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1 Introduction

Supersymmetric field theories in curved space have attracted many interests in recent years.

For such theories supersymmetric localization technique [1, 2] allows the non-perturbative

exact computation of some interesting physical quantities such as the partition function

and BPS Wilson loops, which can be used to test the duality conjectures like the AdS/CFT

correspondence [3–5]. In this paper we focus on supersymmetric field theories with a U(1)R
symmetry on curved manifolds in 3+1 dimensions.

According to [6–8] (see also [9] for a recent review), one can formulate a N = 1 theory

with a U(1)R symmetry in 4D curved space via coupling to the new-minimal supergrav-

ity [10, 11]: one first couples the R-multiplet to the new-minimal supergravity multiplet

and then take a rigid limit sending the Newton’s constant to zero, so that the supergravity

is decoupled while the fields in the supergravity multiplet are sent to fixed backgrounds. In

constructing supersymmetric field theories in curved space, background fields are typically

chosen to be bosonic, and consistency with supersymmetry requires the supersymmetry

variation of the gravitino in the gravity multiplet to vanish, which leads to a generalized

Killing spinor (GKS) equation. For each solution of the GKS equation there exists a con-

served supercharge. In the case of 4D N = 1 theory with a U(1)R symmetry, the GKS

equation can have a solution if and only if the background manifold admits an integrable

complex structure and a compatible Hermitian metric.

Important exact results were obtained for the 4D N = 1 supersymmetric field theory

with an R-symmetry in [12–17], using localization technique. Here we list some of them:
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• When there are two supercharges with opposite U(1)R charge, supersymmetric renor-

malization scheme is free of ambiguities and the partition function is invariant under

the deformation of the Hermitian metric for a fixed complex structure.

• When the background manifold is S3
r3

× S1
β , the supersymmetric Casimir energy

becomes

Esusy ≡ − lim
β→∞

d

dβ
logZsusy =

4

27r3
(a+ 3c), (1.1)

where a and c are two trace anomaly coefficients in four dimensions.

We recall that the field theory computations in [12–17] were carried out by using the

supersymmetric Ward identities and the supersymmetry algebra which are derived from the

classical new-minimal supergravity. In [18] (see also section 7.10 of [19]) it was argued via

the superspace formalism that the new-minimal supergravity can be in general quantum-

mechanically inconsistent, due to the appearance of the “superscale” anomalies (consisting

of the conformal anomaly, the U(1)R chiral anomaly and the γ-trace of the supercurrent)

that are inconsistent with the local supersymmetry Ward identities. Then one could also

question the quantum consistency of the new-minimal supergravity formulation of the rigid

N = 1 field theories with an R-symmetry. However, [18] considered only the one-point

function of the supercurrent superfield and one could expect that there is no inconsistency

for the backgrounds on which the anomalies in the Ward identities (for current one-point

functions) are numerically vanishing. In particular, the backgrounds considered in [14–

17, 20, 21] are anomaly-free in this sense. Nevertheless, the anomalies might appear in the

higher-point correlation functions as the contact terms, some of which may be physically

meaningful. This motivates us to study the higher-point correlation functions to investigate

the quantum consistency.

In this paper we analyze the two-point and higher-point correlation functions of the

current operators in the R-multiplet. Assuming that the supercurrent Ward identity is

non-anomalous and that the vacuum is supersymmetric, we show that the unbroken super-

symmetry is inconsistent at the quantum level unless the coefficient of the U(1)R anomaly

vanishes. Note that the anomaly coefficients depend only on the field content of the theory.

Since the Ward identities and the rigid supersymmetry algebra are a direct consequence

of the new-minimal supergravity, this implies that the 4D N = 1 field theory with an

R-symmetry can be consistently formulated in terms of the new-minimal supergravity only

for some special systems with the field content that leads to vanishing coefficient of U(1)R
anomaly. One example of this is a theory that consists of a free chiral multiplet with

R-charge 1, since in this case the Weyl fermion in the chiral multiplet is uncharged under

the U(1)R symmetry and gives no contribution to the U(1)R chiral anomaly.

The rest of this note is organized as follows. In section 2 we briefly review the sym-

metries of the new-minimal supergravity, the definition of the generalized Killing spinor

(GKS) and the construction of the Killing vector from the GKSs. We then derive the Ward

identities of N = 1 supersymmetric field theories with an R-symmetry in section 3, the

results of which are used to reproduce the rigid supersymmetry algebra in section 4. In sec-

tion 5 we show that in order for N = 1 field theories with an R-symmetry to be consistently
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formulated via the new-minimal supergravity the (pure) U(1)R chiral anomaly coefficient

should vanish. Finally, we end with concluding remarks in section 6. Appendix A contains

our conventions, while appendix B explicitly derives the transformation laws of the current

operators in R-multiplet in a N = 1 supersymmetric theory with a free chiral multiplet

on R× S3.

2 New minimal supergravity and Killing spinor

In this section, we briefly review the symmetries of the new-minimal supergravity and

define a GKS and a Killing vector, as preliminaries for deriving the Ward identities of the

N = 1 field theory with an R-symmetry in the next section.

We begin with the construction of the new-minimal supergravity [10, 11]. It is for-

mulated by first minimal-coupling the R-multiplet (consisting of energy-momentum tensor

T µν , supercurrent Sµ
α , U(1)R current J µ and closed two-form Fµν) to the supergravity

multiplet (containing metric gµν , gravitino ψαµ, U(1)R gauge field Aµ and two-form gauge

field Bµν) to obtain the linear Lagrangian, which is then completed to the non-linear form.

The linear couplings take the form

− 1

2
T µνgµν + ψ̄µSµ + J µ

(

Aµ − 3

2
Vµ

)

+
1

4
εµνρλFµνBρλ, (2.1)

where Vµ = 1
4εµ

νρλ∂νBρλ. By definition, the vector field V µ is conserved, i.e. ∇µV
µ = 0. In

general backgrounds the operators in the R-multiplet are defined in terms of the functional

derivatives of the action S with respect to corresponding fields in the supergravity multiplet,

namely

T µν(x) = −2

e

δS

δgµν(x)
, (2.2a)

Sµ(x) =
1

e

δS

δψ̄µ(x)
, (2.2b)

J µ(x) =
1

e

δS

δAµ(x)
, (2.2c)

Fµν(x) =
1

e
εµνρλ

δS

δBρλ(x)
, (2.2d)

where e ≡ |det eaµ| with eaµ being the vierbein.

