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1 Introduction

There is by now exquisite confirmation of the AdS/CFT correspondence [1–3]. Many of

the precision tests carried out are possible because summing the planar diagrams leads to

an integrable model for anomalous dimensions of single trace operators which are dual to

closed string states [4, 5]. The integrable model describes defects (magnons) which are

excitations of an infinitely long “ferromagnetic ground state”. The ground state preserves

half the supersymmetries. There are finite size corrections when the chain is finite in length.

The magnon excitations scatter with each other. A significant insight is that the

S-matrix of these magnon excitations is completely determined, by symmetry, up to an
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overall phase [6, 7]. To simplify the description, consider an infinite spin chain which

allows us to study excitations individually. The full PSU(2, 2|4) symmetry is broken to

SU(2|2)×SU(2|2)nR. Excitations carry the quantum numbers of a central extension of this

subalgebra with the central charge measuring the quasi-momentum of the excitation [6, 7].

The original PSU(2, 2|4) does not admit a central extension and for a closed string the net

central charge vanishes by level matching constraints.

There are many states in the string theory Hilbert space that are not closed strings.

The theory has D-brane excitations which support open strings. These D-branes are dual

to CFT operators that have a bare dimension of order N , so that their large N dynamics

is not captured by summing planar diagrams [8–15]. In this setting powerful methods

based on group representation theory are effective tools with which to attack the large

N limit [16–21]. A relevant result for us is the diagonalization of the one loop dilatation

operator, using a double coset ansatz [22–24]. This model describes excitations of back-

ground branes, with the background branes described using a Young diagram with long1

rows (for dual giant gravitons) or columns (for giant gravitons). The interactions of these

excitations have not been explored in much detail yet [25–27]. The calculations that are

required are technical and quickly become unmanageable. Given the remarkable success

in the planar limit, of a symmetry based approach, it is natural to develop a symmetry

analysis applicable in this setting.2 The main goal of this paper is to study the su(2|3)

sector of the complete theory and show how the global su(2|2) symmetry is realized in the

resulting Hilbert space of giant graviton branes and their open string excitations. This

result is important since experience from the planar limit suggests that constraints from

the global symmetry provide powerful insights with which to study excitations of the back-

ground branes. Further, the details are rather intricate so that in the end we arrive at a

non-trivial extension of the discussion of [6, 7].

The fact that we are considering open strings has some interesting implications, already

explored by Berenstein in [29]. Since this discussion is highly relevant for what follows, we

will review the key ideas. To start, consider open superstrings in flat Minkowski spacetime.

The lowest lying string modes of a string stretching between two flat parallel and separated

D-branes, fill out a massive short representation of the unbroken supersymmetry of the D-

brane system. The existence of these representations requires a central charge extension

of the unbroken supersymmetry algebra. The central extension is needed to get a short

multiplet. This additional central charge is an electric charge carried by the string end-

points. Closed string states are not charged so that the central charge is only physical in

the open string sector or when we compactify the closed string theory on a circle. It is

measurable in the field theory limit when we spontaneously break the non-abelian gauge

symmetry on the stack of branes, corresponding to the Coulomb branch of the Yang-Mills

theory living on the world volume of the D-branes.

The key conclusion of Berenstein [29] is that the central charge of the Coulomb branch

is a limit of the central charge extension of [6, 7]. Our analysis supports this conclusion.

1Here long means there are order N boxes in the row/column.
2For an early attempt, using a small fraction of the possible symmetries, see [28].
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Note that [29] is not using the language of the double coset ansatz, but instead employs

a collective coordinate approach [30–32] which is well suited to the semi-classical limit.

Although the collective coordinate and double coset ansatz are rather different descriptions,

their conclusions are in good agreement [30].

In section 2 we review the background needed to understand the double coset ansatz.

Our goal is to provide enough details to develop the Hilbert space of states of the ex-

cited giant graviton brane system. We explain the change of basis from restricted Schur

polynomials to Gauss graph operators which are the eigenoperators of dilatations. Gauss

graph operators are closely related to the dual gravitational system: they are labeled with

a graph that has a vertex for each brane in the giant graviton brane system. The vertices

are decorated with directed edges that describe open string excitations. Our description

of the complete state space is novel and in particular we develop the structure of the

fermionic states which is new. We then consider the asymptotic symmetries in section 3.

By asymptotic we mean the situation in which impurities are well separated and hence are

not interacting. The discussion is necessarily more complicated than the discussion in [6, 7]

because we have a far bigger space of possible impurities. The action of the generators

of the global symmetry algebra is rather complicated in the restricted Schur polynomial

basis. Reorganizing the basis into irreducible representations of the global symmetry is

not trivial. Remarkably, the basis provided by Gauss graph operators achieves this reor-

ganization! Further, excitations again carry a charge under the central extension, echoing

what happens in the planar limit. In the (planar) closed string case the central extension

measures the quasi-momentum of the excitations and due to cyclicity of the trace (which

corresponds to level matching in the string description) the total central extension vanishes.

This vanishing of the central extension is necessary, since the algebra on physical states

is not centrally extended. We find an equally compelling description in our non-planar

setting. Giant graviton branes have a compact world volume, so that the Gauss Law con-

straint of the brane world volume gauge theory forces the total charge on the world volume

to vanish. This is manifested in the fact that there must be the same number of directed

edges leaving each node as there are edges terminating on each node. This condition —

which is the requirement that the physical state is gauge invariant — ensures that the

total central extension vanishes. Further the action of the central charges on the Gauss

graph operators has a natural interpretation as a gauge transformation. We end with some

conclusions and discussion in section 4 including speculations on how the global symmetry

might be used to study interactions between excitations. The appendices collect technical

details that are used to develop the arguments of the paper.

2 State space

The operators we consider are built from three complex bosonic matrices X,Y, Z and two

complex fermionic matrices ψ1, ψ2. These fields all transform in the adjoint of the U(N)

gauge group. This sector of the theory is a closed subsector and it enjoys an su(2|3) super-

group global symmetry. We will construct the branes in our giant graviton brane system

using only the Z field. The brane system without excitations is a 1/2 BPS operator. A
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linear basis for the brane system without excitations is provided by the Schur polynomials,

which are labeled by a single Young diagram. Each giant graviton brane corresponds to a

long column and each dual giant graviton to a long row. Excitations are described using

X,Y and ψ1, ψ2. Generic excited brane states do not preserve any supersymmetry. A linear

basis for the excited brane system is provided by the restricted Schur polynomials, which

has a number of Young diagram labels (one for each type of field and one for the entire

collection) as well as multiplicity labels. The global su(2|3) symmetry of this subsector

is not very useful as it relates operators with different numbers of excitations. For this

reason, following [33], we will restrict our attention to the su(2|2) subgroup which does

preserve the number of excitations. In this section we will give a complete description of

the excited giant graviton brane state space that will be organized, in the next section, by

the global su(2|2) symmetry.

2.1 Restricted Schur polynomials

The restricted Schur polynomials provide a linear basis3 for the gauge invariant operators

of a generic multi-matrix model. They correctly account for all constraints following from

cyclicity or finite N (trace) relations.

In what follows, we use b(0) to denote the number of Z fields. Consequently, b(0) =

O(N). We also use b(1), b(2), f (1) and f (2) to denote the number of Y,X, ψ1 and ψ2 fields

respectively. The integers b(1), b(2), f (1), f (2) are at most O(
√
N). The total number of

fields is denoted nT = b(0) + b(1) + b(2) + f (1) + f (2).

