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1 Introduction

WZW primary fields are also Virasoro primary fields. Since the Virasoro zero mode acting

on the primary state is proportional to the quadratic Casimir operator of the finite Lie alge-

bra, primary field conformal weight (or spin) [1, 2] is half the quadratic Casimir eigenvalues

divided by the sum of the level and dual Coxeter number of the finite Lie algebra. When

the level equals the dual Coxeter number in the adjoint representation, conformal weight is

halved.1 For the diagonal coset model described in [1], section 7.3, spin-32 current, which is

a N = 1 supersymmetry generator and commutes with the diagonal spin-1 current, can be

determined as the linear combination of two spin-1 current types and adjoint fermions [3–5]

(see, for example, [1], (7.50)). This leads to coset construction of N = 1 superconformal

algebra [6] for SU(2), coset construction of N = 1 W3 algebra for SU(3) [7–10], and N = 1

higher spin multiplets for SU(N) [11]. Although the N = 1 extension for bosonic coset

models can be obtained from the particular level condition, we can also consider other cases

with N = 2 and N = 3 extensions.2

Gaberdiel and Gopakumar [17] proposed duality between higher spin gauge theory on

AdS3 space [18, 19] and the large N ’t Hooft limit of a family of WN minimal models (see

also [20–23]). This is a natural analogue of Klebanov and Polyakov duality [24] relating the

O(N) vector model in 3-dimensions to a higher spin theory on AdS4 space. Then we can

generalize [17] by considering Klebanov and Polyakov duality in one lower dimension. The

relevant coset model was derived by replacing the SU(N) group by SO(2N) or SO(2N +

1) [25, 26], and N = 1 and N = 2 extensions of the (bosonic) orthogonal coset model

obtained [27] (see [28] also). Thus, putting the above level condition into the N = 1 coset

model, we can obtain the N = 2 extension of the supersymmetric coset model.

Therefore, this paper considers the following coset model [29] at the “critical” level,

G

H
=

ŜO(2N + 1)k ⊕ ŜO(2N)1

ŜO(2N)k+1

with k = 2N − 1. (1.1)

For SO(2N+1), the quadratic Casimir eigenvalue for the adjoint representation = (2N−1),

i.e., the dual Coxeter number of SO(2N +1). The central charge of the coset model at the

critical level is

c =
3Nk

(k + 2N − 1)

∣∣∣∣∣
k=2N−1

=
3N

2
, (1.2)

where the infinity limit of the central charge is equivalent to the infinity limit of N . Addi-

tional adjoint fermions occur in the first and second factors of group G in (1.1).

1For example, the quadratic Casimir operator eigenvalue = 2N and the dual Coxeter number = N for

SU(N), where the overall numerical factor 1
2
is the conformal weight (or spin) of the adjoint fermion.

2Taking adjoint spin- 1
2
fermions in the second factor appearing in the numerator of the diagonal coset

model [1] provides the coset construction for N = 2 superconformal algebra [12], and the observed N = 2

higher spin currents can be determined [13, 14]. Creutzig et al. and Ahn et al. [15, 16] investigated the

N = 3 extension from the N = 2 coset model.
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We would like to construct the additional higher spin currents and their operator

product expansions (OPEs) for (1.1). We assume “minimal” N = 2 extension of the

N = 1 higher spin currents [29–31],

(
1,

3

2
,
3

2
, 2

)
;

(
3

2
, 2, 2,

5

2

)
,

(
3,

7

2
,
7

2
, 4

)
,

(
7

2
, 4, 4,

9

2

)
,

(
5,

11

2
,
11

2
, 6

)
, · · · ,

(
n− 1

2
, n, n, n+

1

2

)
,

(
n+ 1, n+

3

2
, n+

3

2
, n+ 2

)
, · · · , (1.3)

where n = 2, 4, 6, · · · . The first multiplet is the well-known N = 2 superconformal algebra

generator [12]. The first two components of each N = 2 (higher spin) multiplet in (1.3)

are new and superpartners of the last two components. Thus, we obtain the lowest N = 2

higher spin multiplet of spins
(
3
2 , 2, 2,

5
2

)
in terms of two adjoint fermion types for genericN ,

their OPEs, and OPEs between the lowest and second N = 2 lowest higher spin multiplet

of spins
(
3, 72 ,

7
2 , 4

)
.

We also construct higher spin algebra generators in terms of oscillators corresponding

to the first two higher spin multiplets in (1.3), from OPEs realized in (1.1), and explicitly

provide some related (anti)commutators. The higher spin-32 current in (1.3) requires addi-

tional degrees of freedom because the supersymmetry generator of spin-32 also has spin-32 ,

leaving no room for the higher spin-32 generator because they share a linear term in the

oscillator and we cannot differentiate them. This requires matrix generalization of the

Vasiliev theory [15].

An interesting question is how higher spin symmetry (with supersymmetry) for Vasiliev

higher spin theory on AdS3 space appears in string theory. The N = 4 extension of [17]

was described in [32] with the hope that higher spin dualities might be embedded in the

string dualities (see also [22, 23]). Although some observations in the presence of infinite

tower of modes become massless [33–37], emergence of higher spin symmetry has not been

fully clarified from string theory viewpoint. There are few examples on string theory

with N = 2 supersymmetry compared to N = 3 or N = 4 supersymmetry. Recently,

N = 2 supergravity solutions for 10-dimensional theory containing AdS3 space have been

found [38], following [39], and an important supergravity outcome is that the symmetric

orbifold of the (four dimensional) hyperelliptic surface supports higher spin symmetry.

Thus, it remains an open problem to obtain the corresponding string theory containing

N = 2 supergravity. Perhaps chiral primary states [13] of the present model at the critical

level will be useful in this regard, which is one of the motivations for the current paper.

Datta et al. [39] showed that the generalized (1.1), replacing numerical value 1 by arbitrary

M , can be used to obtain the corresponding (unknown) string theory. We expect that the

current paper outcomes will provide further direction to help construct the unknown string

theory. Descriptions from [15] regarding two-dimensional conformal field theory will also

be useful to understand this general coset. The remainder of this paper is organized as

follows (the Thielemans pacakge [40] is used)

• Section 2 realizes the four N = 2 superconformal algebra currents in terms of the

two adjoint fermion types in (1.1).
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• Section 3 analyzes the first four N = 2 higher spin multiplets in (1.3) for fixed N = 4.

• Section 4 determines the lowest N = 2 higher spin multiplet in terms of two adjoint

fermions for generic N , and obtains its OPE and component results. The asymptotic

symmetry algebra [41–46] for the matrix extension of Vasiliev theory is also obtained

by taking the large central charge limit (1.2). OPE between the lowest N = 2 higher

spin multiplet and the second N = 2 higher spin multiplet is obtained using the

Jacobi identity.

• Section 5 reviews the “wedge” algebra of N = 2 superconformal algebra, and con-

structs OSp(2|2) higher spin algebra generators in terms of oscillators and their alge-

bra [18, 19, 47, 48]. We also analyze the match between these outcomes and section 4

under the large c limit with wedge condition.

• Section 6 summarizes the findings and concludes the paper, and briefly discusses

some remaining open problems.

• Appendices A–F present various details described in the previous sections.

2 Four currents for N = 2 superconformal algebra

We construct the four currents for N = 2 superconformal algebra in the coset model (1.1)

following [14].

2.1 Kac-Moody spin-1 currents

For the diagonal coset model in (1.1), the spin-1 current JA(z) with level k and spin-12
current χi(z) (whose spin-1 current has the level 1) generate the affine Lie algebra G =

ŜO(2N +1)k ⊕ ŜO(2N)1 [29]. Adjoint indices A,B, · · · of SO(2N +1) = 1, 2, · · · , N(2N +

1) and vector indices i, j, · · · of SO(2N) = 1, 2, · · · , 2N and can be relabeled by adding

N(2N − 1) respectively.3 Diagonal spin-1 current (Ja +Ka)(z) with level (k + 1), where

Ka(z) is quadratic in spin-12 current (2.2), generates H = ŜO(2N)k+1 affine Lie algebra.

From condition k = 2N − 1, we can introduce fermions ψA(z) in the first factor of G,

and then consider two fermion field types ψA(z) and χi(z) that satisfy the OPEs

ψA(z)ψB(w) = − 1

(z − w)

1

2
δAB + · · · , A ≡ (a, i),

χi(z)χj(w) = − 1

(z − w)

1

2
δij + · · · . (2.1)

The corresponding Kac-Moody spin-1 currents are

Ja(z) ≡ faBC ψBψC(z) = fabc ψbψc(z) + faij ψiψj(z),

J i(z) ≡ f iBC ψBψC(z) = 2f ija ψjψa(z),

Ka(z) ≡ faij χiχj(z), (2.2)

3Adjoint indices A,B, · · · of SO(2N+1) can be further decomposed into SO(2N) adjoint indices a, b, · · · =

1, 2, · · · , N(2N−1) and SO(2N) vector indices i, j, · · · = 1+N(2N−1), · · · , 2N+N(2N−1) = N(2N+1),

i.e., SO(2N + 1) adjoint indices A,B, · · · = 1, 2, · · · , N(2N − 1), 1 +N(2N − 1), · · · , 2N +N(2N − 1).
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hence f ijk = 0 = f iab, which obey the nontrivial OPEs from (2.1) and (2.2),

Ja(z) Jb(w) = − 1

(z − w)2
(2N − 1) δab +

1

(z − w)
fabc Jc(w) + · · · ,

Ja(z) J i(w) =
1

(z − w)
faij J j(w) + · · · ,

J i(z) J j(w) = − 1

(z − w)2
(2N − 1) δij +

1

(z − w)
f ija Ja(w) + · · · ,

Ka(z)Kb(w) = − 1

(z − w)2
δab +

1

(z − w)
fabcKc(w) + · · · . (2.3)

Spin-1 current JA(z) has level (2N − 1). Hence, adding the first and last in (2.3), diagonal

spin-1 current (Ja +Ka)(z) has level 2N .

2.2 Four currents in terms of fermions

This section presents the four N = 2 superconformal algebra currents.

• Coset spin-1 current

Using the SO(2N) invariant tensor of rank 2, spin-1 current can be expressed as

J(z) = i δij ψiχj(z) = i ψiχi(z). (2.4)

Thus, the OPE between spin-1 current and itself is

J(z) J(w) =
1

(z − w)2
c

3
+ · · · , c =

3

2
N. (2.5)

The overall factor in (2.4) is fixed by requiring the central term of OPE J(z) J(w)

should behave as in (2.5). The coset spin-1 current has no singular terms with the

diagonal spin-1 current, i.e.,

(Ja +Ka)(z) J(w) = + · · · . (2.6)

In particular, combining the two fermions has nonzero U(1) charge, ±1
2 , associated

with the spin-1 current

J(z) (ψi ± iχi)(w) = ± 1

(z − w)

1

2
(ψi ± iχi)(w) + · · · . (2.7)

Similarly, the regular term in the OPE between spin-1 current J(z) and fermion

ψa(w) can be expressed as

J(z)ψa(w) = + · · · . (2.8)

We can analyze higher spin currents for fixed U(1) charges in terms of fermions using

fermion U(1) charges in (2.7) and (2.8).

