
J
H
E
P
0
5
(
2
0
1
9
)
1
7
6

Published for SISSA by Springer

Received: December 24, 2018

Revised: May 5, 2019

Accepted: May 10, 2019

Published: May 27, 2019

Transplanckian axion monodromy!?
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Abstract: We show that warped throats of the Klebanov-Strassler kind, regarded as

5d flux compactifications on Sasaki-Einstein manifolds X5, describe fully backreacted solu-

tions of transplanckian axion monodromy. We show that the asymptotic Klebanov-Tseytlin

solution features a 5d axion physically rolling through its dependence on an spatial coor-

dinate, and traversing arbitrarily large distances in field space. The solution includes the

backreaction on the breathing mode of the compactification space and on the vacuum en-

ergy, which yields a novel form of flattening. We establish the description of the system

in terms of an effective 5d theory for the axion, and verify its validity in transplanckian

regimes. In this context, rolling axion monodromy configurations with limited field space

range would correspond, in the holographic dual field theory, to duality walls, which admit

no embedding in string theory so far. We present an identical realization of transplanckian

axion monodromy in 4d in fluxed version of AdS4×X7. We speculate that similar models

in which the axion rolls in the time direction naturally correspond to embedding the same

mechanism in de Sitter vacua, thus providing a natural arena for large field inflation, and

potentially linking the swampland de Sitter and distance conjectures.
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1 Introduction and conclusions

The application of Quantum Gravitational constraints to string theory vacua has motivated

several conjectures limiting the possibilities to attain field ranges larger than the Planck

scale [1–7] (see [8] for a recent review). A prototypical case is the application of the Weak

Gravity Conjecture [3] to axions, which implies that periodic axion potentials, such as those

in natural inflation, cannot host transplanckian field ranges [9]. Another general result is

the Swampland Distance Conjecture, which states that as some modulus approaches a

point at infinite distance in moduli space, there is an infinite tower of states becoming

massless, exponentially with the distance [2]. There are also partial studies concerning

axion monodromy models [10], see also [11–18], trying to rule out their transplanckian

excursion by invoking the backreaction on the scalar kinetic terms reducing the effectively

traversed distance [19].1 There are also discussions ruling out particular models using 10d

lifts [21, 22] or other mechanisms [23].

These results would seem to motivate a Swampland Transplanckian conjecture, stating

that transplanckian field ranges are not physically attainable in Quantum Gravity. If cor-

rect, this statement would have profound implications for certain phenomenological applica-

tions, like the construction of inflation models with sizable gravitational wave backgrounds

(which for single-field inflation are directly related to the distance traversed by the inflaton).

The purpose of the present article is to prove that this conjecture is in fact incorrect, and

1For other discussions of backreaction related to flattening of the potential, see [20].
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that transplanckian field excursions are physically realized in string theory. We will do it by

presenting a completely explicit example of axion monodromy model, with full backreac-

tion taken into account, in terms of the complete 10d supergravity solution. The complete

background turns out to be given by a simple and well-known warped throat, the Klebanov-

Strassler throat [24, 25], when regarded as a flux compactification on a Sasaki-Einstein

manifold X5, with a 5d axion rolling in the radial direction of a (locally) AdS5 spacetime.

Let us make some relevant remarks:

• The discussion is intended as an existence proof of transplanckian axion monodromy

in string theory. In particular, we focus on discussing how the 10d solution fully

encodes the backreaction of the axion dynamics including the impact on axion kinetic

terms, and the backreaction on other sectors, including the compactification moduli

and the vacuum energy. This last point is extremely relevant and has not been taken

into account in earlier attempts to describe 10d lifts of axion monodromy models.

• We consider configurations where the axion has an explicit dependence on the non-

compact spacetimes coordinates (in fact, on a particular spatial coordinate). This is

crucial for the configuration to allow the axion to climb its potential while maintaining

the solution on-shell. Again, this is an ingredient not properly accounted for in earlier

analysis of 10d backreaction of transplanckian axion monodromy, and ties directly to

the question of including the vacuum energy variation in the analysis.

• On the other hand, it is physically meaningful to consider configurations where the

axion is actually varying in spacetime. After all, the main motivation for scalars with

transplanckian field excursions are large field inflation models, in which the eventual

cosmological solution corresponds to a time-dependent configuration of the scalar

rolling down its potential.

• We work in configurations with negative vacuum energy. This is not an obstruction

from the fundamental viewpoint of establishing the existence of transplanckian field

excursions in string theory. On the other hand, it does not yield realistic models

for inflation. Related to this, our configurations have axions depending on spatial

directions, rather than time-dependent ones. In fact, formally the sign flip required

to switch from space to time dependent scalar profiles correlates with the sign flip for

the vacuum energy. This suggests a tantalizing link between positive cosmological

constant and time dependent background, which in the present context is reminiscent

of the dS/CFT correspondence [26]. It would be interesting to explore the relation

of our transplanckian axion monodromy scenario with recent discussions of bounds

on slow-roll and the swampland de Sitter conjectures [27].

• We focus on 5d models because the kinds of Klebanov-Strassler throats we need

(either for the conifold or for generalizations) have been most studied in this setup.

On the other hand, there are less studied but completely analogous throats based on

locally AdS4 ×X7 configurations in M-theory, which we also discuss and lead to 4d

transplanckian axion monodromy configurations in precisely the same fashion as the

5d models.
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• The dynamics of the transplanckian axion can be described within an effective field

theory, which we discuss explicitly based on a consistent truncation provided in [24].

