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1 Introduction

Every renormalization group (RG) flow can be described as spontaneous breaking of confor-

mal symmetry of some conformal field theory (CFT). This provides an elegant formalism

to study general features of RG flows in terms of the effective action of a massless dilaton,

which is the Nambu-Goldstone boson of spontaneously broken conformal symmetry [1]. In

this paper, we view the flat space dilaton effective theory as a theory in anti-de Sitter (AdS)
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Figure 1. Every RG flow connecting two conformal fixed points CFTUV and CFTIR in d spacetime

dimensions can be equivalently described as a CFT in (d− 1) spacetime dimensions for d ≥ 3. The

CFTd−1 is obtained by deforming operator dimensions and OPE coefficients of a (d−1) dimensional

generalized free theory.

space with finite but large radius RAdS and then take the flat space limit RAdS →∞. We

know from the conformal bootstrap that scalar effective field theories inside an AdS “box”

have the advantage of a dual CFT description. To be specific, it has been established by [2]

and subsequent authors [3–14], that scalar effective field theories in AdS in d dimensions

are in one-to-one correspondence with perturbative solutions of crossing symmetry in CFT

in (d − 1) dimensions. This connection enables us to analyze the dilaton effective theory

in d ≥ 3 dimensions using methods from the conformal bootstrap in (d− 1) dimensions.

For example, a free scalar theory in AdS enjoys a dual description in terms of a

generalized free CFT of a scalar primary O of dimension ∆O. Of course, this dual CFT is

required by crossing symmetry to contain infinite towers of N -trace operators with spin J

and dimensions N∆O+ 2n+J , for all non-negative integer n, which we denote as [ON ]n,J .

Besides, each interaction of the scalar field in AdS corresponds to a specific perturbative

solution to crossing symmetry in the dual CFT. Thus, the dilaton effective theory in

AdSd can be equivalently described as a CFTd−1 which is obtained by deforming operator

dimensions and OPE coefficients of a generalized free theory.

The above discussion implies that every RG flow connecting two conformal fixed points

in d dimensions can be interpreted as deformations of the spectrum of a generalized free

CFTd−1 for d ≥ 3, as shown in figure 1. This dual CFTd−1, for any unitary RG flow,

must obey the Euclidean axioms. Hence, general aspects of unitary RG flows, such as

irreversibility, can be studied completely within the paradigm of conformal bootstrap in

one lower dimension. This philosophy parallels recent developments in S-matrix bootstrap

where conformal bootstrap methods were used to study quantum field theory (QFT) in

AdS [15–18].
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The irreversibility of RG flows is of fundamental importance in QFT. Consider a uni-

tary RG flow where CFTUV flows to CFTIR. Since RG flows represent coarse-graining,

it is expected that fundamental principles such as quantum mechanics and symmetries

should forbid any RG flow that starts from CFTIR and ends at CFTUV. The first con-

crete realization of this expectation was the C-theorem due to Zamolodchikov (1986) which

established the irreversibility of RG flows for 2d QFTs [19]. In 1988, Cardy proposed a

natural generalization of the 2d theorem to any even spacetime dimensions in terms of the

Euler central charge a [20]. In d (even) spacetime dimensions, the conformal trace anomaly

has the following structure [21–24]

〈Tµµ 〉 = −(−1)d/2a Ed +
∑
i

c(i)Ii (1.1)

up to total derivative terms which can be removed by adding finite and covariant counter-

terms in the effective action. Here, Ed is the d-dimensional Euler density and Ii are local

Weyl invariants of conformal weight d. Cardy conjectured that the Euler central charge a

decreases under unitary RG flows

aUV ≥ aIR (1.2)

implying the irreversibility in even spacetime dimensions [20]. In 4d, there was ample evi-

dence in favor of this conjecture, however, general proof of the a-theorem was an open prob-

lem for over twenty years until an elegant proof was found by Komargodski and Schwimmer

in 2011 [1] (see also [25]). On the other hand, the 6d a-theorem has resisted all attempts

at proof. This is particularly surprising since the dilaton based formalism of [1, 25] does

extend to 6d [26, 27]. Moreover, there is strong evidence for the 6d a-theorem for flows

that preserve supersymmetry [30–34]. However, as it was discussed in [26–29], there are

several major obstructions to a general proof of the a-theorem in 6d. The purpose of this

paper is to interpret the 6d a-theorem as a CFT5 problem which may yield to conformal

bootstrap techniques.

The proof of the 4d a-theorem in [1, 25] follows from the unitarity and analyticity of

the dilaton four-point amplitude. The dual CFT3 description of a 4d RG flow also provides

a simple proof of the a-theorem. In this approach, the spin-2 lowest twist operator [O2]0,2,

where O is a scalar primary dual to the dilaton, acquires an anomalous dimension γ2 under

the RG flow implying

aUV − aIR = −∆̃4
f γ2 . (1.3)

In the above relation, the gap ∆̃f is a CFT cut-off scale which is determined by the details of

conformal symmetry breaking that triggers the RG flow. The a-theorem now simply follows

from the CFT Nachtmann theorem [35–37], as well as from causality [38] which requires

γ2 ≤ 0. We also construct a monotonically decreasing CFT3 function that interpolates

between aUV and aIR.

Similarly, the 6d a-theorem can be rephrased as a CFT5 statement1

aUV − aIR = ∆̃12
f

(
−δγ3 + αγ2

2

)
, (1.4)

1Note that in 6d a CFT in the UV can flow to a fixed point which is scale-invariant but non-conformal [31].

In this paper, we will only consider RG flows between two conformal fixed points.
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where, γ2 and γ3 are the anomalous dimensions of the lowest twist spin-2 and spin-3

operators respectively and α is a real, model-independent universal numerical factor which

is completely fixed by symmetry (see section 4 and 5). Clearly, in the dual CFT5 the double-

trace operator [O2]0,2 is the lowest twist spin-2 operator. Whereas, the lowest twist spin-3

operator is the triple-trace operator [O3]0,3. Anomalous dimensions of triple-trace operators

are complicated objects simply because three-particle bound states are complicated. As

a result γ3 receives contributions from various different processes. So, we have defined a

subtracted anomalous dimension δγ3 which corresponds to the binding energy of a spin-3

three-particle state in AdS6 arising from purely three-particle interactions.2

To be specific, the relation (1.4) holds for 6d RG flows from spontaneously broken

conformal symmetry. However, a more standard scenario in which RG flows are triggered

by adding relevant (or marginally relevant) operators that break conformal symmetry ex-

plicitly can be thought of as a special case with γ2
2 � |δγ3|. Hence, the above relation

simplifies further for explicitly broken conformal symmetry

aUV − aIR = −∆̃12
f δγ3 . (1.5)

Anomalous dimensions of odd spin operators do obey a generalized Nachtmann theo-

rem [37] that provides a lower bound on γ3, however, we are not aware of any CFT theorem

that implies δγ3 ≤ αγ2
2 . Thus, the 6d a-theorem never ceases to be a difficult problem.

Nonetheless, the relations (1.4) and (1.5) suggest that the a-theorem now can be explored

using numerical bootstrap techniques. This is indeed encouraging since spectral deforma-

tions of generalized free theories are sufficiently simple to be analyzed numerically. The

hope is that an upper bound on γ3 can be obtained from the numerical bootstrap which

will settle the 6d a-theorem once and for all.

The outline of this paper is as follows. In section 2 we review the dilaton effective

theory associated with RG flows in 6d. In section 3 we study this dilaton effective action in

AdS and discuss its dual description in terms of spectral deformations of a generalized free

CFT5. We then utilize the CFT5 description to relate the change in the Euler anomaly ∆a

under the RG flow to anomalous dimensions of lowest twist multi-trace CFT operators in

section 4. Finally we summarize our conclusions in section 5.

2 RG flows in six dimensions

In this paper we will mainly focus on RG flows between conformal fixed points in 6d. We

will also comment on some aspects of 4d RG flows throughout the paper. In fact, RG flows

in 4d can be thought of a simpler version of the 6d case.

The trace of the stress tensor for 6d CFTs is anomalous in the presence of a background

metric. The trace anomaly can be characterized by 4 central charges {a, c(1), c(2), c(3)}
where a is the Euler central charge and c(i) are central charges associated with 3 Weyl

invariants (see appendix A for details). Central charges c(i) also appear in the stress tensor

2A part of γ3 comes entirely from the anomalous dimension of the double-trace operator [O2]0,2. We

define δγ3 by subtracting this contribution. In particular, at the leading order the exact relation is δγ3 =

γ3 − 51
22
γ2. For a detail discussion see section 4.
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Figure 2. Conformal symmetry of CFTUV is spontaneously broken by turning on a VEV 〈O〉 ∼ f .

As a result the theory flows to a low energy theory consists of a CFTIR and a massless dilaton.

three-point function and hence they are constrained by the conformal collider bounds [39].

On the other hand, there are no constraints on the Euler central charge a since it only

contributes to the stress tensor four-point function. In contrast, the Euler anomaly does

obey a positivity condition in 2d and 4d. Hence, the claim that the Euler central charge

is a measure of the effective number of degrees of freedom is slightly stronger than the

a-theorem in 6d.

2.1 Spontaneously broken conformal symmetry

Consider a CFTUV in (5+1)-dimensions with the Euler central charge aUV. We assume that

the CFTUV has a moduli space of vacua. This enables us to break the conformal symmetry

spontaneously by turning on VEVs for an operator O. The VEV 〈O〉 ∼ f emanates an RG

flow that leads to some CFTIR. In addition, the Nambu-Goldstone theorem requires that

the spontaneously broken conformal symmetry generates a massless boson — the dilaton.

So, in general the low energy theory consists of CFTIR and a massless dilaton τ

SIR = CFTIR + Seff [τ ] , (2.1)

however, in certain cases the CFTIR can be trivial. The dilaton effective action Seff [τ ] is

highly constrained even in 6d. This becomes obvious when we couple the theory to a metric

gµν(x) and study the variation of the action under diff×Weyl transformations, where Weyl

transformations are defined as

gµν(x)→ e2σ(x)gµν(x) , τ(x)→ τ(x) + σ(x) . (2.2)

The IR theory (2.1) must have the same anomalies as the UV theory CFTUV. This

follows from the fact that in flat space the stress tensor remains traceless as an operator

Tµµ = 0 even when the conformal symmetry is spontaneously broken. The standard anomaly

matching arguments of [40] then imply that the total IR anomalies should match the total

UV anomalies. This requirement, as shown in [1, 26, 27], completely fixes the low energy
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dilaton effective action Seff [gµν , τ ].3 The flat space limit of Seff [gµν = ηµν , τ ] then leads to

a simple yet non-trivial effective action Seff [τ ].

Of course, in general CFTUV and CFTIR have different anomalies. Hence, all changes

in anomalies in the flow from CFTUV to CFTIR must be compensated by the dilaton. This

completely fixes the Weyl variation of the dilaton effective action

δσSeff [gµν , τ ] =

∫
d6x
√
−gσ(x)

(
∆aE6 +

3∑
i=1

∆c(i)Ii

)
(2.3)

with ∆a ≡ aUV − aIR and ∆c(i) ≡ c
(i)
UV − c

(i)
IR. Anomalies {aIR, c

(i)
IR} should be understood

as the total anomalies of CFTIR and the massless dilaton. The variational equation (2.3)

can now be solved systematically to obtain Seff [gµν , τ ] which we review next following [27].

One obvious way the equation (2.3) can be simplified by writing

Seff [gµν , τ ] =

∫
d6x
√
−gτ(x)

(
∆aE6 +

3∑
i=1

∆c(i)Ii

)
+ Snl + Sinv . (2.4)

Note that Ii’s are invariant under Weyl transformations, however, the Euler density is not.

