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1 Introduction and summary

Recently there was renewed interest in the Newton-Cartan geometry (NC) and its torsional
generalization for the study of non-relativistic aspects of string theory and gravity, see for
example [1]. It is interesting that there are currently two versions of non-relativistic string
theories. First one was proposed in [2, 3] and corresponds to string on torsional NC geom-
etry while the second one was firstly introduced in [4]' and corresponds to string in stringy
NC geometry. Stringy NC geometry is characterized by foliation of space-time into two
longitudinal directions that, roughly speaking, correspond to world-sheet of fundamental
string. In [14] beta function for string in stringy NC gravity was proposed which leads
to the dynamical equations of non-relativistic stringy NC gravity. In case of string on
torsional NC geometry beta function was calculated in [15] where again this beta function
leads to dynamical equations of motion of torsional NC gravity. This is very interesting
consistency check which demonstrates that both non-relativistic string theories could be
considered as UV completion of corresponding non-relativistic theories of gravity. Finally
it was shown in remarkable paper [16] that these seemingly different string theories can be
mapped into each other.

In this work we will be interested in the first version of non-relativistic string theory
that arises by null reduction of relativistic string. As was argued in our previous paper [17],
following [9] T-duality along null dimension is rather subtle and needs careful treatment.
In fact, it is convenient to consider extended string with two auxiliary fields and additional
terms on its world-sheet so that the string now propagates in the background with no null
isometry. The meaning of two auxiliary fields is that solving their equations of motion
and plugging back to the action we get the original one. However since extended action
has well defined kinetic term it is much more convenient for performing T-duality as was
shown in [17]. We performed it for general null metric and we found that the string in the
background with null isometry is T-dual to non-relativistic string.

In this work we apply this procedure to the concrete background [16]. We explicitly
derive corresponding Lagrangian density and we found that it has the same form as in [2].
Then we address the main problem which is T-duality of non-relativistic string in torsional

'For related works, see [5-8, 8-13].



NC background. Since an action for non-relativistic string is non-linear in this background
it is not clear whether it is possible to follow standard procedure that is based on the
gauging isometry direction on the world-sheet of the string [18, 19]. For that reason we
mean that it is natural to start with extended relativistic background and perform T-duality
along null direction together with T-duality along one spatial direction. This problem is
more complex and we were not able to solve it in the full generality when we have non-
zero values of NSNS two form with components along null direction. For that reason we
restrict ourselves to the case of zero NSNS two form along these directions leaving the
analysis of the most general case to the future. However even in the case of zero NSNS
two form we derive interesting results. Explicitly, we show that T-dual string is either
relativistic or non-relativistic in accord with the form of the background fields. In more
details, in case of the background [16] we find that T-dual string has the same form as
the original one when component of the clock form 7,dz#* along spatial direction y, where
we perform T-duality, is zero. This result is in agreement with the condition that was
derived independently in [23] when T-duality of effective action for non-relativistic D-branes
was studied. In the opposite case we obtain ordinary relativistic string in the modified
background whose explicit transformation rules are determined by solving equations of
motion for two auxiliary fields.

Let us outline our results and suggest possible extension of this work. First of all we
applied general analysis that had been studied in [17] to the case of the null background [16]
and we derived Lagrangian for non-relativistic string in torsional NC geometry. Then we
studied properties of this string under T-duality along spatial direction with isometry and
we argued that T-dual string is either relativistic or non-relativistic with dependence on
the value of the background clock form 7,dz*. In case when the T-dual string is again non-
relativistic string in torsional NC background we found T-dual background fields whose
transformation rules are in agreement with Buscher’s rules [18, 19] and also with the
analysis performed in [17] which is nice consistency check of both approaches. On the
other hand we should stress that these results were derived on condition when the NSNS
two form with components along null and spatial directions are zero. We leave an analysis
of the most general case to the future work.

This paper is organized as follows. In the next section 2 we show how Lagrangian for
non-relativistic string in torsional NC background can be derived using T-duality trans-
formations along null directions. Then in section 3 we study T-duality of this string along
spatial direction and we determine T-dual components of the background fields.