This, together with the full 10d solution, allows for a discussion of the validity of effec-

tive actions for the transplanckian excursion. We show that the configuration is free

from oftentimes feared problems: no pathology arises neither when the axion winds its

period a large number of times, and no infinite tower of states becomes exponentially

light when the axion reaches beyond transplanckian distances in field space.

• Freund-Rubin vacua such as AdS5 ×X5 with 5-form flux on X5 are often described

as not yielding good effective field theories, since the compactification radius is com-

parable to the AdS radius. However, we are not interested in describing an effective

field theory which describes the stabilization of the compactification breathing mode,

which cannot be decoupled (in the Wilsonian sense) from the KK tower of states. We

are interested in the effective dynamics of a massless axion and its spacetime varia-

tions at much lower scales, and in its backreaction effects, which are also controlled

by those scales. Our effective theory is suitable for that purpose, and can be regarded

as describing the low energy dynamics of a scalar in a gravitational background which

is fixed at higher scales, save for backreaction effects which are duly included in the

effective field theory description.

The paper is organized as follows. In section 2 we describe the KS solutions from

the perspective of producing 5d axion monodromy models, focusing on the conifold ex-

ample. In section 2.1 we describe the 5d compactification on X5 with no 3-form fluxes,

leading to the AdS5 vacuum. In section 2.2 we describe the KS solution [25] (actually,

its KT asymptotic form [24]) and in section 2.3 we establish that it describes an axion

monodromy solution in which the field range traversed is arbitrarily large, in particular

transplanckian. In section 2.4 we relate hypothetical backgrounds with finite axion field

ranges with duality walls in the UV of the holographically dual field theories, which have

so far not been shown to admit a gravitational description. In section 3 we turn to the

effective field theory description. In section 3.1 we review the effective field theory in [24]

for the axion and compactification moduli. In section 3.2 we obtain an effective action at

energies hierarchically below the KK scale, which actually encodes the axion dynamics and

its backreaction effects. In section 4 we discuss 4d configurations from M-theory compact-

ifications, with exactly the same axion monodromy physics as the previous 5d examples.

Appendix A discusses a dual Hanany-Witten configuration of D4- and NS5-branes useful

to illustrate the absence of pathologies as the axion winds around its period.

2 Warped throats and transplanckian axion monodromy

In the following we review the Klebanov-Strassler (KS) throat [25]. We intentionally em-

phasize its structure as a 5d compactification in which the introduction of the RR 3-form

flux yields a 5d axion monodromy model, for which the KS throat is an explicit fully back-

reacted solution. We then show that the axion roll in this configuration is transplanckian.

Actually, for this purpose it suffices to focus on the region far from the tip of the throat,
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so we use the simpler expressions of the Klebanov-Tseylin (KT) throat [24], supplemented

with the boundary conditions derived from the KS smoothing of its naked singularity. For

the latter reason, we still refer to the configuration as KS throat.

2.1 The 5d theory

Consider as starting point the type IIB Freund-Rubin AdS5 × T 1,1 background

ds2 = R2 dr
2

r2
+
r2

R2
ηµνdx

µdxν +R2 ds2
T 1,1 (2.1)

with

R4 = 4π(α′)2gsN (2.2)

and with N units of RR 5-form flux through T 1,1. The type IIB complex coupling is

constant, and we will keep it set at τ = i/gs (introduction of non-trivial constant C0 is

straightforward via minor changes in the fluxes below).

This is the near horizon limit of a set of N D3-branes at a conifold singularity [28].

The line element ds2
T 1,1 corresponds to a (unit volume) 5d horizon T 1,1, which is an S1

bundle over P1 × P1 with first Chern classes (1, 1), hence the name. Topologically, it is

an S2×S3. Denoting by σ2 and σ′2 the volume forms of the two P1’s, we have a harmonic

2-form ω2 = σ2 − σ′2 and its (dual in T 1,1) harmonic 3-form ω3. They are Poincaré duals

of the 3- and 2-spheres, and ω2 ∧ ω3 is the volume form on T 1,1.

On top of the complex dilaton, the resulting effective 5d theory has a massless axion,

given by the period of the NSNS 2-form over S2 ⊂ T 1,1∫
S2

B2 = φ namely B2 = φω2. (2.3)

The periodicity φ ∼ φ + 1 is set by the exponential of the action of a fundamental string

wrapped on the S2. Above the scale of massless fields, there is the scale 1/R. This is the

scale of KK modes, but also the scale of stabilization of the breathing mode of T 1,1. It is

possible to write an effective action for this dynamical mode;2 in this action, the potential

is minimized at the value (2.2), and with a negative potential energy cosmological constant,

such that the maximally symmetric solution is the AdS5 space in (2.1). For a simplified

discussion in the completely analogous case of AdS5 × S5, see [29]; we will discuss such

effective actions in a more general context later on.

The above background is a particular case of the general class of AdS5 × X5 vacua,

where X5 is a Sasaki-Einstein variety. These are gravitational duals to systems of D3-

branes at singularities, and have been intensely explored in the literature. Large classes

of these models admit also the introdution of 3-form fluxes to be described below, and

thus lead to axion monodromy models. To emphasize this direct generalization, we will

oftentimes write X5 instead of T 1,1.