Hence, the first term in the above equation generates the correct Weyl variation (2.3) plus

an extra term ∆a
∫
d6x
√
−gτ(x)δσE6. This extra contribution is cancelled by adding a

non-linear action Snl of τ . In addition, we can add any diff×Weyl invariant action Sinv

without affecting (2.3). The main advantage of writing Seff [gµν , τ ] as (2.4) is that the

non-linear action Snl is completely fixed by the UV and the IR fixed points of the RG

flow modulo diff×Weyl invariant terms. Furthermore, the linearity of (2.3) implies that

Snl is unique as well up to invariant terms. These properties, as shown in [27], are enough

to determine Snl exactly. In particular, in the flat space limit, Snl is given by a simple

formula [27]

Snl|gµν=ηµν = 3∆a

∫
d6xτ�3τ + · · · , (2.5)

where, dots represent terms that can be absorbed in Sinv. The universality of Snl makes

this simple dilaton-based approach a rather powerful tool to study general features of RG

flows in even dimensions.

Let us now focus on Sinv. This is the part of the dilaton effective action which is

non-universal. In physical systems any kind of universality is of significance only when

non-universal effects are also highly constrained because of some symmetries. This is

precisely the case with Sinv. The diff×Weyl invariance implies that at each derivative

order only a finite number of terms can appear in Sinv. Moreover, only a few of these terms

are expected to survive after we take the flat space limit. Both of these conditions can be

efficiently implemented by constructing Sinv only from non-vanishing curvature invariants

of the Weyl-invariant metric

ĝµν = e−2τηµν . (2.6)

The fact that Sinv is non-universal is encoded in coefficients of these curvature invariants

which depend on details of the RG flow. Since Snl has six derivatives, we need to consider

3For a d-dimensional generalization see [41].
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all Weyl-invariants with maximum of six derivatives to construct Sinv. Up to six derivatives,

there are only six independent non-vanishing Weyl-invariants and the most general Sinv is

given by [27]

Sinv|gµν=ηµν =

∫
d6x
√
−ĝ
(
− f4

10
R̂− b̂f2

2
R̂µνR̂µν

+ b′f2R̂2 + b1R̂
3 + b2R̂R̂

µνR̂µν + b3R̂�̂R̂

)
(2.7)

where, R̂ and R̂µν are computed using the Weyl-invariant metric (2.6). In the above equa-

tion f has dimension of mass and b′, b̂, bi are dimensionless coefficients.4 Numerical factors

are chosen for later convenience. This Weyl-invariant action can be further simplified by

using the equation of motion of τ . The last four terms of (2.7) vanish once we impose

the on-shell condition for the dilaton and hence these terms can only affect low energy

observables at subleading orders.5

Finally, we are ready to write down the low-energy effective action for the dilaton by

taking the flat space limit of (2.4). In the flat space limit E6 and Ii’s vanish and hence

the dilaton effective action only knows about aUV − aIR through Snl. Putting everything

together, Seff [τ ] is given by [27]

Seff [τ ] =

∫
d6x

(
−2f4(∂τ)2e−4τ + 4b̂f2e−τ�2e−τ + 3∆aτ�3τ

)
. (2.8)

The above effective action is deceptively simple. Just like the 4d case, the non-canonical

kinetic term is completely fixed by the constant f which is related to the VEV of the

operator O of CFTUV which triggers the RG flow. Unfortunately the similarity ends here.

Unlike the 4d case, the coefficient of the 4-derivative term in (2.8) depends on the details of

the RG flow. On the other hand, the 6-derivative term in (2.8) is universal which suggests

that the dilaton-based approach can eventually lead to a proof of the a-theorem in 6d.

There are two major obstructions to a proof of the 6d a-theorem. First of all, the

non-universality of the 4-derivative term implies that the universality of the 6-derivative

term is of limited use. Indeed, it is rather difficult to find an observable that receives

dominant contribution only from the 6-derivative term of the action (2.8). Secondly, any

such observable, if found, can only lead to a proof if that observable satisfies some strict

positivity condition which follows from general principles such as unitarity or causality. In

general, energy conditions are rather rare in QFT which explains why the a-theorem in 6d

is so elusive.

2.2 Physical dilaton

The effective action (2.8) has a simple form. However, the dilaton field τ is not very useful

when we study the theory using traditional tools of QFT. This issue can be easily resolved

4Note that our b̂ = b/f2 of [27].
5As in [1, 27] there is no cosmological constant term in (2.7) for spontaneously broken conformal symme-

try. For explicit breaking, the flow in general can generate a cosmological constant term in the IR, however,

we will always tune the IR cosmological constant term to zero by adding a suitable counterterm.

– 7 –
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by a simple field redefinition:

e−2τ = 1− φ̃

f2
, φ̃ = φ− b̂

f2
�φ+

6b̂2 − 3∆a

4f4
�2φ+O

(
�3

f6

)
, (2.9)

where, the physical dilaton field φ has a canonical kinetic term. Of course, this comes at

a price. The resulting action

Seff [φ] =

∫
d6x

(
−1

2
(∂φ)2 + Lφ3 + Lφ4 + Lφ5 + Lφ6 + · · ·

)
, (2.10)

where Lφn represents n− φ interaction, does not possess the apparent simplicity of (2.8).

The three-φ interaction is trivial

Lφ3 =
b̂

2f4
φ2�2φ+

3∆a

4f6
φ2�3φ (2.11)

and it only contributes to exchange (or loop) diagrams. More interesting higher-point

interactions are given by

Lφ4 =
b̂

f6

(
1

4
φ3�2φ+

1

16
φ2�2φ2

)
+

∆a

f8

(
1

2
φ3�3φ+

3

16
φ2�3φ2

)
, (2.12)

Lφ5 =
b̂

32f8

(
5φ4�2φ+ 2φ3�2φ2

)
+

∆a

8f10

(
3φ4�3φ+ 2φ3�3φ2

)
, (2.13)

Lφ6 =
b̂

128f10

(
14φ5�2φ+ 5φ4�2φ2 + 2φ3�2φ3

)
+

∆a

240f12

(
72φ5�3φ+ 45φ4�3φ2 + 20φ3�3φ3

)
(2.14)

up to total derivative terms that do not contribute to correlators. To summarize, we started

with a well behaved UV theory CFTUV which flows to a low energy theory consists of a

CFTIR and a massless dilaton with the action (2.10). The full IR theory must be Lorentz

invariant, unitary, and causal. This imposes further restrictions on the dilaton effective

action (2.10).

Similar to the proof of the 4d a-theorem, we first study the 4-point on-shell scatter-

ing amplitude A(s, t) of the dilaton.6 At low energies, the amplitude is dominated by

the φ2�2φ2 term of the dilaton effective action. The analyticity property of the 4-point

scattering amplitude A(s, t) implies that the parameter b̂ obeys a sum rule [42]

b̂ =
2f6

π

∫ ∞
0

ds
Im A(s, 0)

s3
> 0 , (2.15)

where the positivity condition follows from unitarity: A(s, 0) = sσtot(s) > 0. The deriva-

tion of this dispersive sum-rule, as correctly pointed out in [27], requires an additional

assumption that the 4-point on-shell scattering amplitude A(s, t) grows slower than s2 for

6s and t are the usual the Mandelstam variables.
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large s. In 6d, there is no rigorous QFT argument that validates this assumption, how-

ever, there are strong reasons to believe that this positivity condition is still true. This

expectation is also supported by the classical causality based argument of [42].

On the other hand, we still do not have a general proof of the a-theorem in 6d in

spite of the heroic attempt by the authors of [27]. The dilaton based approach apparently

is not as powerful in 6d as in 4d. This is clearly visible even at the level of the effective

action (2.10). Consider any n-point on-shell scattering amplitude of the dilaton. At low

energies, any such amplitude is clearly dominated by b̂. Hence, any dispersion relation for

∆a must involve integral of some non-trivial function of the n-point scattering amplitude

of the dilaton. However, any such dispersion relation has the limitation that its positivity

does not immediately follow from unitarity or causality. This is precisely the reason why

6d a-theorem is a hard problem.

2.3 Explicitly broken conformal symmetry

We now consider the case where some CFTUV is deformed by a relevant or marginally rel-

evant operator M6−∆O∆ in 6d. This breaks conformal symmetry explicitly which triggers

an RG flow to some CFTIR. At first sight, this scenario appears to be completely different

from the scenario where conformal symmetry is broken spontaneously. However, Komar-

godski and Schwimmer have argued in [1] that every explicit conformal symmetry breaking

can be described in terms of a spontaneously broken conformal symmetry. The argument

is elegant yet simple. Any relevant deformation M6−∆O∆ always introduces an operatorial

anomaly to the trace of the stress tensor which spoils the anomaly matching argument.

This operatorial anomaly can be conveniently removed by introducing the massless dilaton

field as a conformal compensator Ω(x) = f2e−τ(x) and then replacing M2 → M2

f2 Ω(x). In

this scenario, f is a free parameter which should be thought of as the decay constant of

the dilaton field. The stress tensor of this modified theory is traceless which enables us to

describe the explicit symmetry breaking of the original theory as a spontaneous symme-

try breaking of the modified theory. In particular, the explicit symmetry breaking of the

CFTUV now can be implemented by giving the dilaton a VEV: 〈Ω〉 = f2. As a result the

theory flows to a low energy theory consists of CFTIR and a dilaton. However, the absence

of the operatorial anomaly now guarantees that the total IR anomalies must match the

total UV anomalies. Hence, the preceding discussion applies here as well.

What distinguishes RG flows with explicit symmetry breaking from RG flows with

spontaneous symmetry breaking is that the parameter f is completely arbitrary for explicit

breaking. So, we can make the interaction between the original theory and the dilaton weak

by choosing f to be much larger than all other mass scales (for example f �M). In other

words, the dilaton can now be treated as a source. For the dilaton effective action (2.10),

this effectively means that |b̂| � 1 for RG flows with explicit symmetry breaking.

3 Dilaton effective action and the dual CFT

It is possible that some of the constraints on the flat space dilaton effective action (2.10)

from UV consistency are better visible when we place the theory first in AdS6 and then

– 9 –
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take the flat space limit RAdS → ∞. The theory in AdS has a significant advantage.

Specifically, it maps the a-theorem into a statement about anomalous dimensions in the

dual CFT in (4 + 1)-dimensions. Hence, the 6d a-theorem can be studied as a conformal

bootstrap problem in CFT5, as shown in figure 1.

3.1 Dual CFT

Consider the dilaton effective action (2.10) in AdS6 with AdS radius RAdS large but finite.

The action now is simply given by

Seff [φ] =

∫
d6x
√
gAdS

(
−1

2
gµνAdS∂µφ∂νφ+ Lint

)
, (3.1)

where, the interactions are obtained from (2.11)–(2.14)

Lint = Lφ3 + Lφ4 + Lφ5 + Lφ6 + · · · . (3.2)

For any finite but large RAdS, this theory now can be analyzed by studying its dual CFT5.

The dual CFT5, for any unitary RG flow, must be well behaved in the usual sense. In any

unitary CFT, analyticity and crossing symmetry of CFT correlators impose non-trivial

restrictions on the spectrum. These restrictions in turn constrain interactions of the AdS

effective field theory. Of course, these AdS bounds imply analogous bounds for the flat

space effective field theory if and only if the CFT description does not breakdown as we

take the flat space limit. It is not alway obvious that a smooth flat space limit RAdS →∞
exists for any AdS theory, for example see [43]. However, the fact that all interactions

of the dilaton are non renormalizable ensures that a smooth flat space limit of the AdS

theory (3.1) does exist.

The AdS theory (3.1) does not contain dynamical gravity. This implies that the stress

tensor of the dual CFT5 must decouple from the low energy spectrum. This can be achieved

by taking the CFT5 central charge cT →∞, while holding fRAdS ≡ ∆f fixed (but large).7

The resulting CFT5 should be thought of as an IR effective theory which is well behaved

below the cut-off scale ∆f . This effective CFT contains a scalar primary operator O which

is dual to the dilaton. Since O is dual to a Nambu-Goldstone boson, its dimension is

completely fixed

∆O = 5 (3.3)

implying ∆O does not receive perturbative corrections.