At the classical level the new-minimal supergravity possesses the local supersymmetry

as well as the U(1)R chiral symmetry and the diffeomorphism invariance. The correspond-

ing transformation laws for the fields in the supergravity multiplet are given as follows (for

conventions see appendix A):

• Local supersymmetry transformation

δǫe
a
µ = −1

2
ψ̄µγ

aǫ, (2.3a)

δǫψµ = Dµǫ+
i

2
γµ(V

ργργ∗ǫ), (2.3b)
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δǫBµν =
1

2
(ψ̄µγν − ψ̄νγµ)ǫ, (2.3c)

δǫAµ =
i

4

(

Dλψ̄σ +
i

2
ψ̄σγ∗γκV

κγλ

)

γ∗γ
λσγµǫ. (2.3d)

• U(1)R chiral gauge transformation

δΛAµ = ∂µΛ, (2.4a)

δΛψµ = −iγ∗ψνΛ. (2.4b)

• Diffeomorphism

δξgµν = Lξgµν = ∇µξν +∇νξµ, (2.5a)

δξAµ = LξAµ = −Fµνξ
ν +∇µ(ξ

νAν), (2.5b)

δξBρλ = LξBρλ = ξκ∇κBρλ +∇ρξ
κBκλ +∇λξ

κBρκ, (2.5c)

δξψµ = ξν∂νψµ + (∂µξ
ν)ψν . (2.5d)

Here Fµν ≡ ∇µAν −∇νAµ. We have omitted the higher-order terms in the gravitino, since

they are irrelevant to our analysis. One can confirm the above transformation laws by

checking invariance of the pure new-minimal supergravity action, given by

Snm =
1

2

∫

d4x e
(

R+ 6VµV
µ − 8AµV

µ − ψ̄µγ
µνρDνψρ + (4 fermion terms)

)

, (2.6)

where R is a Ricci scalar.

As mentioned in the Introduction, a field theory with rigid supersymmetry is defined

on the supersymmetric backgrounds, i.e. the ones that admit at least one solution of the

GKS equation. For N = 1 field theories with an R-symmetry the GKS equation becomes

δǫψµ = Dµǫ+
i

2
γµ(V

ργργ∗ǫ) = 0. (2.7)

Now let us denote a solution of (2.7) as ζ. As we will see in section 3, there exists

a conserved supercharge corresponding to ζ. For the discussion of the supersymmetry

algebra given in section 3, we need to define a real vector1 (i.e. K∗ = K)

K = Kµ∂µ with Kµ = η̄γµζ. (2.8)

Here η ≡ iγ∗ζ is also a GKS. By using the Fierz identity and the integrability condition

for the GKS ζ, one can derive following relations [22]:

Kµγµζ = 0, KµKµ = 0, (2.9a)

LKζ = Kµ∇µζ +
1

4
∇µKνγ

µνζ = −KµAµ(iγ∗ζ), (2.9b)

∇µKν = −εµνρσV
ρKσ, Kµ∇µVν = 0, (2.9c)

FµνK
µ = 0. (2.9d)

1Notice that ǭγµǫ = 0, which follows from the property of the Majorana conjugation.
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It therefore follows that the background fields are invariant with respect to the null vector

K up to a gauge transformation for the U(1)R gauge field A, namely

LKgµν = ∇µKν +∇νKµ = 0, (2.10a)

LKAµ = −FµνK
ν +∇µ(K

νAν) = ∇µ(K
νAν), (2.10b)

LKVµ = −VµνK
ν +∇µ(V

νKν) = 0, (2.10c)

where Vµν ≡ ∇µVν −∇νVµ. Note that the Killing condition for Vµ is not equivalent to that

for Bµν . In fact, we do not need the Killing condition for the background field Bµν , as we

will see in the next section.

3 Ward identities and correlation functions

In this section, we derive the Ward identities of the N = 1 field theory with an R-symmetry

in 4D curved space and then comment on some properties of correlation functions, which

will be basis of the discussions of the next sections.

3.1 Ward identities

The Ward identities corresponding to the symmetries discussed in the previous section

can be obtained by using the local renormalization group formalism [23] (see also [24]

for a recent review). To this end one first defines the generating functional of connected

correlation functions

W [gµν , ψµ, Aµ, Bµν ] = −i logZ[gµν , ψµ, Aµ, Bµν ], (3.1)

where Z[gµν , ψµ, Aµ, Bµν ] is the partition function in the presence of the non-dynamical

background sources, i.e. Z =
∫

[DΦ] exp iS[Φ; gµν , ψµ, Aµ, Bµν ] (Φ represents generic matter

fields), and the usual expectation values are defined as 〈. . .〉 ≡ Z−1
∫

[DΦ] . . . exp iS. The

gravitino background ψµ is set to zero at the end of the computations, since we consider the

bosonic backgrounds. Recall that the variation of the generating functional W is given by

δW =

∫

d4x e

[

−1

2
〈T µν〉 δgµν + δψ̄µ 〈Sµ〉+ 〈J µ〉 δGµ +

1

4
εµνρλ 〈Fµν〉 δBρλ

]

, (3.2)

where Gµ ≡ Aµ− 3
2Vµ. (3.2) gives the definition of the one-point functions of the operators

in the presence of arbitrary sources. Namely, (3.2) implies that

〈T µν(x)〉gµν ,ψµ,Aµ,Bµν
= −2

e

δW

δgµν(x)
, (3.3a)

〈Sµ(x)〉gµν ,ψµ,Aµ,Bµν
=

1

e

δW

δψ̄µ(x)
, (3.3b)

〈J µ(x)〉gµν ,ψµ,Aµ,Bµν
=

1

e

δW

δAµ(x)
, (3.3c)

〈Fµν(x)〉gµν ,ψµ,Aµ,Bµν
=

1

e
εµνρλ

δW

δBρλ(x)
. (3.3d)
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The Ward identities corresponding to the symmetries (2.3), (2.4) and (2.5) are obtained

by requiring δW = 0 up to potential quantum anomalies for the variations (2.3)–(2.5), and

the results are as follows:

0 = −Dµ 〈S̄µ〉+ i

2
〈S̄µ〉 γµ(V ργργ∗) +

1

2
ψ̄µγν 〈T µν〉+ 3

8

[

(ψ̄µγν + ψ̄νγµ)V
ν 〈J µ〉

− ψ̄ργ
ρVµ 〈J µ〉 − ψ̄λγρε

µνρλ∇ν 〈Jµ〉 − iεµρσν 〈Jσ〉Vρψ̄µγ∗γν

]

+
i

4
Dλψ̄σ(−iελσµνγ

ν + δσµγ∗γ
λ − δλµγ∗γ

σ) 〈J µ〉+ 1

4
ψ̄µγνε

µνρλ 〈Fρλ〉 , (3.4)

Adiffeo = ∇µ 〈Tµν〉 − 〈J µ〉Gµν −∇µ 〈J µ〉Gν +
1

4
εµκρλ 〈Fµκ〉 (∇νBρλ +∇ρBλν +∇λBνρ),

(3.5)

Achiral = ∇µ 〈J µ〉 . (3.6)

Here

Gµν ≡ ∇µGν −∇νGµ, Dν S̄µ ≡ ∇ν S̄µ −Gν(iγ∗S̄µ) (3.7)

and the gravitino-dependent terms are omitted in (3.5) and (3.6). In (3.4) it is assumed

that there is no supersymmetry anomaly.

The diffeomorphism anomaly Adiffeo and the U(1)R chiral anomaly Achiral need fur-

ther explanation. The chiral anomaly is usually accompanied by the mixed gravitational

anomaly, which breaks the classical diffeomorphism invariance. The anomalies are given by

Achiral =
1

4
εκσαβ

[

cAGκσGαβ + (1− α)cmRν
λκσR

λ
ναβ

]

, (3.8)

Adiffeo = −αcmgµν
1√−g

∂λ

[√−g
1

2
εκσαβGκσ∂αΓ

λ
µβ

]

, (3.9)

see e.g. [25] for a recent review. Here the coefficients cA and cm are determined according to

the field content of the theory and are related to the central charges. The scheme parameter

α is the coefficient of the diffeomorphism and gauge non-invariant contact counterterm that

determines where the mixed anomaly appears: if α = 0, then the mixed anomaly appears

only in the U(1)R Ward identity, while if α = 1 it appears only in the diffeomorphism Ward

identity. In this note we choose a scheme α = 0 such that the mixed anomaly does not

appear in the diffeomorphism Ward identity.