2Since this scale is not hierarchically lower than the KK masses, this effective action should be interpreted

as arising from a consistent truncation, rather than a Wilsonian one.
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2.2 The KS solution

Once we have described the compactification to 5d, we would like to describe the introduc-

tion of a RR flux on S3 ⊂ T 1,1

1

(2π)2α′

∫
S3

F3 = M. (2.4)

Our key observation is that the resulting 5d theory is an axion monodromy model

for φ. This simply follows because the self-dual 5-form field strength

F̃5 = dC4 −
1

2
C2 ∧H3 +

1

2
B2 ∧ F3 (2.5)

satisfies the modified Bianchi identity

d ∗ F̃5 = dF̃5 = H3 ∧ F3. (2.6)

From the KK perspective the flux (2.4) induces a 5d topological coupling∫
10d

F3 ∧B2 ∧ F5 −→M

∫
5d
φF5. (2.7)

As already noted in [16, 30],3 this is a 5d version of the Dvali-Kaloper-Sorbo term [32, 33]

associated to a monodromy for the axion. Clearly, as φ winds around its basic period, there

is a corresponding increase for the flux of F̃5 through T 1,1 (and, by self-duality, through

the non-compact 5d space), as follows,

N =

∫
T 1,1

F̃5 = N0 +Mφ. (2.8)

In the following we take the reference value N0 to be reabsorbed into a redefinition of φ.

The presence of a scalar potential of the axion monodromy kind, arising from the

reduction of the 10d |F̃5|2 terms, will be manifest in the 5d effective action discussed in

section 3. We are interested in the behaviour of this theory as the value of φ changes over

a large range. Clearly, the presence of this potential term implies that moving the scalar

vev adiabatically away from the minimum leads to off-shell configurations, for which the

computation of the backreaction is not clearly defined. A natural solution is to instead

consider configurations in which the scalar φ is allowed to roll, so that the spacetime

dependent background allows to remain on-shell.4 The KS solution is precisely an explicit

10d solution of this rolling configuration in which the axion φ is allowed to roll along one of

the spatial directions. (As discussed in the introduction, the realization of time dependent

roll suggests an interesting interplay with the question of realizing de Sitter vacua). We

now review the 10d KS solution (actually, its KT limit with KS boundary conditions) from

this perspective.

3While finishing this paper, we noticed the recent [31], which involves a similar structure of flux and

axion, albeit in a different approach to axion monodromy.
4This is in fact a natural viewpoint in inflationary axion monodromy models, in which the interesting

solutions correspond to physical time-dependent rolls of the scalar down its potential.
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The KS throat describes a configuration in which the axion has a dependence on the

radial direction. Concretely, φ is a harmonic form in the radial direction in the underlying

AdS5, hence

∆φ = 0 → φ ∼M log r. (2.9)

This corresponds to the fact that the combination G3 = F3 − i
gs
H3 is imaginary self-dual,

and in fact (2,1) i.e. supersymmetry preserving, when regarded as a flux in the conifold

CY threefold X6, i.e. when combining the radial coordinate r with the angular manifold

T 1,1. The metric then simply corresponds to a warped version of M4 ×X6 of the general

class in [34, 35]

ds2
10 = h−1/2(r)dxndxn + h1/2(r)(dr2 + r2ds2

T 1,1) (2.10)

with

h(r) =
1

4r4
M2 log

r

r∗
(2.11)

with r∗ some reference value. In short, the metric is of the form (2.1) with the radius (2.2)

including a radial dependence

N ∼M2 log r, (2.12)

which follows from (2.8). As explained, this is the KT solution, which has a naked sin-

gularity at r → 0. The KS solution provides a smoothing of this based on the deformed

conifold.5 In fact we will be interested in the region of large r, and how it extends to

infinity, so the KT solution suffices.

The above solution describes precisely all the effects of the backreaction for arbitrarily

large values of the axion and number of windings along its period. As one moves towards

large r, the axion is climbing up its potential and inducing larger flux N due to the

monodromy. The flux and stored energy backreact on the stabilization of the breathing

mode of the compactification space, whose minimum tracks the value of φ from (2.2), (2.8)

and (2.12)

R4 ∼ gsMφ ∼ gsM
2 log r. (2.13)

The non-compact geometry is locally AdS5 with varying radius R. Hence, there is also a

backreaction in the vacuum energy, with runs towards less negative values as

V0 ∼ (log r)−1. (2.14)

5When regarded from the 5d perspective, this implies that the direction r “ends” at a finite distance. Of

course this is not relevant for the discussion below, which only deals with the large r regime. Moreover, even

if one would be interested in having a radial dimension with no end, it is straightforward to modify (2.11)

or even its full KS version, e.g. by introducing a large number P of additional explicit D3-branes, producing

an AdS5 at the bottom of the KS throat, effectively removing the endpoint for r. This corresponds to the

mesonic branches of the cascade [36].
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The slow growth of the vacuum energy can be regarded as a flattening of the potential,

albeit different from the polynomial ones in [20].