– 5 –
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• Coset spin-32 currents

From (2.6), spin-32 currents should satisfy

(Ja +Ka)(z)G±(w) = + · · · , (2.9)

where the OPE with spin-1 current is

J(z)G±(w) = ± 1

(z − w)
G±(w) + · · · . (2.10)

Then the spin-32 currents of U(1) charges ±1 (2.10) can be expressed as

G±(z) =
1

4
√
2N − 1

[
∓ i ψiJ i ± 2i ψaKa + 2χiJ i

]
(z), (2.11)

and we can obtain N = 1 spin-32 current by adding these two spin-32 currents.

• Coset spin-2 current

The spin-2 stress energy tensor that satisfies the regular condition with the coset

spin-1 current as in (2.6) and (2.9) can be obtained from the difference between those

in group G and the one in subgroup H with the correct coefficients,

T (z) = − 1

4(2N − 1)
(Ja + J iJ i)(z)− 1

2(2N − 1)
KaKa(z)

+
1

4(2N − 1)
(Ja +Ka)(Ja +Ka)(z), (2.12)

where the central charge is given by (2.5).

Therefore, the four N = 2 superconformal algebra currents in the coset model are

summarized by (2.4), (2.11), and (2.12). In N = 2 superspace, they can be organized by a

single N = 2 stress energy tensor,

T(Z) = J(z) + θ G+(z) + θ̄ G−(z) + θ θ̄ T (z). (2.13)

The defining OPEs between the four currents in (2.13) are given by (A.1).

3 N = 2 higher spin currents for fixed N = 4

This section describes N = 2 higher spin multiplets in the coset model for N = 4. We show

higher spin-32 (primary) current that belongs to the lowest N = 2 higher spin multiplet,

and the presence of other higher spin currents in other N = 2 higher spin multiplets.

3.1 The first (lowest) N = 2 higher spin multiplet

Creutzig et al., Ahn et al. and Candu et al. [29–31] showed that the lowest N = 1 higher

spin multiplet contains higher spin-2 and higher spin-52 currents. Due to the presence of

additional fermions ψa(z) and ψi(z), there is the possibility to have additional lower N = 1

– 6 –
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higher spin multiplet of spins 3
2 and 2, which is a superpartner of the N = 1 higher spin

multiplet. Thus, it is natural to check whether a higher spin-32 current occurs in the coset

model.

Let us consider the most general spin-32 current with unknown U(1) charge q and

unknown coefficients [16],

W
( 3
2)

q (z) = CABC
1 ψAψBψC+CiBC

2 χiψBψC+CAij
3 ψAχiχj+Cijk

4 χiχjχk+CA
5 ∂ψ

A+Ci
6∂χ

i,

(3.1)

where the undetermined coefficients can be SO(2N + 1) or SO(2N) (of G in the coset

model) invariant tensors. To find this higher spin-32 current (3.1), we use the conditions

from (B.1) with the regular condition in the OPE for diagonal spin-1 current (see [1, 49]

for the GKO [6] coset construction),

T (z)W
( 3
2)

q (w)

∣∣∣∣∣
1

(z−w)2

=
3

2
W

( 3
2)

q (w),

T (z)W
( 3
2)

q (w)

∣∣∣∣∣
1

(z−w)

= ∂W
( 3
2)

q (w),

J(z)W
( 3
2)

q (w)

∣∣∣∣∣
1

(z−w)

= qW
( 3
2)

q (w),

(Ja +Ka)(z)W
( 3
2)

q (w) = + · · · . (3.2)

The first two conditions come from the primary field under the stress energy tensor, the

third is U(1) charge q under spin-1 current, and finally the regular condition with diagonal

spin-1 current (see the defining OPEs in (B.1)).

Only one higher spin-32 primary field with U(1) charge q = 0 exists, denoted by

W
(h= 3

2)
q=0 (z), with explicit expression for fixed N = 4,

W
( 3
2)

0 (z) = − 5

18

[
ψiJ i +

9

5
ψaKa − 1

5
ψaJa

]
(z), (3.3)

using previous relationships from (2.2). The last term of (3.3) does not appear in (2.11).

The general expression for generic N will be considered in section 4.1.

To find the other primary currents that belong to the same N = 2 higher spin multiplet

as W
( 3
2)

0 (w), we can use the defining relations in (B.1). Given the lowest higher spin-32
current (3.3), we can determine higher spin-2 currents of U(1) charge ±1 using G±(z)

in (2.11),

W
(2)
± (z) = − 1

12
√
7

[
− 3i

2
J iJ i +

i

4
JaJa − 7i

2
JaKa

+
7i

4
KaKa ∓ 7 JaLa ± 13KaLa + 7 JJ ∓ 70i ∂J

]
(z), (3.4)

– 7 –
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where spin-1 current La(z) considering the product of two fermions is

La(z) ≡ faij ψiχj(z), (3.5)

and (2.2) and (2.4) are used. The last four terms in (3.4) do not appear in (2.12).

Similarly, the last component higher spin-52 current of vanishing U(1) charge can be

determined by the OPE between spin-32 and higher spin-2 currents,

W
( 5
2)

0 (z) = − 1

12

[
2i fabcψaKbLc − 3 fabcψaJbLc + 6 fabcψaψbψcJ

−6ψaJaJ − i dajkbψaψjχkJb + i dibjcχiψbψjKc

]
(z), (3.6)

where the last two terms contain the totally symmetric d tensor of SO(2N + 1),

dABCD =
1

2
Tr[TDTATBTC + TDTATCTB + TDTBTATC + TDTBTCTA

+TDTCTATB + TDTCTBTA], A = (a, i). (3.7)

Since the SO(2N) adjoint and vector indexes inside SO(2N + 1) range independently,

there are nontrivial contributions in the last two terms of (3.6), and we used (2.2), (2.4),

and (3.5).

The three currents (3.4) and (3.6) satisfy regularity conditions with diagonal spin-1

current,

(Ja +Ka)(z)W
(2)
± (w) = + · · · ,

(Ja +Ka)(z)W
( 5
2)

0 (w) = + · · · . (3.8)

Therefore, the four currents (3.3), (3.4) and (3.6) that satisfy (3.2) and (3.8), are

components of the lowest N = 2 higher spin multiplet,

W
( 3
2)

0 ≡
(
W

( 3
2)

0 , W
(2)
+ , W

(2)
− , W

( 5
2)

0

)
. (3.9)

We also checked the defining OPEs in (B.1) for h = 3
2 and q = 0.

The existence of W
( 3
2)

0 (Z) [30] strongly suggests there would be N = 2 higher spin

multiplets in addition to the lowest N = 2 higher spin multiplet W
( 3
2)

0 (Z) (3.9)

W
(3)
0 ≡

(
W

(3)
0 , W

( 7
2)

+ , W
( 7
2)

− , W
(4)
0

)
,

W
( 7
2)

0 ≡
(
W

( 7
2)

0 , W
(4)
+ , W

(4)
− , W

( 9
2)

0

)
,

W
(5)
0 ≡

(
W

(5)
0 , W

( 11
2 )

+ , W
( 11

2 )
− , W

(6)
0

)
, · · · . (3.10)

– 8 –
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The first multiplet of (3.10) is the N = 2 extension of N = 1 higher spin multiplet of

spins 7
2 and 4 [30]. The extra higher spin currents of spins 7

2 and 4 appear in the second

multiplet of (3.10). Similarly, the first two components in the third multiplet of (3.10) are

new additions. The following sections observe the presence of some higher spin currents

for fixed N = 4.

3.2 Second N = 2 higher spin multiplet

To investigate the existence of the second N = 2 higher spin multiplet W
(3)
0 (Z) in (3.10),

we should show there is no other primary higher spin-3 current besides W
(3)
0 (z) in (1.1).

Therefore, we construct the most general higher spin-3 field W
(h=3)
q (z) with unknown U(1)

charge q and use conditions (3.2) for this higher spin current as we did for W
( 3
2)

0 (z). Only

one higher spin-3 (primary) current with U(1) charge q = 0 exists: the lowest higher spin

current W
(3)
0 (z) of the second N = 2 higher spin multiplet, which can be expressed for

fixed N = 4 as

W
(3)
0 (z) =

[
4

847
(ψaKa)(ψbLb)+

8

847
(ψaLa)(ψiJ i)+

20

7623
(ψiJ i)(χjJj)

− 799

45738
Ja(dajkbψjχkKb)+

3995

320166
Ka(dajkbψjχkKb)+

31

6534
La(dabjkψbψjJk)

+
1

1089
J i(dibjcψbχjJc)+

2327

45738
i JJJ+

19

91476
i JaJaJ− 17387

640332
iKaKaJ+

1949

45738
i LaLaJ

+
106

3267
i JaKaJ− 157

45738
Ja∂La− 17

7623
La∂Ja− 6947

320166
Ka∂La+

646

22869
i ∂2J

]
(z),

(3.11)

using (2.2), (2.4), and (3.5). In this case, an additional d tensor (3.7) with two adjoint

indices and two vector indices appears in the second and third lines.

The other components of N = 2 higher spin multiplet W
(3)
0 (Z) in (3.10) can be

obtained from (B.1), in principle, or they can appear in the OPEs between the N = 2

higher spin multipletW
( 3
2)

0 (Z) components in (3.9). For example, the higher spin-3 current

W
(3)
0 (z) in (3.11) appears in the first-order pole for the OPE W

( 5
2)

0 (z)W
( 3
2)

0 (w),

W
( 5
2)

0 (z)W
( 3
2)

0 (w) =
1

(z − w)3
35

6
J(w) +

1

(z − w)2
35

6
∂J(w)

+
1

(z − w)

[
− 2541i

48
W

(3)
0 +

35

12
G+G−

+
49

24
JT − 91

144
JJJ − 35

24
∂T +

175

72
∂2J

]
(w) + · · · . (3.12)

We can rearrange the first order pole in (3.12) in terms of various quasi primary fields.

Similarly, other component higher spin-72 currents W
( 7
2)

± (z) appear in the first-order pole
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for OPE W
( 5
2)

0 (z)W
(2)
± (w)

W
( 5
2)

0 (z)W
(2)
± (w) = − 1

(z − w)3
35

3
G+(w) +

1

(z − w)2

[
∓ 7

12
JG+ − 91

12
∂G+

]
(w)

+
1

(z − w)

[
2541i

48
W

( 7
2)

± − 119

24
G+T ∓ 35

24
G+∂J +

91

48
JJG+ ∓ 7

8
J∂G+

−91

32
∂2G+

]
(w) + · · · , (3.13)

which can be rearranged in terms of quasi primary fields in the second and first order poles.

