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1 Introduction

Over the last few years quantum entanglement has emerged as a central issue in the

study of diverse physical phenomena ranging from quantum many-body systems in out-of-

equilibrium to the process of black hole formation and the information loss paradox. The

entanglement for a bipartite pure state is characterized by the entanglement entropy which

is the von Neumann entropy of the reduced density matrix. In (1+ 1)-dimensional confor-

mal field theories (CFT1+1) the entanglement entropy may be computed through a replica

technique as described in [1, 2]. However entanglement entropy fails to characterize mixed

state entanglement as it typically involves correlations irrelevant to the entanglement of

the specific mixed state. This subtle issue was addressed in quantum information theory by

Vidal andWerner in [3] where the authors proposed a computable measure termed as entan-

glement negativity which characterized the upper bound on the distillable entanglement for

the mixed state.1 The entanglement negativity is defined as the logarithm of the trace norm

of the partially transposed density matrix with respect to a subsystem. In a series of inter-

esting communications the authors in [5–7] described the computation of the entanglement

negativity for bipartite mixed states in a CFT1+1 through a suitable replica technique.

A holographic characterization of the entanglement entropy in CFT s was proposed

by Ryu and Takayanagi [8, 9] through the AdS/CFT correspondence. According to their

conjecture the universal part of the entanglement entropy of a subsystem in a dual d-

dimensional conformal field theories (CFTd) was proportional to the area of a co-dimension

1It was demonstrated by Plenio in [4] that this entanglement measure was not convex but was an

entanglement monotone under local operations and classical communication (LOCC).
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two static minimal surface in the bulk AdSd+1 geometry homologous to the subsystem.

Naturally, this led to intense research activity in various aspects of entanglement related

issues in holographic CFT s [10–17] (and references therein). In a series of interesting

communications, a proof of this conjecture was developed from a bulk perspective, initially

in the context of AdS3/CFT2 and later generalized to the AdSd+1/CFTd scenario [18–22].

A covariant extension of the RT conjecture was proposed for the entanglement entropy

of a subsystem in a CFTd dual to a non static bulk AdSd+1 geometry in [23] and the

corresponding proof in [24].

The above developments naturally lead to the interesting question of a holographic

characterization of the entanglement negativity for bipartite pure and mixed states in dual

CFT s [25, 26]. In the recent past two of the present authors (VM and GS) in a collab-

oration, proposed a holographic construction for the entanglement negativity of bipartite

pure and mixed states in a dual CFT1+1 through AdS3/CFT2 framework and its covariant

extension [27, 28]. This construction was rigorously substantiated through a large central

charge analysis employing the monodromy technique in [29], although a bulk proof for this

conjecture along the lines of [20] is an outstanding issue. Subsequently, their proposal was

also extended to higher dimensions in the context of the AdSd+1/CFTd scenario in [30].

It should be mentioned here that a proof of the higher dimensional extension for the holo-

graphic entanglement negativity conjecture described above from a bulk perspective along

the lines of [22] is also an outstanding non trivial open issue. Subsequent to this in [31, 32],

a holographic characterization for the entanglement negativity of a mixed state of adjacent

intervals in CFT1+1s dual to bulk AdS3 geometries, and its covariant generalization was

proposed. A higher dimensional generalization of the above holographic construction for

such mixed states of adjacent subsystems in a CFTd dual to bulk AdSd+1 geometry, was

subsequently advanced in [33, 34]. Furthermore very recently a holographic construction

for the entanglement negativity of mixed states of two disjoint intervals in a dual CFT1+1

and its covariant extension has been developed in [35, 36].

In a different context the study of out of equilibrium quantum systems to elucidate their

dynamical evolution has witnessed a strong surge of interest in recent times [2, 37–40]. One

of the processes through which a quantum system may be placed in an out of equilibrium

configuration is a quantum quench. In a global quench scenario a quantum system is

initially prepared in the ground state of a translationally invariant Hamiltonian H0 and

is then allowed to evolve unitarily with respect to another Hamiltonian H, where H and

H0 are related to each other through an experimentally tunable parameter. In a CFT1+1

the resulting state after a global quench may be regarded as a boundary state (B-state)

as it is translational and conformal invariant below the energy scale of the global quench.

The corresponding time evolution of the entanglement entropy after a global quench for

a subsystem maybe computed through the replica technique [2, 37, 38] in a CFT1+1. It

was shown that in the spacetime scaling limit2 the entanglement entropy grows linearly

for early times and is rendered extensive beyond a certain value of time. It is possible to

2In the spacetime scaling limit the time t and the interval length ℓ are much larger than the microscopic

length and time scale in the theory [2, 41–43].
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describe such a time evolution of the entanglement following a global quench, through a

quasi-particle scenario for the entanglement propagation [37, 38, 44, 45]. In this instance

the initial state which is at a higher energy relative to the ground state of the post-quench

Hamiltonian, acts as a source of quasi-particle excitations.

Following the developments described above the corresponding time evolution of the

entanglement negativity for mixed states of two adjacent and disjoint intervals in a CFT1+1

following a global quench was investigated in [41]. Very interestingly they demonstrated

that similar to the entanglement entropy, the time evolution of entanglement negativity

also admits of a quasi-particle explanation for the mixed state entanglement propagation.

However it was observed that the initial increase in the entanglement negativity occurs

slightly after the time predicted by the quasi-particle picture as a consequence of the late

birth of entanglement in a lattice system which disappears in the continuum limit [41].

On the other hand the time evolution of holographic entanglement entropy after a

global quench in a CFT1+1 dual to a bulk Vaidya-AdS geometry describing black hole

formation has been extensively studied in the literature [23, 46–56]. Although as discussed

in [57], the precise holographic dual for the global quench scenario where the initial state

is a time dependent pure boundary state (B-state) in a CFT1+1 [37], is the eternal black

hole geometry sliced in half by an end-of-the-world (ETW) brane or simply a single sided

black hole.3 It is well known from [57, 59, 60] that the eternal black hole is dual to the

thermofield double state in a CFT . These involve two-sided Penrose diagram and are

static under time evolution as the time directions are taken to be opposite for the two

sides. However, the time dependence may be introduced for this geometry by considering

forward time evolution for both the exterior regions of the Penrose diagram.