We emphasize that even if we mainly consider bosonic backgrounds in quantum field

theory, we must keep the gravitino background field in (3.4) in order to compute two-point

functions of the supercurrent operator. In principle, the Ward identities (3.5) and (3.6)

also contain the gravitino-dependent terms, which we ignore since they are irrelevant unless

we differentiate (3.5) and (3.6) with respect to the gravitino.

3.2 Higher-point correlation functions

Taking further derivatives of (3.3) with respect to the sources gives higher-point correlation

functions, for which we use double bra-ket notation 〈〈. . .〉〉, i.e.

〈〈Oj1(x1)Oj2(x2) · · · Ojn(xn)〉〉 ≡
∆

∆Bjn(xn)
. . .

∆ 〈Oj1(x1)〉
∆Bj2(x2)

=
∆

∆Bjn(xn)
. . .

∆

∆Bj2(x2)

∆ (iW )

∆Bj1(x1)
.

(3.10)
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Here Oj stands for any operator in the R-multiplet, i.e. Oj = {T µν , Sµ
α , J µ, Fµν}, and

∆
∆Bj

is a suitably defined functional derivative with respect to the background sources

Bj =
{

gµν , ψ̄µ, Aµ, Bρλ

}

as

∆

∆Bj(x)
=

{

− 2

ie

δ

δgµν(x)
,

1

ie

δ

δψ̄µ(x)
,

1

ie

δ

δAµ(x)
.
εµνρλ
ie

δ

δBρλ(x)

}

, (3.11)

so that Oj(x) =
∆(iS)
∆Bj(x)

according to (2.2). For instance,

〈〈T µν(x)J ρ(y)〉〉 ≡ 1

ie

δ 〈T µν(x)〉
δAρ(y)

=
1

ie

δ

δAρ(y)

(

−2

e

δW

δgµν(x)

)

, (3.12)

〈〈Sµ(x)J ν(y)〉〉 ≡ 1

ie

δ 〈Sµ(x)〉
δAν(y)

=
1

ie

δ

δAν(y)

(

1

e

δW

δψ̄µ(x)

)

, (3.13)

〈〈Sµ(x)J ν(y)J ρ(z)〉〉 ≡ 1

ie

δ〈〈Sµ(x)J ν(y)〉〉
δAρ(z)

=
1

ie

δ

δAρ(z)

(

1

ie

δ

δAν(y)

(

1

e

δW

δψ̄µ(x)

))

.

(3.14)

Notice that we use different notation 〈〈. . .〉〉 than the usual one 〈. . .〉C (the subscript C

stands for “connected”), though 〈〈. . .〉〉 is clearly a connected correlation function as W is

the generating functional for connected correlation functions. The reason of using 〈〈. . .〉〉
rather than 〈. . .〉C to denote two- and higher-point functions2 is that the quantity 〈〈. . .〉〉
can differ from 〈. . .〉C by contact terms when the operators depend on the sources due to

the non-linear dependence of the action on the sources. For instance, using the definition

of 〈〈. . .〉〉 given above it can be easily seen that

〈〈J µ(x)J ν(y)〉〉 =
1

ie

δ〈J µ(x)〉
δAν(y)

=

〈(

1

e

δS

δAν(y)
+

1

ie

δ

δAν(y)

)

J µ(x)

〉

C

= 〈J µ(x)J ν(y)〉C − iδ4(x, y)

〈

∂J µ(x)

∂Aν(x)

〉

, (3.15)

where δ4(x, y) = δ4(x − y)/e is the invariant Dirac delta function. In obtaining the last

term in the second line above it is used that the action (and hence operator J ) does not

depend on the derivatives of the background sources which are non-dynamical. The contact

term above corresponds to the second functional derivative of action S with respect to A,

i.e.
〈

δ
eδAν(y)

δS
eδAµ(x)

〉

, which is non-vanishing when the action S depends non-linearly on

the gauge field A. For higher-point functions there can be more contact terms, and in

general it is not obvious whether or not the contact terms play any role and can be ignored

in the calculations.

In order to investigate the potential consequences of the contact terms, let us consider

(n+ 1)-point functions obtained by taking functional derivatives of an one-point function

2For one-point functions we use the usual bra-ket notation 〈·〉 since in this case both quantities are

identical, i.e. 〈〈O(x)〉〉 = 〈O(x)〉.
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of an operator O(x) with respect to the background sources (see (3.10)), i.e.

〈〈O(x)Oj1(x1) · · · Ojn(xn)〉〉=
∆

∆Bjn(xn)
. . .

∆

∆Bj2(x2)

∆

∆Bj1(x1)
〈O(x)〉

=

〈(

Ojn(xn)+
∆

∆Bjn(xn)

)

. . .

(

Oj1(x1)+
∆

∆Bj1(x1)

)

O(x)

〉

C

= 〈Ojn(xn) · · · Oj1(x1)O(x)〉C+contact terms, (3.16)

where the contact terms contain connected correlation functions with less than n + 1 op-

erators and are proportional to δ-functions that arise whenever ∆
∆B

acts on operators. The

contact terms can be split into two parts according to whether it contains δ4(x, xk) or not,

namely

contact terms = terms with δ4(x, xk) + 〈O(x) . . .〉C , (3.17)

where the first part on the r.h.s. of (3.17) consists of terms that contain δ4(x, xk) (and

their products), which results from ∆
∆Bjk

acting on O(x), while the rest is collected into the

second term, which does not contain the derivatives of O(x) and hence can be written in the

form of 〈O(x) . . .〉C The second part in (3.17) contains δ4(xk, xl) (and their products) with

k 6= l and is absent when n = 1 (i.e. for two-point functions). Splitting in the form (3.17)

will be useful in the following discussions.

Now we suppose that O(x) corresponds to a conserved current Xµ, i.e. O(x) = Xµ(x)

with ∇µ〈Xµ(x)〉 = 0. When acting ∇µ = e
−1 ∂

∂xµe on (3.17) and taking integration
∫

d4x e, the first part in (3.17) does not contribute since it leads to the integration of the

total derivative of δ4(x− xj) that vanishes. In the case of two-point functions, the second

part in (3.17) does not exist. Therefore, for the two-point functions all contact terms drop

out through the operations mentioned above, so that we have

∫

d4x e∇µ〈〈Xµ(x)Oj1(y)〉〉 =
∫

d4x e∇µ〈Xµ(x)Oj1(y)〉C = 〈[QX ,Oj1(y)]〉, (3.18)

where QX is the corresponding conserved charge defined as QX ≡
∫

C
dσµ Xµ with C being

the Cauchy surface.3 (3.18) will be often used in section 4. For three-point and higher-

point functions the second part of the contact terms in (3.17) can contribute and needs a

careful treatment.

