
integral is divergent at the upper limit of integration: using the asymptotic expression for
hasy= % — 0 (B.28) and (B.29) we can regulate it as follows,

p p Pgi/? 1
/ ds (h(s))W:/ ds ((h(s))l/Q— 7 >+ In (1+Hpg;/2p) , (C.13)
0 0 2(HPgs?s+1)/) 2H
or in dimensionless/rescaled quantities (C.1)
L L N V- TR N Ly (e 1 1 A
H/o ds (h(s))/° = H/o ds ((h(s)) 2G+1) + Vi In(1+p), (C.14)
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leading to

P
st =22 HPY2gl/* exp [/ ds ((h(§))1/2 S
0

2(:+ 1)

)] = HPY?g4 gk (C.15)
where the last equality defines dimensionless/rescaled §6L.

D b — 0 of TypeA, vacua

D.1 FG frame

The conformal, i.e., H > A, limit of TypeA; vacua is best described in computational
Schemell (C.6). Using perturbative expansions (4.11) we find (" = %),

= for n = 1:

+ 6 8
0=k - L2 - 2 D.1
Yo2p(l4p) "t (T+p)p? (D-1)
p+6 /\2 4
0=g/ - s———ag +H*) - —. D.2
7 e K R (02
L+p)p 12 2
0= ’+h’+4’+(7k’ + +4f3 — 4k — 1
for + Ry +4f3 2(p—|—2)( 1) (p+2) (fo1 +4f31 1—1)
4 4
(p+4)(3p+ )hl, (D.3)

2(p+2)(1+p)p

1 (p+2) (p+6) 1
0= fih + (k) + - h] — 2 fh + ————— (5fa1 + 8f31 — 4k — 1
st ) S M T Rk T T T )
3p% — 16p — 16
—%hl, (D.4)
4(1+p)%p
1 (3p +10) 2
0=nh]+=(k)? - h1 3 4 20k1 — 9f21 — 36f31
L) i ) T T )
3p% — 80p — 80
B~ 80p ~ 80, . (D.5)
2(1+p)%p
] for n = 2:
+6 1
0=k —_"F - (4g’+6h’+8f’ 0°+ (12¢" + 18R, 4+ 3hy
2 2p(1+p) 2 4p(1+p)(p+2) ( 1 1 31) ( 1 1

+24£5)p% + (84 + 121 — 16k +4 fo1 +16h1 + 16 f4; + 16 f31)p — 16k1 +4 for

L+p)p, 3 8(ki+g1— for—h1—2f31)
165141651 —4p—4 | — & k)3 — : D.6
1 fa1—4p ) 1 4(p+2)( 1) (1+p)p? (D-6)
p+6 /2 I 1 N2 4 2 3
0=g) — ————g5—(g1)° + 2k K} — k) p"+ (2(ky)%p
2 (i) 2 )RR ey () R
+207)p% + ((K})? 4 3h1 +6RY) p* + (16 f31 + 4 for + 16y + 4k} — 16k1)p+16 f3;
4(2f31 — 291+ for +h
+4f21+16h1—16k1—4p—4>g’1—(2f31+h1)(ki)2+ Sl (1—?,0);;21 U o)

1
0= fo +4f§2+h/2+m <ff/51ﬂ2+(f21 —h1+ f31)p+2fn —2h1>h/1
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5p(1+p) (1+p)( /)2+p(1+p)( 2 (I+p)p
2(p+2) 4(p+2)7 " A(p+2) 2(p+2)>2

1+
—hy —2f31+ f1)p+2fo1 — 291 — 2y —4f31> (k)2 + ,O(p+2p)

(f31) <f31P +(for—g1

Ky

1
T 12)e <(8f21 +3h1 —8f31)p” + (36 f21 — 16k1 + 16h1 — 16 f31) p+ 36 for — 16Ky

+16h; — 16 f31 —4P—4) fa1+ 3farh1p* + (—8 fa1 f31 +32k1hy

1
2(p+2)p(1+p) <
+ 64k f31 +4fog — 16ko)p— 8 fa1 f31 + 32k  hy + 64k f31 — 8ki —4f2 + (16 f30 — 4 f3
—8k? —64hy f31 —4gy +4hy — 24h2 +16hy + 831 — 682, ) p— 64hy f31 + —4g1 — 16k