The computation of the corresponding holographic entanglement entropy for a sub-

system A in a CFT for the thermofield double state dual to the bulk eternal black hole

geometry requires the consideration of the subsystem in question on both sides of the

Penrose diagram. The entanglement entropy may then be computed from the area of the

extremal surface anchored on both the subsystems in accordance with the RT and the HRT

conjectures. It was observed in [57] that the eternal black hole in AdS3 may be mapped

to a BTZ black brane geometry. In this case it was demonstrated that for early times the

extremal surface (geodesic) passes through the interior region of the black brane geometry

connecting one asymptotic region to the other. Hence the linear growth of the entangle-

ment entropy was related to the growth of the extremal surface along the nice slice4 in the

interior region of the black brane. For late times the extremal surface reduces to a static

minimal surface located exterior to the horizon and the entanglement entropy is rendered

extensive [57]. It is argued in [57] that the holographic entanglement entropy of the con-

figuration in question after a global quench scenario [37] is just half of the corresponding

holographic entanglement entropy for the eternal black hole geometry.

3Recently in [58], a somewhat similar bulk configuration is considered where the end-of-the-world (ETW)

brane is extended into the second asymptotic region.
4Nice slices are spacelike surfaces with small curvatures where any matter moves with modest velocity

in the local frame defined by these slices [61].
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Quite naturally the developments described above lead to the interesting issue of a

holographic characterization for the time evolution of the entanglement negativity for mixed

state configurations following a global quench in a dual CFT1+1. As mentioned earlier the

correct holographic dual for the global quench scenario is described by an eternal black

hole geometry sliced in half by an ETW brane. Hence to this end it is required to obtain

the holographic entanglement negativity for such mixed states from the dual eternal black

hole geometry.

In this article we address the significant issue described above and investigate the time

evolution of the holographic entanglement negativity for mixed state configurations of dis-

joint and adjacent intervals following a global quench in a CFT1+1. As described in [41]

the entanglement negativity for the above configurations in a CFT1+1 with a global quench

involve the corresponding four and three point twist correlators on a strip. It is significant

to mention here that the universal parts of these twist correlators relevant in the space time

scaling limit factorize into products of various two point twist correlators on a strip. This

leads to an expression for the entanglement negativity of these configurations which involve

a specific algebraic sum of the corresponding entanglement entropies of appropriate inter-

vals and their combinations. The holographic entanglement negativity for the above con-

figurations may then be computed from the prescription for the entanglement entropies de-

scribed in [57] for a bulk eternal black hole geometry sliced in half by an ETW brane. From

our computations we observe an interesting structure of bulk geodesics connecting the two

asymptotic regions which evolves with time to a geodesic structure that is located only in

the exterior region. The corresponding holographic entanglement negativity for the mixed

state configurations following a global quench in a CFT1+1 is then given by half of that ob-

tained for the eternal black hole geometry. It is observed that the holographic entanglement

negativity for the mixed state configurations in question exhibits a linear growth during

the initial part of its time evolution. For late times it decreases linearly with an identical

slope from a maximum value and goes to zero after a certain value of time which indicates

the process of thermalization and black hole formation in the bulk [45, 49, 50, 62]. Remark-

ably the holographic entanglement negativity of the mixed state configurations in question,

computed through our construction exactly reproduces the corresponding CFT1+1 replica

technique results following a global quench as described in [41].

This article is organized as follows. In section 2, we briefly review the time evolution

of entanglement entropy for a single interval after a global quench in a CFT1+1. The

evolution of entanglement negativity for two disjoint and adjacent intervals after a global

quench in a CFT1+1 is reviewed in section 3. In section 4 we review the time evolution of

the corresponding holographic entanglement entropy for a single interval from a dual bulk

eternal black hole geometry. In the next section 5, we establish our holographic construction

for the time evolution of the entanglement negativity for two disjoint and adjacent intervals

from the dual bulk eternal black hole geometry. The holographic entanglement negativity

for the mixed state configurations following a global quench is then given by half of that

obtained for the eternal black hole geometry and exactly matches with the corresponding

CFT1+1 replica technique results. We then present a summary and our conclusions in the

final section 6.
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2 Entanglement entropy

In this section we briefly review the time evolution of the entanglement entropy following

a global quench as described in [2, 37, 38, 41]. In a global quench scenario, the system is

initially prepared in a pure state |ψ0〉 which is the ground state of a Hamiltonian H0 at

time t = 0. For time t > 0 the same system is allowed to evolve unitarily with respect to

another Hamiltonian H, where H and H0 are related to each other by an experimentally

tunable parameter. The unitary evolution of the density matrix ρ0 = |ψ0〉〈ψ0| for t > 0 is

governed by the post-quenched Hamiltonian H as

ρ(t) = |ψ(t)〉〈ψ(t)| = e−iHt|ψ0〉〈ψ0|e
iHt, (2.1)

where ρ(t) is the density matrix at a time t which is always in a pure state as a consequence

of unitary evolution. The entanglement entropy of a subsystem A is obtained as the von

Neumann entropy of the reduced density matrix ρA(t) = TrBρ(t) where B = Ac represents

the rest of the system, which is given as

SA(t) = −Tr (ρA(t) ln ρA(t)) . (2.2)

In a CFT1+1 for simplicity the initial state may be chosen as |ψ0〉 = e−τ0H/4|B〉 where

|B〉 is a conformal invariant boundary state (B-state) and τ0 is the correlation length in the

initial state. The entanglement entropy SA(t) may be obtained through a replica technique

as follows

SA(t) = − lim
n→1

∂

∂n
TrρnA. (2.3)

The quantity TrρnA for a single interval A of length ℓ as depicted in figure 1(a) in the

CFT1+1, is related to the two point twist correlator on a strip of width 2τ0 as [2, 37, 38, 41]

TrρnA = 〈 Tn(w1)T̄n(w2) 〉strip , (2.4)

where wi = ui + iτ are the complex coordinates on the strip (ui ∈ R and 0 < τ < 2τ0).