2 String with light-like isometry and non-relativistic string

We begin with the bosonic string in the background with null isometry whose dynamics is
governed by the Lagrangian density

T 1 2
L= —§N\/J —an:“GWan”—kaaa:c“agazl’GW—2an“Guanu+;80:1:“Gwagu -

—TB,,,0-2"05x" =T B,,,0: 2" 05u—T By, 0;uds " (2.1)



where T is string tension, G, , By , i, v = 0,...,d — 1 are background metric and NSNS
two form. Further, G, and By, are background fields along null direction labelled with
u. Finally we used 1 + 1 decomposition of the world-sheet metric where N is two di-
mensional lapse, N? is two dimensional shift and w is spatial component of the metric,
and V, = %(87 — N90,), where 7 and o label time and space dimensions on the string
world-sheet, see [17] for more details.

The crucial point which is related to this Lagrangian density is an absence of the metric
component Gy,,. This fact makes the Hamiltonian analysis of this theory rather problem-
atic. Then it was shown in [17] that it is convenient to rewrite (2.1) into equivalent form

T A 1 A N 2 N
L= —§N\/E — Vp2tG Vax? + ;aax#a(,x”aw — 2V 2t G Viu + ;ng“G,w&,u—

. 1 .
— VouGyy Vau + ;a(,uGuuac,u FATA+ A B+ AT | —

— TBu V2t 8yx” — T B Vna" 0yt — TBuyVudyz” (2.2)

where now we have to choose A and B in such a way to ensure that Guu = 0 after solving
equations of motion for A™ and A~. Further, we also demand that GW, BW, CA?W, ng re-
duce to G, Buy, Guu, Buu when the equations of motion for AT and A\~ are solved. More
explicitly, the equations of motion for A*, A~ have the form

A=—-A, M =-B (2.3)
and hence they give following contribution to the Lagrangian density
MA+A" B+ATA =-AB. (2.4)
Generally A and B could have the form

A=V, 2"A, +V,uY " — [Os2' A, + 0,yY 1],

1
Vw
1

B=V,2'B,+ V,uY ™ + ﬁ[&,m“B“ + 0,uY"]. (2.5)
However as was shown in [17] it is sufficient to consider the case when A, = B, = 0 since
their non-zero values modify the background metric G, only. In this case we obtain follow-

ing contribution to the Lagrangian after solving equations of motion for A*, A~ in the form
1 e
—AB=—- |V, uV,u — —0,u0,u| Y'Y (2.6)
w

which implies that the Lagrangian density (2.2) reduces to the original one when

Y= \/GTU Y = —\/GTU. (2.7)



Note also that in this case all hatted and unhatted components of the background fields
coincide. In other words, an extended action has the form

T A 1 A A 2 o
L= —2]\7\/5[ — Vpo'G Vaz” + E(%a:“&,x”GW — 2V, 2" Gy Viu + ;ﬁgx“Gwagu—

~ 1 ~
— VauGuu Vot + —05uG oy Opu+
w

1 1
+ AT <Vnu — \/Eagu> YT+ A (Vnu + \/E&,u> Y + )\+)\] -

- TEWV,LJ:“&,x” - Tvnx“BW&,u — VauBu0,3" . (2.8)

This action is the starting point of our analysis which is based on the canonical description
of T-duality. The Hamiltonian corresponding to the action (2.8) was found in [17] and has
the form

H = / do(N"H, + N°H,)

N N T -~ T~
H, = m,G*'m, + 21, GH <7ru + 5)\+Y+ + 2)\_Y_> +

+ (m + §X+Y+ - gX‘Y‘> G <wu + §5\+Y+ + ZS\‘Y_> +
+ Tan.ﬁuéuyang + 2T280x“(§wagu + T20,uG O u—
— T2 AT 0,uY ™t + TN 0,uY ™ + T°XNTA™, M, = puOor” + pudsu, (2.9)
where we performed rescaling
Vot =T, Vwd =" (2.10)
and where p,, and p, are momenta conjugate to z#,u respectively and where
Ty = Pp + TBuOst” + TBuudpu, Ty = py + TByudsat . (2.11)

Having identified canonical Hamiltonian we can proceed to the definition of non-
relativistic string when we perform T-duality along w direction. This is done when we
introduce dual coordinate n and p, that are related to p, and u by canonical transforma-
tions [20, 21]

Pu= 105, pp=-T0su. (2.12)

Then performing again inverse Legendre transformation to Lagrangian description we ob-
tain T-dual Lagrangian in the form