Let us consider the case when QX annihilates the vacuum state |Ω〉, i.e. QX |Ω〉 = 0.

In this case it follows that

QX |Ω〉 = 0 =⇒
∫

d4x e∇µ〈〈Xµ(x)Oj1(x1) · · · Ojn(xn)〉〉 = 0, (3.19)

This is analogous to the usual formula
∫

d4x e∇µ〈Xµ(x) . . .〉 = 0 when QX |Ω〉 = 0. (3.19)

can be shown as follows. First, note that QX |Ω〉 = 0 leads to
∫

d4x e∇µ〈Xµ(x) . . .〉C = 0,

3One comment is in order on the second equality of (3.18). The usual relation is 〈[QX ,Oj(y)]〉 =∫
d4x e∇µ〈X

µ(x)Oj(y)〉 without subscript C. However, since ∇µ〈X
µ(x)〉 = 0, the disconnected connected

part vanishes, so that 〈[QX ,Oj(y)]〉 =
∫
d4x e∇µ〈X

µ(x)Oj(y)〉C .
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which follows from
∫

d4x e∇µ〈Xµ(x) . . .〉 = 0 and the definition of the connected correla-

tion functions.4 Then, the first term (non-contact part) in (3.16) (with O(x) = Xµ(x)) and

the second part of the contact terms in (3.17) do not contribute to
∫

d4x e∇µ〈〈Xµ(x)Oj1(x1)

· · · Ojn(xn)〉〉. Since the first part of the contact terms in (3.17) does not contribute either

as mentioned above, we end up with (3.19), which will be employed in section 5.

4 Rigid supersymmetry algebra

Now we recover the rigid supersymmetry algebra on the curved backgrounds by deriving

the transformation laws of the supercurrent and U(1)R current with respect to the rigid

supersymmetry.5

In order to set up the general strategy, we first deal with the diffeomorphism Ward

identity. We multiply (3.5) by an arbitrary vector field ξν(x) and take a functional deriva-

tive δ
ie δAρ(y)

to obtain

0 = iξν
[

∇µ 〈〈Tµν(x)J ρ(y)〉〉 −Gµν 〈〈J µ(x)J ρ(y)〉〉 −Gν∇µ 〈〈J µ(x)J ρ(y)〉〉

+
1

4
εµκρλ(∇νBρλ +∇ρBλν +∇λBνρ) 〈〈Fµκ(x)J ρ(y)〉〉

]

− δ4(x, y)[∇ν(ξ
ν 〈J ρ〉)− 〈J ν〉∇νξ

ρ] + e−1∂ν [δ
4(x− y)(ξν 〈J ρ〉 − ξρ 〈J ν〉)]. (4.1)

The integration over x-space (i.e.
∫

d4x e) of the above gives

∇ν(ξ
ν 〈J ρ〉)−〈J ν〉∇νξ

ρ =

∫

d4x e iξν
[

∇µ 〈〈Tµν(x)J ρ(y)〉〉−Gµν 〈〈J µ(x)J ρ(y)〉〉−

−Gν∇µ 〈〈J µ(x)J ρ(y)〉〉+1

4
εµκρλ(∇νBρλ+∇ρBλν+∇λBνρ) 〈〈Fµκ(x)J ρ(y)〉〉

]

,

(4.2)

where the left-hand side actually corresponds to the variation of the operator J ρ under

the diffeomorphism associated with the vector ξµ, see e.g. section 5.2.3 in [26]. It then

follows from (4.2) that the U(1)R current J µ transforms as a vector density under the

diffeomorphism, which has to do with the fact that the quantity conjugate to the vector

source is not a vector but a vector density operator (see e.g. [27]).

4As an illustration of the statement that
∫
d4x e∇µ〈X

µ(x) . . .〉C = 0 if ∇µ〈X
µ(x) . . .〉 = 0, let us

consider connected three-point function
∫
d4x e∇µ〈X

µ(x)Oj1(x1)Oj2(x2)〉C . From the definition of the

connected correlation function we have
∫
d4x e∇µ〈X

µ(x)Oj1(x1)Oj2(x2)〉C =
∫
d4x e∇µ〈X

µ(x)Oj1(x1)

Oj2(x2)〉−
∫
d4x e∇µ〈X

µ(x)〉〈Oj1(x1)Oj2(x2)〉− 〈Oj1(x1)〉
∫
d4x e∇µ〈X

µ(x)Oj2(x2)〉−
∫
d4x e∇µ〈X

µ(x)

Oj1(x1)〉〈Oj2(x1)〉 + 2
∫
d4x e∇µ〈X

µ(x)〉〈Oj1(x1)〉〈Oj2(x2)〉, each term of which contains
∫
d4x e∇µ

〈Xµ(x) . . .〉 = 0, so we have
∫
d4x e∇µ〈X

µ(x)Oj1(x1)Oj2(x2)〉C = 0. This fact is easily generalized to

the arbitrary higher-point functions.
5We suspect that these transformation rules should be known, but we found only their flat-space version

in the literature, see e.g. [10, 12].
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Multiplying (3.5) by Kν defined in (2.8) and assuming that KµAµ is made constant6

by a suitable U(1)R gauge transformation, we obtain7

∇µ 〈Cµ
K(x)〉 = 0, (4.3)

where

Cµ
K(x) ≡ Kν

[

T µν − J µ

(

Aν − 3

2
V ν

)

+
1

2
εµνρλFρλ

]

(x). (4.4)

This allows us to define a conserved charge

QK ≡
∫

C

dσµ Cµ
K , (4.5)

where C is any Cauchy surface. Now using (3.18) and replacing ξ by K in (4.2), we obtain

i〈[QK ,J ρ]〉 =
∫

d4x e i∇µ〈〈Cµ
K(x)J ρ(y)〉〉 = ∇ν(K

ν〈J ρ〉)− 〈J ν〉∇νK
ρ. (4.6)

Now we use the above strategy to recover the rigid supersymmetry algebra for N = 1

field theories with an R-symmetry. Multiplying (3.4) by the GKS ζ(x) and setting the

gravitino to zero gives

∇µ

(

〈S̄µζ(x)〉
)

= 0, (4.7)

which allows us to define a conserved supercharge associated with the GKS ζ as

Qζ ≡
∫

C

dσµ S̄µζ. (4.8)

Independence of Qζ on the choice for the Cauchy surface, i.e. conservation of Qζ is an

immediate consequence of the Ward identity (3.4) on the bosonic background. Note that

we can also define a conserved supercharge Qη associated with the GKS η = iγ∗ζ. Now we

multiply (3.4) by the GKS ζ and taking the functional derivative 1
ie

δ
δψ̄µ(y)

to obtain

i∇ν〈〈(S̄νζ)(x)Sµ(y)〉〉 = δ4(x, y)

[

1

4
γνζ

(

2 〈T µν〉+3 〈J µ〉V ν+〈J ν〉V µ−gµν 〈J ρ〉Vρ+εµνρλ 〈Fρλ〉

−1

2
εµνλσ∇λ 〈Jσ〉

)

+
i

4
γ∗γνζ(g

µν∇ρ 〈J ρ〉−∇ν 〈J µ〉+εµνσκ 〈Jσ〉Vκ)

]