Finally, the last component higher spin-4 current W
(4)
0 (z) appears in the first-order

pole for OPE W
( 5
2)

0 (z)W
( 5
2)

0 (w),

W
( 5
2)

0 (z)W
( 5
2)

0 (w) =
1

(z − w)5
70

3
+

1

(z − w)3

[
119

6
T − 7

12
JJ

]
(w)

+
1

(z − w)2

[
− 7

12
J∂J +

119

12
∂T

]
(w)

+
1

(z − w)

[
− 2541i

48
W

(4)
0 − 7

12
G−∂G+ − 7

12
G+∂G− +

91

24
JG+G−

−91

48
JJT − 91

48
J∂T − 7

16
J∂2J +

119

24
TT − 35

48
∂J∂J

+
91

48
∂2T

]
(w) + · · · . (3.14)

Although the left hand side currents are equal, the occurrence of higher spin-4 current in

the first order pole is expected, in contrast to the two bosonic currents (i.e., the higher

spin-5 current does not arise in the OPE of the higher spin-3 current and itself), since,

they are fermionic (from (3.14)). OPEs in (3.13) and (3.14) exhibit similar behavior in the

N = 1 coset model [30].

Thus, (3.12), (3.13), and (3.14) prove the existence of second N = 2 higher spin

multiplet W
(3)
0 (Z) from the OPE between the first N = 2 higher spin multiplet W

( 3
2)

0 (Z)

and itself, although the analysis is incomplete. Section 4 investigates their relationship

from the Jacobi identity.

3.3 Third and fourth N = 2 higher spin multiplets

To show the existence of the third N = 2 higher spin multiplet W
( 7
2)

0 (Z) in (3.10), we

must first prove the presence of the first component of multiplet W
( 7
2)

0 (z). We can check

that the higher spin-72 current W
( 7
2)

0 (z) appears in the second-order pole of the OPE (from
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the OPE between the first and second higher spin multiplets),

W
( 5
2)

0 (z)W
(3)
0 (w) =

1

(z − w)4
225i

22
W

( 3
2)

0 (w) +
1

(z − w)3
75i

22
∂W

( 3
2)

0 (w)

+
1

(z − w)2

[
W

( 7
2)

0 − 32i

33
G−W

(2)
+ +

32i

33
G+W

(2)
− +

103i

33
JW

( 5
2)

0

−85i

22
JJW

( 3
2)

0 +
51i

11
W

( 3
2)

0 T +
i

33
∂2W

( 3
2)

0

]
(w)

+
1

(z − w)

[
7

3
∂W

( 7
2)

0 +
6i

11
G−∂W

(2)
+ − 6i

11
G+∂W

(2)
− +

8i

33
JG−W

(2)
+

−47i

66
JJ∂W

( 3
2)

0 − 52i

11
JW

( 3
2)

0 ∂J +
3i

11
J∂W

( 5
2)

0 +
41i

33
T∂W

( 3
2)

0

+
56i

33
W

(2)
− ∂G+ − 56i

33
W

(2)
+ ∂G− +

28i

11
W

( 3
2)

0 ∂T +
116

33
∂JW

( 5
2)

0

+
8i

33
JG+W

(2)
− − 5i

4
∂3W

( 3
2)

0

]
(w) + · · · , (3.15)

where each singular term can be rearranged in terms of various quasi primary fields as

discussed above. The other components of multiplet W
( 7
2)

0 (Z) can be obtained from the

defining OPEs in (B.1) with explicit expressions for the higher spin-72 current W
7
2
0 (z) and

spin-32 currents G±(w).

To prove the fourth N = 2 higher spin multiplet W
(5)
0 (Z) existence in (3.10), we must

first prove the existence of the first component of multiplet W
(5)
0 (z). This higher spin-5

current W
(5)
0 (z) appears in the first-order pole of the OPE (from the OPE between the

first and third higher spin multiplets),

W
( 5
2)

0 (z)W
( 7
2)

0 (w) =
1

(z − w)3
196

3
W

(3)
0 (w)

+
1

(z − w)2

[
980i

99
G−∂G+ − 980i

99
G+∂G− +

637i

99
JJ∂J

−1274i

99
J∂T +

490i

99
∂JT +

112i

11
W

( 3
2)

0 W
( 5
2)

0 (3.16)

+
49

3
∂W

(3)
0 +

245i

99
∂3J

]
(w) +

1

(z − w)

[
W

(5)
0 + · · ·

]
(w) + · · · .

However, due to the complexity of the first-order pole calculation (3.16), we could not find

any explicit structure for the first-order pole.4 On the other hand, the first-order pole of

this OPE cannot be expressed in terms of descendant or known composite fields, which

suggests the existence of higher spin-5 current W
(5)
0 (z) belonging to the fourth higher spin

4Since spin = 5, the order of higher spin-5 current is similar to 10-th order in the two fermion types,

and there are more than one million terms even for N = 4 case.
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multiplet. Therefore, we postulate the existence of fourth higher spin multiplet W
(5)
0 (Z)

in (3.10). Section 4 considers more algebraic structures for the N .

4 Operator product expansions between N = 2 higher spin multiplets

Section 3 established the presence of N = 2 higher spin multiplets for N = 4,

W
( 3
2)

0 ≡
(
W

( 3
2)

0 , W
(2)
+ , W

(2)
− , W

( 5
2)

0

)
,

W
(3)
0 ≡

(
W

(3)
0 , W

( 7
2)

+ , W
( 7
2)

− , W
(4)
0

)
,

W
( 7
2)

0 ≡
(
W

( 7
2)

0 , W
(4)
+ , W

(4)
− , W

( 9
2)

0

)
,

W
(5)
0 ≡

(
W

(5)
0 , W

( 11
2 )

+ , W
( 11

2 )
− , W

(6)
0

)
, · · · . (4.1)

Assuming that the super multiplets in (4.1) exist for N > 4, we now construct the (super)

OPEs between the N = 2 higher spin multiplets in (4.1) for N .

4.1 First N = 2 higher spin multiplet for generic N

To find (super) OPE W
( 3
2)

0 (Z1)W
( 3
2)

0 (Z2), we must first find the four component fields of

W
( 3
2)

0 (Z) for N = 4, 5, 6, and 7 (or more N > 7), and extract the general form for the

component field.

We can obtain the general expression ofW
( 3
2)

0 (z) for genericN from the first component

field W
( 3
2)

0 (z) of the lowest N = 2 higher spin multiplet W
( 3
2)

0 (Z) for N = 4, 5, 6, and 7,

W
( 3
2)

0 (z) =

√
(3N − 2)

12(N − 1)(2N − 1)

[
ψiJ i +

6(N − 1)

(3N − 2)
ψaKa − 2

(3N − 2)
ψaJa

]
(z), (4.2)

which generalizes (3.3), and the order of N in the denominator inside the square root

is quadratic. Thus, the four N values completely determine this N dependence and the

numerator and denominator of relative coefficients behave linearly. Therefore, we can

determine N dependence.5

5In particular, the relative coefficients of (4.2) for N = 4, 5, 6, 7 can be found from the last two relations

in (3.2) to be fractional functions of N , and N dependence appears in the second order pole of the OPE

between (Ja + Ka)(z) and (ψaJa)(w) linearly. Thus, the numerator and denominator of the fractional

functions behave as N .

We need four different N values because the numerator goes as c1 N+c2 and the denominator as c3 N+c4.

Therefore, four distinct N values fix the unknown values c1, c2, c3, and c4. The overall factor is fixed by

requiring that the third order pole of the higher spin- 3
2
current and itself should be 2c

3
, which behaves as

N . Finally, the overall factor can be fixed from the four values of N .

We can determine the relative coefficients and overall factor by calculating the corresponding OPEs [14].

The third order pole of the OPE between the first and the last terms is N(2N − 1) and the corresponding

value for the OPE between the second and itself is 1
2
N(2N−1), where the last term is 1

2
N(2N−1)(6N−5).
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The other component fields of W
( 3
2)

0 (Z) for N are obtained from (B.1) with G±,

W
(2)
± (z) =

√
3

2(2N − 1)
√
(N − 1)(3N − 2)

[
− i(N − 1)

2
J iJ i +

i

4
JaJa − (2N − 1)i

2
JaKa

+
(2N − 1)i

4
KaKa ∓ (2N − 1) JaLa ± (4N − 3)KaLa

+(2N − 1) JJ ∓ i(2N − 1)(3N − 2) ∂J

]
(z),

W
( 5
2)

0 (z) =

√
3

2
√
(N − 1)(2N − 1)(3N − 2)

[
2i fabcψaKbLc − 2(N − 1)i

(N − 2)
fabcψaJbLc

+
4(N − 1)

(N − 2)
fabcψaψbψcJ − 4(N − 1)

(N − 2)
ψaJaJ − i ψa (dajkbψjχkJb)

+i χi (dibjcψbψjKc)

]
(z), (4.3)

where the numerator and denominator of relative coefficients behave linearly in N . There-

fore, the lowest N = 2 higher spin multiplet in terms of two fermions in the coset model

is given by (4.2) and (4.3) for general N . Section 4.2 describes the OPEs between them.

To obtain the next N = 2 higher spin multiplet for generic N , we calculate the OPEs

between (4.2) and (4.3) (not presented here for space considerations).

4.2 Operator product expansion between the first N = 2 higher spin multiplet

The (super) OPE W
( 3
2)

0 (Z1)W
( 3
2)

0 (Z2) is completely determined from the Jocobi identity

between the two (higher spin) currents (T,W
( 3
2)

0 ,W
( 3
2)

0 ), i.e., all the structure constants

in the right hand side of the OPE are fixed in terms of the central charge or N , for general

N [50],

W
( 3
2)

0 (Z1)W
( 3
2)

0 (Z2) =
1

z312

2

3
c+

θ12θ̄12
z312

3T(Z2)

+
1

z212

[
−3θ12DT+3θ̄12DT+3θ12θ̄12∂T

]
(Z2)

+
1

z12

1

(1−c)

[
c[D,D]T+3TT

]
(Z2)

+
θ12
z12

1

(1−c)

[
(2c−3)∂DT+3TDT

]
(Z2)

Finally, the first term is 2N(2N − 1). There are also two relations −2A1 − A2 + A3(−6N + 5) = 0 and

A1−
1
2
A2+

1
2
A3 = 0, where Ai are the coefficients of the higher spin- 3

2
current from the last two equations

of (3.2). Then we obtain the three coefficients Ai as in (4.2). We can proceed for the other higher spin

currents similarly.
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+
θ̄12
z12

1

(1−c)

[
−(2c−3)∂DT+3TDT

]
(Z2)+

θ12θ̄12
z12

[
C

(3)

( 3
2)(

3
2)
W

(3)
0

+
1

(−1+c)(6+c)(−3+2c)

(
−9

4
c(−9+4c)∂[D,D]T

−9

2
(9−3c+2c2)T[D,D]T−27

2
(1+2c)TTT

−9c(−9+4c)DTDT+
3

2
(18−18c+3c2+2c3)∂2T

)]
(Z2)

+ · · · . (4.4)

Here the structure constant

(C
(3)

( 3
2)(

3
2)
)2 =

3(3 + 2c)(−9 + 4c)(−3 + 5c)

2(−1 + c)(6 + c)(−3 + 2c)
, (4.5)

which is fixed by requiring that the sixth-order pole of OPEW
(3)
0 (z)W

(3)
0 (w) should behave

as 1
(z−w)6

c
3 , and we can express (4.5) in terms of N using (1.2). Under the infinity limit

of c, (4.5) is finite and equals 30. We can rewrite (4.4) in terms of various quasi primary

fields as discussed in section 3 for the component approach.