1 > ~ ~
El — 4N7’ (g;'T — QNUg;_U + (Na)zg;_a) _ NTTQQ;U _ TB?\JNaT.fCMaO.:CN—f—
T ~ T
+ S NAT (Vi Ay = 270, Ayr) + S NA™ (Vi By + 270, Buy), - (2.13)
where

Gop = Ghyn0ai™Mpz™, M = (at, ) (2.14)



and where the background fields are given by standard Buscher’s rules [18, 19]

A ~ 1 - ~ 1 - .
G:U/ = G,uu - TWGHUGUV + éuu B,uuBuu )
. B . B . 1

1 DPuu r uy r
(;un - G (;nu - A 0 (;nn - a

uw uw n
. . G B
B;U/ = Bp,l/ - A,uu Buu - Auu G’LLV )
Guu Guu
B, ==F, B, =-=". (2.15)
Guu Guu

Finally, A s and B, are defined as

1 A . 1 1 A . 1
o= () B (st )

GU’LL V Guu Guu Guu
(2.16)
Let us now solve the equations of motion for A*, A\~ that have the form
Vi Ay = 2T0,#M Ay, VaidMBy = 270,72 By, . (2.17)

If we multiply the first equation with 9,2 B); and the second one by 9,V Ay and sum

them we obtain
M’TU

)
LY/ P

where the matrix M,y is defined as

N’ =

M, s = 0,2 My nOsE"Y | 2.18
B B

1
Muyn = i(AMBN +ByAy).

Further, if we multiply two equations in (2.17) we obtain

/—det ML,
NT = Vel (2.19)

2M;,

Then the final Lagrangian density has the form of non-relativistic string action
T - o . .
L7 == V=det MM g5 —T B, 0, 0,3" =T B}, 0-a" 0 —T B, 00", (2.20)

where M®? is matrix inverse to M,z so that 1\/IO‘BMr37 = 52‘.
We use this general procedure for the case of the background with null isometry which
defines NC with torsion [2, 16]

ds? = gundz™da™ = 27(du — m) + hydatda” , T =Tdat,  m=myda", (2.21)
where det hy,,, = 0. We also have non-zero NSNS two form with following components

Buy, By =b,. (2.22)



For this background the components of the matrix M,y have the form

1 b 1
My = ——(Tum = buby), My = —=, My, = =—. 2.23
H G (M 123 ) Hun mm G ( )

uu uu uu

Without loss of generality we can take Guu = 1 and hence we obtain
Mag = (ba — 0an)(bg — Opn) — Ta7s , (2.24)
so that
det M = — (9,17 — by )7y — (80 — bs))?. (2.25)
Further, with the help of the background fields (2.21) we obtain

Qfm’ = iLOcB — TaTg + (Oam — ba)(aﬁn - b,B) )
B, = B, — Tuby + 1b, (2.26)

so that we obtain
B:wa'rxuaaxy + Bfmarx“aaﬂ + B;maﬂ?aa-r'u = BTO‘ + 7o (br — 9rn) — 77(bo — 9om)

where ﬁag = ﬁwaaxﬂaﬁxl’,ﬁw = hy — 1my, — 1,my,. Then we see that Lagrangian
density is equal to

L= r X
2((0rn = br)75 — T (0pn — by))
X [((8077 - bo)(aon - bcr) - TUTcr)hTT - 2((8077 — by )(0rn — br) — ToTr) o+
+ ((Orn — br)(Orm — br) — TTTT)ing]
T ! apr .
= @ BB (Dam — ba ) (D5m — bg) — TaTs)har s 2.27
2((8777_177)7—0'_7_7(8077_170')6 € (( n )( B 5) T 7—,3) o' B ( )
were €*¥ = —¢P* 91 = 1. We see that the Lagrangian density (2.27) agrees with the

Lagrangian density found in [16] and we mean that this is nice consistency check of the
general procedure outlined above. In the next section we analyse how this non-relativistic
string transforms under T-duality.

