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1 Introduction and summary

More than 50 years ago, Bros, Epstein and Glaser [1–3] (BEG) gave a proof of crossing

symmetry in local quantum field theories. The goal of this paper will be to generalize the

results to superstring theory.

We begin by briefly recalling the main ingredients in the proof in [1, 2]. We shall use

space-time metric with mostly plus signature.

1. The position space Green’s functions in a D dimensional local quantum field theory

satisfy certain identities derived from the fact that commutator of local operators

vanish outside the light-cone. Using this one can show [4–8] that the momentum space

amputated Green’s function G(p1, · · · pn) of n external states, regarded as a function

of (n − 1)D complex variables after taking into account momentum conservation∑
a pa = 0, has certain analyticity properties.1 If we denote by P(α) the sum over

any subset Aα of the pa’s, then the Green’s function is an analytic function of the

pa’s as long as,

{Im (P(α)) 6= 0, (Im (P(α)))
2 ≤ 0}, or {Im (P(α)) = 0, −P 2

(α) < M2
α}, ∀Aα , (1.1)

where Mα is the threshold of production of any (multi-particle) state in the channel

containing the particles in the set Aα.

2. It is easy to see that for massive external particles the above domain of analyticity

does not have any overlap with the subspace of complex momentum space in which

the external states are on-shell. Indeed if we write pa = paR + ipaI then the mass

1Hereafter momentum space Green’s functions will always refer to amputated Green’s functions. We

do not put any constraint on the spins of the external particles, but do not explicitly display the Lorentz

indices carried by the Green’s function.
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shell condition p2a + m2
a = 0 implies that paI .paR = 0 and p2aR − p2aI + m2

a = 0.

If paI is non-zero and lie in the forward or backward light-cone then p2aI ≤ 0 and

hence p2aR < 0 due to the second condition. Therefore paR also lies in the forward or

backward light-cone. However the inner product of two vectors, each of which is in

the forward or backward light-cone, cannot vanish unless both of them are null, but

the p2aR < 0 condition shows that paR is not null. Therefore we cannot satisfy the

paR.paI = 0 condition. The only possibility is that paI = 0 for each a, i.e. all external

momenta are real. However in this case we cannot satisfy the condition that P(α) is

below the threshold since given any pair of incoming particles (or a pair of outgoing

particles) the total momentum carried by the pair is always sufficient to produce the

same pair of particles.

3. Due to this observation the analyticity of the off-shell Green’s function in the do-

main described above is not by itself sufficient to prove crossing symmetry, since the

latter involves analytic continuation of on-shell four point Green’s function from the

physical region of s-channel scattering (s > 0, t, u < 0) to the physical region of

t-channel scattering (t > 0, s, u < 0) along some path in complex momentum space.

Nevertheless BEG were able to show, by using the fact that the shape of the domain

of analyticity of a function of many complex variables has a restricted form [9], that

the actual domain of holomorphy of G(p1, · · · pn) is bigger than (1.1), and includes

a path that interpolates between physical s-channel region and physical t-channel

region in the momentum space keeping all the external particles on-shell.

4. For the proof of crossing symmetry, BEG needed to use the analyticity property

mentioned in point 1 above only in a subspace of the complex momentum space in

which imaginary components of all the external momenta lie in a two dimensional

Lorentzian plane. Without loss of generality we can take this to be the p0-p1 plane.

Superstring field theory is a quantum field theory with infinite number of fields and

non-local interactions that is designed to reproduce perturbative amplitudes of superstring

theory. A detailed review of (compactified) heterotic and type II string field theories can

be found in [10], but we shall need only minimal information that will be reviewed in

section 2. We can compute off-shell momentum space Green’s functions by summing over

Feynman diagrams, but the non-local nature of the vertices, reviewed in section 2, prevents

us from defining position space Green’s functions. Therefore the analogue of operator

commutativity at spacelike separations is not obvious and we cannot invoke locality to prove

the analyticity of the momentum space Green’s functions in the domain (1.1), as in point 1)

above. Instead in this paper we analyze the analyticity properties by directly examining the

singularities of the off-shell Green’s function represented as sum over Feynman diagrams.

Our proof of analyticity does not extend to the full domain (1.1), but to a subspace of this

domain where the imaginary part of the external momenta are restricted to lie in a two
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dimensional Lorentzian plane:2

Im pia = 0 ∀ a = 1, · · ·n, i 6= 0, 1,

{Im (P(α)) 6= 0, (Im (P(α)))
2 ≤ 0}, or {Im (P(α)) = 0, −P 2

(α) < M2
α}, ∀Aα . (1.2)

Furthermore one can show that the analyticity of the Green’s function also extends to

all other points that can be obtained from the ones in (1.2) by Lorentz transformation

with complex parameters. As mentioned above, the property (1.2) of the off-shell Green’s

function is sufficient to prove crossing symmetry of the S-matrix using the same argument

as used by BEG. The steps leading from (1.2) to the proof of crossing symmetry only relies

on the general properties of functions of several complex variables and not on the details

of the theory that produces the Green’s functions.3

The analysis of BEG however had one underlying assumption — that the theory does

not have any massless particles so that the domain of analyticity includes the origin in the

space of complex momenta and is in fact a star shaped region around the origin. When

there are massless particles then there are multi-particle states of arbitrary low energies

and therefore the threshold Mα appearing in (1.2) can extend all the way to the origin.

A related issue is that in the presence of massless particles the on-shell Green’s function

has infrared singularities even though in high enough dimensions these singularities may

not lead to divergences. Since string theory has massless states, it also suffers from this

problem. We propose two different ways of addressing this issue. The first is to explicitly

remove from the Green’s function contributions where any of the internal propagators

is that of a massless particle. This can be done maintaining ultraviolet finiteness and

the resulting contribution can be shown to satisfy (1.2). In this case crossing symmetry

holds for only this part of the S-matrix element. The other approach will be to regulate

the infrared divergence by adding explicit mass terms for the massless fields in the gauge

fixed action. This also leads to ultraviolet finite Green’s function satisfying (1.2). While

neither of these approaches show the crossing symmetry of the full amplitude of superstring

theory, what they establish is that the possible lack of crossing symmetry of the amplitudes

of superstring theory is entirely due to the presence of massless fields — an effect that is

also present in a local quantum field theory with massless fields. Therefore our result (1.2)

shows that the inherent non-locality of string theory encoded in the interaction vertices

has no effect on the crossing symmetry of the amplitude, and string theory behaves like a

standard local quantum field theory on this aspect.