It is convenient to think of the dual CFT5 as a small perturbation of a generalized

free CFT in 5d. When Lint = 0, the dual CFT5 is exactly a generalized free CFT of

the scalar primary O. In addition, crossing symmetry requires that this generalized free

CFT must also contain infinite towers of multi-trace operators [ON ]n,J with spin J and

dimension 5N + 2n+ J for integer n ≥ 0 [35, 44]. Let us now turn on dilaton interactions

in AdS. Using conformal bootstrap, it was first shown in [2] that each interaction in

AdSd corresponds to a perturbative solution of crossing symmetry in the dual CFTd−1.

7The central charge cT is the overall coefficient that appears in the stress tensor two-point function.
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In particular, the bulk dilaton theory (3.1) corresponds to a deformed solution of CFT5

crossing equations in which multi-trace operators [ON ]n,J have dimensions

∆(N)(n, J) = 5N + 2n+ J + γ
(N)
n,J , |γ(N)

n,J | � 1 , (3.4)

where, γ
(N)
n,J is the anomalous dimension which encodes the information of both b̂ and

∆a. We should remark that for large N and J , there can be multiple distinct multi-trace

operators with the same set of quantum numbers N , J and n. For notational convenience,

we will denote all of these degenerate operators by the same symbol [ON ]n,J .

Minimal twist operators. The family of minimal twist operators of the dual CFT5

will be of particular importance to us. So, we introduce the notation OJ to denote the

lowest dimensional primary operator with spin J .8 In addition, we denote the anomalous

dimension of OJ by γJ . For the deformed generalized free CFT5 dual to (3.1), OJ with

even J > 1 is always the double-trace operator [O2]0,J . Whereas, for odd J > 1, it is the

triple-trace operator [O3]0,J .9 Consequently, anomalous dimensions γJ for J > 1 are given

by

γJ = γ
(2)
0,J , J = even ,

= γ
(3)
0,J , J = odd . (3.5)

The quantity γJ enjoys some nice properties. First of all, γJ asymptotes to zero

γJ → 0 as J →∞ . (3.6)

Furthermore, γJ for even J obeys the Nachtmann theorem which states that γJ is a mono-

tonically increasing non-concave function of (even) J ≥ 2 [35–37, 45]. The family of minimal

twist operators with odd spins also obeys a generalized Nachtmann theorem which imposes

lower bounds on γJ for odd J [37].

3.2 CFT Regge correlators

We intend to map the a-theorem into a statement about anomalous dimensions γ2 and γ3 in

the dual CFT5. This can be achieved by studying various CFT four-point functions in the

Regge limit. CFT four-point functions are highly constrained by conformal symmetries.

In particular, a general Euclidean CFT four-point function of scalar primary operators can

be written as

〈O1(x1)O2(x2)O3(x3)O4(x4)〉 =
1

(x2
12)

∆1+∆2
2 (x2

34)
∆3+∆4

2

(
x2

14

x2
24

)∆21
2
(
x2

14

x2
13

)∆34
2

g(z, z̄)

(3.7)

8Twist of an operator with spin J and dimension ∆ is defined in the usual way τ = ∆− J .
9For large J , [O3]0,J can be degenerate. In that case, OJ (for odd J) represents the [O3]0,J operator

with the smallest anomalous dimension.
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x+x−

O4(1,−1) O3(−1, 1)

O1(ρ,−ρ̄)

O2(−ρ, ρ̄)

Figure 3. A Lorentzian four-point function where all points are restricted to a 2d subspace. Null

coordinates are defined as x± = x0 ± x1, where x0 is running upward. In the regime 0 < ρ, ρ̄ < 1,

this correlator is given by the Euclidean four-point function.

where xµij = xµi − x
µ
j and ∆ij = ∆i − ∆j . Conformal cross-ratios z and z̄ are defined as

follows

zz̄ =
x2

12x
2
34

x2
13x

2
24

, (1− z)(1− z̄) =
x2

14x
2
23

x2
13x

2
24

. (3.8)

Furthermore, the operator product expansion (OPE) enables us to write the function g(z, z̄)

as a sum over conformal blocks

g(z, z̄) =
∑
p

c12pc34pg
∆12,∆34

∆,J (z, z̄) , (3.9)

where, cijk’s are OPE coefficients and the sum is over all primary operators of the theory.

The conformal block expansion (3.9) converges for Euclidean points z̄ = z∗ with |z| <
1 [46, 47].

Regge limit. The CFT Regge limit is an intrinsically Lorentzian limit of a Euclidean

CFT four-point function. Lorentzian four-point functions can be obtained as analytic

continuations of the Euclidean correlator (3.7). The analytic continuation is completely

fixed by the ordering of operators in the Lorentzian correlator [38]. The CFT Regge limit

is then defined by [48–51]

z, z̄ → 0 , with
z̄

z
= fixed (3.10)

of the Lorentzian four-point function. One way the Regge Lorentzian regime can be reached

is by first rotating z around the branch point of 1: (1− z)→ (1− z)e−2πi, keeping z̄ fixed,

and then taking the limit (3.10).

One convenient way to describe the Regge limit is by starting with the Lorentzian

correlator G(ρ, ρ̄) = 〈O1(x1)O2(x2)O3(x3)O4(x4)〉 where all points are restricted to a 2d

subspace:

x1 = −x2 = (x− = ρ, x+ = −ρ̄) , x3 = −x4 = (x− = −1, x+ = 1) , (3.11)
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Figure 4. Analytic structure of G(ρ, ρ̄) — branch cuts appear only when two operators become

null separated. The Regge limit described above can be reached by analytically continuing ρ along

the blue path.

as shown in figure 3. Note that we are using null coordinates x± = x0 ± x1. First, we

restrict to the regime 0 < ρ, ρ̄ < 1. In this regime, all points are space-like separated from

each other and hence G(ρ, ρ̄) is obtained trivially from (3.7)

G(ρ, ρ̄) =
2−

∑
i ∆i

(ρρ̄)
∆1+∆2

2

(
(1− ρ) (1− ρ̄)

(1 + ρ) (1 + ρ̄)

)∆21+∆34
2 ∑

p

c12pc34pg
∆12,∆34

∆,J (ρ, ρ̄) , (3.12)

where, g∆12,∆34

∆,J (ρ, ρ̄) ≡ g∆12,∆34

∆,J (z(ρ), z̄(ρ̄)) with cross-ratios

z =
4ρ

(1 + ρ)2
, z̄ =

4ρ̄

(1 + ρ̄)2
. (3.13)

The s-channel expansion (3.12) converges for |ρ|, |ρ̄| < 1. In general, the correlator G(ρ, ρ̄)

as a function of ρ and ρ̄ is analytic in a larger domain as shown in figure 4. Branch cuts

appear only when two operators become null separated.

We now consider the Lorentzian corrrelator 〈O4(x4)O1(x1)O2(x2)O3(x3)〉 where op-

erators are ordered as written with ρ > 1. Note that operator pairs O4(x4), O1(x1) and

O2(x2), O3(x3) are now time-like separated. This Lorentzian correlator is obtained from

the Euclidean correlator by analytically continuing ρ along the path shown in figure 4. In

terms of cross-ratios, this analytic continuation corresponds to (1− z)→ (1− z)e−2πi with

z̄ fixed. The CFT Regge correlator is equivalently defined as the limit

ρ→∞ , ρ̄→ 0 , with ρρ̄ = fixed (3.14)

of the Lorentzian correlator 〈O4(x4)O1(x1)O2(x2)O3(x3)〉.
The Regge limit of CFT correlators, being intrinsically Lorentzian, requires careful

consideration. In Lorentzian CFT correlators, two operations — analytic continuation and
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sum over conformal blocks in general may not commute. In fact, the Euclidean confor-

mal block expansion (3.9), as a series, does not converge when we take the Regge limit

of individual conformal blocks. This problem was evaded in conformal Regge theory [51]

by using the Sommerfeld-Watson transform to resum the conformal block expansion (3.9).

The conformal Regge theory exploits the fact that coefficients in the conformal block ex-

pansion (3.9) are well defined analytic functions of spin [52]. This analyticity enables one

to rewrite the conformal block expansion (3.9) as a sum over Regge trajectories which is

well behaved in the Regge limit [51]. To summarize, the Euclidean OPE of local operators

is of limited use in the Regge limit. Instead, one should consider the contribution of Regge

trajectories to the OPE of local operators (see section 3.1 of [53] for details).

For our purpose, the family of minimal twist operators in deformed generalized free

CFTs is of particular importance. Thus we can circumvent some of the intricacies of

conformal Regge theory by focussing on a very special limit z̄
z → 0 of Regge correlators of

the CFT5 dual to (3.1). In this limit, parametric suppression of the contributions from the

spectral deformation ensures that the sum over Regge limit of individual conformal blocks

can still be trusted as an asymptotic series.

Regge limit of conformal blocks. In general, Regge conformal blocks of external scalar

operators can be easily computed in any spacetime dimension by using the Regge OPE

of [54, 55]. However, as explained earlier, we are only interested in the z̄
z → 0 limit of Regge

conformal blocks which leads to further simplification. For individual conformal blocks, the

limit z̄
z → 0 commutes with the Regge limit (3.10). This immediately implies that we can

start with lightcone conformal blocks and perform the appropriate analytic continuation

to reach the Regge regime of interest. Lightcone conformal blocks are completely fixed by

conformal symmetry. In particular, conformal blocks of external scalar primaries in the

limit z̄ → 0 can be approximated in any spacetime dimension by [56]

g∆12,∆34

∆,J (z, z̄) ≈ (−2)−J z̄
∆−J

2 z
∆+J

2 2F1

(
∆ + J −∆12

2
,

∆ + J + ∆34

2
,∆ + J, z

)
. (3.15)

The lightcone conformal block has a branch cut along z ∈ (1,∞). One way the Regge

regime can be reached is by rotating z around 1: (1−z)→ (1−z)e−2πi. This analytic con-

tinuation can be implemented by using the identity (B.1). After using the identity (B.1), the

Regge conformal blocks in the limit z̄
z → 0 can be obtained from the lightcone block (3.15)

g̃∆12,∆34

∆,J (z, z̄) = i(−1)Je−
1
2
iπ(∆12−∆34)λ∆12,∆34

∆,J

( z̄
z

)∆−J
2 1

zJ−1
(3.16)

where, λ∆12,∆34

∆,J is a positive numerical coefficient given by

λ∆12,∆34

∆,J =
21−JπΓ(J + ∆− 1)Γ(J + ∆)

Γ
(
J+∆−∆12

2

)
Γ
(
J+∆+∆12

2

)
Γ
(
J+∆−∆34

2

)
Γ
(
J+∆+∆34

2

) . (3.17)

3.3 Conformal bootstrap

The purpose of this paper is to make the CFT-based description of RG flows, as shown in

figure 1, explicit by relating b̂ and ∆a to CFT5 data. First, we consider the generalized free
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CFT in 5d which is dual to the AdS theory (3.1) with b̂ = ∆a = 0. The physical dilaton is

dual to the operator O. The Euclidean four-point function 〈O(x1)O(x2)O(x3)O(x4)〉 for

0 < ρ, ρ̄ < 1 is given by10

G4(ρ, ρ̄) =
c2
O

(16ρρ̄)∆O
+

c2
O

((1− ρ)(1− ρ̄))2∆O
+

c2
O

((1 + ρ)(1 + ρ̄))2∆O
(3.18)

which is trivially crossing symmetric. Note that the operator O is not canonically normal-

ized and cO > 0 is the coefficient of the 〈OO〉 two-point function.

It should be possible to express the above four-point function as a sum over conformal

blocks. In particular, following [2] we can write (3.18) as an s-channel sum over [O2]n,J
exchanges

G4(ρ, ρ̄) =
1

(16ρρ̄)∆O

(
c2
O +

∞∑
n,J=0

c(n, J)2 g0,0

∆
(2)
0 (n,J),J

(ρ, ρ̄)

)
, (3.19)

where, ∆
(2)
0 (n, J) = 2∆O+ 2n+J is the dimension of [O2]n,J as given in (3.4) without the

anomalous dimension part. The OPE coefficients c(n, J) are completely known from [2],

however, only useful information that we need is that the OPE coefficients are real because

of unitarity.