+
i

4
e
−1∂λ

[

δ4(x−y)(−iελµσνγ
ν+δµσγ∗γ

λ−δλσγ∗γ
µ)ζ 〈J σ〉

]

, (4.9)

6When KµAµ is not constant, it seems that there are several inconsistencies in constructing the super-

symmetry algebra. For instance, one can not define a conserved charge associated with the Killing vector

K, and the Lie derivative of ζ with respect to K does not satisfy the generalized Killing condition.
7A careful derivation is necessary for the term containing Fρλ. First of all, we have ∇µ(ε

µνρλKνFρλ) =

4V µKνFµν = εµρσλKν(∇ρBσλ)Fµν . Combining this with ε[µρσλKν](∇ρBσλ)Fµν = 0, which im-

plies εµρσλKν(∇ρBσλ)Fµν = 1
2
Fµνε

σλµνKρ(∇ρBσλ + ∇λBρσ + ∇σBλρ), gives ∇µ(ε
µνρλKνFρλ) =

1
2
Fµνε

σλµνKρ(∇ρBσλ +∇λBρσ +∇σBλρ). Notice that we do not need the Killing condition for Bµν .
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where we have set the gravitino background to zero at the end. Integrating (4.9) over

x-space and using (3.18) give

i〈[Qζ ,Sµ]〉 =
∫

d4
x e i∇ν〈〈(S̄νζ)(x)Sµ(y)〉〉

=
1

4
γνζ

(

2 〈T µν〉+3 〈J µ〉V ν+〈J ν〉V µ−gµν 〈J ρ〉Vρ+εµνρλ 〈Fρλ〉−
1

2
εµνλσ∇λ 〈Jσ〉

)

+

+
i

4
γ∗γνζ

(

gµν∇ρ 〈J ρ〉−∇ν 〈J µ〉+εµνσκ 〈Jσ〉Vκ

)

. (4.10)

Note that using (4.10) we can rewrite (4.9) in a simple form as

∇ν 〈〈(S̄νζ)(x)Sµ(y)〉〉 = δ4(x, y) 〈[Qζ ,Sµ]〉+1

4
e
−1∂λ

[

δ4(x−y)(−iελµσνγ
ν+δµσγ∗γ

λ−δλσγ∗γ
µ)ζ 〈J σ〉

]

.

(4.11)

Multiplying (4.10) by ζ̄ and η̄ gives respectively (omitting the bra-ket notation 〈·〉)

i[Qζ , ζ̄Sµ] =
1

4
∇ρ(K

µJ ρ −KρJ µ), (4.12)

i[Qζ , η̄Sµ] =
1

2
Kν

[

T µν −GνJ µ +
1

2
εµνρλFρλ

]

− 1

8
∇λ(ε

µνλσKνJσ) +
1

2
(KνAν)J µ.

(4.13)

It then follows that

∇µ[Qζ , ζ̄Sµ] = 0, [Qζ ,Qζ ] = 0, (4.14)

i[Qζ ,Qη] =
1

2
QK +

1

2
(KνAν)QR, (4.15)

where QR is the U(1)R charge.

Now we multiply (3.4) by the GKS ζ(x), differentiate it with respect to Aµ(y) and

Bσλ(y), respectively (cf. (3.3)), and set the gravitino to zero. Then, we get

∇ν〈〈(S̄νζ)J µ〉〉 = 〈S̄µ〉 γ∗ζδ4(x, y), ∇ρ〈〈(S̄ρζ)Fµν〉〉 =
1

2

[

∇µ(〈S̄ρ〉 γργνγ∗ζ)−(µ ↔ ν)
]

δ4(x, y),

(4.16)

which lead to

[Qζ ,J µ] = S̄µγ∗ζ, i[Qζ , QR] = Qη, (4.17)

[Qζ ,Fµν ] =
1

2

[

∇µ(S̄ργργνγ∗ζ)− (µ ↔ ν)
]

. (4.18)

These transformation laws of the currents Sµ, J µ and Fµν under the rigid supersymmetry

are explicitly checked in appendix B for a free chiral theory on R× S3.

Transformation law for the supercharge Qζ under the diffeomorphism associated with

the Killing vector K can be obtained by differentiating the diffeomorphism Ward identity

with respect to the gravitino source. For this, the diffeomorphism Ward identity should
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be extended to involve the gravitino-dependent terms. We do not present the details of its

calculation here, but give the final result as

i[QK ,Qζ ] = −(KµAµ)Qη or [QK + (KµAµ)QR,Qζ ] = 0, (4.19)

which is consistent with (2.9b).

In summary, the supersymmetry algebra is

i[Qζ ,Qη] =
1

2
QK +

1

2
(KνAν)QR, (4.20a)

[QK + (KµAµ)QR,Qζ ] = 0, i[Qζ , QR] = Qη, (4.20b)

[QK + (KµAµ)QR,Qζ ] = 0, (4.20c)

see e.g. [7].

We end this section by addressing the quantum consistency of the N = 1 rigid su-

persymmetry algebra (4.20). First, note that by differentiating (3.6) with respect to the

source field Aν(y), we get

i∇µ 〈〈J µ(x)J ν(y)〉〉 = cAε
µνρσ∇µδ

4(x, y)Gρσ, (4.21)

where the right-hand side is a total derivative. It then follows that
∫

d4x e ∇µ 〈〈J µ(x)J ν(y)〉〉 = 0, (4.22)

which implies that [QR,J ν ] = 0. Using this, we find from (4.20a) and (4.6) that

2[[Qζ ,Qη],J µ] = −i[QK ,J µ] = −∇ν(K
νJ µ) + J ν∇νK

µ. (4.23)

On the other hand, (4.17) and (4.12) imply that

2[Qζ , [Qη,J µ]] = 2i[Qζ , ζ̄Sµ] =
1

2
∇ν(K

µJ ν −KνJ µ), (4.24)

and therefore

2[[Qζ ,Qη],J µ] = 2[Qζ , [Qη,J µ]]− 2[Qη, [Qζ ,J µ]] = ∇ν(K
µJ ν −KνJ µ). (4.25)

Since K is a nowhere vanishing vector [7], (4.23) can be consistent with (4.25) only when

∇µ 〈J µ〉 = 0, (4.26)

or equivalently (see (3.6) and (3.8))

εµνρσGµνGρσ = 0, εκσαβRν
λκσR

λ
ναβ = 0, (4.27)

if we assume cA 6= 0 and cm 6= 0. These are additional constraints imposed on the back-

ground sources since the GKS condition (2.7) does not automatically imply (4.27) [15].

Does the condition (4.27) suffice for consistent construction of N = 1 field theory with an

R-symmetry when cA 6= 0 and cm 6= 0? As we will see in the next section the answer is no,

due to a problem that manifests itself in the higher-point correlation functions.
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5 Quantum consistency

In this section we show that the U(1)R coefficient cA should vanish in order for the new-

minimal supergravity formulation of the N = 1 field theory with an R-symmetry to be

quantum-mechanically consistent.

Condition (4.27) is related to the N = 1 rigid supersymmetry algebra (4.20), which

relies on the assumption that KµAµ is constant. Now we would like to pursue our investi-

gation without using this assumption. Instead, following [16] we suppose that the vacuum

state |Ω〉 is supersymmetric, i.e.