A restricted Schur polynomial is constructed by tracing a projection operator with

the multi-linear operator constructed from a tensor product of matrices. The projection

operator projects both the collection of row indices and the collection of column indices,

onto a definite representation of U(N), and therefore, by Schur-Weyl duality, onto a definite

representation of the permutation group which permutes indices of different fields. The

projector first places the complete set of nT indices into a definite representation, labeled

by Young diagram R with nT boxes. It then places each of the b(i) indices, for each

species of bosonic field, into a definite representation labeled by a Young diagram bi, which

has b(i) boxes. Finally, it places the f (i) row indices of each fermion species into the

representation fi and the column indices into the representation fTi , each of which have

f (i) boxes. sT is obtained from s by flipping the Young diagram so that rows and columns

are exchanged. The reason why bosonic row and column indices are placed into the same

representation, is so that the trivial representation of the symmetric group (labeled by

a Young diagram with a single row) appears in the tensor product of row and column

indices. The trace projects to this trivial representation which is necessary since it follows

from bosonic statistics. Further, the reason why fermionic row and column indices are

projected as they are, is so that the antisymmetric representation of the symmetric group

(labeled by a Young diagram with a single column) appears in the tensor product of

row and column indices. The trace projects to this antisymmetric representation which

3Here by linear basis we simply mean that any local gauge invariant operator can be expressed as a sum

of restricted Schur polynomials. There is never a need, for example, to square a restricted Schur polynomial.
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is necessary since it follows from fermionic statistics. For a technical derivation of these

facts see [34, 35]. Thus, R is an irreducible representation of SnT , while the collection

of five Young diagrams ({bi}, {fi}) label an irreducible representation of the subgroup

Sb(0) × Sb(1) × Sb(2) × Sf (1) × Sf (2) ⊂ SnT . The representation ({bi}, {fi}) of the subgroup

may appear more than once upon restricting the representation R of the group. For that

reason we need multiplicity labels. Following the construction presented in [34], we need

a label for each of the four Young diagrams b1, b2, f1, f2. The Young diagram b0 appears

without multiplicity. We write these multiplicity labels as a vector ~µ. To get a non-zero

trace, the Young diagram labels for the row and column indices must match as explained

above. Multiplicity labels can differ. Consequently we can write the restricted Schur

polynomials as χR,({bi},{fi})~µr~µc . Rescaling to produce an operator with unit two point

function we obtain OR,({bi},{fi})~µr~µc . In what follows, any operator denoted with a capital

letter O has been rescaled so that it has a unit two point function.

A useful approach towards the construction of the restricted Schur polynomial entails

starting with R and then peeling off f (i) boxes, which are then reassembled to produce fi
with multiplicity labels, and then peeling b(i) boxes, which are then reassembled to produce

bi. After peeling off f (1) + f (2) + b(1) + b(2) boxes from R we are left with b0. This makes

it clear that b0 appears without multiplicity and that the excitations live at the right most

corners of R, something we will need below. Further, it is clear that every box in the Young

diagram R is associated with a definite species of field.

Any multitrace operator can be written as a linear combination of restricted Schur

polynomials. In the free field theory limit, the two point function boils down to computing

the trace of a product of two projection operators. This can be done exactly and one finds

that the restricted Schur polynomials diagonalize the free field two point function. Finally,

the finite N (trace) relations are simply recovered as the statement that the restricted

Schur polynomial vanishes whenever any of the Young diagrams labeling the polynomial

has more than N rows.

A key fact that we will need below to understand the state space of the excited brane

system, concerns the number of values a pair of multiplicity labels ~µr, ~µc can take. This

is expressed in terms of the Littlewood-Richardson number g(r1, · · · , rk;R) which is a

non-negative integer counting how many times U(N) representation R appears in the ten-

sor product r1 ⊗ · · · ⊗ rk of U(N) representations. For the restricted Schur polynomial

χR,({bi},{fi})~µr~µc we find that ~µr, ~µc takes

g(b0, b1, b2, f1, f2;R)g(b0, b1, b2, f
T
1 , f

T
2 ;R) (2.1)

values [34]. Since the Littlewood-Richardson number also counts the multiplicity of repre-

sentations of the symmetric group after restriction,4 this formula is not too surprising.

Our discussion in the subsection above aims to give the reader an understanding of

the labels of the restricted Schur polynomials. This is essentially all we use below. For a

detailed technical derivation of the results reviewed the reader should consult [18, 20, 34].

4See exercise 4.43 in ref. [36].
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2.2 Double coset ansatz

The restricted Schur polynomials do not have a definite scaling dimension. However, they

only mix weakly under the action of the dilatation operator: at order g2LYM it is possible for

two operators to mix if and only if they differ at most by moving L boxes in any of their

Young diagram labels [22, 37]. We want to solve the mixing problem which amounts to

finding linear combinations of restricted Schur polynomials that are eigenoperators of the

dilatation operator, and finding their eigenvalues. There is a limit in which the mixing prob-

lem simplifies dramatically. Recall from the previous section that excitations are located at

the right hand corners of the Young diagram R. We expect that the excitations are essen-

tially free if they are well separated, which leads to the displaced corners approximation [22,

38]. The displaced corners approximation holds for a specific shape of the Young diagram

R. Imagine that R has order 1 long rows. Starting from the right most box in any row of

R and moving to the right most box in any other row, along the shortest path in the Young

diagram R, if we always need to move through O(N) boxes, then the displaced corners

approximation can be used. In the displaced corners approximation there is major simplifi-

cation in the action of the symmetric group: permutations acting on the impurities simply

swap the boxes associated to the excitation. Without the displaced corners approximation,

the result of a permutation is a linear combination of the original state and the state with

the impurities swapped [22, 38]. This simplified action has two important consequences:

1. There is a new symmetry: restricted Schur polynomials are invariant (up to a sign

— for fermions) under swapping impurities that belong to a given row. There is an

independent symmetry for the row and column indices.

2. This symmetry results in a new “conservation law”: restricted Schur polynomials

can only mix if they have the same number and type of excitations in each row.

Consequently the number of each species of excitation in each row is conserved [22].

This conservation law holds only at the leading order at large N . There is a compelling

physical interpretation of the new conservation law: each row in R is identified with a giant

graviton brane. Identifying the excitations as open strings we have recovered the statement

that Chan-Paton factors are conserved at zero string coupling.

The mixing problem can be solved by making maximal use of the extra symmetry

present in the displaced corners approximation. Let H denote the permutation group that

swaps indices of excitations belonging to the same row. Another copy of the same group

will swap indices of excitations belonging to the same column. H is a product of symmetric

groups, one for each excitation species and for each row (or column) of R. The group of

permutations acting on the impurities is given by Sexc = Sb(1) × Sb(2) × Sf (1) × Sf (1) . The

extra symmetry implies that we have an operator for each element in the double coset

H \ Sexc/H (2.2)

The elements of this double coset correspond to graphs, with vertices representing branes

(one for each row of R) and directed edges representing oriented strings (one for each
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excitation field). We will sometimes draw one graph for each species of excitation to

unclutter the description. The graphs can be described using some numbers. Focus on a

single species of excitation and imagine there are a total of m excitations of this species

and that R has p rows. Each excitation corresponds to an edge. Divide each edge into two

halves and label each half. Use the orientation of the edges to distinguish out going and

in going ends and label the out going ends with numbers {1, · · · ,m} and the in going ends

with the same numbers. It is natural to specify how the halves are joined by a permutation

σ ∈ Sm. Let (m1,m2, · · · ,mp) record the number of excitations in each row of R so that

m1 + m2 + · · ·mp = m. By the Gauss law, the numbers of edges leaving or ending at

each vertex are given by the same ordered sequence of integers (m1,m2, · · · ,mp). Choose

the labels of the half-edges such that the ones emanating from the first vertex are labeled

{1, 2, · · · ,m1}, those emanating from second vertex are labeled {m1 + 1, · · ·m1 + m2}
and so on. Likewise the half-edges incident on the first vertex are labeled {1, 2, · · · ,m1},
those incident on the second vertex are labeled {m1 + 1, · · ·m1 + m2} etc. The structure

of the graph is specified by the permutation σ ∈ Sm which describes how the m out

going half-edges are joined with the m in going half-edges. A single graph corresponds

to many possible permutations because the mi strings emanating from the i’th vertex are

indistinguishable, as are the mi strings terminating on the i’th vertex. Thus permutations

which differ only by swapping end points that connect to the same vertex do not describe

distinct configurations. This symmetry group is nothing but the group H introduced

above which makes it clear why the double coset (2.2) describes the space of restricted

Schur polynomials in the displaced corners limit.