3.3.1 Mixed correlators

We now make a little detour. In order to gain some more insight, we consider a generalized

free CFT with two operators O1 and O2 that are dual to two free (massive or massless)

fields φ1 and φ2 in AdS. Now, we can study a mixed correlator in the Euclidean regime

0 < ρ, ρ̄ < 1 for the kinematics (3.11)

G̃4(ρ, ρ̄) = 〈O2(x1)O1(x2)O1(x3)O2(x4)〉 =
cO1cO2

((1− ρ)(1− ρ̄))∆O1
+∆O2

. (3.20)

Again we can express the t-channel identity exchange as an s-channel sum over double-trace

operators [O1O2]n,J

G̃4(ρ, ρ̄) =
1

(16ρρ̄)
∆O1

+∆O2
2

(
(1− ρ) (1− ρ̄)

(1 + ρ) (1 + ρ̄)

)∆O1
−∆O2

(3.21)

×
∞∑

n,J=0

(−1)J c̃(n, J)2 g∆21,−∆21

∆
(1,2)
0 (n,J),J

(ρ, ρ̄) , (3.22)

where, ∆
(1,2)
0 (n, J) = ∆O1 + ∆O2 + 2n + J is the dimension of operators [O1O2]n,J .

The s-channel OPE coefficients c̃(n, J) are uniquely determined by the t-channel identity

exchange.

3.3.2 Correlators of double-trace operators

We are now ready to study mixed correlators in the generalized free CFT in 5d which is

dual to the AdS6 theory (3.1). The correlator that will be of significant importance is very

10Points x1, x2, x3 and x4 are given by (3.11).
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similar to the correlator (3.20) with one key difference — the operator O2 = O2 is now a

double-trace operator

O2 ≡ [O2]n=0,J=0 = lim
x′→x

1√
2
O(x′)O(x) . (3.23)

The mixed four-point function Gmixed(ρ, ρ̄) = 〈O2(x1)O(x2)O(x3)O2(x4)〉 even for the gen-

eralized free theory (b̂ = ∆a = 0) appears to be more complicated. In the kinematics (3.11),

Gmixed(ρ, ρ̄) is given by

((1− ρ)(1− ρ̄))∆OGmixed(ρ, ρ̄) =
2c3
O

(16ρρ̄)∆O
+

c3
O

((1− ρ)(1− ρ̄))2∆O
+

2c3
O

((1 + ρ)(1 + ρ̄))2∆O
.

(3.24)

The above discussion about four-point functions applies to correlators of double-trace oper-

ators as well. So, the above correlator can also be written as a similar s-channel expansion

Gmixed(ρ, ρ̄) =
1

(16ρρ̄)
3∆O

2

(
(1 + ρ) (1 + ρ̄)

(1− ρ) (1− ρ̄)

)∆O

×

(
c2
OOO2 g

∆O,−∆O
∆O,0

(ρ, ρ̄) +
∑

[O3]n,J

(−1)J c̃(n, J)2 g∆O,−∆O

∆
(3)
0 (n,J),J

(ρ, ρ̄)

)
(3.25)

where, ∆
(3)
0 (n, J) = 3∆O + 2n + J is the dimension of [O3]n,J as given in (3.4) without

the anomalous dimension. The first term in (3.25) corresponds to the exchange of O with

the OPE coefficient cOOO2 =
√

2c
3/2
O .11 Hence, this term is exactly the first term of (3.24).

On the other hand, the s-channel sum over triple-trace operators [O3]n,J reproduces the

remaining two terms of (3.24).

3.4 Anomalous dimensions

Let us now turn on interactions Lint in (3.1). Four-point functions of the dual CFT5 are

now perturbative solutions to crossing symmetry — each interaction of the AdS6 scalar

field φ leads to a specific contribution to the anomalous dimensions γ
(N)
n,J of multi-trace

operator [ON ]n,J . The whole purpose of this section is to build up a simple framework

that enables the identification of the contributions of different AdS6 interactions to γ
(N)
n,J .

First we consider the four-point function (3.9). In the presence of b̂ and ∆a, this

four-point function receives corrections δG4(ρ, ρ̄) which can be computed using the con-

ventional AdS perturbation theory. On the CFT5 side, δG4(ρ, ρ̄) originates from anoma-

lous dimensions γ
(2)
n,J of double-trace operators and corrections of their OPE coefficients

c(n, J) + δc(n, J). In particular, using (3.16) and (3.13) we obtain the leading contribution

of γ
(2)
n,J and δc(n, J) to the four-point function in the Regge limit (3.14) followed by the

limit |γ(2)
n,J | � ρρ̄� 1

δG4(ρ, ρ̄)|
γ

(2)
n,J ,δc(n,J)

= i
c(n, J)2γ

(2)
n,J

24∆O+2J−1
λ0,0

2∆O+2n+J,J (ρρ̄)n log (ρρ̄) ρJ−1 + · · · (3.26)

with even J and ∆O = 5, where dots represent subleading corrections without the log(ρρ̄).

The numerical factor λ is given in (3.17).

11Note that the OPE coefficients are appropriately normalized.
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Before proceeding further, let us offer some more comments. First, note that δc(n, J)

does not contribute to the leading log(ρρ̄) term in (3.26). Moreover, the expression (3.26)

implies that for a fixed J , the dominant contribution in the limit |γ(2)
n,J | � ρρ̄ � 1 always

comes from [O2]0,J ≡ OJ which, as stated earlier, is of importance to us.

Likewise, we can obtain the leading contribution of γ
(3)
n,J and δc̃(n, J) to the four-point

function Gmixed(ρ, ρ̄) of the double-trace operator (3.24). In the Regge limit followed by

the limit |γ(3)
n,J | � ρρ̄� 1 we can now write

δGmixed(ρ, ρ̄)|
γ

(3)
n,J ,δc̃(n,J)

= i
c̃(n, J)2γ

(3)
n,J

26∆O+2J−1
λ∆O,−∆O

3∆O+2n+J,J (ρρ̄)n log (ρρ̄) ρJ−1 + · · · (3.27)

where ∆O = 5 and dots again represent subleading corrections without the log(ρρ̄). This

result is qualitatively very similar to (3.26), for example at fixed J , the dominant con-

tribution to δGmixed(ρ, ρ̄) also comes from the lowest twist triple-trace operator [O3]0,J .

However, there is one difference — unlike (3.26) both even and odd spin operators con-

tribute to δGmixed(ρ, ρ̄).

In the rest of the paper, equations (3.26) and (3.27) will play important roles. So,

we should examine them more closely. It is easy to see that contributions of individual

operators in (3.26) and (3.27) become increasingly singular with increasing spin implying

that in general we should not trust the Regge limit of individual conformal blocks. On the

other hand, it was argued in [38] that analytically continued s-channel conformal blocks

still can be trusted in the lightcone limit. The same argument applies here as well pro-

vided γ
(N)
n,J , δc̃(n, J), and δc(n, J) are parametrically suppressed with increasing J . This

is precisely the case for the CFT5 dual to (3.1) which is after all an effective field theory

in AdS. Consequently, γ
(N)
n,J , δc̃(n, J), and δc(n, J) are suppressed by increasing powers of

1/∆f as we increase spin implying that equations (3.26) and (3.27) are still reliable for the

dual CFT5.12

4 The a-theorem and anomalous dimensions

We are now in a position to relate b̂ and ∆a to anomalous dimensions γ2 ≡ γ
(2)
0,2 and

γ3 ≡ γ
(3)
0,3 by studying Lorentzian four-point functions for the CFT5 dual to the effective

field theory (3.1). It will be discussed in length below.

Lorentzian correlators are analytic continuations of Euclidean correlators. So, it is

equivalent to study the CFT5 in the Euclidean signature which is now dual to the 6d bulk

Euclidean theory

SEeff [φ] =

∫
d6x
√
gEAdS

(
1

2
gµνEAdS∂µφ∂νφ− Lint

)
. (4.1)

In the above action, all derivatives in Lint now are taken using the Euclidean AdS metric.

The equation of motion for the dilaton field φ is given by

�φ = −δLint

δφ
≡− b̂

2f4

(
2φ�2φ+ �2φ2

)
− b̂

4f6

(
3φ2�2φ+ �2φ3 + φ�2φ2

)
− b̂

32f8

(
20φ3�2φ+ 5�2φ4 + 6φ2�2φ2 + 4φ�2φ3

)
+ · · · , (4.2)

12Note that the gap is defined as ∆f = RAdSf � 1.
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where, dots represent terms that contribute to four-point and six-point functions only at

subleading orders. Under the boundary condition φ(x, z→ 0) = Φ(x), the above equation

of motion has the formal solution

φ(z, x) =

∫
d5x′K(z, x;x′)Φ(x′)−

∫
d5x′dz′

√
gEAdS(z′)G(z, x; z′, x′)

δLint

δφ
(z′, x′) (4.3)

where, z is the bulk direction in AdS and x ∈ R5 (the metric is given by (C.1)). In the

above expression, K(z, x;x′) is the bulk-to-boundary propagator, whereas G(z, x; z′, x′) is

the bulk-to-bulk propagator for the dilaton field which are transcribed in appendix C.13

4.1 On-shell action

The asymptotic value Φ(x) of the dilaton field acts as the source for the CFT primary

operator O(x). In principle, any tree-level correlator of O can be computed from the

bulk on-shell action SEon−shell[Φ] which determines the CFT partition function Z[Φ] =

exp
(
−SEon−shell[Φ]

)
[57–59]. Thus, we should start by examining the bulk on-shell action

more closely.

In general, the bulk on-shell action diverges as we take the UV cut-off ε → 0. This

divergence can be removed by adding a counter-term on the boundary z = ε. However,

for massless fields this diverging piece vanishes exactly and hence boundary terms are not

required to make the on-shell action finite. Of course, there still can be other divergences

coming from loops in the bulk. These are standard QFT divergences which can be removed

by adding bulk counter-terms.

The total on-shell action for the Euclidean theory (4.1) can be written in a com-

pact form

SEon−shell = − 80

π3

∫
z=ε

d5x1d
5x2

Φ(x1)Φ(x2)

|x1 − x2|10
−
∫
d5x dz

√
gEAdS(z)Lint(z, x) (4.4)

− 1

2

∫
d5xdz

√
gEAdS(z)

∫
d5x′dz′

√
gEAdS(z′)G(z, x; z′, x′)

× δLint

δφ
(z′, x′)

δLint

δφ
(z, x) ,

where, z = ε is the UV cut-off and the bulk field φ should be understood to be the

solution (4.3). This form of the on-shell action is useful for performing a systematic per-

turbative expansion. This is exactly what we need to do since the bulk theory only makes

sense perturbatively.

As a warm up, we start with the two-point function 〈OO〉. The form of the on-shell

action (4.4) makes it particularly easy to read off the two-point function

〈O(x1)O(x2)〉 =

(
160

π3

)
1

|x1 − x2|10
(4.5)

implying ∆O = 5 and cO = 160
π3 . For higher point functions, one needs to insert the

solution (4.3) in (4.4) and perform a perturbative expansion in 1/f . Thus, from here on

calculations are going to be more involved.

13For convenience, we are using RAdS = 1. We will restore RAdS by dimensional analysis whenever

necessary.
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4.2 Four-point function and γ2

Consider the contribution of the first term of equation (4.4) to the four-point function

of operator O. Clearly, this contribution reproduces the four-point function (3.18) of the

generalized free theory. The leading correction to the four-point function comes from the

second term of (4.4). In particular, using the explicit form of Lint (3.2), we can obtain the

leading interacting term of the on-shell action with four dilatons

S
(φ4)
on−shell = − b̂

16f6

∫
d5x dz

√
gEAdS(z)φ2�2φ2 + · · · , (4.6)

where dots represent terms that are subleading. This on-shell action can be expanded by

using the bulk solution (4.3) and at the leading order in perturbation theory, using the

identity (C.9) we obtain

S
(φ4)
on−shell = − b̂

4f6

(
32

π3

)4

54

∫
Φ4

∫
AdS

(
K̃5(y3)K̃5(y4)− 2y2

34K̃6(y3)K̃6(y4)
)

×
(
K̃5(y1)K̃5(y2)− 2y2

12K̃6(y1)K̃6(y2)
)
, (4.7)

where, we have introduced∫
AdS
≡
∫
d5x dz

√
gEAdS(z) ,

∫
ΦN
≡

N∏
i=1

∫
Φ(yi)d

dyi (4.8)

and the reduced bulk-to-boundary propagator K̃∆(y) (see equation (C.3)) to lighten the

notation.