Qζ |Ω〉 = Qη |Ω〉 = 0, (5.1)

which implies 〈δζ(. . .)〉 = 〈δη(. . .)〉 = 0 with δζ(. . .) ≡ [Qζ , . . .] and δη(. . .) ≡ [Qη, . . .].

Notice that when KµAµ is not constant, the right-hand side of (4.3) becomes non-zero, i.e.

∇µCµ = −J µ∇µ(AνK
ν), and (4.13) therefore leads to

0 = i∇µ 〈[Qζ , η̄Sµ]〉 = 1

2
KνAν∇µ 〈J µ〉 = 1

2
KνAνAchiral (5.2)

on the supersymmetric vacuum. This implies that

KνAν = 0 or ∇µ 〈J µ〉 = Achiral = 0. (5.3)

Yet this does not seem to cause a serious problem, as we saw the similar constraints in

the previous section, see (4.26)–(4.27). However, it turns out that the real problem shows

up in the higher-point functions. To see this, we multiply (3.4) by any spinor ǫ(x) and

differentiate with respect to ψ̄µ(x1) and then Aν(x2). We then set the gravitino to zero

and obtain

iDρ〈〈S̄ρǫ(x)Sµ(x1)J ν(x2)〉〉+
1

2
〈〈S̄λγλV

ργργ∗ǫ(x)Sµ(x1)J ν(x2)〉〉=

=
1

2
δ4(x1,x)γλǫ

〈〈[

T µλ+
3

4
(V λJ µ+V µJ λ−gµλVρJ ρ−εµλρκ∇ρJκ)+

1

2
εµλρκFρκ

]

(x1)J ν(x2)

〉〉

+
3i

8
δ4(x1,x)γ∗γλǫ ε

µλρσVσ〈〈Jρ(x1)J ν(x2)〉〉

− i

4
δ4(x1,x)(−iελµσκγ

κ+δµσγ∗γ
λ−δλσγ∗γ

µ)Dλ (ǫ〈〈J σ(x1)J ν(x2)〉〉)

+
i

4
e
−1∂λ

[

δ4(x1−x)(−iελµσκγ
κ+δµσγ∗γ

λ−δλσγ∗γ
µ)ǫ〈〈J σ(x1)J ν(x2)〉〉

]

+
1

4
δ4(x1,x)δ

4(x1,x2)(−iενµσκγ
κ+δµσγ∗γ

ν−δνσγ∗γ
µ)γ∗ǫ 〈J σ〉+iδ4(x2,x)〈〈S̄νγ∗ǫ(x)Sµ(x1)〉〉.

(5.4)

As mentioned before, it is important to keep all contact terms in the above computation.

Now we let ǫ(x) be the GKS ζ and multiply (5.4) by η̄ = iζ̄(x1)γ∗. We then obtain

i∇ρ 〈〈S̄ρζ(x) η̄Sµ(x1) J ν(x2)〉〉 =

=
1

2
δ4(x1, x)

〈〈[

Kκ(T µκ−GκJ µ+
1

2
εµκρλFρλ)−

1

4
∇λ(ε

µκλσKκJσ)+(KρAρ)J µ

]

(x1)J ν(x2)

〉〉

+iδ4(x2, x) 〈〈S̄νγ∗ζ(x2) η̄Sµ(x1)〉〉+
i

4
δ4(x1, x)δ

4(x1, x2)(K
ν 〈J µ〉−Kµ 〈J ν〉). (5.5)
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Let us integrate this over x-space, using (see (3.19))

0 = 〈δζ (η̄Sµ(x1) J ν(x2))〉 =⇒ 0 =

∫

d4x e ∇ρ〈〈S̄ρζ(x) η̄Sµ(x1) J ν(x2)〉〉, (5.6)

and take a covariant divergence with respect to x1 to obtain

0 = ∇µ

∫

d4x e i∇ρ〈〈S̄ρζ(x) η̄Sµ(x1) J ν(x2)〉〉

=
1

2
(KλAλ)∇µ 〈〈J µ(x1)J ν(x2)〉〉 −

i

2
δ4(x1, x2)K

ν∇ρ 〈J ρ(x2)〉

=
Kλ

2

δ

ie δAν(x2)

(

Aλ∇µ 〈J µ〉
)

. (5.7)

For the second equality we used the relation (4.11) (where the first term on the r.h.s.

vanishes due to the assumption of the supersymmetric vacuum) and

0 = i∇µ

[

Kν

(

〈〈T µν(x1)J ρ(x2)〉〉+
3

2
〈〈J µ(x1)J ρ(x2)〉〉V ν+

1

2
εµνρλ 〈〈Fρλ(x1)J ρ(x2)〉〉

)]

−iKνAν∇µ 〈〈J µ(x1)J ρ(x2)〉〉−δ4(x1, x2) [∇ν(K
ν 〈J ρ〉)−〈J ν〉∇νK

ρ]

+e
−1∂ν

[

δ4(x1−x2)(K
ν 〈J ρ〉−Kρ 〈J ν〉)

]

, (5.8)

which is obtained from (4.1) by replacing ξν by the Killing vector Kν and using the Killing

equations (2.10). Note that in the above computation there occurs a complete cancellation

between the contact terms. Using (3.6), (5.7) implies

Kλ δ

ie δAν(x2)

(

AλAchiral(x1)
)

= 0, (5.9)

which is another constraint in addition to (5.2).

The analysis up to now is insufficient to say about the quantum inconsistency with the

known U(1)R anomaly, because there may exist very restrictive backgrounds on which the

constraints (5.2) and (5.9) are satisfied. Therefore we need to go further to higher-point

functions. To this end, we differentiate (5.4) once more with respect to the gauge field

source Aλ(x3) to obtain

iDρ〈〈S̄ρǫ(x)Sµ(x1)J ν(x2)J λ(x3)〉〉+
1

2
〈〈S̄κγκV

ργργ∗ǫ(x)Sµ(x1)J ν(x2)J λ(x3)〉〉 =

=
1

2
δ4(x, x1)γρǫ

〈〈[

T µρ +
3

4
(V ρJ µ + V µJ ρ − gµρVκJ κ − εµρσκ∇σJκ)+

+
1

2
εµρσκFσκ

]

(x1)J ν(x2)J λ(x3)

〉〉

+ iδ4(x, x2)〈〈S̄νγ∗ǫ(x) Sµ(x1)J λ(x3)〉〉+ iδ4(x, x3)〈〈S̄λγ∗ǫ(x) Sµ(x1)J ν(x2)〉〉

+
i

4
e
−1∂ρ

[

δ4(x− x1)(−iερµσκγ
κ + δµσγ∗γ

ρ − δρσγ∗γ
µ)ǫ〈〈J σ(x1)J ν(x2)J λ(x3)〉

]

− δ4(x, x1)
i

4
(−iερµσκγ

κ + δµσγ∗γ
ρ − δρσγ∗γ

µ)Dρ

(

ǫ〈〈J σ(x1)J ν(x2)J λ(x3)〉〉
)
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+
3i