The above twist correlator may be obtained through a conformal map zi = exp(πwi/2τ0)

from the strip to the upper half plane (UHP) which is then given as

〈 Tn(w1)T̄n(w2) 〉strip = cn

(
π

2τ0

)2∆n 1

|(z1 − z̄1)(z2 − z̄2) η1,2|∆n

F(η1,2) , (2.5)

where cn is a constant and η1,2 is the cross ratio, and the scaling dimension ∆n of the twist

operators Tn and T̄n is given as follows

∆n =
c

12

(

n−
1

n

)

. (2.6)

The function Fn(η1,2) in eq. (2.5) is non-universal and depends on the full operator con-

tent of the theory. Note that only the limiting behavior of η1,2 → 0 and η1,2 → 1 are

important and in these limits the non-universal function Fn({η1,2} is just a constant [41].

The entanglement entropy SA may now be obtained by utilizing eqs. (2.3) and (2.5) and
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Figure 1. Configuration of a (a) single interval (top), (b) two disjoint intervals (middle), and (c)

two adjacent intervals (bottom) in a (1 + 1)-dimensional CFT .

considering the spacetime scaling limit (t, ℓ ≫ τ0), which is given as follows (see [41] for

detailed computation)

SA =
πc

6τ0

[
t+ q(t, ℓ)

]
=







πc

6τ0
t t < ℓ/2 ,

πc

12τ0
ℓ t > ℓ/2 ,

(2.7)

where the function q(t, ℓ) is defined as follows

q(t, ℓ) ≡
ℓ

2
−max(t, ℓ/2) =

{

0 t < ℓ/2 ,

ℓ/2− t t > ℓ/2 .
(2.8)

Note that the entanglement entropy SA increases linearly with time for t < ℓ/2 and satu-

rates to a thermal value beyond the time t ∼ ℓ/2. It may be observed that the entanglement

entropy for large times is same as the thermal entropy of a mixed state at a large but finite

temperature T = 1
β = 1

4τ0
. This saturation to a thermal entropy at large times leads to

the fascinating phenomena of CFT thermalization as described in [41, 45].

3 Entanglement negativity

In this section we briefly recapitulate the evolution of the entanglement negativity for mixed

states of two disjoint and adjacent intervals in a CFT1+1 after a global quench scenario as

described in [41]. As mentioned in the introduction, for a bipartite system A = A1 ∪ A2

in a mixed state, the entanglement between the subsystems A1 and A2 is characterized by

the entanglement negativity, which is defined as [3]

E = lnTr|ρT2
A |. (3.1)

Here the partial transposed reduced density matrix ρT2
A is obtained as follows

〈e
(1)
i e

(2)
j |ρT2

A |e
(1)
k e

(2)
l 〉 = 〈e

(1)
i e

(2)
l |ρA|e

(1)
k e

(2)
j 〉, (3.2)

– 6 –
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where |e
(1)
i 〉 and |e

(2)
j 〉 are the bases for the the Hilbert spaces HA1 and HA2 of the sub-

systems A1 and A2 respectively. In a CFT1+1 the entanglement negativity is obtained

through a suitable replica technique through the quantity Tr
(
ρT2
A

)n
for even n = ne and

the analytic continuation to ne → 1 as follows [5–7]

E = lim
ne→1

ln
[

Tr
(
ρT2
A

)ne

]

. (3.3)

3.1 Two disjoint intervals

Now consider a bipartite system A = A1 ∪ A2 of two disjoint intervals A1 and A2 in a

CFT1+1 of lengths ℓ1 = |u2 − u1| and ℓ2 = |u4 − u3| separated by a distance ℓs = |u3 − u2|

as depicted in figure 1(b). In this case the quantity Tr(ρT2
A )n is given by a four-point twist

correlator on a strip of width 2τ0 as [41]

Tr(ρT2
A )n =〈Tn(w1)T n(w2)T n(w3)Tn(w4)〉strip

= c2n

(
π

2τ0

)∆ 4∏

i=1

∣
∣
∣
∣

zi
zi − z̄i

∣
∣
∣
∣

∆n 1

η∆n

1,2 η∆n

3,4

(
η1,4 η2,3
η1,3 η2,4

)∆
(2)
n /2−∆n

F({ηj,k}) ,
(3.4)

where ∆ = 4∆n and zi = eπ(wi/(2τ0) with wi = ui + iτ are the complex coordinates on the

strip. The scaling dimension ∆
(2)
n of the twist operators T 2

n and T̄ 2
n in eq. (3.4) is given as

∆(2)
n ≡

{

∆n odd n ,

2∆n/2 even n ,
(3.5)

where ∆n is defined in (2.6).

The time evolution of the entanglement negativity E may then be obtained by utilizing

the eqs. (3.3) and (3.4) considering the spacetime scaling limit (t, ℓ ≫ τ0) as [41]

E =
πc

8τ0
[q(t, u3 − u1) + q(t, u4 − u2)− q(t, u4 − u1)− q(t, u3 − u2)] ,

=
πc

8τ0
[q(t, ℓ1 + ℓs) + q(t, ℓ2 + ℓs)− q(t, ℓ1 + ℓ2 + ℓs)− q(t, ℓs)] ,

(3.6)

where the function q(t, ui − uj) with (i, j ∈ 1, 2, 3, 4) is defined in the eq. (2.8). Note

that the function q(t, ui − uj) depends non trivially on the relative values of the time t

and the lengths of the intervals ℓ1, ℓ2 and ℓs leading to various interesting limits for the

entanglement negativity in this case. We have computed the entanglement negativity in

this case for each of these significant limits as which traces the time evolution of this

quantity as described below.