Before concluding this section, we would like to mention that even though we have em-

phasized the proof of crossing symmetry as the main application of our result, the general

result (1.2) can be used to prove many other useful results about the analytic structure of

2It may be possible to extend this to a larger domain by applying general results on functions of many

complex variables. However so far by direct analysis of the Feynman diagrams, we have been able to prove

analyticity in the restricted domain (1.2).
3In fact, our proof applies to any ultraviolet complete theory in which the singularities of the integrand

in the momentum space Feynman diagrams arise from the usual poles of the propagator. Therefore our

analysis also provides an alternative derivation of the analyticity properties of the momentum space Green’s

function in the domain (1.2) for ordinary renormalizable quantum field theories.
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on-shell amplitudes in superstring theory. In particular if we consider a configuration of ex-

ternal momenta where one particular combination of external momenta is allowed to have

complex imaginary part keeping all other linearly independent combinations real,4 then

once we establish analyticity in the region (1.2), the domain of analyticity can be extended

to a much larger domain known as the Jost-Lehmann-Dyson analyticity domain [11, 12].

A general proof of this result that relies only on general properties of functions of many

complex variables can be found in [9]. Using this one can prove various analyticity proper-

ties of on-shell amplitudes, e.g. the analyticity of the elastic forward scattering amplitude

(t = 0) in the full complex s-plane except for the usual threshold singularities on the real

axis (see e.g. [13]). The same general result can also be used to determine the domain of

analyticity in the complex t-plane for fixed positive s [13].

Some recent discussion on analyticity of the Green’s function in D-dimensional theories

can be found in [14]. Ref. [15] considered deformations in which a spatial component of

the external momenta becomes complex keeping the time components real. However since

this leads to space-like imaginary part of external momenta, the region considered in [15]

does not have any overlap with the region (1.1).

2 General structure of superstring field theory

Closed superstring field theory, after Lorentz covariant gauge fixing, has infinite number

of fields. We shall label by {φα(k)} the momentum space representation of these fields.

In a background with D non-compact space-time dimensions, the action has the general

form [10]

S =

∫
dDk

(2π)D
Kαβ(k)φα(k)φβ(−k)

+
∑
n

∫
dDk1
(2π)D

· · · d
Dkn

(2π)D
(2π)Dδ(D)(k1 + · · ·+ kn)V

(n)
α1···αn(k1, · · · kn) (2.1)

× φα1(k1) · · ·φαn(kn) ,

where Kαβ(k) is the kinetic operator that is typically quadratic function of momenta and

V
(n)
α1···αn(k1, · · · , kn) is the off-shell vertex that has the property that whenever any sub-

set of momenta ki approach infinity, the dominant factor in the vertex takes the form

exp(−cijki.kj) for some matrix cij with large positive eigenvalues.5 For this reason in com-

puting off-shell Green’s functions from this action using Feynman diagrams, we always take

the integration contours of loop energies to run from −i∞ to i∞, although in the interior

of the complex plane the contours may be deformed away from the imaginary axis to avoid

4In this case we can always make a Lorentz transformation to make the imaginary part lie in a given

two dimensional Lorentzian plane. Therefore the difference between the regions (1.1) and (1.2) becomes

irrelevant.
5This exponential behaviour is responsible for the non-local behaviour of the vertices and the impossi-

bility of using the position space representation. Since the latter was used in [5–8] to prove the analyticity

of the momentum space Green’s functions, one needs to find another approach.
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poles of the propagators. Similarly the ends of the integration contours of the spatial com-

ponents of loop momenta will be taken to approach ±∞ along the real axis. This ensures

that cijki.kj becomes large and positive as the contour approaches infinity and the loop

momentum integrals are convergent. More generally one can take the loop energy integrals

to approach infinity by remaining within a 45◦ cone around the imaginary axis and the

spatial components of loop momenta to approach infinity by remaining within a 45◦ cone

around the real axis. Besides this V
(n)
α1···αn(k1, · · · , kn) carries a factor of exp(−c

∑n
i=1m

2
αi)

for some large positive constant c where mα is the mass of the field φα. This ensures con-

vergence in the sum over states in the internal propagators even though there are infinite

number of states. The vertices are also free from any singularity at finite points in the

complex {ki} planes. Therefore all possible singularities of the Green’s functions will arise

from the poles of the propagators. These are simple poles at k2 +m2
α = 0.6

Superstring theory has massless states. For reasons explained in the introduction, the

kind of questions we would like to address in this paper requires working with massive

theories since in the presence of massless states the on-shell S-matrix always suffers from

infrared singularities and is never fully analytic. Therefore the best we can hope for in

string theory is to prove the required analyticity of the Green’s functions after separating

out the contribution from the massless states. We can explore two possible ways:

1. We can introduce a projection operator P which, acting on the space of string fields,

projects onto the massless fields. We insert the identity

(1− P ) + P , (2.2)

in each propagator and write the contribution from a Feynman diagram as a sum of

many terms, where in a given term each internal propagator carries either the factor

of P or (1 − P ). Each of these terms is ultraviolet finite due to the exponential

suppression from the vertex. The particular term where all internal propagators

carry a factor (1 − P ) is also infrared finite, and it is for this contribution to the

Green’s function that we can prove the desired analyticity properties.7 The rest

of the terms have one or more massless internal propagators and may suffer from

infrared singularities. However these are the usual infrared singularities associated

with massless states and would occur also in local quantum field theories. Therefore

establishing the desired analyticity of the infrared safe part would show that there is