+4fo0 +8f31 + 16 f30 4 4hy + 16hy — 24h3 — 6813, —|—3h2p2> , (D.8)
+6 p+2 1 1 1 1 1
0= "o P / + h/—l—*k‘/k‘,—l—* /2+*h, 2+7 I N2 —
32 2p(1+p)f32 20(1+p) 2T 5N 8(91) 8( 1) 4(f31) 4(91
p+2 , 1 (
+hi+ f31)(kK])? — =———(h1 — +——————— | (4f21+16 fork1 — 16 fo1 1
1+ f31)(KY) 2/)(1—1—,0)( 1= fs1)hy 150272 (4f21+16 fo1k1 — 16 fa1hy

— 36 fo1 f31 4 32k1h1 + 48Ky f31 +20 fo — 16ko — 815 — 8k3 — 48hy f31 — 4g1 +4hy
—24h7 +16ho +4 f31 — 36 £3; +32f32)p+ 16 far k1 — 36 fo1 f31 +32k1hq +48k1 f31
— 82 —8k? —3hy f31p° — 48hy f31 —4gy — 16kg +4 fo1 + 20 foo +4f31 + 32 f30 +4hy

+16hy —24h3 — 36 f2 — 16 fo1 hy —3h2p2>, (D.9)

3p+10 ., 7 |
mfb—z( 10— (f31) T4(p12)

1 1
4 9 f! 4 k/2_7 /\2 Kk — 4f! 3 h
+4f31+2f31)p+ 91+8f31>( 1) 4(91) + KRRy (1 +0)(p+2) f310° 4+ (3M1

+ 12fé1)p2 + (4f21 —16k1 +16h1 + 16f31 +8f§1),0+4f21 —16k1 +16h1 + 16f31 —4p
1

—4\n —

) b 2p(1+p)(p+2)

1
+16h1 4+ 16 f31 —4p— 4) fa1— 214020 ((80f21k1 —44 fa1h1 — 152 fo1 f31 +80k1hy

+ 320k f31 + 36 fog — 80ko — 40 f2, — 40k? — 176hy f31 — 1291 — 40h3 4 80hy + 24 f31
— 38813, + 144 f35+12 fo1)p+80 for k1 — 152 fo1 f31 +80k1 k1 + 320k f31 — 403,
— 40]?% — 176h1f31 — 44f21h1 — 12g1 — 80k2 + 12f21 +36f22 + 24f31 + 144f32 + 80h2

0="hy— ) <<h’1+2fé1)p2+(h’1+2g1

(3h1p2 + (4f21 — 16k, +16h1 + 16f31)p+4f21 — 16k

—40h? — 38813 —3(h%+h2)p2> : (D.10)

The UV (p — 0) and the IR (y = % — 0) asymptotic expansions can be obtained

from (B.39)-(B.43) and (B.45) correspondingly, using the Schemell parameters (C.6),
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where

2 3 2 3
fo10 =14 fa1,01 b+ fa1,02 0"+ O(?), 94,0 = 94,01 b+ gapp 0"+ O(b”),

1 4 139 1 22 2
= —-——4+ = k4o b —Fk40: - .
f2,4,0 ( 12 + 3 4,0,1> + < 1153 + f2,1,0 1~ g ka01 + 594.0:1
+ 3k4,o;2> b+ 0%, (D.11)
f2.60 = f26,01 b+ fas02 b2+ Ob?), f2.80 = fos01 b+ fago2 b2 +OOb?),
fél,o =1+ f2h,0;1 b+ f2h,0;2 >+ O, f:;l,o =1+ f?l,l,o;l b+ f:?,o;2 >+ O,
K§ =1+ Kfy b+ Kiy 07+ 0%, g = 14301 b+ goa b* + O0%).