t < ℓs/2 < ℓ1/2 < ℓ2/2. In this limit of early time none of the functions q(t, ui − uj)s

defined in eq. (2.8) contribute in eq. (3.6) and consequently the entanglement negativity

vanishes

E = 0. (3.7)

– 7 –
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ℓ1/2 < ℓ2/2 < t < (ℓ1+ℓs)/2. For this limit only the function q(t, u3−u2) contributes

and the other q(t, ui − uj)s vanish in eq. (3.6), leading to a non-zero time dependent value

of the entanglement negativity which is given as follows

E =
πc

8τ0

(

t−
ℓs
2

)

. (3.8)

ℓ2/2 < (ℓ1 + ℓs)/2 < t < (ℓ2 + ℓs)/2. In this case the functions q(t, u3 − u1) and

q(t, u3 − u2) are non-zero in eq. (3.6), and the entanglement negativity saturates to a

constant value proportional to the length of the interval A1 given by

E =
πcℓ1
16τ0

. (3.9)

(ℓ1+ℓs)/2 < (ℓ2+ℓs)/2 < t < (ℓ1+ℓ2+ℓs)/2. In this limit the functions q(t, u3−u1),

q(t, u4 − u2) and q(t, u3 − u2) are non-zero in eq. (3.6), and the entanglement negativity

may be expressed as

E =
πc

8τ0

(
ℓ1 + ℓ2 + ℓs

2
− t

)

. (3.10)

(ℓ1 + ℓs)/2 < (ℓ2 + ℓs)/2 < (ℓ1 + ℓ2 + ℓs)/2 < t. For this limit of late times all

of the functions q(t, ui − uj)s in the eq. (3.6) contribute but the entanglement negativity

vanishes due to mutual cancellations

E = 0. (3.11)

The above results, obtained by us for the time evolution of the entanglement negativity

following a global quench, may be described as follows. The entanglement negativity for

early time described in eq. (3.7) is zero and increases linearly during the initial period of

the time evolution as described in eq. (3.8). This saturates to a constant value described

in eq. (3.9) for an intermediate range of time. As time increases further the entanglement

negativity decreases linearly as described in eq. (3.10) and vanishes at late times describing

the thermalization of the mixed state under consideration in the CFT1+1.

3.2 Two adjacent intervals

Having described the case for the mixed state of disjoint intervals above we now proceed

to analyze the case for the mixed state of adjacent intervals A1 and A2. For this case the

quantity Tr(ρT2
A )n is given by a three-point twist correlator on a strip as follows [41]

Tr(ρT2
A )n =〈Tn(w1)T̄

2
n (w2)Tn(w3)〉strip

= cn

(
π

2τ0

)∆ 3∏

i=1

∣
∣
∣
∣

zi
zi − z̄i

∣
∣
∣
∣

∆(i)




η∆

(2)
n −2∆n

1,3

η∆
(2)
n

1,2 η∆
(2)
n

2,3





1/2

F({ηj,k}) ,
(3.12)

where ∆ = 2∆n + ∆
(2)
n . The entanglement negativity E may then be obtained from

eqs. (3.12) and (3.3) by employing the spacetime scaling limit (t, ℓ ≫ τ0) as [41]

E =
πc

8τ0

[
t− q(t, u3 − u1) + q(t, u2 − u1) + q(t, u3 − u2)

]
,

=
πc

8τ0

[
t− q(t, ℓ1 + ℓ2) + q(t, ℓ1) + q(t, ℓ2)

]
.

(3.13)

– 8 –
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In the above expression as earlier the function q(ui, uj) in eq. (2.8) non trivially depends on

the relative values of the time t and the lengths of the intervals ℓ1 and ℓ2 leading to certain

significant limits. In what follows, as earlier we compute the entanglement negativity of

the mixed state in question for these interesting limits which describes the time evolution

of this measure.

t < ℓ1/2 < ℓ2/2 < (ℓ1 + ℓ2)/2. For this early time the functions q(t, ui − uj)s in the

eq. (3.13) vanish and the entanglement negativity may then be given as

E =
πc

8τ0
t . (3.14)

ℓ1/2 < t < ℓ2/2 < (ℓ1 + ℓ2)/2. In this case only the function q(t, u2 − u1) is non-

zero in the eq. (3.13) and the entanglement negativity is proportional to the length of the

subsystem A1 as

E =
πc

16τ0
ℓ1 . (3.15)

ℓ1/2 < ℓ2/2 < t < (ℓ1+ℓ2)/2. In this case the functions q(t, u2−u1) and q(t, u3−u2) in

the eq. (3.13) are non-zero leading to a non-zero time dependent value of the entanglement

negativity given as follows

E =
πc

8τ0

(
ℓ1 + ℓ2

2
− t

)

. (3.16)

ℓ1/2 < ℓ2/2 < (ℓ1+ℓ2)/2 < t. In the limit of late time all of the functions q(t, ui−uj)s

in the eq. (3.13) are non-zero which leads to the vanishing value of the entanglement

negativity

E = 0 . (3.17)

The evolution of the entanglement negativity from the above results is described as

follows. It is observed that at the initial part of of its time evolution the entanglement

negativity increases linearly with time described in eq. (3.14) and saturates to a constant

value for an intermediate time as given in eq. (3.15). As time progress further negativ-

ity decreases linearly as described in eq. (3.16) and vanishes at late times indicating the

phenomena of thermalization of the mixed state in consideration.

4 Holographic entanglement entropy

In this section we briefly review the holographic computation of the entanglement entropy

for a single interval in a CFT1+1 following a global quench in the AdS3/CFT2 framework.

As described in [63] the correct holographic dual of the global quench scenario is given by

the single sided eternal black hole obtained by slicing the Penrose diagram of the usual

eternal black hole in half with an end of the world (ETW) brane. In this instance the

minimal area extremal surfaces (geodesics for AdS3/CFT2) terminate on the ETW brane

and the corresponding holographic entanglement entropy is just half of that obtained for

the usual eternal black hole geometry.
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Figure 2. (a) Penrose diagram of the eternal black hole and (b) the eternal black hole cut in half

by an end of the world (ETW) brane (figure modified from that in [57]).