3 T-duality of non-relativistic string in torsional NC geometry

As was shown in [16] the Lagrangian density (2.27) corresponds to Nambu-Gotto form of
the action for non-relativistic string in torsional NC background. It is well known that
such an action, due to its non-linearity is not well suitable for the study of T-duality based
on the gauging of the isometry direction. For that reason we mean that it is natural to
start with extended relativistic string and perform T-duality along both two directions, one
corresponding to the original dimension that defines non-relativistic string and the second
one that corresponds to T-duality along spatial dimension. Since we study this problem
with the help of the canonical formalism we start with the Hamiltonian for extended string



and perform T-duality along two directions, one corresponding to u and the second one to
spatial direction that we label as y. We use common notation where

~m

"= (pg:rn), Tm=(4,n),m=g,n. (3.1)

Finally we define Y as YZ = (0,Y*). We also restrict ourselves to the case when

B, = 0. Then T-dual Hamiltonian constraint has the form

/Hz =H, (py - _Taag’pu = _Taana 8ay = _Tilpzjy RTES _Tilpn) =
= (K] — Bimp™) G (K — Bjp™)+
—2T (ki — Bipp™) G"W .+ T*W,,, G W, +
+T (K, =By ) G™MANTY A7 Y ) —T? W, G (AT Y+ 07Y )+
T2 - - pm - - - s
+Z(A*an+A—Y7;)Gm"(A+Y;+A—Y,;)+TA+@’HY;—TA—ﬁWY;+T2A+A—+
+T20,3" Gij0pt? —2T05x" Gimp™ +5" Grun "
HE =piOox' +pyOsij+pyOen, (3.2)
where k = p; + TBij(?ij, i,7,k=0,...,d — 2 and where
W, = Opiim — Bmifot’ . (3.3)

In order to determine form of the background fields it is convenient to derive corresponding
Lagrangian from (3.2). We begin with the equations of motion for Z,,, z*

Ora' = {a', H'} = 2N"GY (K — Bjp™) — 2T N" G W+
+TNTG™AYY S+ MY, + N79,at
Oriim = {Zm, H' } = 2N7 BpiG (kj — Bjpp™) — 2T'N" By G"W,+
+ TN B GmOYY,S + XY, + TNT(ATY) - \7Y,)
— 2T N7 GiOpt’ + 2N7 " + N Oy , (3.4)
where HT = [do(N"HL + NoHL). If we combine (3.4) together we can express ™ as

1

"= o G (X, — BpiX' + 2T N7 GriOpx’ — TNT(ATY T = A7Y)), (3.5)
where X,, = 8;3n — N9Opip , X' = 0;2" — N79,2' and where we introduced matrix inverse
G™" to Gmn

GGy =9, (3.6)
We further introduce matrix éij inverse to G
éi]’ = é’ij — szémné’m] s éijéjk = 55, éijéjm = _érménm (37)
so that
. 1 - . . . -
K= B = 51-C (XJ 2T N"GIMW,,, — TNTGIm(ATYE + A*Y,;)) . (3.8)



Then, after some algebra, we find Lagrangian density in the form

LT =m0, + pidrat — NTHL — NoHT =
1

"~ 4NT

_NTT? (a(,:zmé'm"agazn 4 Oy i GOz + Dy O MOy + a(,xiégja,xj) -

—TBl;0:2' 0,37 — TB] ™0;2' 0 — TB"70;#m0,2"+

L

2

— 2052 G™Y T 4 20,2 (Gin — Bin)G™Y)

(Xié;jxj + XnG X, + X GMX 1 X ”Xn) -

NTX (V' (—Gim + Bin) G Y + Vi#nGVY  —

T . . R ~ -

= S NTA (Vo (=Glim — Bim) ™Yy = V@G Y

— 20,80 G"Y o — 20,2 (Gim + Bim)G™Y ) —

— TAN"XA(Y,G™Y, +1), (3.9)

where we have following components of background metric and NSNS two form

G}; = Gij — BinG"" Bpj = Gij — GinG""Grj — BinG""™ By,
é/mn _ émn G/m _ _GrmnB . Gl n __ B émn
= s i = ni i — Dim )
B{™ = GG, BT =—G""Gpi, Bjj=Bij— BinG"" Gy + GinG™" By

Now the nature of T-dual string depends on the form of the inverse matrix G™". In case
when G = % we obtain that T-dual string is non-relativistic string. To see this we
introduce again notation

where of course we could express A s and By with the help of the transformed fields given
in (3.10). Then the expression proportional to AT, A~ can be written as
T TY+ ~M ~M
— 5]\7 AT (Va2 Ay — 270,32 Apr)—
T