From the holographic perspective, each winding of φ on its period corresponds to a

cycle in the cascade of Seiberg dualities, in which, as one moves to the UV (larger r), the

effective number of colors increases by (actually twice) a factor M

SU(N0)× SU(N0 +M)→ SU(N0 + 2M)× SU(N0 +M)→
→ SU(N0 + 2M)× SU(N0 + 3M). (2.15)

Although we will not exploit this holographic picture (as the supergravity solution speaks

for itself), we will use it in appendix A to explain why no disaster arises when the axion

rolls around its period.6 In particular there are no states becoming massless or light as

one crosses the “zero” value, an effect often feared to play a lethal role for the discussion

of monodromy dynamics in effective field theory. The fact that this effect is absent in

our model supports the expectation that it is not a generic problem of axion monodromy

models (but rather, either of particular models realizing the idea, or of partial analysis of

those models without full inclusion of backreaction).

2.3 Transplanckian axion field range

Let us use the above solution to quickly show that the 5d field φ traverses a transplanckian

distance in field space. A more systematic discussion is presented in section 3.

The distance traversed by φ from a reference point r0 to infinity is given by

∆ =

∫ ∞
r0

(
Gφφ

dφ

dr

dφ

dr

) 1
2

dr =

∫ ∞
r0

(Gφφ)
1
2
dφ

dr
dr, (2.16)

where Gφφ is the metric in field space, which is determined by the 5d kinetic term for φ,

in the 5d Einstein frame

S5 =
1

2κ2
5

∫
d5x
√
−g5

(
R5 −Gφφ ∂mφ∂nφ gmn

)
. (2.17)

Since the compactification volume varies, certain care is required. We must define a fixed

reference radius R determining the 5d Planck scale, and introduce a 5d dynamical breathing

mode R̃ encoding any variation (see [29] for a similar parametrization). Hence, focusing

just on the parametric dependence, we write

VX5 = R5 R̃5, (2.18)

ds2 = g(5)
mn dx

m dxn + (RR̃)2 (gX5)ij dy
i dyj . (2.19)

We now focus on the reduction on X5 of the 10d action for the metric and kinetic term of

B2. In the 10d Einstein frame we have

S10d =
1

2κ 2
10

∫
d10x

√
−g10

(
R10 −

1

12 gs
HMNP H

MNP

)
. (2.20)

6See [12] for some discussion of periodic effects in axion monodromy.
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As explained, the reference value R fixes the 5d Planck scale

R5

2κ 2
10

=
1

2κ2
5

(2.21)

and the factor R̃5 is reabsorbed by rescaling the 5d metric to the 5d Einstein frame

(g5)mn → R̃−
10
3 (g5)mn. (2.22)

We follow the effect of this rescaling in the kinetic term of the component of B2 given

by (2.3). The dependence on R̃ is as follows:∫
d10x

√
−g10 g

mngikgjl∂mBij∂nBkl
compact.−→ (2.23)

compact.−→
∫

d5x
√
−g5 (RR̃) (g5)mn ∂mφ∂nφ

Einstein−→
∫

d5x
√
−g5 (RR̃−4) (g5)mn ∂mφ∂nφ .

Hence, we have R̃4 ∼M2 log r and thus

Gφφ ∼ (M2 log r )−1. (2.24)

We have φ ∼M log r, hence the distance (2.16) is

∆ =

∫
G

1
2
φφ

dφ

dr
dr ∼

∫
dr (M2 log r)−

1
2 M

dr

r
=

∫
ds

s
1
2

(2.25)

for s = log r. This becomes arbitrarily large for large r, showing that the 5d scalar φ rolls

through a transplanckian distance in field space.

The 10d backreacted solution for this transplanckian axion monodromy configuration

allows to address many of the objections to transplanckian field excursions in string theory

or quantum gravity, and study how the present models avoid those potential pitfalls. As

many of these are related to the regimes of validity of effective field theories for the axion

dynamics, we postpone their discussion until section 3.

The above AdS5 vacua admit generalizations associated to D3-branes at more general

CY threefold singularities, which have been extensively studied in the toric case. The dual

backgrounds correspond to type IIB Freund-Rubin AdS5×X5, where X5 is the 5d horizon of

the 6d CY cone. The construction of KT backgrounds by introducing (possibly a richer set

of) 3-form fluxes is a straightforward extension of our above discussion (see for instance [37]

for complex cones over del Pezzo surfaces), so there is a large class of constructions lead-

ing to transplanckian axion monodromy. Being more careful, we should make clear that

only CY singularities admitting complex deformations can complete their KT throats into

smooth supersymmetric KS-like throats [38]; other choices admit no supersymmetric KS

completion [37, 39, 40], and actually lead to runaway instabilities [37, 41], a fact which has

recently motivated the “local AdS-Weak Gravity Conjecture” [30], generalizing the “AdS-

WGC” in [4]. However, even with the restriction to CY singularities admitting complex

deformations, there is an enormous class of such explicit constructions (built with standard

toolkits, see e.g. [42]), and thus leading to transplanckian axion monodromy.
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2.4 Duality walls

The fact that the axion traverses an arbitrarily large distance in field space as one moves to

larger distances in r is intimately related to the RG flow structure in the holographic field

theory. As mentioned in section 2.2, the axion winding around its period corresponds to

completing a cycle in the Seiberg duality cascade of the SU(N)× SU(N +M) field theory.

The steps in the energy scale in each duality cycle relate to the radial distance required

for the scalar to wind around its period. The infinite range in energy as one moves up to

the UV in the field theory provides an infinite range in radial distance on the gravity side,

which allows for an arbitrarily large axion field range with finite gradient energy density.

Hence, the nice properties of the holographic field theory RG flow relates to the fact that

the gravity side is described by a supergravity background.