From (4.4), OPEs between component fields of W
( 3
2)

0 (Z),6 can be expressed as

W
( 3
2)

0 (z)W
( 3
2)

0 (w) =
1

(z−w)3
2c

3
+

1

(z−w)

1

(1−c)

[
−2c T+3 JJ

]
(w)+· · · ,

−→ 1

(z−w)3
2c

3
+

1

(z−w)

[
2T−3

c
JJ

]
(w)+· · · ,

W
(2)
± (z)W

( 3
2)

0 (w) = ∓ 1

(z−w)2
3G±(w)

+
1

(z−w)

1

(1−c)

[
3 JG±±(2c−3)∂G±

]
(w)+· · · ,

−→ ∓ 1

(z−w)2
3G±(w)+

1

(z−w)

[
−3

c
JG±∓2∂G±

]
(w)+· · · ,

W
( 5
2)

0 (z)W
( 3
2)

0 (w) =
1

(z−w)3
3J(w)+

1

(z−w)2
3∂J(w)+

1

(z−w)

[
C

(3)

( 3
2)(

3
2)
W

(3)
0

+
1

(−1+c)(6+c)(−3+2c)

(
−9c(−9+4c)G−G+

6W
( 3

2
)

0 =W
( 3

2
)

0

∣

∣

∣

∣

θ=θ̄=0

, W
(2)
+ =DW

( 3

2
)

0

∣

∣

∣

∣

θ=θ̄=0

, W
(2)
− =DW

( 3

2
)

0

∣

∣

∣

∣

θ=θ̄=0

and W
( 5

2
)

0 =− 1
2
[D,D]W

( 3

2
)

0

∣

∣

∣

∣

θ=θ̄=0

.

Similarly, J = T|θ=θ̄=0, G
+ = DT|θ=θ̄=0,G

− = DT|θ=θ̄=0 and T = − 1
2
[D,D]T|θ=θ̄=0 are also satisfied.

Thus, we can obtain (4.6) by selecting θ12 and θ̄12 independent terms, θ12 dependent terms, θ̄12 dependent

terms, and the remaining terms respectively, applying D1 or D1 on both sides and putting θ12 = θ̄12 = 0.
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+9(9−3c+2c2)JT−27

2
(1+2c)JJJ

+
9

2
c(−9+4c)∂T+

3

2
(18−18c+3c2+2c3)∂2J

)]
(w)+· · · ,

−→ 1

(z−w)3
3J(w)+

1

(z−w)2
3∂J(w)

+
1

(z−w)

[
C

(3)

( 3
2)(

3
2)
W

(3)
0 −18

c
G−G++

9

c
JT− 27

2c2
JJJ+

3

2
∂2J

]
(w)

+ · · · , (4.6)

where the large c limit is taken by keeping 1
c
for the quadratic fields and 1

c2
for cubic fields

in the right hand sides of the OPEs in (4.6)7 (see [51, 52] for the large c limit). Thus, this

classical algebra provides asymptotic symmetry algebra for the (matrix extension of) AdS3

bulk theory [29], and section 5 describes the corresponding wedge algebra and appendix C

provides the remaining OPEs explicitly.

4.3 Operator product expansions between first and second N = 2 higher spin

multiplets

From the Jocobi identity between the three (higher spin) currents

(
T,W

( 3
2)

0 ,W
(3)
0

)
, and

the Jocobi identity of the higher spin current

(
W

( 3
2)

0 ,W
( 3
2)

0 ,W
( 3
2)

0

)
, the (super) OPE

W
( 3
2)

0 (Z1)W
(3)
0 (Z2) for general N can be expressed as

W
( 3

2 )
0 (Z1)W

(3)
0 (Z2) =

θ12θ̄12
z412


 3(−9+4c)(−9+9c+10c2)

4(−1+c)(6+c)(−3+2c)C
(3)

( 3

2 )(
3

2 )


W

( 3

2 )
0 (Z2)

+
1

z312

(−9+4c)(−9+9c+10c2)

2(−1+c)(6+c)(−3+2c)C
(3)

( 3

2 )(
3

2 )

[
θ12(−1)DW

( 3

2 )
0 +θ̄12DW

( 3

2 )
0

]
(Z2)

+
θ12θ̄12
z312

1

3
∂(pole-4)(Z2)

7In terms of mode expansions,

{

W
( 3

2
)

r ,W
( 3

2
)

s

}

= 2Lr+s +
c

3

(

r
2 −

1

4

)

δr,−s,

[

W
(2)±
m ,W

( 3

2
)

r

]

= ∓(m− 2r)G±

m+r,

{

W
( 5

2
)

r ,W
( 3

2
)

s

}

= C
(3)

( 3

2
)( 3

2
)
W

(3)
r+s +

3

8
(2s+ 1)(2s− 1)Jr+s, (4.7)

up to modes from nonlinear terms, i.e., the infinity limit of c. The central term vanishes for r = ± 1
2
, and

the second term of the last equation vanishes for s = ± 1
2
.
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+
1

z212


 c(9−9c−10c2)

2(−1+c)(6+c)(−3+2c)C
(3)

( 3

2 )(
3

2 )

[D,D]W
( 3

2 )
0

− 9(−9+9c+10c2)

2(−1+c)(6+c)(−3+2c)C
(3)

( 3

2 )(
3

2 )

TW
( 3

2 )
0 +θ12

(
1

4
∂(pole-3)θ̄=0+Q1

)

+θ̄12

(
1

4
∂(pole-3)θ=0+Q2

)

+θ12θ̄12

(
−7

2
C
( 7

2 )
( 3

2 )(3)
W

( 7

2 )
0 +

1

12
∂2(pole-4)+Q3

)

 (Z2) (4.8)

+
1

z12

[
1

5
∂(pole-2)θ=θ̄=0+Q4

+θ12

(
C
( 7

2 )
( 3

2 )(3)
DW

( 7

2 )
0 +

1

20
∂2(pole-3)θ̄=0+

1

3
∂Q1+Q5

)

+θ̄12

(
−C

( 7

2 )
( 3

2 )(3)
D̄W

( 7

2 )
0 +

1

20
∂2(pole-3)θ=0+

1

3
∂Q2+Q6

)

+θ12θ̄12

(
−3

2
C
( 7

2 )
( 3

2 )(3)
∂W

( 7

2 )
0 +

1

60
∂3(pole-4)+

3

7
∂Q3+Q7

)]
(Z2)+· · · ,

where the structure constant is determined using simplified notations (e.g. in the expression

of (pole-3)θ̄=0 of (4.8), we take the third order pole of (4.8) by taking θ̄ = 0, leaving the

first term of the third order pole) as

(
C
( 7
2)

( 3
2)(3)

)2

=
(108− 144c+ 15c2 + 7c3)

(39− 53c+ 13c2 + c3)
(4.9)

by requiring that the seventh-order pole for OPE W
( 7
2)

0 (z)W
( 7
2)

0 (w) should have 1
(z−w)7

2c
7 .

Under the infinity limit of c, the structure constant (4.9) is finite and equals 7. The

appearance of W
( 7
2)

0 (Z2) in (4.8) was also observed in (3.15) for the component approach.

The seven quasi primary fields, Q1(Z2), · · · ,Q7(Z2), are presented in appendix D. The

large c limit can be taken in (4.8) as in section 4.2, but are not included here for space

considerations. The nonlinear term in the second order pole in (4.8) vanishes in this

limit and the quasi primary fields in appendix D also vanish. We can then obtain the

(anti)commutators from (4.8), similarly to (4.7) and (C.2) (not presented here), which

provide the correct relations between higher spin generators corresponding to the first two

N = 2 higher spin multiplets.

The two important results in this section are summarized by (4.4) and (4.8), and other

OPEs are given in appendix E.

5 AdS3 higher spin theory with matrix generalization

We construct Vasiliev’s oscillator description corresponding to the first two N = 2 higher

spin multiplet discussed in previous sections 3 and 4.
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5.1 Wedge algebra for N = 2 superconformal algebra

Lie algebra shs
[
λ = 1

2

]
is generated by ŷα(α=1, 2) with fundamental commutator [ŷα, ŷβ ] =

2iǫαβ [18, 19, 47, 48, 53], which has no oscillator k dependence. Chan-Paton factors are

introduced and generators shsM=2

[
λ = 1

2

]
are given by the tensor product between gen-

erators of shs
[
λ = 1

2

]
higher spin algebra and GL(2) generators. The ’t Hooft parameter

λ = 2N
(2N+k−1) in [29, 30] becomes N

(2N−1) at the critical level and tends to λ = 1
2 under the

infinity limit of N .

Spin-32 currents of N = 2 superconformal algebra play the role of the four fermionic

generators for N = 2 wedge algebra [15] (N = 2 truncation of N = 4 theory [32]),

G+
1
2

=

(
− i

4

) 1
2

ŷ1 ⊗
(
0 1

0 0

)
, G+

− 1
2

=

(
− i

4

) 1
2

ŷ2 ⊗
(
0 1

0 0

)
,

G−
1
2

=

(
− i

4

) 1
2

ŷ1 ⊗
(
0 0

1 0

)
, G−

− 1
2

=

(
− i

4

) 1
2

ŷ2 ⊗
(
0 0

1 0

)
. (5.1)

Calculating the anticommutators between these operators in (5.1),

{G+
r , G

−
s } = Lr+s +

1

2
(r − s)Jr+s, (5.2)

where the spin-2 current of N = 2 superconformal algebra plays the role of three bosonic

generators, i.e., the matrix generalization of the N = 2 wedge algebra [32],

L1 =

(
− i

4

)
ŷ1ŷ1 ⊗

(
1 0

0 1

)
, L−1 =

(
− i

4

)
ŷ2ŷ2 ⊗

(
1 0

0 1

)
,

L0 =

(
− i

4

)
1

2
(ŷ1ŷ2 + ŷ2ŷ1)⊗

(
1 0

0 1

)
, (5.3)

and spin-1 has matrix form

J0 =
1

2
⊗

(
1 0

0 −1

)
. (5.4)

We can check8 the following commutators

[
J0, G

±
r

]
= ±G±

r . (5.5)

Thus, the N = 2 wedge algebra [32] (generated by four bosonic and fermionic generators)

is described by (5.2), (5.5), and those in footnote 8, together with (5.1), (5.3) and (5.4).