6In the natural formulation of superstring field theory action, Kαβ will be the tree level kinetic term and

mα’s will be the tree level masses. However by adding a suitable finite counterterm to Kαβ and subtracting

it from V
(2)
αβ , we can take the mα’s to be the quantum corrected physical masses [16]. The additional

term in V (2) does not carry the exponential suppression factors, but the exponential suppression factors in

the neighboring vertices of the Feynman diagram continue to guarantee ultra-violet finiteness of individual

diagrams.
7Since the projection operator P commutes with the BRST charge, one can show, using a generalization

of the analysis described in [10, 17], that the generating functional of these subtracted Green’s functions

satisfies appropriate BV master equations capturing the full gauge invariance of the theory. When all the

external states are massless, these contributions to the Green’s functions are precisely the vertices of the

Wilsonian effective field theory of massless fields obtained by integrating out the massive fields [10, 17], but

the definition given here also applies for massive external states.
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no distinction between the analytic properties of the amplitudes in string theory and

that of a local quantum field theory with massless states.

As mentioned in footnote 7, the off-shell amplitude with infrared subtractions satisfies

appropriate form of BV master equation that encodes gauge invariance of the full

amplitude. Nevertheless the subtracted amplitudes by themselves are not gauge

invariant. Given this, one could wonder whether our result has any gauge invariant

content. For definiteness let us consider a specific class of subtraction procedure. It

is known that for a given string compactification one can construct an infinite family

of superstring field theories by making different choices of local coordinate systems

on the world-sheet. It is also known that these different superstring field theories

are related to each other by field redefinition. We can now develop perturbation

theory in each of these formulations of superstring field theory by imposing Siegel

gauge condition, but since Siegel gauge in one formulation does not correspond to

Siegel gauge in another formulation, the Green’s functions computed in different

formulations of the theory will correspond to different gauge choices. If we now

subtract the infrared divergent part following the procedure suggested above the

results will be different in different formulations. However the statement that is

independent of the gauge choice is that in each of these formulations the Green’s

functions so defined will be analytic in the domain (1.2).

2. Alternatively one could add to the action explicit mass terms for the massless fields in

the gauge fixed action. This will break BRST invariance and decoupling of unphysical

states in the S-matrix, but will generate off-shell Green’s functions free from infrared

singularities. Our general analysis of analyticity properties given below will hold for

these regularized amplitudes as well. The infrared singularities will reappear in the

massless limit.

In higher dimensions one can have better control on the situation as follows. If we

regulate the theory by adding explicit mass term of order m to the massless particles,

then the dependence of the amplitude on m will be via positive powers of m, possibly

multiplied by non-analytic terms like lnm. Therefore the regulated amplitude, that

has the analyticity and crossing properties, differs from the actual amplitude by a

small amount if we take m to be small.

In the following we shall assume that all the states propagating in the internal prop-

agators have non-zero mass. One may be surprised at the ability to modify string theory

amplitudes by subtracting / regularizing infrared singular parts and still preserve ultravi-

olet finiteness. This follows clearly from the exponential suppression factors in the vertices

for large imaginary energy and real spatial momenta. What these subtracted / regular-

ized amplitudes lack however is good behavior at large real energy. Individual Feynman

diagrams diverge rapidly for large real energies of the external states due to the exponen-

tial factors in the vertices. Only after adding the contributions from different diagrams

we get sensible high energy behavior due to delicate cancellation between different terms.

Individual pieces / regularized amplitudes will lack this cancellation.
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Figure 1. Distribution of poles in a complex loop energy plane for vanishing external momenta.

The poles are situated symmetrically about the imaginary axis. The vertical positions of the poles

are determined by the values of purely imaginary loop energies along other loops, and the horizontal

positions are determined by the spatial components of all loop momenta and masses which are all

real. The loop energy integration contour is taken to be from −i∞ to i∞ along the imaginary

axis as shown by the thick vertical line. As we deform the external momenta away from zero the

pole positions move, and if any pole approaches the integration contour we have to deform the

integration contour to avoid the poles.

The analysis of [1, 2] also requires that the external particles are stable. We shall take

the external particles to be either massless states, or BPS states or stable non-BPS states

of superstring theory.

3 Analyticity property of the off-shell Green’s functions

Let pa be the momentum of the a-th external particle for a = 1, · · ·n, counted as positive

if ingoing and negative if outgoing. In D space-time dimensions the complex momenta

(p1, · · · pn) satisfying
∑

a pa = 0 span a (n − 1)D dimensional complex manifold CC(n−1)D

and the Green’s function G(p1, · · · pn) is a function of these (n − 1)D complex variables,

obtained by summing over Feynman diagrams of superstring field theory. We adopt the

following procedure for computing the loop momentum integrals in a Feynman diagram. At

the origin where all the external momenta vanish (pa = 0), we take each of the loop energy

integrals to run from −i∞ to i∞ along the imaginary axis and each spatial component

of loop momenta to run from −∞ to ∞ along the real axis. In this case each internal

line carries imaginary energy and real spatial momenta, making the denominator factor

(`2+m2) of the propagator carrying momentum ` strictly positive. Therefore the integrand

does not have any singularity. Furthermore due to exponential suppression from the vertices

the integrals are convergent as loop energies approach ±i∞ and spatial components of

loop momenta approach ±∞. Therefore the Green’s function is non-singular at the origin.

Figure 1 shows the distribution of poles at `0 = ±
√
~̀2 +m2 in a complex loop energy plane

for vanishing external momenta.