In contrast with this picture, it is interesting to point out that a different kind of RG

flow behaviour of duality cascades has been contemplated, purely from the field theory

perspective. These are known as duality walls, and correspond to duality cascade RG flows

in which, as one moves to the UV, the energy steps in each duality cycle decrease; more

concretely, the number of duality cycles in a given energy slice increases as one moves up

to the UV, in such a way that there is a limiting energy, at which the number of cycles

per energy interval diverges. Such RG flows have been introduced in [43], and proposed to

relate to quiver gauge theories of D-branes at singularities in e.g. [44–46]. However, there

is no concrete string theory D-brane realization of such RG flows. In particular, systematic

searches for gravity backgrounds dual to gauge theories with duality walls have produced

no such results [37].

The absence of such backgrounds, at least in the context of supergravity, has an inter-

esting implication for our perspective on field ranges in axion monodromy models. Gravi-

tational solutions dual to duality walls would require an axion winding around its period

an infinite number of times in a finite range in the radial distance. This is compatible

with finite gradient energy densities only if the kinetic term of the axion varies so as to

render finite the traversed distance in field space. This kind of behaviour would produce

axion monodromy models where superplanckian field ranges cannot be attained. Hence,

the absence of supergravity backgrounds of this kind is a signal that superplanckian axion

monodromy models are actually generic in the present setup, whereas those with limiting

field ranges are exotic, if at all existent.

3 Effective field theory analysis

In the previous section we have shown a fully backreacted explicit 10d solution for ax-

ion monodromy models with arbitrarily large field ranges. In this section we bring the

discussion to the context of the 5d effective field theory, where much of the discussion of

swampland conjectures is carried out.

3.1 Effective field theory for axion and breathing mode

From the 10d solution it is clear that the relevant dynamics in 5d involves the axion φ

and the breathing mode of X5 = T 1,1, coupled to 5d gravity. It is interesting to device

– 9 –



J
H
E
P
0
5
(
2
0
1
9
)
1
7
6

an effective field theory describing the dynamics for these degrees of freedom in the KS

solution.7 This provides a concrete context in which to test the regime of validity of

the effective field theory to describe transplanckian axion monodromy, or to test other

swampland conjectures.

The 5d effective field theory can be obtained starting from the 10d type IIB effective

action, and using a suitable ansatz for the compactification, which allows for general dy-

namics for the relevant 5d fields. This strategy was in fact put forward in [24] to produce

the 5d action we are interested in. We review the key ingredients relevant for our purposes,

and adapted to our present notation.

We consider the metric ansatz

ds2
10 = L2

(
e−5q ds2

5 + e3qds2
T 1,1

)
. (3.1)

Here q is a 5d field encoding the breathing mode of T 1,1. Also, ds2
5 is the line element in

the 5d non-compact spacetime, defined in the 5d Einstein frame thanks to the prefactor

e−5q. The explicit L scales out the line elements to geometries of unit radius.

There are M units of F3 flux over the S3 ∈ T 1,1 and there is a 5d axion defined by (2.3).

The modified Bianchi identity (2.6) implies that the flux of F̃5 over T 1,1 is given by (2.8).

The 5d effective action for the 5d scalars φ and q, collectively denoted by ϕa, is given by

S5 = − 2

κ2
5

∫
d5x
√
−g5

[
1

4
R5 −

1

2
Gab(ϕ)∂ϕa∂ϕb − V (ϕ)

]
, (3.2)

with the kinetic terms and potential given by

Gab(ϕ)∂ϕa∂ϕb = 15(∂q)2 +
1

4
g−1
s e−6q(∂φ)2 , (3.3)

V (ϕ) = −5e−8q +
1

8
M2gs e

−14q +
1

8
(N0 +Mφ)2e−20q. (3.4)

The different terms in the potential have a clear interpretation. The first negative con-

tribution corresponds to the curvature of the compactification space T 1,1, the second is

the contribution from the M units of F3 flux on the S3, and the third corresponds to

the contribution from the 5-form flux over T 1,1, and has the typical axion monodromy

structure. We note that, despite the bare quadratic dependence, the backreaction of φ on

the geometry will produce a different functional dependence of the potential energy at the

minimum, as shown below. Also, as already explained, the above action should be regarded

as a consistent truncation in supergravity, so we will take special care to discuss the role

of other physical degrees of freedom, like KK modes.

Since the above effective theory is general, it should reproduce the basic AdS5 back-

ground for M = 0. The potential becomes

V (ϕ) = −5e−8q +
1

8
N 2

0 e
−20q. (3.5)

7Inclusion of the dilaton is discussed in section 3.3.
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The potential has a minimum at

e6q =
N0

4
(3.6)

with negative potential energy at the minimum

V0 = −3 e−8q. (3.7)

Comparing (3.1) with the standard expression for AdS5×T 1,1 metric (2.1), we recover the

scaling of the T 1,1 radius R with N0

R2 ∼ e3q → R4 ∼ N0 (3.8)

with other factors reabsorbed in L in (3.1). Taking the value for V0 (3.7) and removing a

factor of e−5q to change to the 10d frame, we recover the same scaling for the radius of the

AdS5 vacuum.