8
δ4(x, x1)γ∗γρǫ ε

µρκσVσ〈〈Jκ(x1)J ν(x2)J λ(x3)〉〉

− i

4
δ4(x, x1)δ

4(x, x2)(−iενµσκγ
κ + δµσγ∗γ

ν − δνσγ∗γ
µ)γ∗ǫ 〈〈J σ(x)J λ(x3)〉〉

− i

4
δ4(x, x1)δ

4(x, x3)(−iελµσκγ
κ + δµσγ∗γ

λ − δλσγ∗γ
µ)γ∗ǫ 〈〈J σ(x)J ν(x2)〉〉. (5.10)

By following essentially the same steps as done to reach (5.9) from (5.4) for the 3-point

function 〈〈S̄ρǫ(x)Sµ(x1)J ν(x2)〉〉, one can obtain

0 = ∇µ

∫

d4x e i∇ρ〈〈S̄ρζ(x) η̄Sµ(x1)J ν(x2)J λ(x3)〉〉

=
1

2
(KρAρ)∇µ 〈〈J µ(x1)J ν(x2)J λ(x3)〉〉 −

i

2
δ4(x1, x2)K

ν∇µ 〈〈J µ(x1)J λ(x3)〉〉

− i

2
δ4(x1, x3)K

λ∇µ 〈〈J µ(x1)J ν(x2)〉〉

=
Kρ

2

δ

ie δAλ(x3)

δ

ie δAν(x2)

(

Aρ∇µ 〈J µ(x1)〉
)

=
Kρ

2

δ

ie δAλ(x3)

δ

ie δAν(x2)

(

AρAchiral(x1)
)

. (5.11)

The above procedures can be straightforwardly extended to the higher-point functions

obtained by differentiating (5.4) successively with respect to the gauge fields, giving rise

to constraints (putting together (5.2), (5.9) and (5.11) here)

0 = KρAρAchiral(x), (5.12)

0 = Kρ δ

e δAν(x1)

(

AρAchiral(x)
)

, (5.13)

0 = Kρ δ

e δAλ(x2)

δ

e δAν(x1)

(

AρAchiral(x)
)

, (5.14)

0 = Kρ δ

e δAα(x3)

δ

e δAλ(x2)

δ

e δAν(x1)

(

AρAchiral(x)
)

, (5.15)

0 = Kρ δ

e δAβ(x4)

δ

e δAα(x3)

δ

e δAλ(x2)

δ

e δAν(x1)

(

AρAchiral(x)
)

(5.16)

and so on. These constraints are consequences of the Ward identities (3.4)–(3.6) and

relation (3.19) with the supersymmetric vacuum condition (5.1). Constraint (5.16) and the

subsequent ones with the higher functional derivatives are trivially satisfied, since Achiral

is quadratic in the gauge field, while (5.12)–(5.15) are nontrivial constraints. In particular,

constraint (5.15) with (3.8) gives

0 = Kρ δ

e δAα(x3)

δ

e δAλ(x2)

δ

e δAν(x1)

(

AρAchiral(x)
)

= 2cA

[

Kαδ4(x, x3)ε
κλσν∂κδ

4(x, x2)∂σδ
4(x, x1) + (permutations)

]

, (5.17)

which can be satisfied if and only if cA = 0. Thus, the anomaly coefficient cA should vanish.

This makes constraints (5.12)–(5.14) satisfied automatically.
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6 Discussions

In this note we have studied the quantum consistency of the new-minimal supergravity for-

mulation of the N = 1 supersymmetric theories with an R-symmetry in 3+1 dimensional

curved space. By investigating the rigid supersymmetry algebra and the correlation func-

tions obtained via differentiation of the Ward identities (with respect to the background

gravitino and R-gauge fields),we have shown that the pure U(1)R chiral anomaly coefficient

cA should vanish to be consistent with the supersymmetry. Our result indicates that the

supersymmetry is broken at the quantum level unless cA = 0.

We emphasize that the anomaly coefficient cA depends only on the field content of

the theory. There exist some special cases where cA = 0. For instance, in the N = 1

superconformal theories, the anomaly coefficient cA becomes

cA = 5a− 3c, (6.1)

where the central charges a and c (for free theory) is given by [28, 29]

a =
1

48
(9NV +Nχ), c =

1

24
(3NV +Nχ). (6.2)

Here NV and Nχ are the number of gauge and chiral multiplets, respectively. Therefore,

cA becomes vanishing when 27NV = Nχ, for example when NV = 1 and Nχ = 27. Another

simple example for a theory with cA = 0 is the system that consists of a free chiral multiplet

with R-charge 1 (see e.g. appendix B). In this case, the Weyl fermion in the chiral multiplet

is actually uncharged under the U(1)R symmetry and thus does not contribute to the U(1)R
chiral anomaly.

In this work we have focused on the quantum consistency with respect to the pure

U(1)R anomaly. We expect a similar result for the mixed U(1)R anomaly coefficient cm.

Namely, we anticipate that higher-point correlation functions involving both of the super-

current and the stress-energy tensor can be consistent only when cm = 0. But it needs

more involved computations to show this, which we leave for the future work.

We have assumed that the supersymmetry Ward identity is non-anomalous, see (3.4),

and our results bring forward a question about the supersymmetry anomaly, which is also

related to the holography. In [30, 31] the holographic renormalization [32–41] was carried

out for both of the bosonic and fermionic sector of the 5D N = 2 gauged supergravity, a

virtual candidate for holographic dual of 4D N = 1 superconformal field theory (that has

an R-symmetry). By doing so, it was derived that the supersymmetric Ward identities

for 4D N = 1 superconformal field theories (SCFTs) contain anomaly-terms, which lead

to the anomalous variation law of supercurrent operators under the rigid supersymmetry

transformation.8 If one assumes that the supersymmetry Ward identity (3.4) receives

anomaly corrections, those anomaly terms would introduce additional (contact) terms in

the correlations functions considered in section 4 and 5, which in turn may lead to complete

8Recently, a similar result was obtained in [42], where it was shown in the context of AdS3/CFT2 that

in 2D N = (1, 1) superconformal field theories the supercurrent operator transforms anomalously under the

rigid supersymmetry transformation.
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cancellations on the right-hand sides of (5.12)–(5.16) restoring the consistency of the theory

with cA 6= 0.9 It would be interesting to explore if the anomaly corrections obtained

in [30, 31] by holographic renormalization could do the job (see [43, 44] for recent field-

theoretical studies on the supersymmetry anomalies). We hope to pursue this question in

the future work.
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A Conventions

We follow the conventions used in [45]. The metric signature is (−,+,+,+) and ε0123 = 1.

We denote γ5 matrix by γ∗ in 4 dimensions, i.e.

γ∗ = iγ0γ1γ2γ3, (A.1)

which leads to useful formulas

γµνργ∗ = iεµνρσγσ, (A.2a)

εµνρλγρλ = −2iγµνγ∗. (A.2b)

For any spinor χ, χ̄ ≡ χTC is the Majorana conjugate of χ, where C is the charge conju-

gation matrix. And all of the spinors in this note are Majorana ones.

In our conventions,

λ̄Γ(r1) · · ·Γ(rp)χ = tp−1
0 tr1 · · · trpχ̄Γ(rp) · · ·Γ(r1)λ, (A.3)

χ = Γ(r1) · · ·Γ(rp)λ =⇒ χ̄ = tp0tr1 · · · trp λ̄Γ(rp) · · ·Γ(r1), (A.4)

where

t0 = t3 = 1, t1 = t2 = −1. (A.5)

Two kinds of connections appear in this note, i.e. the metric connection and the gauge

connection. The symbol ∇ stands for the covariant derivative with respect to the metric.