Now consider the Lorentzian correlator G4(ρ, ρ̄) = 〈O(x4)O(x1)O(x2)O(x3)〉 in the

kinematics (3.11), where operators are ordered as written. At the tree-level, the correlator

G4(ρ, ρ̄) is schematically given by the Witten diagram

(4.9)

We wish to determine the contribution of (4.6) to G4(ρ, ρ̄) in the Regge limit (3.14). It

is a straightforward exercise to compute the leading Regge contribution from the on-shell

action (4.7)

δG4(ρ, ρ̄) =
16b̂

∆6
f

(
32

π3

)4

54ρ2D6666(ρ, ρ̄) (4.10)

where the D-function is defined in (C.7) and ∆f = RAdSf � 1. This D-function can be

calculated exactly using the integral expression (D.1). However, we are only interested in
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a specific limit of the Regge correlator: ρρ̄→ 0. In this limit, the above expression can be

simplified further by using (D.19)

δG4(ρ, ρ̄) ≈ −i 4b̂

∆6
f

54

π17/2

Γ(11)Γ
(

19
2

)
Γ(6)4

ρ log (ρρ̄) . (4.11)

Now, we must compare this result with (3.26). Clearly, this contribution can only come

from anomalous dimension of the operator [O2]0,J=2. This enables us to relate the anoma-

lous dimension γ2 with b̂

γ2 = −
(

51

8π3

)
b̂

∆6
f

(4.12)

where, we have used equation (3.17) and the generalized free field value of c(0, 2)2 = 300
11 c

2
0.

It is not a surprise that γ2 is related to b̂. After all, in [2] it has been established conclusively

that a bulk interaction φ2�2kφ2 corresponds to anomalous dimensions of [O2]n,k double-

trace operators at the tree level. Nonetheless, this exercise highlights the core of our

argument that we will apply to mixed correlators. Before we proceed to more involved

mixed correlators, let us make some comments that will be useful.

Subleading corrections. What does the second part of the 4-point dilation interac-

tion (2.12) correspond to in the dual CFT5? Clearly, the term ∆a φ2�3φ2 cannot con-

tribute to anomalous dimensions of spin-3 double-trace operators since there are no spin-3

double-trace operators. However, it does contribute to anomalous dimensions of spin-2

double-trace operators [O2]n,2 but at a subleading order in 1/∆f . This can be seen by re-

peating the preceding analysis for this six-derivative interaction. The final result will have

the same functional behavior as (4.11) but with the pre-factor ∆a
∆8
f
. What distinguishes the

six derivative interaction from the four derivative interaction is that the resulting anoma-

lous dimensions γ
(2)
n,J=2 have different asymptotic behaviors for large n [2]. Furthermore,

the dilaton 3-point interaction (2.11) also contributes to anomalous dimensions of spin-2

double-trace operators [O2]n,2 at the order 1/∆8
f .

Finally, we should discuss subleading corrections from loop contributions. Of course,

we expect to get UV divergences from loop diagrams. However, at any order in the per-

turbation theory, these divergences can be removed by adding a finite number of contact

interactions. The point we wish to establish is that loop diagrams, however complicated,

can only contribute to G4(ρ, ρ̄) in a very specific way in the Regge limit. Let us demonstrate

this for loop diagrams at the order 1
f12 .

Crossing symmetry requires that one-loop diagrams must contribute to anomalous

dimensions for all double-trace operators [O2]n,J with any n and (even) J [14]. Some of

these anomalous dimensions are UV divergent. In particular, for loop diagrams at the

order 1
f12 , anomalous dimensions γ

(2)
n,J≤4 can diverge. These divergences can be removed

by adding counter-terms 1
f12φ

2�2kφ2 with k = 0, 1, · · · , 4. Needless to say that there still

can be a finite γ
(2)
n,J≤4 ∼

1
∆12
f

remaining after this subtraction. On the other hand, simple
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power counting implies that γ
(2)
n,J is finite for J > 4. Hence, we can write

γ
(2)
n,J ≈ γ

(2)
n,J |contact + γ

(2)
n,J |1−loop ∼

1

∆2+2J
f

+
1

∆12
f

(4.13)

where, γ
(2)
n,J |contact comes from contact interactions of the original dilaton effective theory.

Clearly, the 1-loop contributions dominate for J ≥ 6. At first sight, this appears to be

in contradiction with the analytic structure of G4(ρ, ρ̄) which implies that if the part of

G4(ρ, ρ̄) that grows with ρ in the Regge limit admits an expansion in ρ

G4(ρ, ρ̄) ∼ −i
∑

L=2,4,6,···
cLρ

L−1 (4.14)

then coefficients cL must obey the following properties for any L [37]: (i) cL ≥ 0, (ii)
cL+2

cL
must be parametrically suppressed, (iii) c2

L+2 ≤ cLcL+4 . Obviously, if we first take the

Regge limit of individual conformal blocks, condition (ii) is in tension with (3.26) for L ≥ 6.

This has led us to make the following two important conclusions.

The first is that at the 1-loop level, summing over an infinite set of conformal blocks

and taking the Regge limit — these two operations do not commute. The second conclusion

is that when we sum over conformal blocks and then take the Regge, as we should do, the

full 1-loop contribution can only be consistent with (4.14) if and only if it does not grow

faster than

G1−loop
4 (ρ, ρ̄) ∼ i ρ

3

∆12
f

+O

(
1

∆14
f

)
(4.15)

in the Regge limit. This fact will be important in the discussion of mixed correlators. Note

that this is actually a conservative bound and crossing symmetry may impose a stronger

restriction.

4.3 Positivity

We begin with a discussion about a general positivity condition that applies to any uni-

tary RG flow. Let us consider an RG flow in d dimensions that connects two conformal

fixed points CFTUV and CFTIR. We have argued that any such flow can be equiva-

lently described by spectral deformations of a generalized free CFT in d − 1 dimensions,

as summarized in figure 1. In this description, the starting point of the RG flow cor-

responds to the generalized free CFTd−1 in which we consider the Lorentzian correlator

G4(ρ, ρ̄) = 〈O(x4)O(x1)O(x2)O(x3)〉, where operators are ordered as written with ρ > 1

and 0 < ρ̄ < 1. Clearly, this four-point function is the analytic continuation of the Eu-

clidean correlator (3.18) with ∆O = d−1. Now, the RG flow deforms the dual CFTd−1 and

hence at the end of the RG flow the four-point function becomes G4(ρ, ρ̄) + δG4(ρ, ρ̄). For

every unitary RG flow, this deformed correlator must obey Rindler positivity. In particular,

in the Regge limit (3.14) the argument of [60] can be easily extended to conclude

− Re δG4(ρ, ρ̄) ≥ 0 . (4.16)

For unitary RG flows in even spacetime dimensions, this positivity condition is of particular

importance.
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RG flows in 6d. Classical causality argument of [42] suggests that b̂ is non-negative.

However, the dispersive sum-rule (2.15), as pointed out in [27], requires an additional as-

sumption about the asymptotic behavior of the 4-point on-shell scattering amplitude A(s, t)

of dilaton. In contrast, the negativity of γ2 follows directly from the CFT Nachtmann the-

orem [35–37], as well as from causality [38]. Moreover, the analyticity of CFT correlators

in Lorentzian signature, as explained in [38, 60], allows us to write a CFT5 sum-rule for b̂

b̂ = −
∆6
fπ

15/2Γ(6)4

2(5)4Γ(11)Γ
(

19
2

) lim
η→0

lim
x→0

1

log η

∫ x

0
dσ Re δG4

(
ρ =

1

σ
, ρ̄ = ησ

)
≥ 0 , (4.17)

where we have utilized the fact that δG4(σ) = δG4(−σ) on the real line. This sum-rule

does not make any assumptions about the dual CFT5 beyond the usual Euclidean axioms.

This suggests that some properties of effective field theory, perhaps surprisingly, are more

transparent in AdS.

We should emphasize that conceptually b̂ ≥ 0 is a non-trivial dynamical inequality.

The parameter b̂ is a complicated quantity that depends both on CFTUV, CFTIR and the

details of the RG flow. So, on one hand it is indeed surprising that it obeys a positivity

condition, but on the other the dynamical nature of the inequality suggests that this

positivity condition is of little practical importance. Nonetheless, it surely makes us wonder

whether a similar positivity condition for ∆a in 6d follows from the requirement that the

dual CFT5 must be well behaved.

RG flows in 4d. We end this discussion with some comments about unitary RG flows

in 4d. In this case, ∆a appears in the dilaton effective action as the coefficient of the four

derivative term φ2�2φ2. The analysis of this section can be repeated almost exactly to

obtain the Regge correlator δG4 ∼ −i∆a
∆4
f
ρ log(ρρ̄). This immediately implies that ∆a in 4d

also obeys the CFT sum-rule (4.17), however, with a different factor in front. Furthermore,

similar to [1], we can also construct a CFT3 quantity that decreases monotonically along

the flow

a(µ) = aUV + ∆̃4
f lim
η→0

lim
x→0

1

log η

∫ x

µx
dσ Re δG4 (η, σ) . (4.18)

This quantity interpolates between a(µ→ 0) = aIR and a(µ→ 1) = aUV.14

4.4 Six-point function and γ3

Clearly the preceding analysis can be extended to the mixed correlator Gmixed(ρ, ρ̄) =

〈O2(x4)O2(x1)O(x2)O(x3)〉 which involves computation of six-point functions.15 The task

of calculating the six-point function may seem challenging, however, it simplifies once we

figure out exactly what we are looking for. We begin by asking what CFT quantity receives

leading contribution from the second part of the six-point interaction (2.14). Of course,

anomalous dimensions of spin-2 triple-trace operators [O3]n,2 cannot be the answer, since

the dominant contribution to γ
(3)
n,2 always comes from four-derivative interactions. So,

14Note that the actual value of ∆f = RAdSf has no significance. So, we can always redefine ∆f by

absorbing some positive numerical factors, which we will denote by the symbol ∆̃f .
15The double-trace operator O2 is defined in (3.23).
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we consider spin-3 triple-trace operators [O3]n,3 which do exist. The above discussion has

tempted us to expect that the six-derivative part of the six-point interaction can contribute

to anomalous dimensions of [O3]n,3. This possibility is particularly promising because the

four-derivative part of the six-point interaction is not expected to contribute to γ
(3)
n,3 at

the tree-level. In the rest of this section, we will show that both of these expectations are

indeed true.

We already know from equation (3.27) how the mixed correlators Gmixed(ρ, ρ̄) must

behave in the Regge limit followed by the limit ρρ̄→ 0 if operators [O3]n,3 acquire anoma-

lous dimensions. The unique leading contribution is completely fixed by the anomalous

dimension γ3 of the lowest twist spin-3 triple-trace operators [O3]0,3

δGmixed(ρ, ρ̄) ∼ iγ3 log (ρρ̄) ρ2 . (4.19)

Thus it is sufficient for us to only compute the part of Gmixed(ρ, ρ̄) in the Regge limit

followed by the limit |γ3| � ρρ̄ � 1 that has the above behavior. Of course, we must not

assume that only ∆a can contribute to γ3. We need to consider all possible contributions

to γ3 up to order 1
∆12
f

. Moreover, we should also remember that some part of γ3 may not

contribute to a growth like (4.19) in the Regge limit. Thus, let us write γ3 as

γ3 = γRegge
3 + γother

3 , (4.20)

where γother
3 is the part of γ3 that does not contribute to the Regge growth (4.19). This

part of γ3 is difficult to compute, however, we can still derive general results about γother
3 .