Note that in lieu of f240.1 and fa4,0,2 in (D.11) we used k40,1 and kq,0;2:

1

1 3
ki==2Inp+p—cp’=oop’ + <lnp+k4,0;1) pt+0(p%),

1 9 1 7
= . —ZInp+— — = 2 Inp— — 3 D.12
ko = f2.1.01 p+< 1 p+ 16 f2101)p + <4 T + f2101)P ( )

3 11
+< 161 p+ (64—4k401> 1Hp+k4,0;1> pt+0(p°).

This is done for computational convenience — the equations for k; (see (D.1)) and ko
(see (D.6)) decouple from all the other equations at the corresponding order.

We are able to solve analytically only the equation for &y (D.1),

p 1 L p3—6p2—24p—161 Vitp—1

ki==+4+ ———4In2+ n , D.13
"T 14+ 4 8(1 + p)3/2 Vi+p+1 ( )
resulting in
20 3 5
kgl = — — —1In2, K& == —4In2 D.14
401 = 569 T 39 n 017 3 nz, ( )
and the equation for ¢g; (D.2),
P T 1 3 13 pp+2) ln\/l—l—p—l
= 732716 32(1+p)2 8+8p 32 32(1+p02 JItp+l
23 p® 1502 15p 9 63 1
e e — — D.15
+ (64 128 T 128 64 T 64(1+ p)2 128+ 128p  128(1 + p)3 (D-15)
o T2 ovVli+tp—1
\/ﬁ+1
17 13
94,01 = —3—2—1—7 In? 2—1—7 In2, g&l =15 (D.16)

All the remaining equations are solved numerically, using the shooting algorithm developed
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n [12]. We find:
f21,01 = 0.434278,  foq 0.0 = 0.357298,
ga01 = —0.264437, gy = —0.64466
ka0 = 0.0482987, kg = 0.184174,
fa6.01 = —0.407036, fa60.2 = —0.489017,
fogo1 = —0.427022, fogo2 = —0.609369 (D.17)
fooq =—0.156614,  f3'., = 0.54009,
fioq = —0.378836,  f§g., = 0.638051,
Kfy =-110592,  K{\y = 1.65245,
goq = —0.722222,  gfl, = 0.311658,
where we used the same numerical methods to solve (D.1) and (D.2). Comparing the

numerical results for {kso.1, 94,01, K&l, 98;1} from (D.17) with the analytic predic-
tions (D.14) and (D.16) we find agreement at the fractional level of ~ 10710 or better.

D.2 EF frame

Using perturbative expansions (4.14) and wea, = vp — Wa2n, we find from (A.17)—(A.25)
d

('=%)

= forn=1:

52:—1) 8

0=FK+ 20— 1) ki — o1 (D.18)
0=y - (2 371)2 vy — 125(22i_1)12) ay + % (K1) + (2 EODZ 1 15(22222(;_21; D a

+ (2_91)2, (D.19)
0=a1+ ;Ejz—_l)l,z o+ 102252Z2'1£)i; : “- %( D7 (z —91)z v (2 3Ol)z b

- (2_31)2 (D.20)
0 =l + o) ity — o e~ g o~ ) a5 ()

2 _

_ (2_31)2 vy — 3(;;(2 3214;21) a1+ (i)z bt _11>Z , (D.21)
0=1s) — %a'l + 2(211)2 ap, (D.22)
0=+ Sy )P (D.23)

. forn=2:
0= k;’+;gz__1)li K+ (;vﬁga’l — 2wy —g/1> K, — Sk —ar ?Z”i;f”w“m) , (D.24)
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27 15(22—1) 11 60 15(222 =22 +1)
1 _ / i k/ k/ k -
(z—1)z 2 2(z—1)z G2ty 2+(z—1)z 2 222(z—1)?