The most direct and natural use of the double coset which appears above, is through

a Fourier transform. Remarkably, it turns out that the Fourier transform of the restricted

Schur polynomial defines an eigenoperator of the dilatation operator [24]. The transfor-

mation from the restricted Schur polynomials to the Gauss graph operators replaces the

Young diagram and multiplicity labels for each species of excitation with a permutation σ.

Consequently, since the transformation works separately for each species, we can simplify

the discussion and focus on a single species at a time. The transformation for bosonic

excitations was worked out in [24] and is as follows

OR,r(σ) =
∑
s`m

∑
µ1,µ2

C(s)
µ1µ2(σ)OR,(r,s)µ1µ2 (2.3)

Here our bosonic excitation is organized by Young diagram s with multiplicity labels µ1, µ2
in the restricted Schur basis. After transformation, the state of the excitations is described

by permutation σ. Denote the matrix representing τ ∈ Sm, in the irreducible representation

labeled by Young diagram s, by Γs(τ). The transformation coefficient is given by

C(s)
µ1µ2(τ) = |H|

√
ds
m!

ds∑
k,m=1

(Γs(τ))kmB
s→1H
kµ1

Bs→1H
mµ2 (2.4)

where we have made use of the branching coefficient defined by∑
µ

Bs→1H
kµ Bs→1H

lµ =
1

|H|
∑
γ∈H

Γs(γ)kl (2.5)
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and ds is the dimension of irreducible representation s. The branching coefficients Bs→1H
lµ

resolve the multiplicities that arise when we restrict irrep s of Sm to the identity represen-

tation 1H of H for which Γ1H (γ) = 1 ∀γ. The transformation for fermionic excitations was

worked out in [34] and is as follows

OR,r(σ) =
∑
s`m

∑
µ1,µ2

C̃(s)
µ1µ2(σ)OR,(r,s)µ1µ2 (2.6)

where the transformation coefficient is given by

C̃(s)
µ1µ2(τ) = |H|

√
ds
m!

ds∑
k,m=1

(
Γs(τ)Ô

)
km

Bs→1H
kµ1

BsT→1m

mµ2 (2.7)

where we have made use of the branching coefficient defined by∑
µ

BsT→1m

kµ BsT→1m

lµ =
1

|H|
∑
γ∈H

sgn(γ)Γs
T

(γ)kl (2.8)

The branching coefficients BsT→1m

lµ resolve the multiplicities that arise when we restrict

irrep sT of Sm to the representation 1m of H for which Γ1m(γ) = sgn(γ) ∀γ. Here sgn(γ)

is the sign of the permutation σ. The operator Ô appearing in (2.7) is defined by

Ôjl = S
[1n] s sT

j l (2.9)

where S
[1n] s sT

j l is the Clebsch-Gordan coefficient, moving between states in the tensor

product s× sT and the state spanning 1m. To get some feeling for Ô note that it satisfies

Γsij(σ)Ôjp = sgn(σ)ÔikΓ
sT

kp (σ) (2.10)

and hence Ôjl is a map from sT to s. ÔT Ô maps from sT to sT and it commutes with

all elements of the group. Thus, by Schur’s Lemma, it is proportional to the identity.

ÔÔT maps from s to s and it commutes with all elements of the group. Thus it is also

proportional to the identity. By normalizing correctly we can choose

ÔT Ô = 1sT ÔÔT = 1s (2.11)

We use transformation formulas (2.3) and (2.6) below. See appendix D for technical details

of how to applying these transformations.

The Gauss graph operators we consider can have all four species of excitations par-

ticipating. The operator is written as Ob
(1),b(2),f (1),f (2)

R,b0
(σ). If it is clear from context, we

suppress the b(1), b(2), f (1), f (2) superscript. The permutation σ ∈ Sexc describes how half

edges for all excitations are joined. As mentioned above, these operators have a good scal-

ing dimension. From formula (2.1) of [39], or H2 of table 1 of [33], we have the one loop

dilatation operator

D = −g2YM

 3∑
i>j=1

Tr
(
[φi, φj ]

[
∂φi , ∂φj

])
+

3∑
i=1

2∑
a=1

Tr ([φi, ψa] [∂φi , ∂ψa ])

+Tr ({ψ1, ψ2} {∂ψ1 , ∂ψ2})

)
(2.12)
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where φi has i = 1, 2, 3 and stands for Z, Y,X. Since the number of excitations is much

smaller than the number of Z fields, interactions between excitations is subleading and we

can work with the simplified expression

D = −g2YM

(
Tr ([Z, Y ] [∂Z , ∂Y ]) + Tr ([Z,X] [∂Z , ∂X ])

+
2∑

a=1

Tr ([Z,ψa] [∂Z , ∂ψa ])

)
(2.13)

The action of the dilatation operator on this Gauss graph operator is given by

DOR,r(σ1) = −g2YM
∑
i<j

nij(σ1)∆ijOR,r(σ1) (2.14)

where ∆ij acts only on Young diagrams R, r. The integer nij counts the total number of

directed edges (both directions counted) stretched between nodes i and j. The operator

∆ij splits into three terms

∆ij = ∆+
ij + ∆0

ij + ∆−ij (2.15)

To describe the action of these three pieces, we need some notation. Denote the row lengths

of r by ri. Young diagram r+ij is obtained by removing a box from row j and adding it

to row i and r−ij is obtained by removing a box from row i and adding it to row j. See

appendix A for examples of this notation. We now have

∆0
ijOR,(r,s)µ1µ2 = −(2N + ri + rj)OR,(r,s)µ1µ2 (2.16)

∆+
ijOR,(r,s)µ1µ2 =

√
(N + ri)(N + rj)OR+

ij ,(r
+
ij ,s)µ1µ2

(2.17)

∆−ijOR,(r,s)µ1µ2 =
√

(N + ri)(N + rj)OR−
ij ,(r

−
ij ,s)µ1µ2

(2.18)

Note that R and r change in exactly the same way so that the number of excitations

in each row is preserved by the dilatation operator. The operators of definite scaling

dimension now follow by diagonalizing the action of ∆ij . This problem was studied in detail

in [23, 40], where in a suitable scaling limit, the problem was reduced to the diagonalization

of decoupled oscillators.

2.3 Bosonic state space

To specify the states of the Y and X excitations, specify the permutation that joins the half

edges of these excitations, or equivalently, give the graph that the permutation describes.