As the pa’s move away from the origin of CC(n−1)D, we can continue to use the same

loop energy and loop momentum integration contours as long as the poles are away from
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the integration contours. When any of the poles approaches the integration contour we

need to deform the contour away from the poles keeping its ends fixed at ±i∞ for loop

energies and ±∞ for loop momenta. When a pair of poles approach an integration contour

from opposite sides so that we can no longer deform the contour away from the poles,

the integral itself becomes singular [18]. Since initially the poles are located at finite

distance away from the integration contour, the singularities of the Green’s function will be

located at finite distance away from the origin. Therefore there exists a connected region in

CC(n−1)D containing the origin in which the Green’s function is a complex analytic function

of the external momenta. Ref. [16] explored a subspace of CC(n−1)D in which we keep all

the spatial components of the external momenta real and take all the external energies

to be given by a single complex number λ multiplying real numbers. Green’s functions

were shown to be analytic as long as λ remains in the first quadrant, and the physical

scattering amplitudes were defined as the λ → 1 limit of these Green’s functions from

the first quadrant. Our goal will be to explore a larger domain in CC(n−1)D in which the

Green’s function remains a complex analytic function of external momenta.

One property of the domain that follows automatically is its invariance under complex

Lorentz transformation — Lorentz transformation with complex parameters. Indeed, when

we make a particular complex Lorentz transformation of the external momenta, we can

apply identical transformation on the loop momentum integration contours. This does

not change any of the denominators of the propagators, or any of the exponential factors

needed for ensuring convergence of the integral at infinity. Therefore if the Green’s function

was analytic for the original values of the external momenta, it will remain analytic for the

new values of the external momenta.

Our strategy for establishing analyticity of the Green’s function for a given set of

values of {pa} will be to find a path connecting the origin to {pa} and show that as

we move the external momenta along that path, we can continuously deform the loop

momentum integration contours avoiding the poles of the propagators. This will establish

the analyticity of the Green’s function at {pa}. We shall carry out this deformation in two

steps. First we deform all real components of all the external momenta and the Im (p0a)’s

to the desired values along a straight line, keeping Im (p1a)’s fixed at 0 for each a. In the

second step we deform the Im (p1a)’s to their desired values along a straight line keeping all

other components fixed. This has been shown schematically in figure 2.

3.1 Complex energy but real spatial momenta

Let us define

P(α) ≡
∑
a∈Aα

pa , (3.1)

for any proper subset Aα of {1, · · ·n} other than the empty set. We shall now show, gener-

alizing the arguments in [16], that the off-shell Green’s function is free from singularity if

Im pia = 0 ∀ a = 1, · · ·n, 1 ≤ i ≤ (D − 1),{
Im (P 0

(α)) 6= 0 or Im (P 0
(α)) = 0, −P 2

(α) < M2
α

}
∀Aα ⊂ {1, · · ·n} , (3.2)
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Im (p0a)

Im (p1a)

⇑

⇒

Figure 2. A schematic representation of the deformation of the external momenta that we follow

in the Im (p1a)-Im (p0a) plane. In the first step we deform all components of momenta except Im (p1a)

to their desired values along a straight line. This has been represented by the thick vertical line.

In the second step we deform Im (p1a) to their desired values along a straight line keeping fixed all

other components. This has been shown by the thick horizontal line.

where Mα is the threshold invariant mass for producing any set of intermediate states in

the collision of particles carrying total momentum P(α). We shall denote by S the set of

points in CC(n−1)D satisfying (3.2).

Given any point (p1, · · · pn) in the complex momentum space we define the Green’s

function G(p1, · · · pn) as sum over Feynman diagrams, but we need to specify the contours

along which the loop momenta are integrated. In the analysis of this subsection, the

spatial components of the loop momenta will always be integrated along the real axis.

The integration contours for the loop energies are chosen as follows. We draw a straight

line connecting the origin to (p1, · · · pn) in CC(n−1)D satisfying (3.2), parametrized by a real

parameter λ. As we deform λ away from zero, we continue to integrate the independent loop

energies along the imaginary axes as long as the locations of the poles of the propagators

do not approach the contours. However if any of the poles of the propagator approach

the integration contour, then we deform the loop energy integration contours away so as

to avoid the singularity, keeping their ends tied at ±i∞ in order to ensure convergence of

the integral at infinity. When a contour is pinched by two singularities approaching from

opposite sides so that it is no longer possible to avoid the singularities, we may run into a

singularity of the integral.8 Our goal will be to show that this does not happen.

To prove this we assume the contrary, i.e. that there is a pinch singularity of the loop

energy integrals during this deformation, and show that there is a contradiction. At the

pinch certain propagators are forced to be on-shell since the corresponding loop energy

8Even this may not be a genuine singularity since we may still be able to deform the spatial components

of the loop momenta into the complex plane, but we shall not explore this possibility.
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P(α1)

P(α2)

P(α3)

P(α4)

→

↖↓

→

↑ ↗

→

→

↓

Figure 3. Example of a reduced diagram. The arrows denote the direction of flow of energy along

the on-shell internal propagators. This reduced diagram does not correspond to a pinch singularity

since by following the arrows we can go around a closed loop in the lower left triangle.

integration contours cannot be deformed away from the singularity. We now associate to

this pinch a reduced diagram by contracting to points all propagators that are not forced

to be on-shell at the pinch. The vertices of the reduced diagram are called reduced vertices.

The total external momentum entering a given reduced vertex will be given by one of the

P(α)’s. If ` is the momentum carried by one of the internal propagators of the reduced

diagram and m is the mass of the particle propagating in the propagator, then the poles

of the propagator are located at

`0 = ±
√
~̀2 +m2 . (3.3)

We shall draw an arrow on the propagator along the direction of ` if the pole corresponding

to `0 =
√
~̀2 +m2 approaches the integration contour, and draw an arrow on the propagator

opposite to the direction of ` if the pole corresponding to `0 = −
√
~̀2 +m2 approaches the

integration contour. An example of a reduced diagram has been shown in figure 3.

We shall now prove that in order that the loop energy integration contour is pinched,

we cannot have an oriented closed loop in the reduced diagram. Figure 3 contains such an

oriented closed loop in the lower left hand triangle. To prove this, let us assume that the

reduced diagram has such an oriented closed loop, and let us label the independent loop

momenta such that one loop momentum flows along the particular oriented closed loop. If

we denote by k the loop momentum flowing in this loop along the arrow, by {`r}, r ∈ A
the momenta along the arrows carried by individual propagators along the loop and by

{mr}, r ∈ A the masses of the particles flowing along these propagators, then:

1. We have `r = k + Lr for r ∈ A where Lr is a linear combination of the external

momenta and other loop momenta.