In the above context we begin by reviewing the time evolution of the holographic

entanglement entropy from a bulk eternal BTZ black hole geometry described by a two-

sided Penrose diagram as depicted in figure 2. As described in [57, 64] this bulk geometry

is dual to the two copies of the CFT (CFTR ⊗ CFTL), in the thermofield double state.5

To obtain the holographic entanglement entropy of a single interval A in this scenario,

it is required to consider two copies of A in the two CFT s defined on either side of the

Penrose diagram as shown in figure 3(b). It is well known that the bulk eternal BTZ black

hole is a quotient space of AdS3 and hence the angular coordinate may be unwrapped to

map the the two boundaries of the BTZ Penrose diagram to the corresponding Rindler

wedges [57, 64] as described in figure 3(a). The bulk geometry in this case is then an

eternal BTZ black string. It is now useful to describe the different regions of the BTZ

black string and relate each coordinate patch to the Poincaré coordinates,

ds2 =
1

z2
(−dx20 + dx21 + dz2). (4.1)

The exterior metric of the BTZ black string is given as

ds2 = − sinh2 ρdt2 + cosh2 ρdx2 + dρ2, (4.2)

where the horizon is located at ρ = 0, and the boundary is at ρ → ∞. The BTZ coordinates

(t, x, ρ) covers a part of the Poincaré patch, close to the boundary and are related to the

Poincaré coordinates as follows

x1 ± x0 ≈ e−x±t ,
1

z
≈

1

2
eρ−x. (4.3)

The coordinates (t, x) cover the Rindler wedge denoted as the region I of the Minkowski

diamond in figure 3(a). It is possible to reach the other Rindler wedge denoted by the region

5Thermofield double state is a purification of a mixed state at some temperature. This is a particular

pure but non-trivially entangled state in the full Hilbert space of the CFT.
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Figure 3. (a) Different regions of the BTZ black string. Region I and III are Rindler wedges. (b)

Endpoints of the interval A on both sides of the Rindler wedges (figure modified from that in [57]).

III in figure 3(a) by analytically continuing the time t → t+ iπ. This is the continuation

through which it is possible to reach from one side of the exterior region of the black string

Penrose diagram to the other. The interior metric to the horizon ρ = 0 is obtained by

analytically continuing the coordinates ρ = iα, t = t̃− iπ/2 in eq. (4.2) as follows

ds2 = sin2 αdt̃2 + cos2 αdx2 − dα2. (4.4)

These coordinates cover some part of the interior region and meet the boundary along the

light cone x20 − x21 = 0 as depicted in figure 3(a). The corresponding future bulk region of

the interior to the BTZ black string is obtained by setting α = π/2 − iρ̃, x = x̃ − iπ/2 in

eq. (4.4), which is given as

ds2 = cosh2 ρ̃dt̃2 − sinh2 ρ̃dx̃2 + dρ̃2. (4.5)

The boundary of this future region in the Poincaré coordinates is given as z ≤ x20 − x21.

We now consider the interval A of length ℓ on both the Rindler wedges I and III

of the Minkowski diamond in figure 3(b). These two intervals are described as (P1, P3)

and (P2, P4) in the x1-z plane of the Poincaré coordinates as depicted in figure 4. The

coordinates of the end points of the intervals at a time t are given from eq. (4.3) as

follows [57]

P1 =(sinh t,− cosh t), P3 = e−ℓP1,

P2 =(sinh t, cosh t), P4 = e−ℓP2.
(4.6)

At early time t ≤ ℓ/2, the entanglement entropy receives contribution form the lengths of

the geodesics L12 and L34 between the points P1 to P3 and P2 to P4 respectively as depicted

in figure 4. These geodesics pass through the interior region in eq. (4.4) of the BTZ black

string connecting one Rindler wedge to the other (the dashed geodesics in figure 4). These

two geodesics are semicircles and they have identical regularized lengths. The entanglement
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Figure 4. Geodesics configuration for a single interval projected into the x1, z plane. For early

time geodesics are shown by the dotted lines and for large time geodesics are shown by the solid

lines (figure modified from that in [57]).

entropy at early time t ≤ ℓ/2 is then given as follows [57]

S
(1)
A =

1

4GN
(L12 + L34),

=
4πct

3β
+ 4Sdiv.

(4.7)

Here Sdiv = c
6 ln

(
β
4πǫ

)

is the divergent part of the entanglement entropy, β = 4τ0 is the

inverse temperature and ǫ is the UV cut off. On the other hand for times t > ℓ/2 the

entanglement entropy receives contribution from the lengths of the geodesics L13 and L42

between the points P1 to P3 and P2 to P4 respectively. These geodesics are confined to

the exterior region of the BTZ black string outside the horizon as described in eq. (4.2)

(depicted by the solid lines in the figure 4). The entanglement entropy for time t > ℓ/2 is

then given as

S
(2)
A =

1

4GN
(L13 + L24),

=
2πcℓ

3β
+ 4Sdiv.

(4.8)

It is observed from the above development that at early time the geodesics pass through

the interior region of the BTZ black brane geometry from one Rindler wedge I to the other

III and the linear increase of the holographic entanglement entropy is related to the growth

of the nice slice in the interior. On the other hand for late times the geodesics are con-

fined to the exterior region sitting outside the horizon and the corresponding entanglement

entropy becomes thermal.

As mentioned earlier the bulk dual geometry corresponding to a global quench in

a CFT1+1 where the initial state is the conformal invariant boundary state |B〉 [37] is

described by the eternal black hole sliced in half by an ETW brane (single sided black

hole). Hence the corresponding holographic entanglement entropy for the interval A in

this case is then described by half of that obtained in eqs. (4.7) and (4.8) respectively.
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Remarkably, these results match exactly with the corresponding CFT1+1 computation

through the replica technique in eq. (2.7).