Finally, N = 2 wedge algebra is reproduced by restricting the mode indices in appendix A

to wedge cases.

8 The remaining nontrivial nonzero commutators are given by [Lm, Ln] = (m − n)Lm+n, [Lm, G±
r ] =

(

m

2
− r

)

G±

m+r.
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5.2 OSp(2|2) higher spin algebra

From the classical limit discussed in section 4, we would like to construct the higher spin

generators corresponding to the first two N = 2 higher spin multiplets.

5.2.1 Twelve higher spin generators

We can obtain the (lowest) two higher spin generators by adding the matrix degree of

freedoms to the bulk theory [29] and requiring that

[
J0, V

( 3
2)

r

]
= 0 and

[
Lm, V

( 3
2)

r

]
=

[(
3
2 − 1

)
m− r

]
V
( 3
2)

m+r given in appendix B,

V
( 3
2)

1
2

=
1

2

(
− i

4

) 1
2

ŷ1 ⊗
(
1 0

0 1

)
, V

( 3
2)

− 1
2

=
1

2

(
− i

4

) 1
2

ŷ2 ⊗
(
1 0

0 1

)
, (5.6)

which have the anticommutator {
V
( 3
2)

r , V
( 3
2)

s

}
=

1

2
Lr+s (5.7)

corresponding to the first one in footnote 7 because half ofW
( 3
2)

r satisfies (5.7) by restricting

mode r to ±1
2 .

We can obtain the three higher spin generators by calculating the anticommutators{
G+

r , V
( 3
2)

s

}
= −V

(2)+
r+s described in appendix B using (5.1) and (5.6),

V
(2)+
1 = −

(
− i

4

)
ŷ1ŷ1 ⊗

(
0 1

0 0

)
, V

(2)+
−1 = −

(
− i

4

)
ŷ2ŷ2 ⊗

(
0 1

0 0

)
,

V
(2)+
0 = −

(
− i

4

)
1

2
(ŷ1ŷ2 + ŷ2ŷ1)⊗

(
0 1

0 0

)
. (5.8)

Similarly, the three higher spin generators are

V
(2)−
1 =

(−i

4

)
ŷ1ŷ1 ⊗

(
0 0

1 0

)
, V

(2)−
−1 =

(
− i

4

)
ŷ2ŷ2 ⊗

(
0 0

1 0

)
,

V
(2)−
0 =

(
− i

4

)
1

2
(ŷ1ŷ2 + ŷ2ŷ1)⊗

(
0 0

1 0

)
, (5.9)

by calculating the anticommutators {G−
r , V

( 3
2)

s } = V
(2)−
r+s (see appendix B) using (5.1)

and (5.6). Thus, we obtain commutators
[
V (2)±
m , V

( 3
2)

s

]
= ∓1

4
(m− 2s)G±

m+s, (5.10)

using (5.8), (5.9), (5.6), and (5.1).9 Multiplying 1
4 of the second relationship (half of W

(2)±
m

and half of W
( 3
2)

r ) in footnote 7, we can obtain (5.10) by restricting mode indices to wedge

cases.

9We have nontrivial relationships
[

J0, V
(2)±
m

]

= ±V
(2)±
m (described in appendix B), similar to (5.5).
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Finally, from [G±
r , V

(2)∓
m ] = V

( 5
2)

r+m± 1
2(2r−m)V

( 3
2)

r+m (see appendix B), we have the four

higher spin generators

V
( 5
2)

3
2

=

(
− i

4

) 3
2

ŷ1ŷ1ŷ1 ⊗
(
1 0

0 −1

)
, V

( 5
2)

− 3
2

=

(
− i

4

) 3
2

ŷ2ŷ2ŷ2 ⊗
(
1 0

0 −1

)
,

V
( 5
2)

1
2

=

(
− i

4

) 3
2 1

3
(ŷ1ŷ1ŷ2 + ŷ1ŷ2ŷ1 + ŷ2ŷ1ŷ1)⊗

(
1 0

0 −1

)
,

V
( 5
2)

− 1
2

=

(
− i

4

) 3
2 1

3
(ŷ1ŷ2ŷ2 + ŷ2ŷ1ŷ2 + ŷ2ŷ2ŷ1)⊗

(
1 0

0 −1

)
. (5.11)

The matrices appearing in the higher spin generators for spins 3
2 and 5

2 are diagonal in (5.6)

and (5.11). Decomposition of these in the above commutator can be achieved by moving

the oscillators appropriately. Thus, we have nontrivial relationships

{
G±

r , V
( 5
2)

s

}
= 1

2(3r−

s)V
(2)±
r+s , which also appear in appendix B. There are several ways to express the last two

higher spin generators of (5.11), for convenience we express them symmetrically in the

indices.

5.2.2 Next twenty-four higher spin generators

We can calculate the anticommutators for the second N = 2 higher spin multiplet, together

with (5.6) and (5.11) by recalling that higher spin-3 current appears in the OPE between

higher spin-52 and spin-32 currents from section 4.2,

{
V
( 5
2)

r , V
( 3
2)

s

}
= V

(3)
r+s. (5.12)

Compared to the previous (5.7) and (5.10), this result produces new higher spin generators

in the right-hand side of (5.12),

V
(3)
2 =

(
− i

4

)2

ŷ1ŷ1ŷ1ŷ1⊗
(
1 0

0 −1

)
,

V
(3)
1 =

(
− i

4

)2
1

4
(ŷ1ŷ1ŷ1ŷ2+ŷ1ŷ1ŷ2ŷ1+ŷ1ŷ2ŷ1ŷ1+ŷ2ŷ1ŷ1ŷ1)⊗

(
1 0

0 −1

)
,

V
(3)
0 =

(
− i

4

)2
1

6
(ŷ1ŷ1ŷ2ŷ2+ŷ1ŷ2ŷ1ŷ2+ŷ1ŷ2ŷ2ŷ1+ŷ2ŷ1ŷ1ŷ2+ŷ2ŷ1ŷ2ŷ1+ŷ2ŷ2ŷ1ŷ1)⊗

(
1 0

0 −1

)
,

V
(3)
−1 =

(
− i

4

)2
1

4
(ŷ2ŷ2ŷ2ŷ1+ŷ2ŷ2ŷ1ŷ2+ŷ2ŷ1ŷ2ŷ2+ŷ1ŷ2ŷ2ŷ2)⊗

(
1 0

0 −1

)
,

V
(3)
−2 =

(
− i

4

)2

ŷ2ŷ2ŷ2ŷ2⊗
(
1 0

0 −1

)
. (5.13)

Following the approach in section 5.2.1, we present the generators symmetrically in the

indices. The anticommutators (5.12) can be seen in the third relation of footnote 7 with
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the wedge condition for the mode indices. We present the remaining generators for the

second N = 2 higher spin multiplet in appendix F.10 We can continue to determine the

next generators corresponding to the third N = 2 higher spin multiplet using (4.8), which

will take the form of the tensor product of the generators, i.e., symmetrized products of

ŷα’s and GL(2) generators. Although we can calculate their (anti)commutators, this is not

presented here for space considerations.

6 Conclusions

This paper analyzed the N = 1 holographic minimal model at the critical level, determined

the lowest N = 2 higher spin currents, and obtained their OPEs and OPEs between these

higher spin currents and second N = 2 higher spin currents. We also investigated Vasiliev’s

oscillator construction with matrix degrees of freedom, which generalizes OSp(2|2) super-
conformal algebra.

Several relevant problems remain open, which will be investigated in the near future.

• The next N = 2 higher spin multiplet in terms of two adjoint fermions.

The expression for higher spin currents for general N was obtained for the lowest

cases. It remains an open problem to determine the next N = 2 higher spin cur-

rents for generic N . Once the lowest component field of this multiplet is obtained,

the remaining components can be determined using spin-32 currents in (2.11) from

appendix B.

• More general coset model.

Creutzig et al. [54] generalized coset (1.1), and it would be interesting to observe

the presence of the higher spin currents (see also [55–57] for recent relevant works in

different context).

• N = 2 superspace description for the two adjoint fermions.

We determined the lowest N = 2 higher spin currents for general N in section 4.1,

but it remains an open problem whether we can express the two adjoint fermions in

N = 2 superspace explicitly, which would simplify some complicated calculations.

10We obtain the remaining (anti)commutators using (5.6), (5.8), (5.9) and (5.11),

[V (2)−
m , V

(2)+
n ] = V

(3)
m+n −

1

2
(m− n)Lm+n +

1

8
(m2 −mn+ n

2 − 1)Jm+n,

[

V
( 5

2
)

r , V
(2)±
m

]

= −V
( 7

2
)±

r+m +
1

32
(9− 4r2 + 8rm− 12m2)G±

r+m,

{

V
( 5

2
)

r , V
( 5

2
)

s

}

= V
(4)
r+s +

1

16
(−9 + 6r2 − 8rs+ 6s2)Lr+s. (5.14)

Therefore, the OSp(2|2) higher spin algebra (extension ofN = 2 wedge algebra) contains (5.7), (5.10), (5.12),

and (5.14). We can then calculate the (anti)commutators between the higher spin generators described

in sections 5.2.1 and 5.2.2, and we expect they will appear in the corresponding (anti)commutators in

section 4.2 with an appropriate limit.
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• General structure of N = 2 higher spin algebra.

We determined some structure constants for N = 2 higher spin algebra corresponding

to the coset model (1.1) in section 5.2, but it remains an open problem to derive the

complete set of structure constants [47, 48]. Any (anti)commutators between the

higher spin generators consist of a sum of lower higher spin generators as well as

generators from N = 2 wedge algebra. The right-hand sides will be considerably

simplified by considering the (anti)commutator with the U(1) charges. However, the

main task is how to express the structure constants in terms of arbitrary modes and

spins.

• Vasiliev’s oscillator formalism with matrix generalization.

It would be interesting to construct the Vasiliev’s oscillator formalism in different

coset models [10, 11, 14, 16, 27]. We can analyze the present method in the general

coset model, e.g. in the context of large N = 4 holography [32]. It may be difficult to

construct OPEs as spins increase in the coset model, but the oscillator construction

will assist with this and although the procedure to obtain the (anti)commutators

in terms of oscillators is rather tedious, we can confirm the presence of higher spin

generators by counting the number of oscillators.