_1(U,1>2+<11 . 10(22—1) 2(22—1) U1> oy 32— DBa—v)

az

2 Pl (z—1)z Waz1 (z—1)z ! 2(z—1)z !
15 1m 1 3 55 10(22 — 1) (v1 — 5wa1)
—4(al1)2—<491+4v1+2wa21> (ki)Q—z(wém)Q— (z—1)z = Wi
N 5 (d))? 1502 30k7 | Thwgy | 15(42° —42+3)ai  12(5a1+4vi)ks
gt (z=1)z (2—=1)z (2—1)z 422(z—1)2 (z—1)z
3(162* —16z—Lv; 9  2(1501 — Dwag1 | 991 —4uy (D.25)
222(z—1)2 (z—1)z) (z—1)z (z—1)z "’ '
7(22-1) 1022 —102+3 9 1 20
0=al : —— v — Kk ———— k
a2+2(z—1)z %2 222(z—1)2 a2+(z—1)z 2T (z—1)z *
11 1 1 5 3 1 10k7
+ <—4a1 +4gl+2wa21> (kll)g“‘g(gi)Q+Z(wg21)2+1(a/1)2 - iw(/ﬂlvi — (2_711)2
C105wly, | 20viky  100f 34 6(7v1 — waor  3(v1—g1) (D.26)
(z—=1)z (2—1)z (2—1)z 422(2—1)2 (z—1)z (z—1)z ’ ’
5(22—1) 12 3(2z—1) 2z—-1
0=w" dNee— 1)y Ls A O N (A
wa22+2z(z—1) Wa22 (z—1)z (a2 22(z—1) %2 22(z—1) v2
3(22%2—22+1) 3 12 3,, 1., 5 3, ,5
— — ko4 —kiky+ - ——
2212 2T Go1): BT o), e afket (W)~ g(a)
3 1 5 2(2z—1)(v1 —Dwga1
—4(gl+wa21)(k'1)2+8(g'1)2+<2a/1— ( (z)(—l)z s )>wéz1
(2z—1)(v1—5wa21)_1a,1 Ui+3(22—1)(a1—wa21)a,1+ 6v?
2(z—1)z 2 2(z—1)z (z—1)z
3422 —42+3)a?  Thwy, 6k7  12(vi+a1 —waa )k
42%(z—1)2 (z—1)z (2—1)z z(z—1)
(3&1 —33wa21 —1)1}1 g1 3(622—62—1)wa21a1 al —3wa21 D.27
— — + 2. __1\2 - _ ) ( . )
z(z—1) (z—1)z 222(z—1) (z—1)z
1 1 1 ai(a1 —s1)
s —dy b ay+ = (a8 )d, + L) D.2
0=s=50t5r gy, etyla-s)at 5=, (D-28)
5(2z—1 1
0=t 53 ook 2R ~ 2 ()~ a1+ 5+ 50t )
4(v1 —2g1 +a1 — 2wq21) (D.29)
(z—1)z ’ ‘
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Initial conditions for (D.18)-(D.29) can be deduced from (B.57) using (D.11)
and (4.13):

16
64 256 28
v = f£0;1 + 4f??,0;1 + (32K3;1 - gfg,o;l f3o 1T 5 ) 2+ 0(%),
9 36 3
ar = <—4K(})l;1 + *fg,on + gf?}f,o;l - 5) z+ 0(22% (D.30)

32

56 4
5 Ko 1 fzh,o;l - Ef:?:o;l + 5> 2+ 0(%),

Wa21 = f:?,o;l + <
h h 8 2
s1 =801 + O(2), g1 = 9p.1 — 52 +O(z%),

for n =1, and

32 16 16
kQZK(])Z;2+<5f£0;1—5Kh 5931+ f201>z+0(22)5

224 512 64
U2=f£0;2+4f:?,0;2+< f201f301 5 Ko 1f301+16(K01) +32K&2—€fz}fo;2
256 28 4 528 128
f302 5901+ (f201)2 (fSOl) —8f:§l,0;1 5 K01f201 fzh,o;1>2
+0(2 )s