2

NIV, 3" By + 270, By ) — TPNTATAT(YEG™Y, +1). (3.12)

Now in the first case when G = GL we find that Y;;G™"Y; +1 = 0 and hence we find

No = Mmooy Vo det Moy (3.13)
MCTO' ’ 2]‘\/‘[0'0' ’

where )
Ma/g = (%a?MMMN@ﬂjN , Muyny = i(AMBN + BMAN) . (314)



As a result we obtain Lagrangian density in the form
T A ]
£r = —5\/— det MM Gy y0adM 053N — TBY n0r3M 0, 3N . (3.15)
Let us now concentrate on situation when YTTLC?’”"Yg + 1 # 0 and denote X as

X = (Y £G™Y; 4 1). Then the equation of motion for A* can be solved as

G M A -M S
AT = 2TX(VnCC AM QT&,J: AM), AT =

1

—ﬁ(vnfiMBM + QT&,@MBM) .

(3.16)

Inserting this result into (3.12) we obtain following contribution to the Lagrangian den-
sity (3.9)

%NT (VazM Ay — 270, A ) (V0 2VBy + 279,32 By) (3.17)

and hence we obtain relativistic form of the Lagrangian density

1 Al

L= ANT (gTT - Ngg‘lrla + (NJ)ZggU) - NTTZ.@ZU - TB?\%NaTjMaﬂ"%N7 (318)
where
A1 A1 2 o3 /! 1

Now we return to the background (2.21). In this explicit case the matrix Gy,, has

components
A hyy = 2Tymy Ty
Gonn = . (3.20)
Ty Guu
so that inverse metric has the form
- 1 g _
Grn— 1 [ Cu Tv : (3.21)
det G, \ —Ty hyy — 27ymy
where
det Gy = (hyy — 2Tymy)éuu — TyTy - (3.22)

we should demand

As it is clear from the matrix above the condition to have G = Gl
that 7, = 0. so that

1

G = ( Fyy ) (3.23)

=" ) .
GUU

In this case we obtain following components of the vectors Aj; and B,

Ay = (3.24)

éz’u 1 Gm 1
) Oa — ; BM = > 07 —
Guu \ Gyy Guu \/ Gyy



and hence matrix M,y has the form

TiTj
Mij:—A y M@ZO, Min:Ti,

uu

1
Mgz = My, =0, M,, = =—. (3.25)

uu

When we choose éuu = 1 we obtain that T-dual background fields have the form

N BB, -
G;j = hij — LY — 7 W) Eh;j — TiTj
By By
g 1 - S
G%z—h—yyByZ, Giy:@ iy s
GMZ‘—_BMZO’ é;nzézu: )
C;”"”:l, C}/ﬂﬂzi,
By
. . ByGy, 4 . GiyB,;  »  Biyhy;  hiyBy;
Bl{j:Bij_M_BiuTj+TiBuj+ iy Pyj = B;; - wlyi o My Zys
By By Py By
Bz/'y _ T Ty ’ Bl{n =7. (3.26)
hyy By

It is instructive to find explicit form of the T-dual Lagrangian. First of all we have
Mg = (9an — 7o) (01 — 75) - (3.27)
Then we obtain

g;ﬂ = iI/IaB — Toﬂ—ﬁ + 8(17]8577,
By n0:iM0,5N = B. 4 1:0,m — 1,0, (3.28)

and hence we see that T-dual Lagrangian density has the same form as in (2.27) (with zero
b,) with background metric and NSNS two form fields given in (3.26). This is again nice
consistency check. Of course we should stress that we do not consider the most general case
when BW = b, # 0. On the other hand we do not expect that the presence of non-zero
NSNS two form field qualitatively changes the transformation rules presented in this paper
however this problem should be investigated further.

As the last remark we would like to discuss relation between our results and T-duality
transformations of stringy non-relativistic string which was analysed in [9]. As was shown
there T-duality of stringy non-relativistic string along longitudinal spatial direction leads
to relativistic string in the background with light-like isometry which is exactly the action
we started with. Then we argued that T-duality of non-relativistic string in torsional NC
background corresponds to T-duality along two directions in relativistic string with light-
like isometry, one which is light-like and the second one which is spatial one. Clearly this
T-duality is the same as T-duality along transverse direction in stringy non-relativistic
string theory [9]. We mean that this again nice consistency check of our approach.

~10 -
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