The symbol D indicates the connection with respect to the metric and the gauge field. For

instance,

Dµψν ≡ ∇µψν + iGµγ∗ψν , Dµψ̄ν = ∇µψ̄ν + iGµψ̄νγ∗, (A.6)

9One relevant question is whether there could exist local counterterms added to the action in such a

way that the consistency of the theory is maintained without requiring cA = 0. In order for the local

counterterms to change the argument of this paper and restore the consistency of the theory with cA 6= 0,

they should modify the Ward identities (3.4)–(3.6) by introducing appropriate additional local terms to

the Ward identities. However, the local counterterms that modify the Ward identities necessarily break

the corresponding symmetries. Therefore, as far as one does not want to break supersymmetry and dif-

feomorphism invariance explicitly, we expect that local counterterms can not play a role in retrieving the

consistency of the theory with cA 6= 0.
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where Gµ ≡ Aµ − 3
2Vµ. Note that the supercurrent Sµ is conjugate to the source ψµ,

and therefore it has a U(1)R charge opposite to ψµ. It follows that one has to define the

covariant derivative of Sµ by

DµSν = ∇µSν − iGµγ∗Sν . (A.7)

B An example: N = 1 with a free chiral multiplet on RRR × Sr3

In this appendix we explicitly derive the variation of the current operators Sµ, J µ and

Fµν under the rigid supersymmetry transformation, for the special case when N = 1 field

theory for a free chiral multiplet is defined on R× Sr3 .

The action of the theory that we are interested in is given by [6],

S =

∫

d4x L, (B.1)

where

1

e
L = FF ∗−DµφD

µφ∗+iV µ(φ∗Dµφ−φDµφ
∗)− q

4
(R+6VµV

µ)φ∗φ−ψ̄γµ
(

Dµ − i

2
Vµ

)

PLψ,

(B.2)

and q is the U(1)R-charge of the chiral multiplet, and

R =
6

r2
, Vi = 0, Vt =

1

r
, At =

1

r
, Ai = 0, Rµν = 2(VµVν − gµνVρV

ρ), (B.3)

Dµφ ≡ ∂µφ− iqAµφ, Dµφ
∗ ≡ ∂µφ+ iqAµφ, Dµψ ≡ ∇µψ + i(q − 1)Aµγ∗ψ, (B.4)

∇µψ ≡ ∂µψ +
1

4
ωµabγ

abψ, PL,R ≡ 1∓ γ∗
2

. (B.5)

This theory is invariant under the rigid supersymmetry

δφ = ζ̄PLψ, δφ∗ = ζ̄PRψ, (B.6a)

δF = ζ̄γµ(Dµ − i

2
Vµ)PLψ, δF ∗ = ζ̄γµ

(

Dµ +
i

2
Vµ

)

PRψ, (B.6b)

δPLψ = PL( /Dφ+ F )ǫ, δPRψ = PR( /Dφ∗ + F ∗)ǫ, (B.6c)

where ζ is the GKS that satisfies the GKS condition (2.7). Note that under the charge

conjugation γ∗ flips the sign and thus (PL)
C = PR.

The energy-momentum tensor is given by

T µν = − 1

2e

(

eaν
δ

δeaµ
+ eaµ

δ

δeaν

)

S

= − gµν
[

−DρφD
ρφ∗ + FF ∗ − q

4
(R− 6V ρVρ)φ

∗φ
]

− 2D(µφDν)φ∗+

+
q

2
(−Rµν +∇µ∇ν − gµν�+ 6V µV ν)(φ∗φ)− i

2
V (µψ̄γν)ψ

+
1

2
[gµνψ̄γρ

←→
D ρψ − ψ̄γ(µ

←→
D ν)ψ], (B.7)
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and the U(1)R-current is

J µ =
1

e

δS

δAµ
= iq(φDµφ∗ − φ∗Dµφ) + 2qV µφφ∗ + i(q − 1)ψ̄γµPLψ. (B.8)

Since the Lagrangian (B.2) does not possess any FI-terms and the Kähler form of the target

space is exact, there exists a well-defined operator Yµ, such that Fµν = ∂µYν − ∂νYµ, see

e.g. [12]. Defining an operator Kµ by

Kµ ≡ 1

e

δS

δVµ
= i(φ∗Dµφ− φDµφ∗)− 3qV µφ∗φ+

i

2
ψ̄γµPLψ, (B.9)

we have an operator relation

Y µ = Kµ +
3

2
J µ =

i

2
(3q − 2)(φDµφ∗ − φ∗Dµφ+ ψ̄γµPLψ) (B.10)

because

δVµ =
1

4
εµ

νρλ∂νδBρλ + (δgµν)V
ν − 1

2
gρλδgρλVµ. (B.11)

Notice that when q = 2/3 the operator Y µ and Fµν are identically vanishing. Since the

conformal symmetry is explicitly broken by the operator Fµν [8], this implies that the

theory becomes superconformal.

We could find the supercurrent by obtaining the Noether current corresponding to the

transformation given by (B.6). Instead, we would like to use (4.17) to find the supercurrent,

which would differ from the Noether current by a term like DνMµν . The variation of the

R-current J µ is

δζJ µ = −iζ̄( /Dφ)γµPRψ + iqDν(φψ̄)γ
µνPRζ +

3q

2
φV µψ̄PRζ

+ iqφζ̄γµγν
[

Dν(PRψ) +
i

2
VνPRψ

]

+ i(q − 1)ψ̄γµPLζF + h.c.,

so we find that

Sµ = −iζ̄( /Dφ)γµPRψ + iqDν(φψ̄)γ
µνPRζ +

3q

2
φV µψ̄PRζ + h.c., (B.12)

where we used the equations of motion of the theory. Notice that although the rigid

supersymmetry algebra is off-shell, the transformation rules (4.17), (4.18) and (4.10) should

be on-shell relations at the classical level, as we see below.

The Gamma trace of the supercurrent (B.12) is

γµSµ = −(3q − 2)( /Dφ)PRψ − 3qφγν
[

Dν(PRψ) +
i

2
VνPRψ

]

+ h.c. . (B.13)

This vanishes on-shell for q = 2/3, which is related to the fact that the theory has the

superconformal symmetry when q = 2/3. It is also implied by (B.13) that (4.18) cannot

hold off-shell, since Yµ vanishes identically for q = 2/3.
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One can see that (4.18) holds on-shell by observing that

δζY
µ =

i

2
(3q − 2)[φDµ(ζ̄PRψ)− ζ̄PRψD

µφ+ ψ̄γµPL( /Dφ+ F )ζ] + h.c.

=
i

2
(3q − 2)[Dµ(φζ̄PRψ)− ζ̄ /DφγµPRψ + ψ̄γµPLζ] + h.c. .

By a tedious computation it can be explicitly shown that the transformation law for (4.10)

also holds on-shell.

We emphasize that the whole analysis in this appendix can be extended to the more

general backgrounds that admit two supercharges with opposite R-charge.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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