For the sake of clarity, draw the X and Y edges as separate graphs. The reader should

bear in mind that corresponding nodes are identified, since they correspond to the same

row in R. The X and Y impurities populate neighboring boxes in R. There is a distinct

(orthogonal) state for each choice of the pair of Young diagrams R and r and the X and

Y graphs. The rules for drawing a valid graph for a given excitation species are

1. There is a graph for each type of excitation. The nodes in the graph correspond

to the rows in R. Each excitation field appearing in the operator corresponds to a

directed edge in the graph. There is no upper limit on the number of edges.

– 9 –
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2. The number of edges emanating from a given node is equal to the number of edges

terminating on the node which is also equal to the number of excitation boxes (of

the given species) in the corresponding row of R.

2.4 Fermionic state space

There is an additional rule that must be applied when drawing the graphs for fermionic ex-

citations. To motivate the rule, consider the simplest case in which we have ψ1 excitations,

but no X,Y or ψ2 excitations. We can simplify the general counting formula appearing

in (2.1) to

ngraphs = g(b0, f1;R)g(b0, f
T
1 ;R) (2.19)

If we have a single excitation f1 = fT1 = . In this case, ngraphs = 1 and we simply have a

closed loop on the node corresponding to the row from with a box is removed from R to

produce b0. Now, imagine removing two impurities from a single row. In this case we have

f1 = and fT1 = and we find

g(b0, f1;R) = 1 g(b0, f
T
1 ;R) = 0 (2.20)

so that there is no restricted Schur polynomial and ngraphs = 0. If we have two fermionic

excitations, they can’t be removed from the same row. Removing the two excitations from

two distinct rows and again taking f1 = and fT1 = we find

g(b0, f1;R) = 1 g(b0, f
T
1 ;R) = 1 (2.21)

We could also have taken f1 = and fT1 = , so that there are two Gauss graph

operators that can be defined. A little work (see appendix D for useful details) shows that

the resulting graphs have two edges, with opposite orientation either (i) stretched between

the two nodes or (ii) forming closed loops on each node. If we remove three excitations,

two from a single row and then the third from a distinct row, we find that there are

two possibilities. First, s = and sT = , or second s = = sT . It is simple to

demonstrate that

g(b0, ;R) = 1 g
(
b0, ;R

)
= 0 (2.22)

so that the first possibility does not lead to a restricted Schur polynomial and hence no

Gauss graph operator. For the third possibility we have

g
(
b0, ;R

)
= 1 (2.23)

so that we can define a singe Gauss graph operator. In appendix D we show that the

resulting graph has three edges. there is a closed loop attached to the node corresponding

to the row with two impurities removed, as well as two edges with opposite orientation,

stretched between the two nodes. Motivated by the above examples, we have found a

simple rule that explains which fermion graphs are possible:

3. There is at most a single oriented edge with given end points and orientation. Thus,

we can’t “put two edges into the same state” as a consequence of Fermi statistics.
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If R has p rows its easy to check that the largest Young diagram that contributes is a

block with p columns and p rows. This corresponds to the Gauss graph with every possible

fermion line present. For example, for p = 3 we have

s = ←→ σ = (2.24)

There is often a unique Gauss graph σ for each fermionic restricted Schur polynomial, that

is the restricted Schur polynomial and the Gauss graph bases often coincide. This is in

complete harmony with the results given in [35], which demonstrate that in the context of

a single fermionic matrix, the Schur polynomial basis and the trace basis are the same.

3 Asymptotic symmetries

In this section we will work out the action of the generators of the su(2|2) global symmetry.

We work in the displaced corners approximation so that impurities located at distinct

corners are well separated and consequently, at large N , they are not interacting. This is

the sense in which we mean “asymptotic” symmetries. A nice conclusion of this analysis is

that the Gauss graph operators very naturally fall into representations of su(2|2). Further,

we will demonstrate that excitations again carry charges under a central extension of the

algebra, generalizing what is known about the planar limit.

3.1 Algebra

The bosonic su(2) × su(2) subalgebra is generated by Rab and Lαβ . The Rab rotate

the bosonic fields Y,X (which are in the (2,0) of the subalgebra) while Lαβ rotate the

fermionic fields ψ1, ψ2 (which are in the (0,2)). We will refer to these two su(2)s as su(2)R
and su(2)L. In terms of raising and lowering operators

R1
2 = R+ R2

1 = R− 2R1
1 = −2R2

2 = R3 (3.1)

L1
2 = L+ L2

1 = L− 2L1
1 = −2L2

2 = L3 (3.2)

we have

[R3, R−] = −2R− [R3, R+] = 2R+ [R+, R−] = R3 (3.3)

and

[L3, L−] = −2L− [L3, L+] = 2L+ [L+, L−] = L3 (3.4)

The algebra also has supersymmetry generators Qαa and Saα. These generators obey

[Rab, Q
γ
c] = −δacQγb +

1

2
δabQ

γ
c [Rab, S

c
γ ] = δcbS

a
γ −

1

2
δabS

c
γ (3.5)

[Lαβ , Q
γ
c] = δγβQ

α
c −

1

2
δαβQ

γ
c [Lαβ , S

c
γ ] = −δαβSαγ +

1

2
δαβS

c
γ (3.6)
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as well as

{Qαa, Sbβ} = δαβR
b
a + δbaL

α
β + δbaδ

α
βC (3.7)

{Qαa, Qβb} = εαβεabP {Saα, Sbβ} = εαβε
abK (3.8)

Our goal in the sections that follow is to argue that the state space of the Gauss graph

operators are organized into representations of this algebra, to determine the values of the

central charges P,K and C and finally, to demonstrate that when acting on physical states,

the central charges P and K vanish.

3.2 SU(2)R

The general state in an su(2) representation can be labeled with a pair of quantum numbers,

jR,mR. The action of the lowering operator is

R−|jRmR〉 =
√
jR(jR + 1)−mR(mR − 1)|jRmR − 1〉 (3.9)

To determine the representation that a given Gauss graph corresponds to, we identify

R− = Tr

(
X

d

dY

)
(3.10)

We then act with R− on a given Gauss graph operator and compare to (3.9). This analysis

is presented in detail in appendix E. Our conclusion is the following

1. Each node of the Gauss graph belongs to a definite SU(2)R representation. If the

number of closed Y loops attached to node k is b
(1)
k and the number of closed X loops

is b
(2)
k , then node k is in the spin jR = 1

2(b
(1)
k + b

(2)
k ) representation.

2. The specific state in the representation that node k occupies is determined by mR =
1
2(b

(1)
k − b

(2)
k ).

3. The action of R− on the kth node replaces a single directed Y edge with a single

directed X edge, with an overall coefficient given by (3.9).

4. The generators Rab do not act on edges that travel between nodes.

From the action defined for R− above we can work out the action of R+ (by hermittian

conjugation) and the action of R3 (by using the su(2)R algebra).

The complete action of the su(2)R generators follows by summing the result of acting

on each node in the graph. This corresponds to the usual co-product action. Notice that

in moving to the Gauss graph basis, we have in fact organized the state space into su(2)R
multiplets.

3.3 SU(2)L

In this case we identify

L− = Tr

(
ψ2

d

dψ1

)
(3.11)

We again find that the su(2) generators (now the Lαβ) do not act on edges that travel

between nodes. Each node is again in a definite state. We find four possibilities
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1. A node that has no closed ψ1 loops and no closed ψ2 loops is in the one dimensional

representation with jL = 0.

2. A node with a single closed ψ1 loop is in the representation jL = 1
2 , and in state

mL = 1
2 . L− acting on this node replaces the ψ1 loop with a ψ2 loop and L+

annihilates the node.

3. A node with a single closed ψ2 loop is in the representation jL = 1
2 , and in state

mL = −1
2 . L− annihilates the node while L+ acting on this node replaces the ψ2

loop with a ψ1 loop.