• Asymptotic symmetry algebra at the quantum level.

We found only two (super) OPEs between the first and second N = 2 higher spin

multiplets in section 4, with some structure constants appearing in the right hand

sides of the remaining OPEs remaining undetermined (see appendix E). To find these,

we need to obtain OPEs between the higher spin currents in terms of two adjoint

fermions. However, even the N = 4 case leads to very complicated singular terms. It

would be interesting to obtain the complete OPEs from appendix E by determining

all the unknown structure constants.

From the behavior of higher spin algebra described in section 5, anticommuta-

tors between generator V
( 5
2)

0 of higher spin-52 and generators for half integer higher

spin provide lowest component generators corresponding to the second, fourth, and

sixth of (4.1), etc. (i.e., V
(3)
0 , V

(5)
0 , V

(7)
0 , · · · ). On the other hand, commutators be-

tween generator V
( 5
2)

0 of higher spin-52 and generators of integer higher spin provide

lowest component generators corresponding to the third, fifth, seventh, etc. (i.e.,

V
( 7
2)

0 , V
( 11

2 )
0 , V

( 15
2 )

0 , · · · ). The remaining undetermined structure constants in ap-

pendix E will be fixed by applying Jacobi identities associated with these OPEs and

assuming the OPEs between the first three N = 2 higher spin multiplets in (4.1) and

the fourth and the fifth multiplets (expressing the possible terms in the right hand

sides).
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A N = 2 superconformal algebra

Nontrivial OPEs between the four N = 2 superconformal algebra currents [12] can be

summarized as

J(z) J(w) =
1

(z − w)2
c

3
+ · · · ,

J(z)G+(w) =
1

(z − w)
G+(w) + · · · ,

J(z)G−(w) = − 1

(z − w)
G−(w) + · · · ,

J(z)T (w) =
1

(z − w)2
J(w) + · · · ,

G+(z)G−(w) =
1

(z − w)3
c

3
+

1

(z − w)2
J(w) +

1

(z − w)

[
T +

1

2
∂J

]
(w) + · · · ,

G+(z)T (w) =
1

(z − w)2
3

2
G+(w) +

1

(z − w)

1

2
∂G+(w) + · · · ,

G−(z)T (w) =
1

(z − w)2
3

2
G−(w) +

1

(z − w)

1

2
∂G−(w) + · · · ,

T (z)T (w) =
1

(z − w)4
c

2
+

1

(z − w)2
2T (w) +

1

(z − w)
∂T (w) + · · · . (A.1)

The N = 2 superspace description can be found in [58], and for convenience we present

the (anti)commutators,

[Jm, Jn] =
c

3
mδm,−n,

[
Jm, G±

r

]
= ±G±

m+r,
[
Jm, Ln

]
= mJm+n,

{G+
r , G

−
s } = Lr+s +

1

2
(r − s)Jr+s +

c

6

(
r2 − 1

4

)
δr,−s,

[
G±

r , Lm

]
=

(
r − m

2

)
G±

r+m,

[
Lm, Ln

]
= (m− n)Lm+n +

c

12
(m3 −m)δm,−n. (A.2)

The central terms in (A.2) vanish at m = 0, r = ±1
2 , or m = 0± 1.
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B Operator product expansions between the four currents and higher

spin currents

Nontrivial OPEs between the four N = 2 superconformal algebra currents and four higher

spin currents

(
W

(h)
q ,W

(h+ 1
2)

q+1 ,W
(h+ 1

2)
q−1 ,W

(h+1)
q

)
with spins and U(1) charges can be ex-

pressed as

J(z)W (h)
q (w) =

1

(z−w)
qW (h)

q (w)+· · · ,

J(z)W
(h+ 1

2)
q+1 (w) =

1

(z−w)
(q+1) W

(h+ 1
2)

q+1 (w)+· · · ,

J(z)W
(h+ 1

2)
q−1 (w) =

1

(z−w)
(q−1) W

(h+ 1
2)

q−1 (w)+· · · ,

J(z)W (h+1)
q (w) =

1

(z−w)2
hW (h)

q (w)+
1

(z−w)
qW (h+1)

q (w)+· · · ,

G+(z)W (h)
q (w) = − 1

(z−w)
W

(h+ 1
2)

q+1 (w)+· · · ,

G+(z)W
(h+ 1

2)
q−1 (w) =

1

(z−w)2

(
h+

q

2

)
W (h)

q +
1

(z−w)

[
W (h+1)

q +
1

2
∂W (h)

q

]
(w)+· · · ,

G+(z)W (h+1)
q (w) =

1

(z−w)2

[
h+

1

2
(q+1)

]
W

(h+ 1
2)

q+1 (w)+
1

(z−w)

1

2
∂ W

(h+ 1
2)

q+1 (w)+· · · ,

G−(z)W (h)
q (w) =

1

(z−w)
W

(h+ 1
2)

q−1 (w)+· · · ,

G−(z)W
(h+ 1

2)
q+1 (w) =

1

(z−w)2

(
−h+

q

2

)
W (h)

q +
1

(z−w)

[
W (h+1)

q −1

2
∂W (h)

q

]
(w)+· · · ,

G−(z)W (h+1)
q (w) =

1

(z−w)2

[
h−1

2
(q−1)

]
W

(h+ 1
2)

q−1 (w)+
1

(z−w)

1

2
∂ W

(h+ 1
2)

q−1 (w)+· · · ,

T (z)W (h)
q (w) =

1

(z−w)2
hW (h)

q (w)+
1

(z−w)
∂ W (h)

q (w)+· · · ,

T (z)W
(h+ 1

2)
q+1 (w) =

1

(z−w)2

(
h+

1

2

)
W

(h+ 1
2)

q+1 (w)+
1

(z−w)
∂ W

(h+ 1
2)

q+1 (w)+· · · ,

T (z)W
(h+ 1

2)
q−1 (w) =

1

(z−w)2

(
h+

1

2

)
W

(h+ 1
2)

q−1 (w)+
1

(z−w)
∂ W

(h+ 1
2)

q−1 (w)+· · · ,

T (z)W (h+1)
q (w) =

1

(z−w)3
q

2
W (h)

q +
1

(z−w)2
(h+1)W (h+1)

q (w)+
1

(z−w)
∂ W (h+1)

q (w)

+ · · · . (B.1)
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The N = 2 superspace description can be found in [14], and for convenience, we present

the (anti)commutators. The first four can be expressed as

[Jm,W (h,q)
n ] = qW

(h,q)
m+n,[

Jm,W
(h+ 1

2
,q±1)

n

]
= (q ± 1)W

(h+ 1
2
,q±1)

m+n ,

[
Jm,W (h+1,q)

n

]
= qW

(h+1,q)
m+n +mhW

(h,q)
m+n. (B.2)

If h is integer, the next six are equivalent to

[G±
r ,W

(h,q)
n ] = ∓W

(h+ 1
2
,q±1)

r+n ,

{
G±

r ,W
(h+ 1

2
,q∓1)

s

}
= W

(h+1,q)
r+s +

[
q

2

(
r +

1

2

)
±
(
h− 1

2

)
r ∓ s

2

]
W

(h,q)
r+s ,

[
G±

r ,W
(h+1,q)
n

]
=

[(
hr − n

2

)
± q

2

(
r +

1

2

)]
W

(h+ 1
2
,q±1)

r+n ; (B.3)

and if h is half-integer, then

{G±
r ,W

(h,q)
n } = ∓W

(h+ 1
2
,q±1)

r+n ,

[
G±

r ,W
(h+ 1

2
,q∓1)

n

]
= W

(h+1,q)
r+n +

[
q

2

(
r +

1

2

)
±
(
h− 1

2

)
r ∓ n

2

]
W

(h,q)
r+n ,

{G±
r ,W

(h+1,q)
s } =

[(
hr − s

2

)
± q

2

(
r +

1

2

)]
W

(h+ 1
2
,q±1)

r+s . (B.4)

We have the following commutators for the last four of (B.1)

[Lm,W (h,q)
n ] =

[
(h− 1)m− n

]
W

(h,q)
m+n,

[
Lm,W

(h+ 1
2
,q±1)

n

]
=

[(
h− 1

2

)
m− n

]
W

(h+ 1
2
,q±1)

m+n ,

[
Lm,W (h,q+1)

n

]
= (hm− n)W

(h+1,q)
m+n +

q

4
(m+ 1)mW

(h,q)
m+n. (B.5)

We can derive the q = 0 case from (B.2), (B.3), (B.4), and (B.5).

C Remaining operator product expansions for section 4.2

One way to determine the remaining nontrivial OPEs for section 4.2 is to start with the

OPE in (4.4), take super derivatives of both sides, and then apply θ12 = 0 and/or θ̄12 = 0

constraints to extract OPE components. Following this process, the remaining nontrivial
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OPEs, including the two trivial cases, can be expressed as (at the large c limit)

W
(2)
+ (z)W

(2)
−

(w) = − 1

(z−w)4
c− 1

(z−w)3
3J− 1

(z−w)2

[
− (3−4c)

(−1+c)
T

− 3

2(−1+c)
JJ+

3

2
∂J

]
(w)− 1

(z−w)

[
C

(3)

( 3

2 )(
3

2 )
W

(3)
0

+
1

(−1+c)(6+c)(−3+2c)

(
−6(c−3)(5c−3)G−G+

+3(9+8c2)JT−27

2
(1+2c)JJJ

−3

2
(6+c)(−3+2c)∂JJ−1

4
(108−207c+60c2+8c3)∂T

+
c

2
(9−3c+2c2)∂2J

)]
(w)+· · · ,

−→ − 1

(z−w)4
c− 1

(z−w)3
3J− 1

(z−w)2

[
4T− 3

2c
JJ+

3

2
∂J

]
(w)

− 1

(z−w)

[
C

(3)

( 3

2 )(
3

2 )
W

(3)
0 −15

c
G−G++

12

c
JT− 27

2c2
JJJ

− 3

2c
∂JJ−∂T+

1

2
∂2J

]
(w)+· · · ,

W
( 5

2 )
0 (z)W

(2)
+ (w) = − 1

(z−w)3
6G+(w)− 1

(z−w)2
1

2(−1+c)

[
3JG+−(9−8c)∂G+

]
(w)

− 1

(z−w)

[
C

(3)

( 3

2 )(
3

2 )
W

( 7

2 )
+ +

1

(−1+c)(6+c)(−3+2c)

(
27(3−4c+2c2)TG+

−81

2
(1+2c)JJG+−9

2
c(−21+2c)∂G+J

−9

2
(9−4c)c∂JG++

3

4
c(4c2−18c+45)∂2G+

)]
(w)+· · · ,

−→ − 1

(z−w)3
6G+(w)− 1

(z−w)2

[
3

2c
JG++4∂G+

]
(w)