Let us now compute that relevant part of the Lorentzian correlator Gmixed(ρ, ρ̄) =

〈O2(x4)O2(x1)O(x2)O(x3)〉 for ρ > 1 and 1 > ρ̄ > 0, where operators are ordered as

written. First, consider the contribution of the first term of equation (4.4) to Gmixed(ρ, ρ̄)

which corresponds to the disconnected Witten diagram. Clearly, this contribution is just

the analytic continuation of the Euclidean four-point function (3.24) of the 5d generalized

free theory with ∆O = 5 and cO = 160
π3 . On the other hand, deformations of the generalized

free theory four-point function come from the second and third term of (4.4) which lead

to connected Witten diagrams.16 The part of the on-shell action (4.4) that contributes to

connected Witten diagrams can be simplified to

S
(φ6)
on−shell = −

∫
d5x dz

√
gEAdS(z)L0

int(z, x) (4.21)

+
1

2

∫
d5xdz

√
gEAdS(z)

∫
d5x′dz′

√
gEAdS(z′)G(z, x; z′, x′)

× δL1
int

δφ
(z′, x′)

δL1
int

δφ
(z, x)

with

L0
int =

b̂

128f10

(
5φ4�2φ2 + 2φ3�2φ3

)
+

∆a

240f12

(
45φ4�3φ2 + 20φ3�3φ3

)
, (4.22)

δL1
int

δφ
=

b̂

2f4

(
�2φ2

)
+

b̂

4f6

(
�2φ3 + φ�2φ2

)
+

b̂

32f8

(
5�2φ4 + 6φ2�2φ2 + 4φ�2φ3

)
,

16Note that there are partially disconnected Witten diagrams that contribute to the mixed correlator as

well. Let us ignore these diagrams for now. We will later argue that partially disconnected Witten diagrams

cannot contribute to γRegge
3 . However, these diagrams can contribute to γother

3 but in a very specific way.
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where, we dropped all terms that contribute only at an order higher than 1
∆12
f

. At the order

1
∆12
f

, both exchanged and contact Witten diagrams contribute to the connected deformation

of the mixed correlator δGmixed(ρ, ρ̄) which will be discussed at length below.

4.4.1 Exchanged diagrams

At first sight, it may appear that there are many different terms that contribute to the

exchanged Witten diagram. However, most of the terms can be converted to contact

diagrams by integration by parts. In fact, there is a single term of the on-shell action (4.21)

that truly corresponds to an exchanged Witten diagram

b̂2

32f12

∫
d5xdz

√
gEAdS(z)

∫
d5x′dz′

√
gEAdS(z′) φ

(
�2φ2

)
G(z, x; z′, x′) φ′�′2φ′2, (4.23)

where, we are using the notation φ ≡ φ(z, x) and φ′ ≡ φ(z′, x′). The leading contribution of

this term to the mixed correlator Gmixed(ρ, ρ̄) = 〈O2(x4)O2(x1)O(x2)O(x3)〉 in the Regge

limit (3.14) is given by the Witten diagram

(4.24)

The Regge behavior of this diagram can be analyzed by using the identity (C.9) yielding

�2
(
K̃5(z, x;xi)K̃5(z, x;xj)

)
= 4 (5)4 K̃5(z, x;xi)K̃5(z, x;xj)

− 536(5)2x2
ijK̃6(z, x;xi)K̃6(z, x;xj)

+ (4)2(5)2(6)2x4
ijK̃7(z, x;xi)K̃7(z, x;xj) . (4.25)

This identity greatly simplifies the exchanged diagram (4.24) by transforming it into

a finite sum over four-point scalar-exchanged Witten diagrams W∆1∆2∆3∆4 (C.8). In

particular, the exchanged diagram (4.24) for the kinematics (3.11) only contains terms

(ρρ̄)m1W10+m1,5+m1,5+m2,10+m2(ρ, ρ̄) with m1,m2 = 0, 1, 2. In general W -functions are

complicated objects. Since, however, any four-point scalar-exchanged Witten diagram

can be decomposed into (infinite) sums over only scalar -exchanged conformal blocks [13],

the Regge behavior of W -functions can be obtained even without trying. In the Regge

limit (3.14) followed by ρρ̄→ 0, using (3.16) for J = 0 along with (3.12) we conclude that

at the leading order in ρ

(ρρ̄)m1W10+m1,5+m1,5+m2,10+m2(ρ, ρ̄) ∼ i(ρρ̄)m

ρ
(4.26)
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for some real m. Hence, the contribution of the on-shell action (4.23) to δGmixed(ρ, ρ̄) can

never grow as ρ2 in the Regge limit implying that exchanged diagrams cannot contribute

to γRegge
3 .

The on-shell action (4.23) still can contribute to γother
3 through scalar exchanged Wit-

ten diagrams in other channels. Unfortunately, this contribution is difficult to calculate

analytically. However, from (4.23) it is clear that any such contribution can be written as

γexchange
3 = αexchangeγ

2
2 (4.27)

for any 6d RG flow where αexchange is a model independent numerical factor. More-

over, in the standard scenario in which RG flows are triggered by adding relevant (or

marginally relevant) operators that break conformal symmetry explicitly, we can ignore

γexchange
3 since b̂� ∆a.

4.4.2 Contact diagrams

This brings us to the contact diagram

(4.28)

There are various vertices that contribute to this contact diagram. To see that we orga-

nize the part of the on-shell action (4.21) that contributes to the contact diagram in the

following way

S
(φ6)
contact = S

(φ6)
(4) + S

(φ6)
(6) (4.29)

where at the four-derivative order, after using the equation of motion, we have

S
(φ6)
(4) = − 3b̂

8f10

∫
AdS6

φ2(�φ2)2 . (4.30)

On the other hand, there are two separate contact interactions at the six derivative level

S
(φ6)
(6) = −8∆a− 5b̂2

96f12

∫
AdS6

φ3�3φ3 − 3∆a− 2b̂2

16f12

∫
AdS6

φ4�3φ2 , (4.31)

where, we have again used the equation of motion to simplify the on-shell action. Notice

that the second term of (4.21) has contributed to (4.31) at the order b̂2

f12 . There are terms

in
δL1

int
δφ that are total-derivative. Contributions of these terms in (4.21), after integration

by parts, reduce to contact interactions.
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The observant reader may have noticed that combinations (3∆a−2b̂2) and (8∆a−5b̂2)

also appear in the four-point, five-point, and six-point on-shell dilaton matrix elements

at the order p6 (see [27]). Of course, this is not surprising since there is a one-to-one

correspondence between flat space dilaton S-matrix elements and crossing-symmetric Mellin

space CFT correlators of deformed generalized free theory.

Let us now determine if the contact diagram (4.28) contributes to γ3. First, consider

the four-derivative action S
(φ6)
(4) . As the discussion of the previous section leads us to

expect, four-derivative interactions do not contribute to γ3. This is rather easy to show.

The on-shell action S
(φ6)
(4) can be expanded by using the bulk-to-boundary propagator

S
(φ6)
(4) = − 3b̂

2f10

(
32

π3

)6

54

×
∫

Φ6

∫
AdS6

K̃5(y6)K̃5(y5)
(
K̃5(y3)K̃5(y4)− 2y2

34K̃6(y3)K̃6(y4)
)

×
(
K̃5(y1)K̃5(y2)− 2y2

12K̃6(y1)K̃6(y2)
)
, (4.32)

where we are using the simplified notation (4.8). The rest of the argument is exactly the

same as section 4.2. The contribution of (4.32) to Gmixed(ρ, ρ̄) in the Regge limit (3.14)

followed by the limit ρρ̄→ 0 is

δGmixed(ρ, ρ̄) ∼ i b̂

∆10
f

ρ log (ρρ̄) (4.33)

implying that the four-derivative six-point interactions do not contribute to γ3 as ex-

pected. However, they do contribute to anomalous dimensions of spin-2 triple-trace oper-

ators [O3]n,2.

Notice that the leading Regge contribution always comes from terms in the on-shell

action with the highest number of y2
ij factors. This follows from the fact that all D-functions

have the same Regge behavior D∆1∆2∆3∆4(ρ, ρ̄) ∼ 1
ρ . So, we use this fact to simplify the

six-derivative six-point interaction S
(φ6)
(6)

S
(φ6)
(6) =

8∆a− 5b̂2

f12

(
32

π3

)6

(2)4(3)3(5)3

×
∫

Φ6

∫
AdS6

y2
13y

2
12K̃5(y6)K̃5(y5)K̃5(y4)K̃7(y2)

×
(

7y2
12K̃8(y1)K̃6(y3) + 2y2

23K̃7(y1)K̃7(y3)
)

+
14a− 9b̂2

f12

(
32

π3

)6

2(5)2(6)2(7)2

×
∫

Φ6

∫
AdS6

y6
12K̃5(y6)K̃5(y5)K̃5(y4)K̃5(y3)K̃8(y2)K̃8(y1)

+ · · · , (4.34)

where, dots represent terms that can not contribute at the order ρ2. Let us now compute

the leading Regge contribution from the on-shell action (4.34) to the Lorentzian correlator
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Gmixed(ρ, ρ̄) = 〈O2(x4)O2(x1)O(x2)O(x3)〉 in the kinematics (3.11), where operators are

ordered as written. It takes long but straightforward algebra to confirm that the six-

derivative six-point interactions do contribute at the order ρ2. In particular, we obtain17

δGmixed(ρ, ρ̄) = − ρ3

∆12
f

(
32

π3

)6

7(3)3(5)2(2)5

×
[
28
(
3∆a− 2b2

)
(4D10,8,5,13 −D10,8,8,10 − 4D13,5,5,13)

+
(
8∆a− 5b2

)
(86D10,8,5,13 + 30D10,8,7,11 − 14D10,8,8,10

+ 60D12,6,5,13 − 30D12,6,8,10 − 116D13,5,5,13 − 60D13,5,7,11)] (4.35)

where the D-function is defined in (C.7). The above expression is not very transparent.

So, we simplify it further by taking the limit: ρρ̄ → 0. In this limit, the we can use the

analytic result (D.19) to obtain

δGmixed(ρ, ρ̄) ≈ −i4∆a− 3b̂2

∆12
f

(
32

π3

)6 (5)4(3)2π
7
2 Γ
(

31
2

)
Γ(17)

235Γ(13)Γ(12)
ρ2 log (ρρ̄) . (4.36)

Clearly, this contribution can only come from the anomalous dimension of the operator

[O3]0,J=3. Moreover, comparing the above result with (3.27), we can easily identify γ3

γcontact
3 =

αcontact

∆12
f

(
51

8π3

)2(
−4

3
∆a+ b̂2

)
, αcontact =

(
3

4

)2 Γ
(

31
2

)
Γ
(

15
2

)2
Γ
(

21
2

)
Γ
(

19
2

)2 (4.37)

where, we have used equation (3.17) and the generalized free field value of c̃(0, 3)2 = 14000
323 c3

0.

Thus we conclude that ∆a contributes to the anomalous dimension of the spin-3 triple-trace

operator [O3]0,3 of the dual CFT5 at the leading order.

As we remarked earlier, anomalous dimensions of triple-trace operators are complicated

objects. For simplicity, we can always focus on the part of γ3 that controls the Regge

growth (4.19). This part of γ3 is completely fixed by the above contact diagram implying

γRegge
3 =

αcontact

∆12
f

(
51

8π3

)2(
−4

3
∆a+ b̂2

)
. (4.38)

Note that γ3 and γRegge
3 both receive contributions also from b̂2 at the same order. Hence,

γ3 and γRegge
3 of the dual CFT5 depend on the details of the 6d RG flow. However, there

is a specific combination of γ3 (or γRegge
3 ) and γ2

2 which depends only on the UV and IR

fixed points. Before we discuss that there are a few loopholes in our argument that we

must address.

The correlator (4.36), strictly speaking, implies (4.37) if and only if there is a unique

lowest twist spin-3 triple-trace operator. In general, as noted earlier, a multi-trace operator

[ON ]n,J can be degenerate. However, one might expect that [ON ]n,J is non-degenerate for

sufficiently small n and J . This is certainly true for [O3]0,J with J ≤ 3 which we have

established by explicitly constructing them for the generalized free theory in appendix E.