38 97
ag = (‘2(K(})L;1)2+4K&1f£0;1+16K(})L;1f??,0;1—2(f2h,0;1)2—5f2h,0;1f?fi0;1 (f301)
3 9 6 36 3
—4K(})l;2+5f£0;1+5f£0;2+5f:?,0;1+f£0;2—593;1>2’+0(22)7

96 32 16 32
wa22—f302+<8f201f301 5 &1f§0;1 5 Ko1f201+ 5 (K&1) += 5

4 4, 104(
)

K02

8 4 4
—gfgfog faozﬂL 901WL (f201)2 f301) —5f3}f0;1_5f2}f0;1>2+0(22)a

s2 =50+ 0(2),

16
92293;2+< ,78201+ f301 59h;1>2+0(22)7 (D.31)

for n = 2.

E Kretschmann scalar of EF frame background geometry
We collect here the expression for the Kretschmann scalar K
K = Rap s R (E.1)

of gravitational bulk geometries (2.13) dual to de Sitter vacua of the cascading gauge
theories. Growth of K evaluated at the apparent horizon as 5\1—22 varies signals the breakdown
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of the supergravity approximation. Explicitly evaluating (E.1) we find, ' = & = — %

dr dz’
12 O’” 2 a// 2 2 ,w// 2 9 w// 2 // 2 24 0'”
om0 P A A W) N (g
a2 b2 02
N 4Hao' N 2aa’a') N 4wyl <a’ B w£2> N 8aw! ywy (a’ B %) N 8a2w,’72w{7’2
o s w2, a  We w2, a  We2 wi,
2

Sttt

/ / 24 N2 /I \2 2 /1 \2 2 / 12 N2
X (a _ wb2> + 3H2 < (02 ) (wCQ) (wb2> (wa2) + 2(@/)2( (U )
o Wea L) Waa

4 (“42)2 2(“’22)2 i 2(“’:12)2 i 12Ho'a (40'd 4 8(a ) ( 22)2 (w§>2)2
5 —t 2 2 o2 w2 + 2
Weo wb? Waa o ao Weo
9 /7 \2 /7 \3 9 /7 \3 2) /I \3 12 2 2
1 (ng) )—2aa’<(w02) 4 (wgz) I (wg2) > a (( wb2)
Wao Weo Who Wa2 wb2

- -
wgﬂ”?z Zzwgz 22“)1%2
(wéz)4 3(‘”22)4 3(w22)4>+ a(wiﬂ)?

WhaWea Wy

2(1%2)2) +48a2(0/)4+a2<2(w§>2)2(w22)2 2(w 212)2(1”&2) 4(w :;2)2(wb2)2

(27w2, 4 Ywi, — 36wpawes + 16w>)
Wea Wyg Wao

a(w, 3a(w'y)?
+ (71)2)3(911}22 — 36wa2w02 + 27101?2 + 16'[032) + (702)3(311)22 — 6wa2wb2
Wa2Wc2Wyo Wa2Wp2 Wy
Sl + 16wl — —0a2%2 (G321 24 A5wd, — 24
+ 3wy + 16wgy) — T2 w2 (63wgo — 18waawpz + 24wawes — 45why — 24Wpawes
b2WaoWeo
2 AWhyWho 2
+ 112w5,) + 72(4510@2 + 18wgaowpy + 24waaweo — 63wiy — 24wWpawe
2wa2wc2wb2
2 WaaWho 2
— 112w, — 72(6310@2 4+ 18waowpyz — 24weaWes + 63wb2 — 24wpawes — 80wsy)
2wcgwb2wa2
136ws,  144(wa2 + wp2)we N 81(13w2y + 6waowpe + 13w2,) (Wa2 — wp2)?
Who Wiy Waa Wi B2whwhws
_ 54(wgy — wip)(Wa2 — wr2) I 9(9wgy + Ldwaawpz + 9wb2) (E.2)
W WinWe2 Wao Wiy '
Introducing the dimensionless and rescaled functions and the radial coordinate 7 = —2 as
n (4.8),
K=— & (E.3)
- Py '