2. No propagator outside the set A carries the momentum k.
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3. Due to the structure of the arrows it follows that the poles which approach the k0

integration contour are the ones at `0r =

√
~̀2
r +m2

r .

Now at {pa = 0}, all loop momentum integration contours run along the imaginary axis. As

k0 varies from −i∞ to i∞ along the imaginary axis keeping the other loop momenta fixed,

each of the `0r ’s for r ∈ A vary from −i∞ to i∞. Therefore the poles at `0r =

√
~̀2
r +m2

r lie

to the right of the k0 integration contour. As we deform the external momenta away from

the origin, we deform the k0 integration contour to avoid the poles of the propagators, but

since the poles do not cross the integration contour they continue to lie on the right of the

k0 axis. Therefore when we approach the supposed pinch singularity where the poles at

`0r =

√
~̀2
r +m2

r approach the k0 integration contour, they all approach the contour from the

right. As a result we can deform the k0 integration contour away from the poles, showing

that this is not a pinch singularity. This proves that in order that the reduced diagram

represents a pinch singularity, we cannot have an oriented closed loop in the diagram.

Absence of oriented closed loop in the diagram allows us to assign a partial ordering

of the vertices of a reduced diagram: if two vertices are connected by a propagator, then

the vertex to which the arrow is directed is drawn to the right of the vertex from which

the arrow originates. Since `0 =
√
~̀2 +m2 is positive if ` is the momentum carried by the

propagator along the arrow, this partial ordering implies that the energy flows from the

left to the right. Figure 4 shows a particular reduced diagram drawn in this manner. If we

now draw a vertical line through the propagators that divides the diagram into two parts,

as shown by the thin vertical line in figure 4, then across the vertical line there will be

on-shell particles moving from left to the right, carrying total momentum given by one of

the P(α)’s. If we denote by the set B the subset of internal lines intersected by the vertical

line, we have

P 0
(α) =

∑
r∈B

√
~̀2
r +m2

r ,
~P(α) =

∑
r∈B

~̀
r . (3.4)

Since the spatial components ~̀r are real along the integration contour, P(α) must be real,

and furthermore since P(α) is the sum of the momenta carried by a set of on-shell particles,

we must have −P 2
(α) ≥M

2
α. This contradicts (3.2). This shows that our initial assumption,

that there exists a pinch singularity during the deformation of the external momenta from

the origin to a point in the set S defined in (3.2), must be wrong. This in turn shows that

the Green’s function is analytic at points inside the set S described in (3.2).

It should also be clear from the above discussion that the points in the set S lie in

the interior of the domain of analyticity since the integration contours remain at finite

distance away from the pinches — even when P(α) is real but satisfies the strict inequality

−P 2
(α) < M2

α. Therefore small deformations in the external momenta, producing small

changes in the momenta carried by the internal propagators, will not produce a pinch.

This shows that for any point Q in the set S ⊂ CC(n−1)D, we can draw a sufficiently small

open neighborhood of CC(n−1)D containing Q where the analyticity property holds.
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→

↘

↗

↗

→

↘

Figure 4. A reduced diagram with no oriented closed loop and the arrows drawn so that they

always point to the right. Therefore the energies flow from left to right along all the propagators.

The ordering of the vertices can sometimes be ambiguous, e.g. any one of the two left-most vertices

could be drawn to the left of the other.

V +

V −

W+W−

q0 ↑

q1 →

Figure 5. The four regions V ± and W± in the two dimensional momentum plane.

3.2 Complex momenta in two dimensional Lorentzian plane

We shall now consider a more general subspace of the full complex momentum space in

which we allow only the time component p0 and one spatial component (say p1) of the

external momenta to be complex, but take all the remaining components to be real. We

shall use the symbol p‖ for (p0, p1) and p⊥ for (p2, · · · pD−1) and label p as (p‖, p⊥). We also

denote by the subscripts R and I the real and imaginary parts of any quantity. Therefore

we have

p = pR + i pI = (p‖R, p⊥R) + i (p‖I , 0) . (3.5)

We shall divide the (p0R, p
1
R) and (p0I , p

1
I) planes into four quadrants as follows:

V + : q0 > |q1|, V − : q0 < −|q1|, W+ : q1 > |q0|, W− : q1 < −|q0| , (3.6)

where q stands for either pR or pI . This has been shown in figure 5.
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Let us define, as before,

P(α) ≡
∑
a∈Aα

pa , (3.7)

for any proper subset Aα of {1, · · ·n} other than the empty set. We shall now show that

the off-shell Green’s function is free from singularity if

Im pia = 0 ∀ a = 1, · · ·n, i ≥ 2,

P(α)‖I ∈ V ± ∪ (∂V ± − 0) or {P(α)‖I = 0, −P 2
(α) < M2

α}, ∀Aα ⊂ {1, · · ·n} , (3.8)

where Mα is the threshold invariant mass for producing any set of intermediate states in

the collision of particles in the set Aα.

We begin at the origin {pa = 0} and first deform the external momenta to a point

where the components p0a, p
i
a for i ≥ 2 and Re (p1a) reach their desired values keeping

Im (p1a) = 0. The analysis of the previous subsection tells us that along this deformation

we do not encounter any singularity. In the second step we deform only the imaginary

parts of p1a keeping all other components fixed along a straight line till we reach the desired

value. It is easy to see that all along the path the external momenta will satisfy (3.8). Our

goal will be to show that during this deformation we do not encounter any singularity.

Before we proceed to give the detailed proof, let us outline the main steps in this

analysis. As before we denote by {ks} the loop momenta of the reduced diagram and by

{`r} the momenta carried by individual propagators. Our first task will be to understand

where the poles are in the k1s -plane and how they could possibly pinch the k1s contour. Then,

we show that at the pinch, it is possible to order the vertices of the reduced diagram such

that Im (`1r) always flows from the left to the right. We then consider a vertical cut through

the reduced diagram, and show that the total momentum flowing from the left to the right

lie in the domain W+ in figure 5, violating the condition that the external momenta lie

within the domain given in (3.8). This in turn establishes that the k1s integration contours

cannot be pinched as long as the external momenta lie within the domain (3.8), establishing

the analyticity of the off-shell Green’s function in this domain.