4. A node that has both a closed ψ1 loop and a closed ψ2 loops is in the one dimensional

representation with jL = 0.

As in the previous section, the complete action of the su(2)L generators follows by summing

the result of acting on each node in the graph. Further, as above, the Gauss graph basis is

organized into su(2)L multiplets.

3.4 Supercharges

When the supercharges act we will again assume that there is an action on each node of

the graph and that the total action is the sum of actions on each node. In what follows it

is more convenient to specify the Gauss graph by stating how many closed loops of each

species there are at each node and how many edges (with orientation) there are stretching

between nodes. The numbers b
(a)
k count the number of closed bosonic edges at node k,

while f
(α)
k count the number of closed fermionic edges at node k. The numbers b

(a)
ij count

the number of bosonic edges moving from node i to node j, while f
(α)
ij count the number

of fermionic edges moving from node i to node j. We will assume the following action for

the supercharges, acting on node i

(Qαa)iOR,r({· · · , b(c)i , f
(γ)
i , · · · }) = ca(1− f (α)i )

√
b
(a)
i OR,r({· · · , b(c)i − δ

c
a, f

(γ)
i + δγα, · · · })

+cb

2∑
b=1

2∑
β=1

f
(β)
i εαβεab

√
b
(b)
i + 1OR+

i ,r
+
i

({· · · , b(c)i + δcb , f
(γ)
i − δγβ , · · · }) (3.12)

(Saα)iOR,r({· · · , b(c)i , f
(γ)
i , · · · }) = cd f

(α)
i

√
b
(a)
i + 1OR,r({· · · , b(c)i + δca, f

(γ)
i − δγα, · · · })

+cc

2∑
b=1

2∑
β=1

(1− f (β)i )εαβε
ab

√
b
(b)
i OR−

i ,r
−
i

({· · · , b(c)i − δ
c
b , f

(γ)
i + δγβ , · · · }) (3.13)

In the argument of OR,r we have only explicitly specified quantum numbers of the state

that change under the action of the supercharge. Notice that both supercharges change

the shape of the Young diagram labels R and r; see appendix A for an explanation of

this notation. The two labels R and r change in precisely the same way. The coefficients

ca, cb, cc and cd are constants that will be determined by requiring that Qαa and Saα close

the correct algebra. The factor of f
(α)
i and (1 − f (α)i ) are there to ensure that we don’t

put two fermions into one state or remove a fermion from a state that doesn’t contain

– 13 –



J
H
E
P
0
5
(
2
0
2
0
)
0
0
7

any. The factors of

√
b
(a)
i and

√
b
(a)
i + 1 are there for convenience. With these factors,

the coefficients ca, cb, cc and cd are independent of b
(a)
i . The factors of εab and εαβ are

determined by su(2)R × su(2)L covariance.

The above ansatz is strongly motivated by the action of the supercharges worked out

in [6]. The key differences are

1. The excitations of [6] are either a single Y or a single X field. Here we can have an

arbitrary number of both. The only effect is that we now need to include the

√
b
(a)
i

and

√
b
(a)
i + 1 factors.

2. The fermionic states can have any occupancy. This is why we need the f
(α)
i and

(1− f (α)i ) factors.

3. The action of [6] was written down using markers Z±, which insert or remove Zs

from the single trace operator, leading to a dynamic lattice with a time dependent

number of sites. Here we have a truly non-planar generalization of this action: a box

is added or deleted to the Young diagram labels. It appears to be highly non-trivial

to describe this operation in terms of traces.

Our next task is to show that these supercharges close the correct algebra and, in

the process determine the coefficients ca, cb, cc and cd, as well as the values of the central

extensions.

3.5 Representation

To begin we require that

{(Qαa)i, (Sbβ)i} = δαβ (Rba)i + δba(L
α
β)i + δbaδ

α
βCi (3.14)

This forces

cacd − cbcc = 1 (3.15)

and the central charge is

Ci =
1

2
(b(1) + b(2) + f (1) + f (2)) (3.16)

The central extension vanishes

{(Qαa)i, (Qβb)i} = 0 (3.17)

{(Saα)i, (S
b
β)i} = 0 (3.18)

This is the correct description of the free theory. In particular, we find that there are no

anomalous dimensions. This is not correct when interactions are turned on: the Gauss

graph operators are not in general BPS and they will develop non-zero anomalous dimen-

sions. Indeed, looking at the one loop result (2.14) it is clear that this is the case. Study-

ing (2.14) leads to a second puzzle: at least at one loop, the anomalous dimension depends
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only on nij = b
(1)
ij + b

(2)
ij + f

(1)
ij + f

(2)
ij . These are quantum numbers associated to edges that

stretch between different nodes. This dependence appears puzzling because our analysis

thus far has demonstrated that the global symmetry generators leave these edges inert!

It is not hard to appreciate why the global symmetry generators do not act on these

edges. An edge forming a closed loop at a node is automatically gauge invariant. In contrast

to this, edges going between nodes are constrained by the requirement of gauge invariance

to form closed paths that respect the orientation of each edge. Replacing one edge with

another edge of a different species spoils the Gauss law constraint so that we land up with a

state that is not gauge invariant. Thus, the edges that straddle nodes are not transformed

by the global symmetry generators because there is no gauge invariant state that they could

be transformed into. If however we act with a pair of supercharges (for example) we can

change the species of an edge with the first action and restore it with the second. Conse-

quently, the edges straddling nodes can give rise to the central extensions introduced below

{(Qαa)i, (Qβb)j} = εαβεabPij {(Saα)i, (S
b
β)j} = εαβε

abKij (3.19)

Our proposal for the action of the central extensions on an excitation stretching between

the nodes of a Gauss graph operator is

PijOR,r(σ) = α
√
N + riOR+

i ,r
+
i

(σ)− α
√
N + rjOR+

j ,r
+
j

(σ) (3.20)

KijOR,r(σ) = β
√
N + riOR−

i ,r
−
i

(σ)− β
√
N + rjOR−

j ,r
−
j

(σ) (3.21)

These formulas are the natural generalization of the action of the central extension obtained

in [6], as we now explain. The result from [6] for the action of the central charge on a defect

X of the spin chain is X → α[Z,X ], which is a gauge transformation. Thus, P inserts a Z

on either side of the impurity, with a relative sign. We know that, at least at one loop, the

edges with both ends on a single node do not contribute to the anomalous dimension, and so

we assume that they do not contribute to P . Edges in the Gauss graph stretched between

nodes do contribute to the anomalous dimensions and hence these do contribute to P . Con-

sider an excitation given by an edge that stretches between nodes corresponding to rows i

and j in Young diagram r. The edge starts from row i and ends at row j, so that inserting

a Z before the excitation corresponds to adding a box to row i, while inserting a Z after the

excitation corresponds to adding a box to row j. The fact that the addition of a box is as-

sociated with square root factors in (3.20) and (3.21) is natural in view of the results of [29]

which exhibited a truncated harmonic oscillator algebra underlying the description of the

giant gravitons. The square roots are then just the usual factors accompanying the action

of raising and lowering operators when acting on normalized states. The actions (3.20)

and (3.21) again reveal the nature of the central extension as a gauge transformation, ex-

actly as was observed in the planar limit. An important consistency condition is that these

central extensions must vanish when acting on physical states. In the planar limit this

follows from cyclicity of the trace. In the non-planar problem we study here we find that∑
i,j

Pij = 0 =
∑
i,j

Kij (3.22)
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holds as a consequence of the Gauss Law constraint. The fact that the Gauss graph

operators are gauge invariant physical states implies that they are annihilated by the total

central extension. There is one final point that should be discussed: the central charges that

we are considering here have already been studied by Berenstein in [29]. We find complete

agreement in the value of the central charge we have obtained and that reported in [29].