The KS throat (actually its asymptotic KT form) is a solution of the above effective

action. Following [24], we take the following ansatz for the metric

ds2
10 = s−1/2(r) ηµν dx

µ dxν + h1/2(r) (dr2 + r2ds2
T 1,1). (3.9)

In terms of (3.1), this corresponds to

e3q = r2 h1/2(r) , ds 2
5 = e5q [ s−1/2(r) ηµν dx

µ dxν + h1/2(r) dr2 ]. (3.10)

The effective theory admits a solution where

φ = M log r , s(r) = h(r) =
1

4r4
M2 log

r

r∗
, (3.11)

with r∗ some reference value. This is just the throat solution discussed in section 2.2.

The effective action can be exploited to recover the result of the transplanckian field

range covered by the axion. Since the 5d effective action is already in the 5d Einstein

frame, we can read out and evaluate the kinetic term for φ in (3.3)

Gφφ ∼ e−6q = [ r4 h(r) ]−1 ∼ (M2 log r )−1. (3.12)

We thus recover, in a more precise setting, the result (2.24), and thus the corresponding

unbounded (and hence transplanckian) field range.

3.2 The axion effective field theory

As explained, the above action should be regarded as a consistent truncation in supergrav-

ity, but not as a Wilsonian effective action. In other words, at the scale 1/R at which the

stabilization of the breathing mode occurs, there are many other modes, corresponding to

KK excitations of the 10d fields in X5 which are not included in the action. Note that this

scale goes as 1/R ∼ (log r)−1/4. On the other hand, the effective dynamics for the axion

occurs at far lower scales, set by ∂φ = 1/r. Similarly, the scale of the backreaction on the
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compactification radius or the vacuum energy is measured by their derivatives with respect

to r, which are similarly suppresed by 1/r (or even with additional inverse powers of log r).

It is therefore interesting to construct an effective field theory including just the axion and

intended to describe its dynamics at those scales (hence, including the backreaction on the

volume and vacuum energy).

For this, we minimize the scalar potential for q keeping φ fixed. This gives the condition

5

2
(N0 +Mφ)2 x2 +

7

4
gsM

2 x− 40 = 0 , with x = e−6q. (3.13)

Rather than solving the above exactly, since we are focusing on the large r regime, where

φ is large and x is comparably small, we drop the subleading second term, and obtain

e6q =
1

4
(N0 +Mφ). (3.14)

This reproduces the result of the KS solution that e6q ∼ M2 log r for φ ∼ M log r, so we

are capturing the relevant physics.

We should replace that value in the potential. Again restricting to large r, we drop

the second term in (3.4) and obtain

V = −e−8q

[
5− 1

8
(N0 +Mφ)2 e−12q

]
. (3.15)

This has the same structure as (3.5) with the replacement N0 → N0 +Mφ. The potential

should be regarded as a function of φ only, by simply replacing (3.14) in this expression.

It is therefore clear that considering a profile φ = M log r leads to the appropriate change

in the vacuum energy, so that the backreaction of the axion monodromy is duly included.

The complete axion action should include its kinetic term, obtained from that in (3.3)

by using (3.14). We recover a kinetic term

∼ (N0 +Mφ)−1(∂φ)2, (3.16)

which again reproduces the familiar result about the transplanckian distance traveled in

the rolling solution considered.

This effective action suffices to describe the dynamics of the transplanckian axion

monodromy, so it is a well-defined setup to test/propose swampland conjectures on effective

actions. For instance, one natural idea is to consider if there is an analog of the swampland

distance conjecture, and there is a tower of states becoming exponentially light as the

axion travels at arbitrarily large distances. This is not the case, as follows. The invariant

distance in axion field space goes (for large φ) as d ∼ φ1/2; on the other hand, the masses

of KK modes (which are the primary suspects for fields becoming light at large φ, since

R increases), scale as mKK ∼ e−4q ∼ (φ)−2/3, hence mKK ∼ d−4/3 and there is no tower

of exponentially light states. This is compatible with the swampland distance conjecture,

if interpreted as applying to field ranges approaching points at infinite distance in moduli

space [2, 47]. It is also compatible with the oftentimes used version for transplanckian

geodesic distances, since in the next section we will show that our axion travel does not

– 12 –
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follow a geodesic. However the model provides a beautiful way in which a fully backreacted

monodromic axion can travel arbitrarily large distance in field space without triggering the

appearance of exponentially light states.

There are other interesting questions that can be addressed in the present setup, such

as the application of swampland constraints on the scalar potential, or the realization of

the weak gravity conjecture in the present setup, etc. Since the underlying model is a string

theory compactification on a smooth geometry with fluxes, we expect no new surprises or

novel mechanisms related to these other swampland conjectures.

3.3 Inclusion of the dilaton

As announced, in this section we show that the underlying reason for the compatibility

of the transplanckian axion monodromy model with the swampland distance conjectures

is that the axion does not follow a geodesic in the moduli of light fields. The crucial

ingredients to understand this are the spacetime dependence of the axion, and the inclusion

of the dilaton in the moduli space.

The original KT 5d effective action [24] includes further fields beyond those included

in the earlier discussion. Indeed, it contains fields ϕa = q, f,Φ, φ, where f describes a

possible asymmetric volume for the S2 and S3 of T 1,1, and Φ is the dilaton. The 5d action

for these fields has the structure (3.2) with

Gab(ϕ) = diag

(
15, 10,

1

4
,
1

4
e−Φ−4f−6q

)
,

V (ϕ) = e−8q
(
e−12f − 6e−2f

)
+

1

8
M2eΦ+4f−14q +

1

8
(N0 +Mφ)2e−20q.