5 Holographic entanglement negativity

In this section we present our holographic construction for the time evolution of the entan-

glement negativity of two disjoint and adjacent intervals in a CFT1+1 following a global

quench as described in [41]. Motivated by the holographic construction for the time evo-

lution of the entanglement entropy in [57] reviewed above, we begin by computing the

holographic entanglement negativity for the mixed states under consideration from the

bulk dual eternal black hole geometry. The corresponding holographic entanglement nega-

tivity following a global quench may then be obtained by considering half of the result for

the bulk dual eternal black hole geometry.

It interesting to note that the four point twist correlator in eq. (3.4) admits a factor-

ization with the non universal function F({ηj,k}) → 1 for the cross ratios ηi,j → 1 and

ηi,j → 0, as follows

〈Tn(w1)T n(w2)T n(w3)Tn(w4)〉strip =

〈Tn(w1)T n(w4)〉strip 〈Tn(w2)T n(w3)〉strip

(

〈 T 2
n (w1)T̄

2
n (w3) 〉strip 〈 T 2

n (w2)T̄
2
n (w4) 〉strip

) 1
2

〈Tn(w1)T n(w3)〉strip 〈Tn(w2)T n(w4)〉strip

(

〈 T 2
n (w1)T̄ 2

n (w4) 〉strip 〈 T 2
n (w2)T̄ 2

n (w3) 〉strip

) 1
2

,

(5.1)

where we have employed eq. (2.5) and the following two point twist correlator

〈T 2
n (w1)T̄

2
n (w2)〉strip =

(
π

2τ0

)2∆
(2)
n c

(2)
n

|(z1 − z̄1)(z2 − z̄2) η1,2|∆
(2)
n

F(η1,2) . (5.2)

The entanglement negativity for two disjoint intervals may then be obtained by utilizing

eqs. (3.3) and (5.1) which leads to following expression

E =
3

4
(SA1∪As

+ SAs∪A2 − SA1∪A2∪As
− SAs

) , (5.3)

where Sγ (γ ∈ A1 ∪ As, As ∪ A2, A1 ∪ A2 ∪ As, As) is the entanglement entropy of an

interval γ as given in eq. (2.7).

Note that a similar factorization also holds for the three point twist correlator defined

in eq. (3.12) which is given as

〈Tn(w1)T̄
2
n (w2)Tn(w3)〉strip

=

(

〈 T 2
n (w1)T̄

2
n (w2) 〉strip 〈 T 2

n (w2)T̄
2
n (w3) 〉strip〈Tn(w1)T n(w3)〉

2
strip

〈 T 2
n (w1)T̄ 2

n (w3) 〉strip

)1/2

.
(5.4)

The entanglement negativity for two adjacent intervals may then be obtained by utilizing

eqs. (3.3) and (5.4) as follows

E =
3

4
(SA1 + SA2 − SA1∪A2). (5.5)
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Figure 5. (a) Two disjoint intervals A1 (blue) and A2 (red) on the Rindler wedges I and III

respectively of the Minkowski diamond. (b) These two intervals are projected on the x1-z plane of

the Poincaré coordinates.

In what follows we utilize eqs. (5.3) and (5.5) to establish the holographic entanglement

negativity and its time evolution for two disjoint and adjacent intervals in a CFT1+1

after a global quench employing the prescription for the holographic entanglement entropy

described in [57].

5.1 Two disjoint intervals

We first consider the case of two disjoint intervals A1 and A2 of lengths ℓ1 and ℓ2 with an

interval As of length ℓs separating them. As earlier for the dual eternal black hole geometry

it is required to consider the intervals A1, A2 and As in both the Rindler wedges I and III

of the Minkowski diamond in figure 5(a). The end points of the intervals A1, A2 and As

in the Rindler wedges I and III projected on the x1-z plane of the Poincaré coordinates

are denoted as (a, b), (c, d), (b, c) and (a′, b′), (c′, d′), (b′, c′) respectively which is depicted

in figure 5(b).

It is now possible to describe the time evolution of the holographic entanglement

negativity for the mixed state configuration of the two disjoint intervals from the bulk dual

eternal black hole geometry by utilizing eqs. (5.3), (4.7) and (4.8). It is observed that

distinct sets of geodesics contribute to the holographic entanglement negativity for various

values of time t relative to the lengths of the intervals ℓ1, ℓ2 and ℓs. In what follows we

consider these significant limits and describe the relevant geodesic structures leading to the

holographic entanglement negativity for each of these scenarios.

t < ℓs/2 < ℓ1/2 < ℓ2/2. In the limit of early times all the relevant geodesics pass

through the interior region of the BTZ black string connecting one Rindler wedge I to the

other III, depicted by dashed curves in the figure 6(a). The corresponding holographic

entanglement negativity is obtained by substituting the holographic entanglement entropy

for the early time limit given in eq. (4.7) in the eq. (5.3), which vanishes due to mutual
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cancellations as follows

E =
3

16G
(3)
N

(

Ld′d + Lb′b
︸ ︷︷ ︸

SA1∪As

+Lc′c + La′a
︸ ︷︷ ︸

SAs∪A2

−Ld′d − La′a
︸ ︷︷ ︸

SA1∪A2∪As

−Lc′c − Lb′b
︸ ︷︷ ︸

SAs

)

,

=0.

(5.6)

ℓ1/2 < ℓ2/2 < t < (ℓ1 + ℓs)/2. In this limit the geodesics (solid curves) that joins c′

and b′ and c and b are confined to the exterior region, and rest of the geodesics (dashed

curves) pass through the interior region of the BTZ black string as depicted in figure 6(b).

The holographic entanglement negativity in this case may then be obtained by utilizing

both the eqs. (4.7) and (4.8) in the eq. (5.3), which leads to the following expression

E =
3

16G
(3)
N

(Ld′d + Lb′b + Lc′c + La′a − Ld′d − La′a − Lc′b′ − Lcb) ,

=
3

16G
(3)
N

(Lb′b + Lc′c − Lc′b′ − Lcb) ,

=
πc

β

(

t−
ls
2

)

.