− 1

(z−w)

[
C

(3)

( 3

2 )(
3

2 )
W

( 7

2 )
+ +

27

c
TG+− 81

2c2
JJG+− 9

2c
∂G+J

+
9

c
∂JG++

3

2
∂2G+

]
(w)+· · · ,

W
( 5

2 )
0 (z)W

(2)
−

(w) = − 1

(z−w)3
6G−(w)+

1

(z−w)2
1

2(−1+c)

[
3JG−+(9−8c)∂G−

]
(w)

− 1

(z−w)

[
C

(3)

( 3

2 )(
3

2 )
W

( 7

2 )
−

+
1

(−1+c)(6+c)(−3+2c)

(
27(3−4c+2c2)G−T
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−81

2
(1+2c)JJG−+

9

2
c(−21+2c)∂G−J

+
9

2
(9−4c)c∂JG−+

3

4
(2c+3)(2c2−3c+9)∂2G−

)]
(w)+· · · ,

−→ − 1

(z−w)3
6G−(w)+

1

(z−w)2

[
3

2c
JG−−4∂G−

]
(w)

− 1

(z−w)

[
C

(3)

( 3

2 )(
3

2 )
W

( 7

2 )
−

+
27

c
G−T− 81

2c2
JJG−+

9

2c
∂G−J

−9

c
∂JG−+

3

2
∂2G−

]
(w)+· · · ,

W
( 5

2 )
0 (z)W

( 5

2 )
0 (w) =

1

(z−w)5
2c+

1

(z−w)3
1

(−1+c)

[
−(9−10c)T−3

2
JJ

]
(w)

+
1

(z−w)2
1

(−1+c)

[
−1

2
(9−10c)∂T−3

2
∂JJ

]
(w)

+
1

(z−w)

[
C

(3)

( 3

2 )(
3

2 )
W

(4)
0 +

1

(−1+c)(6+c)(−3+2c)

(
27(−5+c)c∂G−G+

−81(1+2c)JG−G+−81

2
(1+2c)JJT+

81

2
(1+2c)∂TJ

+27(3−4c+2c2)TT+27(−5+c)c∂G+G−+
9

4
(9−4c)c∂J∂J

+
9

4
(−21+2c)c∂2JJ+

3

4
c(4c2−18c+45)∂2T−27

4
(1+2c)∂3J

)]
(w)

+ · · · ,

−→ 1

(z−w)5
2c+

1

(z−w)3

[
10T− 3

2c
JJ

]
(w)

+
1

(z−w)2

[
5∂T− 3

2c
∂JJ

]
(w) (C.1)

+
1

(z−w)

[
C

(3)

( 3

2 )(
3

2 )
W

(4)
0 +

27

2c
∂G−G+−81

c2
JG−G+− 81

2c2
JJT

+
81

2c2
∂TJ+

27

c
TT+

27

2c
∂G+G−− 9

2c
∂J∂J+

9

4c
∂2JJ+

3

2
∂2T

]
(w)+· · · .

To compare with the (anti)commutators from the oscillator description, we also need

the commutators and anticommutators corresponding to (C.1),

[W (2)−
m ,W (2)+

n ] = C
(3)

( 3
2)(

3
2)
W

(3)
m+n − 2(m− n)Lm+n +

1

2
(m2 −mn+ n2 − 1)Jm+n

− c

6
(m+ 1)m(m− 1)δm,−n,
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[
W

( 5
2)

r ,W (2)±
n

]
= −C

(3)

( 3
2)(

3
2)
W

( 7
2)±

r+n +
1

8
(9− 4r2 + 8rn− 12n2)G±

r+n,

{
W

( 5
2)

r ,W
( 5
2)

s

}
= C

(3)

( 3
2)(

3
2)
W

(4)
r+s +

1

4
(−9 + 6r2 − 8rs+ 6s2)Lr+s

+
c

12

(
r − 3

2

)(
r − 1

2

)(
r +

1

2

)
(r +

3

2
)δr,−s, (C.2)

where modes coming from nonlinear terms were ignored, i.e., the infinity limit of c. The

central terms vanish for m = 0,±1 or r = ±1
2 ,±3

2 . As above, (C.2) contain the cases

in footnote 10 by restricting mode indices to wedge cases. Thus, we have the complete

(anti)commutators for (4.7) and (C.2) for the lowest N = 2 higher spin multiplet.

D Quasi primary operators from section 4.3

The various quasi primary fields from section 4.3 can be expressed as

Q1 =
1

(−1+c)(6+c)(−3+2c)C
(3)

( 3
2)(

3
2)

[
27

8
(15−31c+10c2)∂DW

( 3
2)

0

−9

2
(−3+5c)(−3+2c)TDW

( 3
2)

0 +9(9−18c+5c2)DTW
( 3
2)

0

]
,

Q2 =
1

(−1+c)(6+c)(−3+2c)C
(3)

( 3
2)(

3
2)

[
−27

8
(15−31c+10c2)∂DW

( 3
2)

0

−9

2
(−3+5c)(−3+2c)TDW

( 3
2)

0 +9(9−18c+5c2)DTW
( 3
2)

0

]
,

Q3 =
1

(−1+c)(6+c)(−3+2c)(−39+14c+c2)C
(3)

( 3
2)(

3
2)

×
[
−9

4
(27−387c+585c2−31c3+10c4)T[D,D]W

( 3
2)

0

−9

4
(−297+117c+510c2+200c3)TTW

( 3
2)

0 −9

2
c(54−15c−143c2+30c3)DTDW

( 3
2)

0

+
1

4
(5103−10773c+3861c2+63c3−330c4)[D,D]TW

( 3
2)

0

+
9

2
c(54−15c−143c2+30c3)DTDW

( 3
2)

0

− 9

16
(−1701+3699c−1317c2−307c3+170c4)∂2W

( 3
2)

0

]
,
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Q4 =
1

(−1+c)(6+c)(−3+2c)C
(3)

( 3
2)(

3
2)

[
18

5
c(−9+4c)∂[D,D]W

( 3
2)

0 +
27

5
c(−9+4c)T∂W

( 3
2)

0

+9c(−9+4c)DTDW
( 3
2)

0 +9c(−9+4c)DTDW
( 3
2)

0 −81

10
(−9+4c)∂TW

( 3
2)

0

]
,

Q5 =
1

(−1+c)(6+c)(−3+2c)(−39+14c+c2)C
(3)

( 3
2)(

3
2)

×
[
9

10
(−99+672c−491c2+22c3+36c4)∂2DW

( 3
2)

0

+3(432−729c+297c2+4c3+2c4)T∂DW
( 3
2)

0

+
9

2
(−243+423c−42c2+20c3)TTDW

( 3
2)

0 +9(18−51c+35c2)TDTW
( 3
2)

0

+
3

2
(−243+837c−432c2−24c3+32c4)[D,D]TDW

( 3
2)

0

+
9

2
(54−216c+123c2−17c3+6c4)DT[D,D]W

( 3
2)

0

−3

2
(−702+576c+249c2−193c3+4c4)DT∂W

( 3
2)

0

+
3

2
(−918+1152c−69c2−263c3+4c4)∂DTW

( 3
2)

0

−3

2
(351+81c+108c2−134c3+8c4)∂TDW

( 3
2)

0

]
,

Q6 =
1

(−1+c)(6+c)(−3+2c)(−39+14c+c2)C
(3)

( 3
2)(

3
2)

×
[
− 9

10
(−99+672c−491c2+22c3+36c4)∂2DW

( 3
2)

0

+3(432−729c+297c2+4c3+2c4)T∂DW
( 3
2)

0

−9

2
(−243+423c−42c2+20c3)TTDW

( 3
2)

0 −9(18−51c+35c2)TDTW
( 3
2)

0

−9

2
(54−216c+123c2−17c3+6c4)DT[D,D]W

( 3
2)

0

−3

2
(−702+576c+249c2−193c3+4c4)DT∂W

( 3
2)

0

+
3

2
(−918+1152c−69c2−263c3+4c4)∂DTW

( 3
2)

0
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−3

2
(−243+837c−432c2−24c3+32c4)[D,D]TDW

( 3
2)

0

−3

2
(351+81c+108c2−134c3+8c4)∂TDW

( 3
2)

0

]
,

Q7 =
1

(−1+c)(6+c)(−3+2c)C
(3)

( 3
2)(

3
2)

[
9

14
(45+6c+8c2)T∂[D,D]W

( 3
2)

0

+
9

7
(15+52c)TT∂W

( 3
2)

0 +9(6+c)TDTDW
( 3
2)

0 +9(6+c)TDTDW
( 3
2)

0

+
9

14
c(−93+34c)DT∂DW

( 3
2)

0 +
6

7
(93−34c)c∂DTDW

( 3
2)

0

+
3

7
(63−42c+16c2)[D,D]T∂W

( 3
2)

0 − 9

28
(63−42c+16c2)∂[D,D]TW

( 3
2)

0

+
9

14
(93−34c)cDT∂DW

( 3
2)

0 +
6

7
c(−93+34c)∂DTDW

( 3
2)

0

− 9

28
(57+2c+40c2)∂T[D,D]W

( 3
2)

0 −27

14
(15+52c)∂TTW

( 3
2)

0

+
9

35
(42−59c+22c2)∂3W

( 3
2)

0

]
. (D.1)

Component for (4.8) can be derived using super derivatives of both sides of (4.8) and

applying θ12 = 0 and/or θ̄12 = 0 constraints for the final stage. For the quasi primary

fields components we use (2.13) and (4.1). The third order pole in OPEs between the

stress energy tensor and (D.1) components for θ = θ̄ = 0 vanish as usual.11

E Operator product expansions between N = 2 higher spin multiplets

in (4.1)

E.1 Operator product expansions between the first and third N = 2 higher

spin multiplets

Operator product expansions between the lowest and third N = 2 higher spin multiplets

can be expressed as

W
( 3
2)

0 (Z1)W
( 7
2)

0 (Z2) =
θ12θ̄12
z312


 3(108−144c+15c2+7c3)

(1−c)(−39+14c+c2)C
( 7
2)

( 3
2)(3)


W

(3)
0 (Z2)

+
θ12
z212


− (432−990c+645c2−79c3−14c4)

(−1+c)(−3+2c)(−39+14c+c2)C
( 7
2)

( 3
2)(3)

DW
(3)
0 +Q̂1


(Z2)

11Or in N = 2 superspace, which is equivalent to the singular term of θ1θ̄12
z3
12

in OPE T(Z1)Qi(Z2), where

i = 1, 2, · · · , 7 vanishes. These have been explicitly checked (not shown here).
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+
θ̄12
z212


 (432−990c+645c2−79c3−14c4)

(−1+c)(−3+2c)(−39+14c+c2)C
( 7
2)

( 3
2)(3)

DW
(3)
0 +Q̂2


(Z2)

+
θ12θ̄12
z212

[
1

3
∂(pole-3)+Q̂3

]
(Z2)

+
1

z12


 c

(−1+c)C
( 7
2)

( 3
2)(3)

[D,D]W
(3)
0 +Q̂4


(Z2)

+
θ12
z12

[
2

7
∂(pole-2)θ̄=0+Q̂5

]
(Z2)+

θ̄12
z12

[
2

7
∂(pole-2)θ=0+Q̂6

]
(Z2)

+
θ12θ̄12
z12

[
C

(5)

( 3
2)(

7
2)
W

(5)
0 +

1

14
∂2(pole-3)+

3

8
∂Q̂3+Q̂7

]
(Z2)+· · · .