E.1 Kretschmann scalar at AH of TypeB de Sitter vacua

In section 3.4 we showed that the AH horizon of the bulk gravitational dual to TypeB
de Sitter vacua of the cascading gauge theory is located at rag = —z4g = 0, see (3.33).
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Using (B.67) we find from (E.2):

16 P24 (3(k5 5)*(fl'g)? + 20) 72
Kan = 300hhH4+H2< 2 + (5kh (f20)?
Typel 0 3(f£0)3h3 ( h )2k‘h 2,4 ,0
h rh 5( 1,3 ) k§2(f ) o 15%9,2(]{:2,1)2 o 36]{?,3]63,1
+3kyofa0+18 ) + h p2(th \2 hph
k‘z,zp (fa,o) goh

1
+ 3840(f10) 4 (hy)3 P(gg)2 (Kh o)

(355<kf VAR )2 (Fho)™ — B0(KL )2 (ko) (L 2 (f1)?

+2283(ky 5) (k5 1)" + 6912K1 5k5 (K5 1)° + 6912(I<:f3)2(k§’1)2>
3 ( h \2(ph )2 )
25(ki'3)2(kh 2)? (F10)® — 60kS ok 4 (K 1)*(F20)
10(f o) AP2gh ()2 (kD )2 13)"(k22)"(fap 5ok 4(K51)* (fao
N 120k1,3k2,4k3,1(fa,0)2 - 37("?3,2)2(7“331)2]020 - 24]“?,3]?3,2@,1]020 - 216k§,2(k§,1)2

1
— 432k} kY ) + 175(kR )2 (kb ) ()2

+194400(k34)2(fh )°(h h)2—491(k32)4(k§,1)2(f£) +77760k’22k24(f )4(h0)
— 1152k 5 (k3 o)k 1 (f1'0)? + T46496 (k5 o) (f10)? (h()® — 2220(k1 3) <k2,2>2< 20)?
+ 1399680@,4(@,0) (h 0) + 2799365 5 (1 0)?(hy)? — 3492(kh o) (K5 1)

81 293 h \21.h h \4
45]€32( ) (hh) ( ( 2,2) 2,4(fa,0)

— 13824k} gkl oK% | + 2519424 fgo(h§)2>

+ 37(k]5,2)3( a 0) +216(ky 2) (fa 0) + 720k} 4( )2 - 756k§,2f§,0 + 2592)

P4(gél)2

" 3645(h])* (fF )0

<881(k§72)4( 2 o)+ 10584 (k5 o) (fi)? + 184464) (E.4)

A special case of (E.4) is the Kretschmann scalar at the “AH” of the extremal KS
solution, see section B.3: setting H = 0 and using (B.79) we find

1 32-122/3(110 - 123 + 17714762
lim K ap = — ( . ), (E.5)
H—0 Types P29 29524568

where we denoted, see Al in (B.79),

§ = 0.056288(0) . (E.6)

- 72 —



F Static linearized xSB fluctuations about TypeA, vacua

Static linearized xSB fluctuations about TypeAg vacua in FG frame are parameterized as

in (5.1). From (B.4)~(B.5) and (B.7)~(B.9) we find, (= £ and P = H = g5 = 1);

YV 1 CAefAr3p 2 2 52 2042 2 o0 N272¢ ed 2
0=0f 16p92f2h2f§,(f§p_2f3)(48f3hfzgp 2W9* £ f20” = 29 )W Fafip