(5.7)

ℓ2/2 < (ℓ1+ℓs)/2 < t < (ℓ2+ℓs)/2. In this case the geodesics (solid curves) between

the points d′ to b′, d to b, c′ to b′ and c to b are confined in the exterior region while the other

geodesics (dashed curves) between the points d′ to d and c′ to c pass through the interior

region of the BTZ black string as depicted in figure 6(c). The holographic entanglement

negativity in this limit is obtained by utilizing eqs. (4.7) and (4.8) in the eq. (5.3) leading

to the following expression

E =
3

16G
(3)
N

(Ld′b′ + Ldb + Lc′c + La′a − Ld′d − La′a − Lc′b′ − Lcb) ,

=
3

16G
(3)
N

(Ld′b′ + Ldb + Lc′c − Ld′d − Lc′b′ − Lcb) ,

=
πcℓ1
2β

.

(5.8)

(ℓ1 + ℓs)/2 < (ℓ2 + ℓs)/2 < t < (ℓ1 + ℓ2 + ℓs)/2. In this limit the geodesics (dashed

curves) between the points d′ to d and a′ to a pass through the interior region whereas

rest of the geodesics (solid curves) are confined to the exterior region of the BTZ black

string. The holographic entanglement negativity in this case may be obtained by utilizing

eqs. (4.7) and (4.8) in the eq. (5.3), as follows

E =
3

16G
(3)
N

(Ld′b′ + Ldb + Lc′a′ + Lca − Ld′d − La′a − Lc′b′ − Lcb) ,

=
πc

β

(
ℓ1 + ℓ2 + ℓs

2
− t

)

.

(5.9)
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Figure 6. Geodesic configurations for differnt limits of the time relative to the lengths of the

intervals. The geodesics depicted by dashed lines pass through the interior region of the BTZ black

string connecting the two Rindler wedges I and III. The geodesics depicted by solid lines are

confined to the exterior region of the BTZ black string outside the horizon.

(ℓ1 + ℓs)/2 < (ℓ2 + ℓs)/2 < (ℓ1 + ℓ2 + ℓs)/2 < t. In the late time limit all the

geodesics (solid curves) are confined to the exterior region of the BTZ black string as

shown in figure 6(e). Consequently, the holographic entanglement negativity is obtained

by utilizing eqs. (4.7) and (4.8) in the eq. (5.3) which vanishes due to mutual cancellations

as follows

E =
3

16G
(3)
N

(Ld′b′ + Ldb + Lc′a′ + Lca − Ld′a′ − Lda − Lc′b′ − Lcb) ,

=0.

(5.10)

It is now possible to present a holographic description for the time evolution of the

entanglement negativity for mixed state configurations of two disjoint intervals in a CFT1+1

following a global quench. As described earlier the corresponding bulk dual geometry is the

single sided black hole obtained by slicing the eternal black hole geometry in half with an

ETW brane. So the time evolution of the entanglement negativity for the mixed state in

question following a global quench may be obtained by considering half of the corresponding
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Figure 7. Holographic entanglement negativity E vs time t is plotted for two disjoint intervals of

lengths ℓ1 = 50, ℓ2 = 200 with the seperation length ls = 30.

results for the eternal black hole geometry computed above. Quite significantly, the time

evolution of the holographic entanglement negativity obtained from our construction in

this case matches exactly with the corresponding replica technique results for a CFT1+1 as

described in section (3.1). Once again this is a robust consistency check for our holographic

construction.

In figure 7 we have plotted the time evolution of the holographic entanglement nega-

tivity for the mixed state in question in a CFT1+1 following a global quench. It is observed

from figure 7 that the holographic entanglement negativity for early times is zero and

grows linearly to attain a maximum value at an intermediate time after which remains

constant upto certain value of time. Beyond this value of time the holographic entangle-

ment negativity decreases linearly and vanishes for late times. Note that this behavior for

the entanglement negativity of the mixed state in question consistently matches with that

described for a CFT1+1s as described in [41].

5.2 Two adjacent intervals

We now consider the time evolution of the entanglement negativity for the case of two

adjacent intervals A1 and A2 of lengths ℓ1 and ℓ2 respectively. Proceeding similarly as

in the case for the two disjoint intervals described above, we consider the two adjacent

intervals A1 and A2 in both the Rindler wedges I and III of the Minkowski diamond as

shown in figure 8(a). The end points of the intervals A1 and A2 in the Rindler wedges

projected on the x1 − z plane of the Poincaré coordinates are denoted as (a, b), (b, c) and

(a′, b′), (b′, c′) respectively which is depicted in figure 8(b).

Following the analysis described earlier in the last subsection for the mixed state

of disjoint intervals it is also possible to obtain the time evolution of the entanglement

negativity for the case of two adjacent intervals under consideration here. Once again for

this purpose it is required to consider the dual bulk eternal black hole geometry and utilize

eqs. (5.5), (4.7) and (4.8) to obtain the corresponding holographic entanglement negativity.

In this case also distinct sets of geodesics contribute to the holographic entanglement

negativity for various values of the time t relative to the lengths of the intervals ℓ1 and
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Figure 8. (a) Two adjacent intervals A1 (blue) and A2 (red) in the Rindler wedges I and III

respectively of the Minkowski diamond. (b) These two intervals are projected on the x1-z plane of

the Poincaré coordinates.

ℓ2. As earlier we consider these interesting limits and elucidate the corresponding geodesic

structures leading to the holographic entanglement negativity for each of these cases.

t < ℓ1/2 < ℓ2/2 < (ℓ1 + ℓ2)/2. In the limit of early times all of the geodesics pass

through the interior region of the BTZ black string connecting the one Rindler wedge I to

the other III, depicted by dashed curves in the figure 9(a). The corresponding holographic

entanglement negativity is obtained by employing eq. (4.7) in the eq. (5.5), which is given

as follows

E =
3

16G3
N

(Lc′c + Lb′b + Lb′b + La′a − Lc′c − La′a),

=2Lb′b =
πct

β
.