(3.17)

The pure AdS×T 1,1 solution for M = 0 shows that in this action the breathing mode q

and asymmetric mode f are heavy modes, while the axion φ and dilaton Φ remain as light

fields. Morally, we should thus consider the later as parametrizing a moduli space at scales

hierarchycally below the KK scale, with a potential induced by the introduction of non-zero

M . This is manifest because the terms including M in the potential are subdominant with

respect to the first, M -independent, one.

This allows to integrate out q and f . We may minimize the leading potential for f ,

and set f = 0 (as implicit in the previous section). For the minimization of q, we proceed

as in the previous section and recover (3.14).

Note that, in the resulting theory for the axion and the dilaton, there is a non-trivial

potential for the dilaton. This is however compatible with its constant value in the axion

monodromy solution in an interesting way: the spacetime dependence of the axion has

a non-trivial backreaction in the dilaton, through the dilaton dependence of the axion

kinetic term, which induces an effective potential for the dilaton balancing the original one

and allowing for a constant dilaton solution. Quantitatively, the equation of motion for a

general field in the presence of a spacetime-dependent axion background reads

1
√
g
∂ν (
√
ggµνGac∂µϕ

a) =
1

2

∂Gφφ
∂ϕc

(∂φ)2 +
∂V

∂ϕc
. (3.18)
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For the dilaton, the condition to allow for a constant dilaton eΦ = gs is the vanishing of

the right-hand side, which is proportional to

−e−6q−Φ(∂φ)2 + e−14q+ΦM2. (3.19)

This indeed vanishes in the KT solution, allowing for a constant dilaton. As anticipated,

the spacetime dependence of the axion exerts a force on the dilaton keeping it constant on

the slope of its bare potential.

The scale of this effect is set by the gradient of the axion ∂φ, which is hierarchycally

below the KK scale. This implies that the corresponding backreaction effect for the other

fields q and f is negligible, and can be ignored when they are integrated out, as implicit

in our above discussion. It also implies that it is not appropriate, in a Wilsonian sense, to

integrate out the dilaton dynamics, as it occurs at the scale relevant for axion dynamics.

This last observation raises an important point. In checking the interplay of our axion

monodromy model with the swampland distance conjectures, the moduli space on which

distances should be discussed is that spanned by the axion and the dilaton, as their poten-

tial on this moduli space is hierarchically below the KK scale cutoff. As we have shown, in

this moduli space the KT solulion describes an axion monodromy model traversing trans-

planckian (and actually arbitrarily long) distances without encountering infinite towers of

light states. However, as we now argue, this does not contradicts swampland distance

conjectures, since the trajectory does not correspond to a geodesic in the axion-dilaton

moduli space.

After replacement of q and f by their values at the minimum of their potentials, the

kinetic term for φ, Φ reads

Lkin =
1

8
(∂Φ)2 +

(
e−Φ

2 (N0 +Mφ)
+

5M2

24 (N0 +Mφ)2

)
(∂φ)2. (3.20)

At large φ we can neglect the subleading second term in the kinetric term of φ and get

Lkin =
1

8
(∂Φ)2 +

e−Φ

2 (N0 +Mφ)
(∂φ)2. (3.21)

To look at the geodesics of this theory it is convenient to change variables

x =
4

M

√
N0 +Mφ,

y = 2eΦ/2 = 2
√
gs.

(3.22)

This leads to

Lkin =
1

2y2

[
(∂x)2 + (∂y)2

]
, (3.23)

which is the metric of the hyperbolic plane. Geodesics of this space, considering y the verti-

cal axis, are vertical lines or half-circles centered in the horizontal axis. On the other hand,

the KT solution corresponds to horizontal lines at different constant values of the dilaton.

– 14 –



J
H
E
P
0
5
(
2
0
1
9
)
1
7
6

4 The 4d case

The above discussion has been carried out in the 5d context because, being holographically

dual to 4d gauge theories, these are the best studied warped throats. However, there are

well studied supergravity solutions of the form AdS4 ×X7, and supergravity solutions of

the KT kind when the horizon variety X7 admits the introduction of fluxes [48]. In the

following we review these backgrounds and show that they realize in 4d the same kind of

transplanckian axion monodromy as the 5d configurations described above.

The starting point is the AdS4 × X7 background, which can be regarded as arising

from the near-horizon limit of a stack of N coincident M2-branes [49]

ds2 = h(r)
2
3 ηµν dx

µ dxν + h(r)
1
3 ( dr2 + r2 ds 2

X7
), (4.1)

where now Greek indices label non-compact coordinates spanning, together with r, the 4d

spacetime. The harmonic function is

h(r) =
25 π2N `6p

r6
. (4.2)

Namely, we have

ds2 =
R4

r4
ηµν dx

µ dxν +R2 dr
2

r2
+R2 ds 2

X7
, (4.3)

where

R6 = 25 π2N `6p. (4.4)

There are N units of flux of the 7-form field strength F7 (dual to the 4-form field strength

F4) through X7.

Consider an X7 with a non-trivial 4-cycle,8 on which we turn on M units of 4-form

field strength flux F4. Taking the dual 3-cycle Π3 in X7, there is a 4d axion

φ =

∫
Π3

C3. (4.5)

This axion is monodromic, as follows from the reduction of the 11d Chern-Simons coupling∫
11d

F4 ∧ F4 ∧ C3 →
∫

4d
M φF4. (4.6)

The monodromy implies that the value of N varies with φ as

N = N0 +M φ, (4.7)

with N0 a reference value, which we take zero in what follows.