17We have used the fact that D-functions in the Regge limit obey the property D∆1∆2∆3∆4(ρ, ρ̄) =

D∆4∆3∆2∆1(ρ, ρ̄). Furthermore, we suppressed the dependence of D-functions on ρ and ρ̄ to lighten

the notation.
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4.4.3 Partially disconnected diagrams

Consider the partially disconnected Witten diagram

(4.39)

which includes loop effects as well. Clearly, this is the only partially disconnected Witten

diagram that can potentially contribute to γ3. One might expect that the one-to-one cor-

respondence between bulk interactions and anomalous dimensions of multi-trace operators

implies that bulk interactions of the diagram (4.39) can never contribute to γ3. This is

certainly true at tree level, however, this argument is not valid once we include loops or

partially disconnected Witten diagrams. To be specific, contribution of the above Witten

diagram can be written as

δGmixed(ρ, ρ̄) =
2cO

(1− ρ)5 (1− ρ̄)5
δG4(ρ, ρ̄) . (4.40)

Conformal block expansions of both Gmixed(ρ, ρ̄) and G4(ρ, ρ̄) now imply that γ
(3)
n,J does

receive contributions from γ
(2)
n,J . In particular, at the leading order we obtain

γdisc
3 =

51

22
γ2 . (4.41)

Hence, a part of γ3 comes entirely from the anomalous dimension of the double-trace

operator [O2]0,2. Alternatively, the binding energy of a spin-J three-particle state in AdS

always receives a contribution from purely two-particle bound states with spin ≤ J . So,

we define a subtracted

δγ3 ≡ γ3 −
51

22
γ2 (4.42)

which corresponds to the true three-particle binding energy. At the next order in pertur-

bation theory, both γ3 and γ2 are UV divergent because of loop diagrams. However, the

combination δγ3 is finite and hence scheme-independent. In addition, at the subleading

order γdisc
3 receives a correction which we will denote as αdiscγ

2
2 , where αdisc is a finite

model independent numerical coefficient.

In the beginning of this section, we claimed that partially disconnected Witten di-

agrams, even when we consider loops, cannot contribute to γRegge
3 . It is rather easy to

establish that claim by utilizing (4.15). In particular, at the order 1
∆12
f

equation (4.15)

dictates that the contribution of (4.39) to δGmixed(ρ, ρ̄) cannot grow in the Regge limit
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faster than

δGmixed(ρ, ρ̄) ∼ ρ−5(
1− 1

ρ

)5
(1− ρ̄)5

δG1−loop
4 (ρ, ρ̄) ≈ i ρ

−2

∆12
f

(4.43)

implying partially disconnected Witten diagrams cannot contribute to γRegge
3 .

Let us now put everything together. The total γ3, after adding all the contributions,

is given by18

δγ3 = γ3 −
51

22
γ2 = − ∆a

∆̃12
f

+ αγ2
2 , (4.45)

where, α = αexchange + αcontact + αdisc is a universal numerical coefficient which does not

depend on the details of the flow. The exact value of α can be computed numerically,

however, we will not attempt it in this paper. This concludes our discussion of triple-

trace operators.

5 Conclusions & discussion

RG flows connecting two conformal fixed points can be described by the dilaton effective

action of broken conformal symmetry. In this paper, we have analyzed the dilaton effective

action in AdS by studying the dual CFT. The dual CFT, for any finite but large RAdS,

must be well behaved in the usual sense. This is particularly useful in even spacetime

dimensions where ∆a can be related to anomalous dimensions of lowest twist multi-trace

operators. For example, the proof of the a-theorem in 4d by Komargodski and Schwimmer

can be reinterpreted as a CFT3 statement ∆a = −∆̃4
fγ2 ≥ 0. RG flows in 6d are more

subtle. However, we can still map the 6d a-theorem for RG flows from spontaneously

broken conformal symmetry into a statement about anomalous dimensions in the dual

CFT5 by utilizing relations (4.12), (4.37) and (4.45)

∆a

∆̃12
f

= −δγ3 + αγ2
2 = −γRegge

3 + αcontactγ
2
2 , αcontact =

(
3

4

)2 Γ
(

31
2

)
Γ
(

15
2

)2
Γ
(

21
2

)
Γ
(

19
2

)2 (5.1)

where, α and αcontact are model independent numerical constants that are completely fixed

by conformal symmetry of the dual description. This is our main result. The fact that all

interactions of the dilaton effective theory are non renormalizable implies that a smooth

flat space limit RAdS → ∞ exists for the AdS dilaton action. This guarantees that the

positivity of the right hand side of (5.1) for the deformed generalized free theory in 5d is

sufficient to establish the 6d a-theorem.

It is more natural to consider the case where the CFTUV is deformed by a relevant or

marginally relevant operator. This breaks conformal symmetry explicitly which triggers an

RG flow to some CFTIR. Every RG flow with explicit symmetry breaking can be thought

18The actual value of ∆f is not important. So, we have defined ∆̃f such that it absorbs all the prefactors

in (4.37):

3

4
α2

(
51

8π3

)2

∆̃12
f = ∆12

f . (4.44)
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of as a special case of RG flows with spontaneous symmetry breaking with b̂ � 1. This

immediately implies
∆a

∆̃12
f

= −δγ3 = −γRegge
3 . (5.2)

for explicitly broken conformal symmetry in 6d.

Anomalous dimensions of O and O2. In the derivation of (5.1), there was an implicit

assumption that both O and O2 do not acquire any anomalous dimension as a result of

the RG flow. A related but slightly stronger statement is that the flow does not generate

a potential for the dilaton field φ. Even if we start without a potential for the dilaton,

generally the flow can generate a cosmological constant term in (2.8) particularly when

conformal symmetry is broken explicitly. However, this IR cosmological constant term can

be removed by adding an appropriate bare cosmological term in (2.8). This implies that

anomalous dimensions of O and O2 can always be tuned to zero. In fact, any CFT based

analysis of the relation (5.1) must set ∆O = 5 and ∆O2 = 10.

A CFT sum rule. The relation (4.37) can be equivalently written as a CFT dispersion

sum rule

∆a

∆̃12
f

= lim
η→0

lim
x→0

[
1

log η

∫ x

−x
dσ σ Re δGmixed (η, σ) +

β2

(log η)2

(∫ x

−x
dσ Re δG4 (η, σ)

)2
]

where G(η, σ) ≡ G(ρ = 1
σ , ρ̄ = ησ) and β2 = 25346

503965 is a universal numerical factor.

Moreover, we have also absorbed a positive numerical coefficient in the definition of ∆̃f .

The above sum rule follows from analyticity of Lorentzian CFT correlators which implies

that both δGmixed and δG4, as functions of complex σ, are analytic in the lower half σ-plane

near σ ∼ 0 [60]. However, this CFT sum rule is not manifestly positive definite and hence

it does not immediately lead to a proof of the 6d a-theorem.

Massive scalar field theory. A simple example of explicitly broken conformal symme-

try is given by the free massive scalar field theory in 6d. In this case, the CFTUV is a

massless scalar field theory and hence aUV is known exactly [27, 61]

aUV =
1

(4π)39072
. (5.3)

Now conformal symmetry can be broken explicitly by introducing a mass term for the scalar

field. Clearly, the scalar field decouples in the deep IR and the theory flows to nothing.

Therefore, in this case γ3 is given by (5.2) with ∆a = aUV. The dilaton effective theory

associated with this RG flow was analyzed in detail in [27] which led to an exact result

for b̂

0 < b̂ =
m2

(4π)3360f2
� 1 , (5.4)

where, m is the mass of the scalar field.
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Supersymmetry and the a-theorem. All known examples of interacting CFTs in 6d

have one thing in common — they are supersymmetric. So, naturally RG flows connecting

two SCFTs are of significant importance in 6d. For conformal UV fixed points that are

supersymmetric, superconformal representation theory dictates that conformal symmetry

of the SCFTUV cannot be broken explicitly in 6d while preserving supersymmetry [62–64].

Spontaneously broken conformal symmetry can set off flows that preserve supersymmetry,

however, such flows are highly constrained. Constraints imposed by supersymmetry were

nicely exploited to establish the 6d a-theorem for all flows that preserve (2, 0) supersym-

metry in [30] which was later extended to RG flows of (1, 0) SCFTs onto the tensor branch

in [31]. The a-theorem for this class of theories follows from the fact that supersymmetry

relates ∆a to b̂2. In particular, for these supersymmetric flows [30, 31]19

∆a =
2b̂2

3
≥ 0 . (5.5)

It is a straightforward exercise to rewrite this result as statements about anomalous di-

mensions γ2 and γRegge
3 of the dual CFT5

∆a

∆̃12
f

=
8

9
αcontactγ

2
2 ≥ 0 , γRegge

3 =
1

9
αcontactγ

2
2 . (5.6)

Interestingly, the results (5.2) and (5.6) imply that a general Nachtmann-like CFT theorem

that strictly rules out either sign of γRegge
3 cannot exist.

In a (1, 0) SCFT, there are two types of deformations that preserve supersymmetry.

These are tensor branch flows and Higgs branch flows. The classification of 6d SCFTs has

provided strong evidence for the a-theorem even for Higgs branch flows of (1, 0) SCFTs [32–

34]. However, it is still an open problem to establish the a-theorem for all RG flows of

(1, 0) SCFTs onto the Higgs branch.
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A Conformal trace anomaly in 6d

The conformal trace anomaly in d = 6 can be written as [24, 61, 65, 66]

〈Tµµ 〉 = aE6 +

3∑
i=1

c(i)Ii (A.1)

up to total derivative terms which can be removed by adding finite and covariant counter-

terms in the effective action. In equation (A.1) E6 is the 6d Euler density20

E6 =
1

8
δµ1µ2µ3µ4µ5µ6
ν1ν2ν3ν4ν5ν6

Rν1ν2
µ1µ2

Rν3ν4
µ3µ4

Rν5ν6
µ5µ6

(A.2)

19Note that our convention for a and b̂ is different from the convention used in [31].
20We are using the convension of [27].
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and a is the corresponding Euler central charge. On the other hand, central charges {c(i)}
are associated with conformal invariants:

I1 =WγαβδW
αµνβW γδ

µ ν ,

I2 =W γδ
αβ W µν

γδ W αβ
µν ,

I3 =Wαγδµ

(
∇2δαβ + 4Rαβ −

6

5
Rδαβ

)
W βγδµ , (A.3)

where, W is the Weyl tensor.

B Analytic continuation of hypergeometric functions

Hypergeometric function 2F1 (a, b, c, z) has a branch cut along z ∈ (1,∞). If we start with

0 < z < 1 and rotate z around 1: (1− z)→ (1− z)e−2πi, we obtain the following identity

2F1 (a, b, c, z)(1−z)→(1−z)e−2πi (B.1)

= 2F1 (a, b, c, z) +
2πiΓ(c)e−πi(c−b−a)

Γ(a)Γ(b)Γ(c− a− b+ 1)

(1− z)c−b−a

zc−1

×2 F1(1− b, 1− a, c− a− b+ 1, 1− z) .

C Feynman rules for the dilaton in AdS

In this appendix, we lists all the Feynman rules that we will use to evaluate various Witten

diagrams. We will use the following convention for points in AdS6: (z, x), where z is the

bulk direction and x ∈ R5. For convenience we will work in the Euclidean signature with

the metric

ds2 =
dz2 + dx2

z2
. (C.1)

Bulk-to-boundary propagator. The dilaton bulk-to-boundary propagator between a

bulk point (z, x) and a boundary point x′ in Euclidean AdS6 is given by

K(z, x;x′) =

(
32

π3

)
z5

(z2 + |x− x′|2)5
. (C.2)

For notational convenience, we also define a reduced bulk-to-boundary propagator

K̃∆(x′) ≡ K̃∆(z, x;x′) =
z∆

(z2 + |x− x′|2)∆
. (C.3)

Bulk-to-bulk propagator. The dilaton bulk-to-bulk propagator is the solution of the

differential equation

�(z, x)G(z, x; z′, x′) =
1√

gEAdS(z)
δ(z− z′)δd(x− x′) . (C.4)

The propagator can be explicitly written as

G(z, x; z′, x′) = −
(
ξ5

5π3

)
2F1

(
5

2
, 3;

7

2
; ξ2

)
(C.5)
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where,

ξ =
2zz′

z2 + z′2 + (x− x′)2
. (C.6)

Contact Witten diagram: D-functions. We define the D-function in AdSd+1 in the

traditional way

D∆1∆2∆3∆4(x1, x2, x3, x4) =

∫
ddx dz

√
gAdS(z)

4∏
i=1

K̃∆i(z, x;xi) (C.7)

where, K̃ is the reduced bulk to boundary propagator (C.3). D-functions appear in four-

point contact Witten diagrams.