To see the agreement, note that at large N we can ignore the back reaction on the giant

graviton, which is the same as ignoring differences between R, r and R+
i , r

+
i . In this case

PijOR,r(σ) = α(
√
N + ri −

√
N + rj)OR,r(σ)

Since the factor
√
N + ri is the radius of orbit of giant graviton i and

√
N + rj is the

radius of orbit of giant graviton j, the central charge is essentially given by the distance

between the branes, matching the value obtained in [29].

Using the above central extension we obtain the following formula, fixing the dimension

∆ of a Gauss graph operator

∆− J =
∑
ij

√
1 + PijKij (3.23)

The product PijKij comes with a factor of αβ, which we will soon identify as g2YM , so that

the anomalous dimension vanishes when the coupling constant vanishes, as expected. It is

simple and instructive to compare the above formula with the one for BMN states [41]. To

see that this correctly reproduces the one loop anomalous dimension, note that

PijKijOR,r(σ) = αβ
[
(N + ri)OR,r(σ) + (N + rj)OR,r(σ)

−
√

(N + ri)(N + rj)
(
OR+

ij ,r
−
ij

(σ) +OR−
ij ,r

−
ij

(σ)
) ]

(3.24)

which, after summing over i and j and setting αβ = g2YM is nothing but (2.14).

4 Discussion

Our main result is the decomposition of the state space of CFT operators dual to excited

giant graviton branes into irreducible representations of the su(2|2) nR global symmetry.

There are a number of positive features of our results which support their validity:

1. Our analysis shows that the state space of restricted Schur polynomials is not orga-

nized into irreducible representations of the su(2|2) n R global symmetry. However,

after transforming to the Gauss graph operator basis, we do indeed have a transpar-

ent su(2|2)nR structure. Indeed, it is a simple matter to read off the su(2)R×su(2)L
quantum numbers from the graph.

2. We have managed to reproduce the one loop anomalous dimension of the Gauss graph

operator from the su(2|2)nR central charge. This central charge makes a prediction

for the higher loop anomalous dimensions. It would be interesting to check these

predictions.
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3. Further, excitations are again charged under a central extension of global symmetry.

Since the original global symmetry is not centrally extended, the action of the central

extension must vanish on physical states. In planar the limit the central extension

generates gauge transformations and hence the central extension vanishes when acting

on physical states which are gauge invariant. In our case the central charge is again

set to zero by gauge invariance: the constraint enforced by the Gauss Law ensures

that the central extension vanishes. Further, the central extension again generates

gauge transformations.

This is compelling evidence in support of our results.

There are a number of directions in which our study can be extended. One could for

example try to formulate a more complete description of excited gaint graviton states, by

relaxing the restriction to the su(2|3) sector. In this case the global symmetry algebra

is su(2|2) × su(2|2) n R. This has proved to be a very fruitful direction in the planar

limit of the theory. Another fascinating direction would be to use the global symmetry to

study interactions of the excitations. Following [6], a productive way forwards maybe to

introduce an S-matrix and to use the global symmetry to constrain its form. The Gauss

graph operators are natural asymptotic states that might be used to define an S-matrix.

For example, consider the following (schematic) state

|in〉 = A A
B B

(4.1)

which we will treat as an “in state”. Under time evolution by the dilatation operator, the

lengths of the rows can change. When the row lengths are comparable the two impurities

can interact, and possibly even swap the row they belong to or rearrange in even more

complicated ways. The rows lengths will then continue to evolve until the impurities are

again well separated, defining an “out state” of the schematic form

|out〉 = B B
A A

(4.2)

The map from the in state to the out state

|out〉 = S|in〉 (4.3)

defines an S-matrix as usual. In the planar case there is a lot one can do with the S-

matrix. The powerful methods of integrability can be applied thanks to the fact that the

S-matrix satisfies a Yang-Baxter equation, which expresses the equality of two particle

scattering between three particles, with the two particle scattering taking place in different

orders. Here there is a natural analog of this setup: consider a Young diagram R with three

rows, and a Gauss graph operator that has excitations on each row. One can ask if there

is equality between the different orders in which the excitations on the different rows can

scatter. Do we obtain something like the Yang-Baxter equation? Is it possible to generalize

something of the powerful integrability machinery? This is the subject of work in progress.
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A Young diagram notations

The dilatation operator D, central charges C, Pij and Kij as well as the supercharges Qαa
and Saα, when acting on the Gauss graph operator OR,r(σ), have a non-trivial action on

the Young diagram labels R and r. In this appendix we will briefly spell out the notation

we use, with a few examples to illustrate the ideas. Consider the Young diagram r given by

r = (A.1)

The dilatation operator can transport a box from row i to row j. We use the notation r+ij
to describe the Young diagram obtained from r by deleting a box from row j and adding

a box to row i. As an example, we give

r+12 = (A.2)

We will also find it convenient to use the notation r−ij to describe the Young diagram ob-

tained from r by deleting a box from row i and adding a box to row j. As an example of

this notation, consider

r−12 = (A.3)

Notice that rij , r
+
ij and r−ij all have the same number of boxes. The supercharges change

the number of boxes in the Young diagram. For example, Qαa can add a box to a given

row. We use r+i to denote the Young diagram obtained from r by adding a single box to

row i. For example

r+2 = (A.4)

Notice the number of boxes is not preserved: r+2 has one more box than r. The supercharge

Saα can remove a box from a given row. We use r−i to denote the Young diagram obtained

from r by deleting a single box from row i. As an example of this notation, we quote

r−2 = (A.5)

Finally, although we have illustrated the notation using Young diagram r, the discussion

also holds for R.
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B Restricted Schur polynomials with 2 rows

A simple setting in which to test the formulas and ideas developed in this study, is to con-

sider Young diagrams R that have two rows. The problem with two rows (or columns) is

particularly simple because upon restricting an irreducible representation of Sn to any sub-

group Sk × Sn−k, irreducible representations of the subgroup appear without multiplicity.

In appendix C we evaluate the action of su(2) rotations on restricted Schur polynomials

with bosonic excitations only. Since there are no mulitplicities, the relevant restricted Schur

polynomials are χR,(b0,b1,b2)(Z, Y,X). There is a Sb(1) × Sb(2) symmetry that is Schur Weyl

dual to U(2). Consequently, the projection operators needed to construct the restricted

Schur polynomials are easily determined in terms of well known SU(2) Clebsch-Gordan

coefficients [38]. We use the quantum numbers j, j3 for the SU(2) used to organize the Y

fields and k, k3 for the SU(2) used to organize the X fields.

Let (bi)k denote the number of boxes in row k of Young diagram bi. The translation

of the restricted Schur polynomial χR,(b0,b1,b2)(Z, Y,X) to SU(2) state labels is as follows

(b2)1 =
p

2
+ k (b2)2 =

p

2
− k

(b1)1 =
m

2
+ j (b1)2 =

m

2
− j

R1 = (b0)1 +
m+ p

2
+ j3 + k3 R2 = (b0)2 +

m+ p

2
− j3 − k3

(B.1)

j3 is equal to the number of Y boxes in the first row of R minus the number of Y boxes in the

second. k3 is defined in the same way, but for the X boxes. The above labels may appear

to be over complete: given b(0), b(1), b(2) as well as b0, k, j, k3 + j3 we can reconstruct the

Young diagram labels R, b0, b1 and b2. It seems that we need only the sum k3 + j3 and not

the individual values j3, k3. The point is that, even when R has two rows, when we restrict

Sa+b+c to Sa×Sb×Sc we do need a multiplicity label. Specifying k3 and j3 independently

resolves the multiplicity — its tells us which boxes in R are Y boxes and which are X

boxes. The simplest way to see this is to note that we can first restrict Sb(0)+b(1)+b(2)

to Sb(2) × Sb(0)+b(1) without multiplicity, and then restrict Sb(0)+b(1) to Sb(1) × Sb(0) , again

without multiplicity. The first restriction introduces (k, k3) and the second (j, j3).