8Such horizons can be obtained for instance by taking the near horizon limit of M2-branes at toric

CY3 ×C (leading to 3d N = 1 theories), where the CY3 admits a complex deformation corresponding to

the size of a 3-cycle. The horizon X7 then contains (an S1 worth of) such 3-cycle, and hence its dual 4-cycle.
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This leads to a 4d analog of the KT throat found in [48] and given by a flux background

F4 = d3x ∧ dh−1 +M ∗7 ω3 −M
dr

r
∧ ω3. (4.8)

Here ω3 is the Poincare dual to the 4-cycle in X7, so the second term corresponds to the F4

flux through the 4-cycle. The third term corresponds to a rolling scalar profile dφ = dr/r,

hence

φ ∼ M log r. (4.9)

Hence we have the axion rolling logarithmically up its monodromic potential, exactly as in

the 5d KS solutions discussed above. The first term correspond to the dual of the flux of

F7 through X7, which varies with the radial coordinate due to the axion monodromy.

The harmonic function h(r) is

h(r) = M2

(
log r

6r6
+

1

36r6

)
(4.10)

(up to some ρ/r6 factor, which defines a reference value which we take to be zero). It also

determines the metric by replacement in (4.1).

The solution, just like in the 5d KT example, has a naked singularity at r = 0, which is

presumably smoothed out at least for certain geometries X7, although no analog of the full

KS solution has been found. It would be interesting to develop the dictionary of fractional

M2-brane theories and their gravity duals further to gain insight into such smoothings.

This however lies beyond the scope of the present paper.

It is straightforward to compute the 4d kinetic term of the axion φ as in the simplified

5d calculation in section 2.3. Specifically, the Einstein-Hilbert and 3-form kinetic term in

the 11d action read

S11 =
1

2κ 2
11

∫
d11x

√
−g11

(
R11 +

1

2
|F4|2

)
. (4.11)

Define the volume of X7 = (RR̃)7, where R defines the backgound value and R̃ its breathing

mode. The KK reduction to 4d contains the terms

S4 =
1

2κ 2
4

∫
d11x

√
−g4

(
R̃7R4 + c R̃ gmn ∂m∂nφ

)
. (4.12)

Here we have introduced

κ 2
4 =

κ 2
11

R7
. (4.13)

Also, the factor R̃ in the axion kinetic term arises from an R̃7 from the compactification

volume and a factor R̃−6 from three inverse metrics of X7 required for the contractions of

|ω3|3. Finally c is a constant that depends on geometrical properties of the cycles in X7.

Going to the 4d Einstein frame we have

S4 =
1

2κ 2
4

∫
d11x

√
−g4

(
R4 + c R̃−6 gmn ∂m∂nφ

)
. (4.14)
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So the kinetic term for the axion gives

Gφφ ∼ R̃−6 ∼ (M2 log r)−1. (4.15)

This is exactly as in the 5d example, and again leads to arbitrarily large, in particular

transplanckian, field ranges traversed by the axion roll.
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A Periodic crossing and the dual Hanany-Witten picture

In this section we discuss a T-dual realization of the KS duality cascade, in terms of the

NS5- and D4-brane configurations [50] realizing 4d gauge theories à la Hanany-Witten [51].

The picture is similar to that mentioned in [10], albeit with additional relevant refinements.

The configuration is flat 10d space with one dimension, labelled 6, compactified on

an S1. There is one NS5-brane along the directions 012345 (and at the origin in 89), and

one NS5-brane (denoted NS5’) along the directions 012389 (and at the origin in 45), with

D4-branes along 0123 and suspended among them in 6 (and at the origin in 4589), in a

compact version of [52]. The positions of all branes in the directions 7 are taken equal.

The numbers of D4-branes at each side of the interval are N and N +M respectively. The

scalar φ corresponds to the distance (in units of 2π the radius of S1) between the NS and

the NS’-branes, so it has periodicity φ ∼ φ+ 1.

In a naive description, as the scalar winds around its period, the crossings of the NS

and NS’-branes produce Seiberg dualities that complete a full cycle in the duality cascade.

This naive picture would seem to suggest that each crossing leads to additional light degrees

of freedom, which could spoil the axion monodromy, or at least its description in terms of

an effective action not including these new modes.

However, the actual picture is somewhat more intricate and is free of these problems.

The answer lies in the phenomenon of brane bending in [50], which implies that the M

additional D4-branes on one of the intervals forces the NS- and NS’-branes to bend. This

bending has a logarithmic dependence, and is a long distance result of the description

of the whole system as a single M5-brane in a holomorphic curve in the M-theory lift of

the configuration [50, 53]. In N = 2 4d theories, this corresponds in a precise manner

to the field theory running of gauge couplings on the Coulomb branch. In the present

N = 1 setup, the RG direction (to become the radius in the gravitational dual side) can be

thought of as the radial distance away from the point x4 = x5 = x8 = x9 = 0 at which all

branes are located. Then, there is a logarithmic bending of the positions of the NS- and
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NS’-branes in the directions 6, which matches the above naive description. However, the

other positions of the NS- and NS’-branes in the other directions do not coincide, hence

no actual crossing of branes occurs. The discussion of Seiberg dualities carries over but in

this more precise sense. The phenomenon is similar to the discussion in [54].
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