Let {ks} denote the independent loop momenta flowing in a given Feynman diagram.

At the end of the first deformation we would have reached a non-singular configuration in

which k1s , · · · kD−1s would have been integrated along the real axis, but for each value of

these spatial components of loop momentum, k0s would have been integrated along some

complicated contour. During the second deformation we choose the integration contours

as follows. Given any point on the integration contour at the end of the first deformation,

describing the values of all components of all loop momenta, we allow the point to move

to a new point differing only in the values of {Im (k1s)}. This means that we continue to

integrate k2s , · · · kD−1s along the real axis, and use the same k0s contours as at the end of the

first deformation for given values of kis for i ≥ 2 and Re (k1s), but allow the k1s contours to

be deformed along the imaginary direction. Put another way, if we project the k1s contours

in each of the loops to the real axis, we get back the integration contours obtained at the

end of the first deformation. Our goal will be to show that we can avoid singularities of

the integrand by appropriate choice of the k1s contours.
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Before we carry out the deformation we shall try to gain some understanding of how

the singularities of the integrand are distributed in the complex k1s plane at the end of the

first deformation which is the starting point of the second deformation. For this let us focus

on a particular loop momentum ks keeping fixed all other loop momenta. We denote by

Bs the set of internal propagators through which the loop momentum ks flows. Let r ∈ Bs
index the individual internal propagators appearing in the s-th loop, such that {`r} and

{mr} denote the momenta and masses carried by these propagators along the direction of

flow of ks. Then we have the following relations between the {`r}’s and {ks}:

1. We have

`r = ks + Lr, for r ∈ Bs , (3.9)

where Lr is a linear combination of the external momenta and other loop momenta.

Since at the end of the first deformation all other loop momenta as well as external

momenta have real components along 1-direction, L1
r (as well as Lr⊥ ≡ (L2

r , · · ·LD−1r ))

are real.

2. No propagator outside the set Bs carries the momentum ks.

3. For fixed values of other loop momenta, the integration over k1s contour is along the

real axis. Due to reality of L1
r , this implies that as k1s varies from −∞ to ∞ along

the real axis, all the `1r ’s also vary from −∞ to ∞ along the real axis.

It will be useful to understand the location of the pole of the propagator carrying mo-

menta {`r} in the complex k1s plane. The condition for the propagator carrying momentum

`r to be on-shell is given by

`1r = ±i
√
`2r⊥ − (`0r)

2 +m2
r = ±i

√
(ks⊥ + Lr⊥)2 − (k0s + L0

r)
2 +m2

r for r ∈ Bs . (3.10)

As we integrate over the k0s contour for fixed values of other loop momentum components,

this generates a curve describing positions of the poles at `2r + m2
r = 0 in the complex `1r

plane via (3.10). We shall call them the singular loci. Since the ends of the k0s contours

are fixed at ±i∞, (3.10) shows that the singular loci in the complex `1s plane also approach

±i∞ at the two ends. However they could go from ±i∞ to ±i∞ or ±i∞ to ∓i∞. These

different situations are shown in figure 6(a), (b) and (c). In all these figures the singular

loci are related by a reflection around the origin (`1r → −`1r). The location of these poles

in the k1s plane can be found using (3.9). The k1s plane will have several such singular loci,

one pair for each `r, shifted along the real axis by Lr. This has been shown in figure 7.

Recall now that the picture given in figure 7 is valid for a particular value of k1s
(denoted by × in figure 7) since the singular loci depend on the integration contour over `0s
and these in turn can vary as we vary k1s . Indeed, otherwise figure 7 would imply that as

we integrate k1s along the real axis we hit the singular loci at the points where the singular

loci intersect the real k1s axis. This is inconsistent with the assertion that at the end of

the first deformation the integration contours are chosen so as to avoid all singularities

of the integrand. What this means is that as k1s approaches one of the points where a
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(a) (b) (c)

Figure 6. Possible form of the singular loci of the propagator carrying momentum ` in the `1r
plane. The thin horizontal lines denote real `1r axis. Transitions from the form (a) or (c) to form

(b) could take place by the two branches in (a) or (c) touching each other at `1r = 0.

×

Figure 7. This figure represents, for a given real value of k1s denoted by ×, the singular loci in the

complex k1s plane from different propagators at the end of the deformation described in section 3.1.

The thin horizontal line denotes real k1s axis. As k1s denoted by × moves along the real axis, the

shapes of the singular loci change so as to make way for the integration contour to pass all the way

from −∞ to ∞ without encountering a singular locus.

singular locus hits the real axis, we deform the k0s integration contour so that the singular

locus moves away (becoming a configuration like the one in figure 6(a)), making way for

the k1s contour to pass through. During this deformation new obstructions may appear

elsewhere on the real k1s axis but this does not affect us. The ability to always carry out

a deformation of the k0s contour to make way for the k1s contour to pass through follows

from the result of subsection section 3.1 that we do not encounter any singularity during

the deformations considered there. This suggests that the representation of the singular

loci as shown in figure 7 contains too much redundant information — for a given value of

k1s on the real axis, the relevant information should contain the locations of the poles in

the k1s plane whose real part coincides with the chosen value of k1s . This has been shown in

figure 8, where we plot, for given Re (k1s), the points where the vertical line drawn through

k1s intersects the singular loci in figure 7. In this figure the singular loci never cross the

real axis. Note that we have used thicker lines to label the curves above the real axis and

thinner lines to label the curves below the real axis. The points on the thicker curves have

positive Im (k1s) and Im (`1r) and the thinner curves have negative Im (k1s) and Im (`1r).
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Figure 8. An economical representation of the relevant information of figure 7 in which we plot for

each real k1s , only the points of the singular loci that have the same Re (k1s). In other words we draw

a vertical line through × in figure 7 and plot only the points where it intersects the singular loci.