Scalar-exchanged Witten diagram: W -functions. A similar integral appears in

scalar-exchanged Witten diagrams which we will denote as the W-function. In AdSd+1,

the W -function is given by

W∆1∆2∆3∆4(x1, x2, x3, x4) =

∫
ddx dz

√
gAdS(z)

∫
ddx′ dz′

√
gAdS(z)

×G(z, x; z′, x′)

2∏
i=1

K̃∆i(z, x;xi)

4∏
i=3

K̃∆i(z
′, x′;xi) . (C.8)

An useful identity. The following simple identity will be very useful to us (see [67])

gAB∂AK̃∆1(z, x;x1)∂BK̃∆2(z, x;x2) =∆1∆2

(
K̃∆1(z, x;x1)K̃∆2(z, x;x2)

−2x2
12K̃∆1+1(z, x;x1)K̃∆2+1(z, x;x2)

)
,

(C.9)

where, derivatives are taken with respect to bulk coordinates.

D Regge limit of the D-function in AdSd+1

The AdSd+1 integral in the D-function (C.7) can be reduced to a single integral of a

hypergeometric function [68]

D∆1∆2∆3∆4(x1, x2, x3, x4)

=
πd/2

2

Γ
(∑

i ∆i

2 − d
2

)
Γ
(∑

i ∆i

2 −∆3

)
Γ
(∑

i ∆i

2 −∆4

)
Γ (∆1) Γ (∆2) Γ

(∑
i ∆i

2

) (x2
12)∆4−

∑
i ∆i
2

(x2
34)∆3

×
∫ ∞

0
dβ

(
βx2

24 + x2
14

)∆3−∆4

β1−∆2−∆4+
∑
i ∆i
2

2F1

(
−∆4 +

∑
i ∆i

2
,∆3,

∑
i ∆i

2
, 1− α

)
, (D.1)

where,

α =

(
βx2

23 + x2
13

) (
βx2

24 + x2
14

)
βx2

12x
2
34

. (D.2)
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However, we only need the Regge limit of the D-function which can be computed exactly.

First note that conformal invariance of the boundary implies that

D∆1∆2∆3∆4(x1, x2, x3, x4) =
1

(x2
12)

∆1+∆2
2 (x2

34)
∆3+∆4

2

(
x2

14

x2
24

)∆21
2
(
x2

14

x2
13

)∆34
2

D̄∆1∆2∆3∆4(z, z̄)

(D.3)

where z, z̄ are the cross-ratios (3.8). Since, the D̄-function depends only on the cross-ratios,

we can determine it starting from any configuration we desire. We will closely follow the

configuration used in [2] to evaluate the Regge limit of the D̄-function.

Embedding formalism. It is most convenient to work in the embedding formalism [69]

which was first proposed by Dirac [70]. In this formalism, (d + 1)-dimensional AdS is

embedded in (d+ 2)-dimensional Minkowski space Md ×M2 as follows21

P 2 = −R2
AdS , P 0 > 0 , (D.4)

where P = (P+, P−, P a) ∈ M2 × Md and the (d + 2)-dimensional metric is dP 2 =

−dP+dP− + dP adPa. The conformal boundary of AdS is the space of null rays

P 2 = 0 , P ∼ λP . (D.5)

Now consider the D-function in the embedding space D∆1∆2∆3∆4(P1, P2, P3, P4). The

Regge limit can be reached by choosing four points following [2]:

P1 = (1, 0, 0) , P3 = (x̄2, 1, x̄) ,

P2 = (−1,−x2, x) , P4 = (0,−1, 0) , (D.6)

with x2 < 0, x̄2 < 0. Note that Pij = (P1 − Pj)2 = −2Pi · Pj . The cross-ratios as defined

in (3.8) are

z = σes , z̄ = σe−s (D.7)

where σ = xx̄ and cosh s = −x.x̄
xx̄ . We take x, x̄→ 0 with fixed s to go to the Regge regime.

With this choice of kinematics, from (D.3) we can write

D∆1∆2∆3∆4(P1, P2, P3, P4) =
e−iπ

∆21+∆34
2

(−x2)
∆1+∆2

2 (−x̄2)
∆3+∆4

2

D̄∆1∆2∆3∆4(z, z̄) , (D.8)

where the branch cut is chosen to be consistent with the analytic continuation 4. It is

straightforward to generalize [2] and write an analytic expression for the Regge limit of

D∆1∆2∆3∆4(P1, P2, P3, P4) =

∫
AdS

dX

4∏
i=1

1

(−2Pi ·X)∆i
. (D.9)

21Note that we will set RAdS = 1 in this section.
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Regge limit. In the Regge limit, P12, P34 → 0 which simplifies the bulk integral because

the dominant contribution to the integral comes from the bulk region which is null sepa-

rated from both P1 and P4. This can be properly utilized by going to the following AdS

coordinates [2]

X =

(
u, v

(
1− uv

4 cosh2 r

)
, cosh r

(
1− uv

2 cosh2 r

)
, θd−2 sinh r

)
, (D.10)

where θd−2 ∈ Sd−2. The hypersurface u = v = 0 is null separated from both P1 and P4. In

the Regge limit, this hypersurface is also almost null separated from P2 and P3. Hence, the

dominant contribution to the integral (D.9) comes from the region |uv| � cosh2 r implying

that we can safely approximate X ≈ (u, v, w) with w ∈ Hd−1. As a consequence, in the

Regge limit, we can approximate D∆1∆2∆3∆4(P1, P2, P3, P4) by [2]

i

∫
dudv

2

∫
Hd−1

dw

(v + iε)∆1(−v − 2x.w + iε)∆2(u− 2x̄.w + iε)∆3(−u+ iε)∆4
(D.11)

= 2π2i
Γ(∆1 + ∆2 − 1)Γ(∆3 + ∆4 − 1)∏

i Γ(∆i)

×
∫
Hd−1

dw

(−2x̄.w + iε)∆3+∆4−1(−2x.w + iε)∆1+∆2−1
,

where, we are using the standard iε-prescription to implement (1 − z) → (1 − z)e−2πi

and the factor of i comes from the Wick rotation of the bulk time coordinate. Harmonic

analysis on hyperbolic space22 enables us to evaluate the above integral yielding

D∆1∆2∆3∆4(P1, P2, P3, P4) =
iπd

2|x|∆1+∆2−1|x̄|∆3+∆4−1
∏
i Γ(∆i)

f∆1∆2∆3∆4(s) , (D.12)

where,

f∆1∆2∆3∆4(s) =

∫ ∞
−∞

dνΩiν(s)Γ

(
∆3 + ∆4 − d/2 + iν

2

)
Γ

(
∆3 + ∆4 − d/2− iν

2

)
× Γ

(
∆1 + ∆2 − d/2 + iν

2

)
Γ

(
∆1 + ∆2 − d/2− iν

2

)
. (D.13)

Harmonic functions Ωiν on Hd−1 are known in any dimension [36]

ΩE (s) =−
E sin(πE)Γ

(
d−2

2 + E
)

Γ
(
d−2

2 − E
)

2d−1π
d+1

2 Γ
(
d−1

2

)
× 2F1

(
d− 2

2
+ E,

d− 2

2
− E, d− 1

2
,

1− cosh(s)

2

)
. (D.14)

Regge limit of D-functions. The result (D.12) is sufficient to obtain the Regge limit

of D̄-functions. Using (D.8) we now obtain the leading Regge behavior

D̄∆1∆2∆3∆4(z, z̄) = i

(
πd

2
∏
i Γ(∆i)

)
eiπ

∆21+∆34
2

√
zz̄ f∆1∆2∆3∆4

(
1

2
log (z/z̄)

)
. (D.15)

22For a review see [49].
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The D̄-functions completely determine the Regge limit of D-functions for all kinematics.

In particular, for the kinematics (3.11) in the limit (3.14), we obtain

D∆1∆2∆3∆4(ρ, ρ̄) = i
πd21−

∑
i ∆i

(ρρ̄)
∆1+∆2

2
∏
i Γ(∆i)

√
ρ̄

ρ
f∆1∆2∆3∆4

(
−1

2
log (ρρ̄)

)
. (D.16)

Special case: ∆1 + ∆2 = ∆3 + ∆4. We now consider a special case ∆1 + ∆2 =

∆3 + ∆4 = K + d
2 which will be useful for us. In this case,

f∆1∆2∆3∆4(s) =

∫ ∞
−∞

dνΩiν(s)Γ

(
K + iν

2

)2

Γ

(
K − iν

2

)2

. (D.17)

As explained earlier, we are only interested in the ρρ̄→ 0 limit of Regge conformal blocks

which leads to further simplification. Using the integral representation of the hypergeo-

metric function, one can show that in the limit s→∞

f∆1∆2∆3∆4(s) ≈ 4π1− d
2 Γ(K)Γ

(
K +

d

2
− 1

)
e−

1
2

(−2+d+2K)ss . (D.18)

Therefore, the D-function in the Regge limit (3.14), followed by ρρ̄ → 0 can be approxi-

mated as

D∆1∆2∆3∆4(ρ, ρ̄) ≈ −i π1+ d
2

22K+d−2ρ
log (ρρ̄)

Γ(K)Γ
(
K + d

2 − 1
)∏

i Γ(∆i)
. (D.19)

E Triple-trace operators

Let us now construct triple-trace operators in CFT5 from a scalar primary operator O with

dimension ∆O = 5 in a generalized free theory. It is easy to construct a spin-0 triple-trace

operator from O:

[O3]n=0,J=0 =
1√
6
O(x)O(x)O(x) (E.1)

which has dimension ∆(3)(0, 0) = 15. One can also easily check that there are no spin-1

triple-trace operator with n = 0. However, it is easy to construct a unique spin-2 triple-

trace operator [O3]0,J=2:

[O3]n=0,J=2 = lim
x2,x3→x1

1√
768

(
(ε.∂3)2 − 6

5
ε.∂2ε.∂3

)
O(x1)O(x2)O(x3) (E.2)

which has dimension ∆(3)(0, 2) = 17 and twist τ2 = 15. Note that in the above equation ε

is the null polarization vector associated with the spinning operator [O3]n=0,J=2.

However, we are mostly interested with the spin-3 triple-trace operator [O3]0,J=3. Con-

sider the most general triple-trace operator (not necessarily a primary)

lim
x2,x3→x1

( ∑
i=1,2,3

ai(ε.∂i)
3 +

∑
i 6=j=1,2,3

bij(ε.∂i)
2(ε.∂j)

+ c(ε.∂1)(ε.∂2)(ε.∂3)

)
O(x1)O(x2)O(x3) (E.3)
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and define

A =
∑

i=1,2,3

ai ,
∑

i 6=j=1,2,3

bij = B . (E.4)

When this spin-3 triple-trace operator is a primary, it must be orthogonal to both

[O3]n=0,J=0 and [O3]n=0,J=2. This conditions fix A, B and c uniquely

A =

√
5

651168
, c =

84

25
A , B = −21

5
A . (E.5)

It is easy to check that the operator (E.3) with the above conditions, has the right two-

point function of a spin-3 primary with dimension ∆(3)(0, 3) = 18 and twist τ3 = 15.

Furthermore, one can show that two triple-trace operators that satisfy the above conditions

cannot be orthogonal to each other implying there is a unique spin-3 triple-trace primary

operator with twist τ3 = 15.

Higher spin and higher twist triple-trace operators can be constructed in a systematic

way by conglomerating operators following [9].

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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