(5.11)

ℓ1/2 < t < ℓ2/2 < (ℓ1 + ℓ2)/2. In this limit the geodesics (solid curves) between

the points c′ to b′ and c to b are confined in the exterior region, rest of the geodesics pass

through the interior region of the BTZ black string connecting the Rindler wedge I to the

other III as shown in figure 9(b). The holographic entanglement negativity in this limits

is given as

E =
3

16G3
N

(Lc′b′ + Lcb + Lb′b + La′a − Lc′c − La′a) ,

= (Lc′b′ + Lcb + Lb′b − Lc′c) =
πcℓ1
2β

.

(5.12)

ℓ1/2 < ℓ2/2 < t < (ℓ1+ℓ2)/2. In this case only the geodesics (dashed curves) between

the points c′ to c and c to b pass through the interior region and rest of the geodesics remain

in the exterior region of the BTZ black string as depicted in figure 9(c). The holographic
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Figure 9. Geodesic configurations for differnt limits of the time with the lenghts of the intervals.

The geodesics shown by dashed line pass through the interior region of the BTZ black hole con-

necting two rindler wedges. The geodesics shown by solid line confine at the exterior region of the

BTZ black hole and they do not pass through the interior region.

entanglement negativity in this case is given as follows

E =
3

16G3
N

(Lc′b′ + Lcb + Lb′a′ + Lba − Lc′c − La′a) ,

=
πc

β

(
ℓ1 + ℓ2

2
− t

)

.

(5.13)

ℓ1/2 < ℓ2/2 < (ℓ1+ℓ2)/2 < t. In this limit all the geodesics (solid curves) are confined

in the exterior region of the BTZ black string as depicted in figure 9(d). The resulting

holographic entanglement negativity vanishes due to mutual cancellations as follows

E =
3

16G3
N

(Lc′b′ + Lcb + Lb′a′ + Lba − Lc′a′ − Lca) ,

=0

(5.14)

As mentioned earlier the time evolution of the holographic entanglement negativity

for two adjacent intervals after a global quench in a CFT1+1 dual to a single sided black

hole is obtained by taking half of the corresponding results for the eternal black hole

case. Interestingly, it is observed that the time evolution of the holographic entanglement

negativity in question following a global quench match exactly with the corresponding

CFT1+1 results computed through the replica technique in eq. (3.2).

The time evolution of the holographic entanglement negativity is illustrated in fig-

ure 10. The holographic entanglement negativity grows linearly for the initial part of its
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Figure 10. Holographic entanglement negativity E vs time t is plotted for two adjacent intervals

of lengths ℓ1 = 50, ℓ2 = 200.

evolution and reaches to its maximum value at an intermediate time beyond which it is

a constant upto a certain range of time. Beyond this range the holographic entanglement

negativity decreases linearly and becomes zero for late times. Note that this behavior of

the holographic entanglement negativity is consistent with that described in [41].

6 Summary and discussion

To summarize, in this article we have investigated the time evolution of the entanglement

negativity for mixed states of two disjoint and adjacent intervals following a global quench

in a holographic CFT1+1 through the AdS3/CFT2 correspondence. In this context we

have considered the holographic dual to the global quench scenario as the two sided eternal

black hole sliced in half by an end of the world (ETW) brane, where the initial state is

the conformal invariant boundary state (B-state). The corresponding holographic entan-

glement negativity is given by half of the result for the eternal black hole geometry. For

our holographic construction these intervals were considered on both the Rindler wedges

of the Minkowski diamond and projected on the x1 − z plane of the Poincaré coordinates

for the dual eternal black hole geometry.

Our holographic construction follows from the replica technique observation that the

universal parts of corresponding four point and the three point twist correlators on a strip

in the CFT1+1, which are related to the entanglement negativity for these mixed states,

admit a factorization in terms of the product of certain two point twist correlators on a

strip. The entanglement negativity may then be expressed as a specific algebraic sum of the

entanglement entropies for the intervals and certain appropriate combinations of them. It is

then possible to employ the Hartman-Maldacena prescription for the holographic entangle-

ment entropy in a dual eternal black geometry from the appropriate geodesic combinations

to obtain the holographic entanglement negativity of the mixed states in question. The

corresponding holographic entanglement negativity for these mixed states in a CFT1+1 af-

ter a global quench may then be computed by considering half of the above results for the

eternal black hole geometry (which describes a single sided black hole with an ETW brane).
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For our case the dual bulk configuration is described by the BTZ black string and it is

required to consider the combination of geodesics located exterior to the horizon and those

passing through the interior region connecting the two Rindler wedges of the Minkowski

diamond. Interestingly it is observed that the holographic entanglement negativity at early

times receive contributions from the lengths of the geodesics passing through the interior

region of the bulk BTZ black string. For late times on the other hand the contribution to

the holographic entanglement negativity arise from the geodesics restricted to the region

exterior to the horizon in both the Rindler wedges.

The corresponding time evolution of the entanglement negativity following a global

quench for the disjoint and the adjacent intervals, obtained from half the result for that of

the bulk eternal black hole, exhibits a similar behavior. For early times the entanglement

negativity is zero and increases linearly to reach a saturation at an intermediate value and

remains constant upto a certain range of time. Beyond this range the entanglement neg-

ativity decreases linearly with time and vanishes for late times which corresponds to the

phenomena of the CFT thermalization indicating the formation of a black hole in the bulk.

Interestingly, the holographic entanglement negativity obtained by us match exactly with

the corresponding CFT1+1 replica technique results providing a robust consistency check

for our construction. Our analysis described in this article provides an interesting and

significant insight into the structure and evolution of entanglement negativity for mixed

states in conformal field theories following a global quench from a holographic perspective

and indicates a possible higher dimensional extension to a generic AdSd+1/CFTd scenario.

However such a higher dimensional extension of our construction will require certain sub-

stantiation through explicit examples for relevant consistency checks. We hope to return

to these and other related interesting issues in the near future.
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