This allows us to capture the relevant information for all Re (k1s) in one graph instead of having to

plot separate graphs like figure 7 for different positions of × on the real axis. Since the singular

locus always keeps away from × in figure 7, in this new representation the curves will never cross

the real axis. For reasons to be explained in the text, the curves above the real axis have been

drawn thicker than the ones below the real axis.

So far we have been considering the end point of the first deformation. Now let us

consider the effect of deforming the imaginary parts of the p1a’s keeping all other components

of external momenta fixed. Our goal will be to examine the fate of the singular loci in k1s
plane for fixed values of other loop momenta. Now as discussed before, during the second

deformation we allow the integration contours of different loop momenta {ks′} to shift by a

change in Im (k1s′), without changing any other components. The effect of the deformation

of Im (p1a) and Im k1s′ for s′ 6= s will be to change some of the Lr’s appearing in (3.9)

by adding a constant imaginary part to L1
r . This will have the effect of different vertical

shifts of different singular loci in figure 8. As shown in figure 9, this may now introduce

obstruction on the real axis, preventing us from integrating k1s along the real axis. As

long as there is a vertical gap in the singular loci, we can deform the k1s contour along the

imaginary direction and make it pass through the gap without hitting a singularity. Since

we have specified that during this deformation the k0s integration contour remains unaltered

for given Re (k1s), the curves in figure 9 do not change as we deform the k1s contour this

way. If at some point the vertical gap closes, then we cannot draw the k1s contour without

hitting a singularity. This has been shown in figure 10. At this point we can make the

following observations:

1. The closure of the gap requires the collision of a pair of points on the singular loci,

one on a thick line and the other on a thin line as in figure 10.

2. For the singular loci coming from the zeroes of `2r +m2
r , the Im (`1r) values on the loci

for given Re (k1s), determined by (3.10), do not change during the second deformation

since the k0s and ks⊥ contours remain unchanged during this deformation. However

the relation between Im (`1r) and Im (k1s) changes, causing the vertical shift of the

singular loci in the k1s plane as described above.
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Figure 9. Fate of figure 8 after switching on Im (p1a). Different singular loci associated with different

propagators undergo different amounts of vertical shift. In this figure it is no longer possible to

choose the k1s integration contour along the real axis, but it is possible to find a deformed contour

from −∞ to ∞ that avoids the singularities.

Figure 10. Possible configuration of singular loci when there is no k1s contour avoiding singularity.

3. Since at the beginning of the second deformation Im (`1r) was positive on the thick

curves and negative on the thin curves, they will continue to obey this, although the

sign of Im (k1s) can change, as for example in going from figure 8 to figure 9.

Combining these observations we see that when the gap closes, one of the propagators

in the set Bs that go on-shell at the singular point has Im (`1r) > 0 and another on-shell

propagator in this set has Im (`1r) < 0. Note the strict inequality: if we had Im (`1r) = 0

then the corresponding singular locus would have touched the real k1s axis at the beginning

of the second deformation. This would have been inconsistent with the already proven

result that at the beginning of second deformation we can integrate k1s along the real axis

without encountering any singularity. In special cases there may be more propagators that

become on-shell at the same point in the k1s plane, causing more than two curves to touch

at a point, but none of these will have Im (`1r) = 0 and at least a pair of them will have to

carry opposite signs of Im (`1r).
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So far we have been considering the possibility of avoiding singularities by deforming

the k1s integration contour for one particular loop. Once that fails due to closure of the gap,

we still have the possibility of opening the gap by deforming the k1s′ integration contour

for some other loop. Indeed such deformation of a neighboring loop momentum will inject

additional imaginary momentum along 1 direction through the vertices and will change the

imaginary parts of one or more L1
r ’s appearing in (3.9). This will induce further vertical

shift of some of the singular loci in the k1s plane, and could open up a gap in figure 10

through which the k1s integration contour can pass. At the same time we have to ensure

that the deformation of the k1s′ integration contour does not run into a singularity on the

way from some other propagator through which ks′ flows.

After taking into account all of these possibilities we see that the integral will run into

a singularity if we cannot deform the {k1s} contours associated with different loops to avoid

the singular loci in some of the k1s integrals.9 We shall prove that such a situation does

not arise as long as (3.8) holds. To prove this we assume the contrary, i.e. assume that we

run into a singularity and show that there is a contradiction. At the singularity certain set

of propagators become on-shell. We associate with the singularity a reduced diagram by

contracting to points all propagators that are not on-shell, and associate to each on-shell

propagator an arrow that flows along `i if Im (`1i ) > 0 and opposite to `i if Im (`1i ) < 0 at

the singular point. Note that these arrows label different attributes compared to the arrows

used in section 3.1 — to make this distinction we shall use double arrows for keeping track

of the sign of Im (`1i ). Our earlier observation will now tell us that along each loop there

should be at least one propagator carrying an arrow along the loop momentum and another

propagator carrying the arrow opposite to the loop momentum. Therefore we cannot have

an oriented closed loop in the reduced diagram. An argument identical to the one given in

section 3.1 now shows that we can partially order the vertices of the reduced diagram so

that Im (`1) always flows from the left to the right. An example of a reduced diagram of

this type can be found in figure 11. If we now draw a vertical line through the propagators

that divides the diagram into two parts, as shown by the thin vertical line in figure 11, then

across the vertical line there will be on-shell particles carrying momenta `i, with Im (`1i )

flowing from left to the right. We shall now show that this implies `i‖I ≡ Im (`0i , `
1
i ) ∈W+

and contradicts (3.8).