C Rotating restricted Schur polynomials

In this appendix we review results that were obtained in [42]. We would like to obtain the

action of the following su(2)R generators

R− = Tr

(
X

d

dY

)
R+ = Tr

(
Y

d

dX

)
R3 = [R+, R−] = Tr

(
Y

d

dY
−X d

dX

)
(C.1)

Once we have evaluated the action of R+, the action of R− follows by hermittian conju-

gation, and the action of R3 then follows by using the su(2) algebra. Consequently, we

only need the action of R− = Tr
(
X d

dY

)
. The computation is carried out by allowing R−
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to act on the restricted Schur polynomial. The result can then be expressed as a linear

combination of restricted Schur polynomials, since the restricted Schur operators provide

a basis. The coefficients of this linear expansion are given by the trace of a product of

projection operators. In the distant corners approximation, the computation of the traces

that need to be computed is reduced to the evaluation of su(2) Clebsch-Gordan coefficients.

The result is [42]

Tr

(
X

d

dY

)
O

(n,m,p)
R,r,j,j3,k,k3

(C.2)

=
j + j3

2j

k + k3 + 1

2k + 1

√(m
2

+ j + 1
) 2j

2j + 1

√(p
2

+ k + 2
)2k + 1

2k + 2
O

(n,m−1,p+1)

R,r,j− 1
2
,j3− 1

2
,k+ 1

2
,k3+

1
2

+
j + j3

2j

k − k3
2k + 1

√(m
2

+ j + 1
) 2j

2j + 1

√(p
2
− k + 1

)2k + 1

2k
O

(n,m−1,p+1)

R,r,j− 1
2
,j3− 1

2
,k− 1

2
,k3+

1
2

+
j − j3 + 1

2j + 2

k + k3 + 1

2k + 1

√(m
2
− j
)2j + 2

2j + 1

√(p
2

+ k + 2
)2k + 1

2k + 2
O

(n,m−1,p+1)

R,r,j+ 1
2
,j3− 1

2
,k+ 1

2
,k3+

1
2

+
j − j3 + 1

2j + 2

k − k3
2k + 1

√(m
2
− j
)2j + 2

2j + 1

√(p
2
− k + 1

)2k + 1

2k
O

(n,m−1,p+1)

R,r,j+ 1
2
,j3− 1

2
,k− 1

2
,k3+

1
2

+
j − j3

2j

k − k3 + 1

2k + 1

√(m
2

+ j + 1
) 2j

2j + 1

√(p
2

+ k + 2
)2k + 1

2k + 2
O

(n,m−1,p+1)

R,r,j− 1
2
,j3+

1
2
,k+ 1

2
,k3− 1

2

+
j − j3

2j

k + k3
2k + 1

√(m
2

+ j + 1
) 2j

2j + 1

√(p
2
− k + 1

)2k + 1

2k
O

(n,m−1,p+1)

R,r,j− 1
2
,j3+

1
2
,k− 1

2
,k3− 1

2

+
j + j3 + 1

2j + 2

k − k3 + 1

2k + 1

√(m
2
− j
)2j + 2

2j + 1

√(p
2

+ k + 2
)2k + 1

2k + 2
O

(n,m−1,p+1)

R,r,j+ 1
2
,j3+

1
2
,k+ 1

2
,k3− 1

2

+
j + j3 + 1

2j + 2

k + k3
2k + 1

√(m
2
− j
)2j + 2

2j + 1

√(p
2
− k + 1

)2k + 1

2k
O

(n,m−1,p+1)

R,r,j+ 1
2
,j3+

1
2
,k− 1

2
,k3− 1

2

.

These are not exact expressions — there are corrections of order b(1)

b(0)
and b(2)

b(0)
, which

are subleading at large N . Notice that there is a complicated mixing of the restricted

Schur polynomials under su(2)R. The restricted Schur polynomials are not organized into

multiplets of su(2)R

D Gauss graph transformations

In this appendix we will derive explicit formulas for the transformation from the restricted

Schur polynomial basis to the Gauss graph basis. These transformation formulas are needed

to

1. Construct the Hilbert space of the excited giant graviton brane system.

2. Translate the action of su(2) generators from the restricted Schur basis to the Gauss

graph basis.
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D.1 Bosonic operators

As a non-trivial example of how we move from the restricted Schur basis to the Gauss

graph basis, consider an excitation constructed using 4 bosonic Y fields. Assume that we

study a 2 brane system so that both R and r have two rows. We remove two excitations

from each row so that

R = r = (D.1)

Denoting the excitations removed from row 1 by 1, 2 and the excitations removed from row

2 by 3, 4 we have

H = {1, (12), (34), (12)(34)} (D.2)

In the restricted Schur basis, the possible representation that the excitations can be ar-

ranged into are

s ∈
{

, ,
}

(D.3)

We choose our permutation so that we are describing a pair of strings stretched between

nodes 1 and 2

σ = (13)(24) = (D.4)

We would like to compute the transformation coefficients, given by

C(s) ((13)(24)) =
|H|√
b(1)!

√
ds

ds∑
k,m=1

Γ(s) ((13)(24))kmB
s→1H
k Bs→1H

m (D.5)

There are no multiplicity labels on the branching coefficient because R has 2 rows. The

branching coefficient is determined by

1

|H|
∑
γ∈H

Γ(s)(γ)km = BkBm (D.6)

For s = the representation is one dimensional, Γ( )(σ) = 1 for any σ and the

branching coefficient B = 1. Consequently

C( ) ((13)(24)) =
4√
24
·
√

1 · 1 =

√
2

3
(D.7)

For s = the representation Γ

( )
(σ) is three dimensional. The branching coefficient

is determined to be

B =


1√
3√
2
3

0

 (D.8)

and consequently

C

( )
((13)(24)) =

4√
24
·
√

3 · Γ
( )
km BkBm = −

√
2 (D.9)
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Finally for s = the representation Γ

( )
(σ) is two dimensional. The branching coeffi-

cient is determined to be

B =

[
0

1

]
(D.10)

and consequently

C

( )
((13)(24)) =

4√
24
·
√

2 · Γ
( )
km BkBm =

2√
3

(D.11)

Thus, we find that

OR,r

( )
=

√
2

3
OR,(r, ) −

√
2O

R,(r, )
+

2√
3
O
R,(r, )

(D.12)

We did not explicitly specify that we remove two impurities from the first row and two

from the second row on the right hand side of this equation, but it can be read off of the

graph appearing on the left hand side.

Here are a few more examples of transformations between the restricted Schur and

Gauss graph bases

OR,r

( )
=

√
2

3
OR,(r, ) +

2√
3
O
R,(r, )

(D.13)

OR,r

( )
=

√
2

3
OR,(r, ) −

1√
3
O
R,(r, )

(D.14)

OR,r

( )
=
√

6OR,(r, ) (D.15)

The last example above generalizes very nicely: for m loops attached to the first node, we

replace s by a Young diagram that is a single row with m boxes. These expression will be

very useful in appendix E when we study the action of rotations on Gauss graph operators,

using the known action of rotations on restricted Schur polynomials.