+ 129K (£5)* f3 fop” — 16h(R)g* f3 fap — 16K G £5(£5) fop — 48 f5h%G° fo

— fop®(K')*hf3g + 16 f3h% f39% — 96 f31° fog® + 49° [3h + 292K2> of —

!
2ghf3
2g 1 240 p 1343 3 2/ p1\3 12, 3
=2 ket (—48 h +8 h
Fofahp? 2 892 o2 2 f3(fop — 2/3) g” f3f2h f5p g~ (f3)° f2h” f3p
+ 48 f3h® fog?p* — 2(W)2 g% f3 fap® — 2(9')2R fafip® — 3692 h2(£5)? f3 fap®
— 16h1' g f3 fap + 64R>G" f5 f3 fap — Ag 5 (K")? foh f3p” + 3297 f3 502 fap — T29° f3h* fip
— 80f3h*g* fo + Tfap*(K')?hf5g — 48 f5h° f5 9> — 96 f3h° f29° + 144 f5h* g

5K,

166" f{h fop + 3607 f3h + 292K2) 57, (F.1)

L 473, 2 2 N2 2pdp 2
_ h —_9(h
16/192f2h2f§’(f§,p—2f3)( A8f3h” f2g"p” = 2(W)"g" f5 fap

+ 16 f3hfag?p* f51' — 2(g')2R* fofsp® + 16 £3 f2 fih?ag’ p* + 12°h>(f5)? 3 fap®
— A8hI g* f3 fap — 325 f2hgq' p — 16K G £3 fi fap — 48 f5h% g% fo — fop®(K')?hfig

0=6k" —

2K
+16f50% f39° — 96 f5h* fog® + 49° fih + 292K2> L 29f Sk
3 p=J2
29K 2(—f4K’ fahfap® + 29K)
P2 fhf3 " f3p%fah / (F.2)
1
0=dk" — (—48f4h3f292p2 — 2(W)2g? f4 fop®
16p9° foh? f§ (f4p — 2f5) 3 (h')g"fs

+ 16 f3hfag?p* f51' — 2(9')2R* fofs p® — 16 £3 f2 fih?ag’ p® + 12°h>(f5)? 3 fap®
— A8hI g* f5 fap + 325 f2h?gq' p — 16K G 5 fi fap — 48 f5h2 g% fo — fop®(K')?hfig

9 IK
+ 16 2h2f2g% — 96 f3n% fog® + 4¢3 f2h + 292K2> Sky' — —— Oko + —5——5— Ok
e ’ ’ P2 fa 202 f2f3hg
18
— _5f. F.3
fsp* f2 ! (£3)
Performing the asymptotic expansions, we determine:
= in the UV, ie., as p — 0, using (B.38)—(B.43),
1 ) 1 11
d0f=df10 p+ §f2,1,0 0fi0 p"+(0f30+ Z5f1,0 ks_§5f1,0 Inp
1 2 3 ni..k
_16f1701n p) p +szf”7k Pt In" p, (F.4)

n=4 k
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| 1 ) 1 47
Oky = —§5f1,0 p+ ZfZ’l’O df10 p°+ <5k‘1,3,0+ <—245f1,0 ks — M45f1’0+26f3’0> Inp

4 1 2 1 3 3 ni1..k
+<—35f1,0+45f1,0 k‘s> In P—65f1,0 In P)P ++nz:;lzk:5k?1,n,k p'In"p, (F.5)

9 9 13 3 3
Oko = —15f1,0 p+ §f2,1,o Sfi0 p°+ (—485f1,0 ks—§5f1,0 f22,1,0+§5k1,3,0
163 5 137 7
BEY df1,0—9f30+ <_16 df1,0 ks+%5f1,o+35f3,0> Inp+ <—45f1,0

3 2 1 3\ .3 k
+350/10 k) In®p——0fio In p>p +1;sz:5k2m’k P In* p, (F.6)

characterized by 4 parameters (compare with (B.25)):

{0f10,6f30, k130, 0f70}, (F.7)
———— N
o8 Or

where ¢f1 o is an explicit chiral symmetry breaking scale (o< the gaugino mass term),
and the remaining parameters are the expectation values of the chiral symmetry breaking
operators in the cascading gauge theory;

®  in the IR, i.e., as % =y — 0, using (B.45),

1
of =~ dafhyr, Skia=) 6kia, v, (F.8)
n=0

n=0

characterized by 3 parameters:
{05 0kiy, Ok3o} - (F.9)
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