Let ` be the momentum carried by an internal propagator and let m be the mass of

the particle propagating along that propagator. The pole coming from the denominator of

this propagator is situated at

`2 +m2 = 0 . (3.11)

Writing ` = `R + i`I we get

0 = `2R − `2I + 2 i `R.`I +m2 = `2‖R + `2⊥R − `2‖I + 2 i `‖R.`‖I +m2 . (3.12)

This gives

`‖R.`‖I = 0, `2‖R + `2⊥R +m2 − `2‖I = 0 . (3.13)

9This is a necessary but not sufficient condition for running into singularities since we could still explore

the possibility of making the k0
s integration contours depend on both real and imaginary components of k1

s

and deforming the kis contours for i ≥ 2 away from the real axis. We shall not consider these possibilities.
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→→

↘↘

↗↗

↗↗

→→

↘↘

Figure 11. A reduced diagram labelling the direction of flow of Im (`1i ). The flow is along the

double arrows and always from left to right.

Now it follows from the first equation that if `‖R ∈ V ± ∪ (∂V ±− 0) then `‖I ∈W± ∪ ∂W±

and if `‖R ∈ W± ∪ (∂W± − 0) then `‖I ∈ V ± ∪ ∂V ±. Since vectors in V ± have negative

norm and vectors in W± have positive norm, it follows that `2‖R and `2‖I have opposite signs.

Since `2⊥R ≥ 0, it follows from the second equation in (3.13) that `2‖R ≤ 0 and `2‖I ≥ 0. If

`2‖R = 0 but `‖R 6= 0, then it follows from the first equation of (3.13) that we must also

have `2‖I = 0, but this will be inconsistent with the second equation. Similar contradiction

arises if `2‖I = 0 but `‖I 6= 0. Therefore we must have `2‖R < 0 or `‖R = 0 and `2‖I > 0 or

`‖I = 0, but both `‖R and `‖I cannot vanish at the same time. This may be summarized as

`‖R ∈ V ± ∪ 0, `‖I ∈W± ∪ 0, (`‖R, `‖I) 6= (0, 0) . (3.14)

Consider now a vertical cut of a reduced diagram of the type shown in figure 11. Let

`i denote the momenta of the cut propagators, flowing to the right. Since according to our

previous analysis `1iI > 0, it follows from (3.14) that `i‖I ∈W+. Therefore∑
i

`i‖I ∈W+ , (3.15)

where the sum runs over all the propagators cut by the vertical line. However, by mo-

mentum conservation we have
∑

i `i = P(α) for some P(α) describing the total external

momenta entering the diagram from the left. Therefore we have

P(α)‖I ∈W+ . (3.16)

This is inconsistent with (3.8). Therefore we see that our initial assumption must be wrong,

namely that there is no singularity of the integral when (3.8) is satisfied.

Special attention may be paid to the boundary points P(α) ∈ ∂V +. In order to have a

pinch singularity on the integration contour, the conditions
∑

i `i = P(α) and (3.15) will be

compatible only if `i‖I ∈ ∂W+. Now we have already ruled out `i‖I = 0 since that would
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cause a singularity at the end of the first deformation. The first condition in (3.13) now

tells us that `i‖R ∈ ∂V ±. Therefore both `2i‖I and `2i‖R vanishes. This would violate the

second equation in (3.13) by finite amount. This shows that even for P(α) ∈ (∂V +−0), the

contours are at finite distance away from the pinch singularities. Therefore these points are

in the interior of the domain of holomorphy, since small deformations of external momenta

will not produce a singularity.

4 Discussion

We shall end the paper by making a few comments on our results:

1. We have shown that when we define the Green’s function at a given point in the

complex momentum space satisfying (3.8) by analytic continuation of the Green’s

function at the origin along a particular path lying inside the region (3.8), the result

does not have have any singularity. One could however ask whether the result could

depend on the path along which we carry out the analytic continuation. To this end

we note that since the region (3.8) is a simply connected region containing the origin

(a star shaped region according to the notation of [1, 2]) analytic continuation along

any path lying wholly within the region (3.8) will always give the same result.

2. We have proved a limited version of the general result obeyed by a local quantum

field theory by restricting, in (3.8), the imaginary part of the external momenta to

lie in a two dimensional Lorentzian plane. This is sufficient for the proof of crossing

symmetry [2] and various other results on the analyticity of the S-matrix [13], but

it will be of interest to extend the results to general external momenta obeying only

the condition (1.1).

The arguments given in section 3.2 can be used to proceed some way towards a proof

of this more general result. Indeed since at the end of section 3.2 we established

the existence of deformed integration contours avoiding poles when p0a and p1a have

imaginary components, we can take this as the starting point and switch on imaginary

values of p2a. Proceeding as in section 3.2 we can establish that we can associate a

triple arrow to an internal propagator carrying momentum ` of any reduced diagram

that denotes the direction of Im (`2) at the supposed pinch singularity, and that

these arrows never form a closed loop.10 Therefore we can draw the diagrams so that

Im (`2) flows from left to right and if we cut the diagram by a vertical line then all

the cut propagators carry Im (`2i ) from left to right. We also know from the on-shell

condition that Im (`i) is space-like. However unlike in the case of section 3.2 we

cannot now conclude that the sum of the momenta carried by these cut propagators

have space-like imaginary part — this requires also the knowledge of Im (`1i ) carried

by each cut propagator. The signs of the latter are labelled by the double arrows

which are not necessarily correlated with the triple arrows and can flow in either

direction through the cut propagators in the present case.

10Note that `2 in this discussion denotes the second component of ` and not the invariant square of `.
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3. We have invoked the analysis given in [2] to conclude that the analyticity of the off-

shell Green’s function in the domain (3.8) is sufficient to prove crossing symmetry.

This requires us to make use of some general results on functions of many complex

variables that states that the domain of analyticity of such functions cannot have

arbitrary shapes. Therefore analyticity in the domain (3.8) actually implies ana-

lyticity in a larger domain. Similar arguments can be used to prove various other

analyticity properties of the S-matrix given the analyticity of the Green’s function

in the domain (3.8) [13]. It will be interesting to explore if the momentum space

analysis could directly establish analyticity in the larger domain needed for the proof

of crossing symmetry and other analyticity properties of the S-matrix. This may then

enable us to bypass the need of using an off-shell formalism for the proof of crossing

symmetry.
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