D.2 Fermionic operators

The structure of the state space of the fermionic Gauss graphs depends on properties of

the transformation from restricted Schur polynomials to Gauss graph operators. For that

reason we work out a few carefully chosen examples in this appendix. Consider an excitation

constructed from the ψ1 field. The transformation coefficients from the representation s

and multiplicity labels µ1, µ2 that organize the fermionic excitations, to permutation τ are

given by

C̃(s)
µ1µ2(τ) = |H|

√
ds

f (1)!

ds∑
k,m=1

(
Γ(s)(τ)Ô

)
km

Bs→1H
kµ1

BsT→1f
(1)

mµ2 (D.16)

We have used ds = dsT . Notice that two distinct branching coefficients appear. Before

evaluating any examples of the coefficients C̃
(s)
µ1µ2(τ) we will relate the two branching coef-

ficients that appear. Starting from the definition of the branching coefficient BsT→1f
(1)

mµ we
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easily find ∑
µ

BsT→1f
(1)

kµ BsT→1f
(1)

mµ =
1

|H|
∑
γ∈H

sgn(γ)Γ(sT )(γ)km

=
1

|H|
∑
γ∈H

(ÔTΓ(s)(γ)Ô)km

=
∑
µ

ÔlkB
s→1H
lµ ÔnmB

s→1H
nµ (D.17)

which proves that the two branching coefficients are related by BsT→1f
(1)

kµ = ÔlkB
s→1H
lµ .

Consequently the formula for the transformation coefficients can be simplified to

C̃(s)
µ1µ2(τ) = |H|

√
ds

f (1)!

ds∑
k,m=1

(
Γ(s)(τ)

)
km

Bs→1H
kµ1

Bs→1H
mµ2 (D.18)

In what follows we again restrict to examples for which R has two rows so that we can

again drop multiplicity labels.

To begin, consider an excitation constructed using three ψ1s. Two of the ψ1 impurities

live in the first row of R and one in the second row. The only possible representation

that leads to a non-zero restricted Schur polynomial is s = as already explained in

section 2.4. A simple computation shows that

Ô =

[
0 1

−1 0

]
(D.19)

The group H = {1, (12)} and the branching coefficient is

B =

[ √
3
2
1
2

]
(D.20)

It is now straight forward to verify that

C̃

( )( )
= C̃

( )
(1) = C̃

( )
( (12) ) = 0 (D.21)

C̃

( ) ( )
= C̃

( )
( (13) ) = −C̃

( )
( (23) )

= C̃

( )
( (132) ) = −C̃

( )
( (123) ) = 1 (D.22)

The negative signs which appear above are exactly what we expect. They reflect an odd

number of swaps of fermion fields.

For the second example, consider an excitation constructed using four ψ1s and again

consider a Young diagram R with two rows. Two of the ψ1 impurities live in the first row

of R and two in the second row. The only possible representation that leads to a non-zero

restricted Schur polynomial is s = , which was also explained in section 2.4. A straight

forward computation shows that we again have

Ô =

[
0 1

−1 0

]
(D.23)
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The group H = {1, (12), (34), (12)(34)} and the branching coefficient is easily determined

to be

B =

[
0

1

]
(D.24)

It is now straight forward to verify that

C̃

( )( )
= 0 (D.25)

C̃

( ) ( )
= 0 (D.26)

C̃

( )  = 1 (D.27)

E Rotating Gauss graph operators

In this section we will use the action of the su(2)R generators on restricted Schur polyno-

mials given in appendix C, and the translation between restricted Schur polynomials and

Gauss graphs worked out in appendix D, to determine the action of the su(2)R generators

on the Gauss graph operators.

To begin we will work out an example which demonstrates that the su(2)R generators

leave the edges in a Gauss graph, that stretch between distinct nodes, inert. The computa-

tion is most easily phrased using the notation introduced in appendix B. Consider a two gi-

ant system constructed using b(0) Z fields, 4 Y fields and no X,ψ1 or ψ2 fields. Two Y fields

belong to the first row of R and two to the second row. Our starting point is the formula

OR,r

  =

√
2

3
OR,r,2,0,0,0 −

√
2OR,r,1,0,0,0 +

2√
3
OR,r,0,0,0,0 (E.1)

A simple application of the formula in appendix C leads to

Tr

(
X

d

dY

)
OR,r,2,0,0,0 = OR,r, 3

2
,− 1

2
, 1
2
, 1
2

+OR,r, 3
2
, 1
2
, 1
2
,− 1

2
(E.2)

Tr

(
X

d

dY

)
OR,r,1,0,0,0 =

√
2

3
OR,r, 1

2
,− 1

2
, 1
2
, 1
2

+
1√
3
OR,r, 3

2
,− 1

2
, 1
2
, 1
2

+

√
2

3
OR,r, 1

2
,− 1

2
, 1
2
, 1
2

+
1√
3
OR,r, 3

2
, 1
2
, 1
2
,− 1

2
(E.3)

Tr

(
X

d

dY

)
OR,r,0,0,0,0 = OR,r, 1

2
,− 1

2
, 1
2
, 1
2

+OR,r, 1
2
, 1
2
, 1
2
,− 1

2
(E.4)

It is now trivial to verify that

Tr

(
X

d

dY

)
OR,r

  = 0 (E.5)
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The second example we consider illustrates the usual co-product action of the su(2)R
generators. We will use black edges to denote Y excitations and gray edges to denote X

excitations. Starting from

OR,r

( )
=

1√
2
OR,r,1,0,0,0 +

1√
2
OR,r,0,0,0,0 (E.6)

and using

Tr

(
X

d

dY

)
OR,r,1,0,0,0 =

1√
2
OR,r, 1

2
,− 1

2
, 1
2
, 1
2

+
1√
2
OR,r, 1

2
, 1
2
, 1
2
,− 1

2
(E.7)

Tr

(
X

d

dY

)
OR,r,0,0,0,0 =

1√
2
OR,r, 1

2
,− 1

2
, 1
2
, 1
2

+
1√
2
OR,r, 1

2
, 1
2
, 1
2
,− 1

2
(E.8)

as well as

OR,r

( )
= OR,r, 1

2
,− 1

2
, 1
2
, 1
2

(E.9)

OR,r

( )
= OR,r, 1

2
, 1
2
, 1
2
,− 1

2
(E.10)

we find

Tr

(
X

d

dY

)
OR,r

( )
= OR,r

( )
+OR,r

( )
(E.11)

This clearly illustrates that the generator acts on each node individually, turning a black

(Y ) edge into a gray (X) edge when it acts.

In our final example, we would like to test that the coefficient in (3.9) comes out

correctly. Assume that the excitation is built from j − 1 Y fields and one X field, which

all come from the first row of R. In this case we have

OR,r

  = OR,r, j−1
2
, j−1

2
, 1
2
, 1
2

(E.12)

and

OR,r

  = OR,r, j−2
2
, j−2

2
,1,1 (E.13)

The equation

Tr

(
X

d

dY

)
OR,r, j−1

2
, j−1

2
, 1
2
, 1
2

=
√

2(j − 1)OR,r, j−2
2
, j−2

2
,1,1 (E.14)

implies

Tr

(
X

d

dY

)
OR,r

  =
√

2(j − 1)OR,r

  (E.15)
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which beautifully matches the expected result of the action of the lowering operator on

state |j,m〉
R−|j, j − 1〉 =

√
2(j − 1)|j, j − 2〉 (E.16)

A node with nY closed Y loops and nX closed X loops is in the representation j =
1
2(nY + nX) and has m = 1

2(nY − nX).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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