Quasi primary fields Q̂i(Z2), which depends on T(Z2);W
( 3
2)

0 (Z2); and W
(3)
0 (Z2) appear

in the right hand side of the OPE, but are not explicitly expressed here for space con-

siderations. In particular, the complete expression for Q̂7(Z2) was not determined be-

cause we do not use OPEs between the first three N = 2 higher spin multiplets and the

fourth (W
(5)
0 (Z2)).

E.2 Operator product expansions between the second N = 2 higher spin

multiplet

Operator product expansions between the second N = 2 higher spin multiplet can be

expressed as

W
(3)
0 (Z1)W

(3)
0 (Z2) =

1

z612

[ c
3
+3 θ12θ̄12T

]
(Z2)

+
1

z512

[
−3θ12DT+3θ̄12T+θ12θ̄12∂(pole-6)

]
(Z2)+

1

z412

1

(1−c)

[
c[D,D]T+3TT

]
(Z2)

+
1

z412

[
θ12

(
2

3
∂(pole-5)θ̄=0+Q̃1

)
+θ̄12

(
2

3
∂(pole-5)θ=0+Q̃2

)]
(Z2)

+
θ12θ̄12
z412

[
1

2
∂2(pole-6)+C

(3)
(3)(3)W

(3)
0 +Q̃3

]
(Z2)+

1

z312

[
1

2
∂(pole-4)θ=θ̄=0

]
(Z2)

+
θ12
z312

[
1

4
∂2(pole-5)θ̄=0+

3

5
∂Q̃1−

(56c3−147c2+63c−54)

6(c−3)c(28c+3)
C

(3)
(3)(3)DW

(3)
0 +Q̃4

]
(Z2)

+
θ̄12
z312

[
1

4
∂2(pole-5)θ=0+

3

5
∂Q̃2+

(56c3−147c2+63c−54)

6(c−3)c(28c+3)
C

(3)
(3)(3)DW

(3)
0 +Q̃5

]
(Z2)

+
θ12θ̄12
z312

[
1

6
∂3(pole-6)+

2

3
∂
(
C

(3)
(3)(3)W

(3)
0 +Q̃3

)
+Q̃6

]
(Z2)
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+
1

z212

[
3

20
∂2(pole-4)θ=θ̄=0−

(8c2+9)

6(c−3)(28c+3)
C

(3)
(3)(3)[D,D]W

(3)
0 +Q̃7

]
(Z2)

+
θ12
z212

[
1

15
∂3(pole-5)θ̄=0+

1

5
∂2Q̃1+

4

7
∂

(
last two terms in

θ12
z312

)
+Q̃8

]
(Z2)

+
θ̄12
z212

[
1

15
∂3(pole-5)θ=0+

1

5
∂2Q̃2+

4

7
∂

(
last two terms in

θ̄12
z312

)
+Q̃9

]
(Z2)

+
θ12θ̄12
z212


 1

24
∂4(pole-6)+

5

21
∂2

(
C

(3)
(3)(3)W

(3)
0 +Q̃3

)
+
5

8
∂Q̃6

−
5C

(5)

( 3
2)(

7
2)
C
( 7
2)

( 3
2)(

3
2)

C
(3)

( 3
2)(

3
2)

W
(5)
0 +Q̃10


 (Z2)

+
1

z12

[
1

30
∂3(pole-4)θ=θ̄=0+

1

2
∂

(
last two terms in

1

z212

)]
(Z2)

+
θ12
z12


 1

72
∂4(pole-5)θ̄=0+

1

21
∂3Q̃1+

5

28
∂2

(
last two terms in

θ12
z312

)

+
5

9
∂Q̃8+

C
(5)

( 3
2)(

7
2)
C
( 7
2)

( 3
2)(

3
2)

C
(3)

( 3
2)(

3
2)

DW
(5)
0 +Q̃11


 (Z2)

+
θ̄12
z12


 1

72
∂4(pole-5)θ=0+

1

21
∂3Q̃2+

5

28
∂2

(
last two terms in

θ̄12
z312

)

+
5

9
∂Q̃9−

C
(5)

( 3
2)(

7
2)
C
( 7
2)

( 3
2)(

3
2)

C
(3)

( 3
2)(

3
2)

DW
(5)
0 +Q̃12


 (Z2)

+
θ12θ̄12
z12


 1

120
∂5(pole-6)+

5

84
∂3

(
C

(3)
(3)(3)W

(3)
0 +Q̃3

)
+

5

24
∂2Q̃6

+
3

5
∂


−

5C
(5)

( 3
2)(

7
2)
C
( 7
2)

( 3
2)(

3
2)

C
(3)

( 3
2)(

3
2)

W
(5)
0 +Q̃10


+Q̃13


 (Z2)+· · · ,

where the self-coupling constant

(C
(3)
(3)(3))

2 =
24(c− 3)2c2(28c+ 3)2

(c− 1)(c+ 6)(2c− 3)(2c+ 3)(4c− 9)(5c− 3)
,
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and we omit the quasi primary fields Q̃i(Z2) (i = 1, 2, · · · , 13), which depends on T(Z2);

W
( 3
2)

0 (Z2); and W
(3)
0 (Z2). As above, the complete expressions for Q̃10(Z2), Q̃11(Z2),

Q̃12(Z2), and Q̃13(Z2) were not determined.

E.3 Operator product expansions between the second and the third N = 2

higher spin multiplets

Operator product expansions between the second and the third N = 2 higher spin multi-

plets can be expressed as

W
(3)
0 (Z1)W

( 7

2 )
0 (Z2) =

θ12θ̄12
z612


− 3(6+c)(18−27c+7c2)

2(−1+c)(−39+14c+c2)C
( 7

2 )
( 3

2 )(
3

2 )


W

( 3

2 )
0 (Z2)

+
1

z512

(6+c)(18−27c+7c2)

(−1+c)(−39+14c+c2)C
( 7

2 )
( 3

2 )(
3

2 )

[
θ12DW

( 3

2 )
0 −θ̄12DW

( 3

2 )
0

]
(Z2)+

θ12θ̄12
z512

[
2

3
∂(pole-6)

]
(Z2)

+
1

z412

(6+c)(18−27c+7c2)

(−1+c)(−9+4c)(−39+14c+c2)C
( 7

2 )
( 3

2 )(
3

2 )

[
c[D,D]W

( 3

2 )
0 +9TW

( 3

2 )
0

]
(Z2)

+
1

z412

[
θ12

(
1

2
∂(pole-5)θ̄=0+Q̌1

)
+θ̄12

(
1

2
∂(pole-5)θ=0+Q̌2

)]
(Z2)

+
θ12θ̄12
z412

[
1

4
∂2(pole-6)+

21(675−531c+3687c2−2527c3+220c4+48c5)

4(−1+c)(6+c)(−3+2c)(−39+14c+c2)C
(3)

( 3

2 )(
3

2 )

W
( 7

2 )
0 +Q̌3

]
(Z2)

+
1

z312

[
2

5
∂(pole-4)θ=θ̄=0+Q̌4

]
(Z2)+

θ12
z312


 3

20
∂2(pole-5)θ̄=0+

1

2
∂Q̌1

− 3(675−531c+3687c2−2527c3+220c4+48c5)

2(−1+c)(6+c)(−3+2c)(−39+14c+c2)C
(3)

( 3

2 )(
3

2 )

DW
( 7

2 )
0 +Q̌5


 (Z2)

+
θ̄12
z312


 3

20
∂2(pole-5)θ=0+

1

2
∂Q̌2

+
3(675−531c+3687c2−2527c3+220c4+48c5)

2(−1+c)(6+c)(−3+2c)(−39+14c+c2)C
(3)

( 3

2 )(
3

2 )

DW
( 7

2 )
0 +Q̌6


 (Z2)

+
θ12θ̄12
z312

[
Q̌7+

1

15
∂3(pole-6)+

4

7
∂

(
last two terms in

θ12θ̄12
z412

)]
(Z2)

+
1

z212


 1

10
∂2(pole-4)θ=θ̄=0+

3

7
∂Q̌4
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− 3c(−63−9c−101c2+59c3+6c4)

2(−1+c)(6+c)(−3+2c)(−39+14c+c2)C
(3)

( 3

2 )(
3

2 )

[D,D]W
( 7

2 )
0 +Q̌8


 (Z2)

+
θ12
z212

[
1

30
∂3(pole-5)θ̄=0+

1

7
∂2Q̌1+

1

2
∂

(
last two terms in

θ12
z312

)
+Q̌9

]
(Z2)

+
θ̄12
z212

[
1

30
∂3(pole-5)θ=0+

1

7
∂2Q̌2+

1

2
∂

(
last two terms in

θ̄12
z312

)
+Q̌10

]
(Z2)

+
θ12θ̄12
z212

[
1

72
∂4(pole-6)+

5

28
∂2

(
last two terms in

θ12θ̄12
z412

)
+
5

9
∂Q̌7+C

( 11

2 )
(3)( 7

2 )
W

( 11

2 )
0 +Q̌11

]
(Z2)

+
1

z12

[
2

105
∂3(pole-4)θ=θ̄=0+

3

28
∂2Q̌4+

4

9
∂

(
last two terms in

1

z212

)
+Q̌12

]
(Z2)

+
θ12
z12

[
1

168
∂4(pole-5)θ̄=0+

5

168
∂3Q̌1+

5

36
∂2

(
last two terms in

θ12
z312

)
+
1

2
∂Q̌9

− 2

11
C
( 11

2 )
(3)( 7

2 )
W

( 11

2 )
0 +Q̌13

]
(Z2)

+
θ̄12
z12

[
1

168
∂4(pole-5)θ=0+

5

168
∂3Q̌2+

5

36
∂2

(
last two terms in

θ̄12
z312

)
+
1

2
∂Q̌10

+
2

11
C
( 11

2 )
(3)( 7

2 )
W

( 11

2 )
0 +Q̌14

]
(Z2)

+
θ12θ̄12
z12

[
1

420
∂5(pole-6)+

5

126
∂3

(
last two terms in

θ12θ̄12
z412

)
+
1

6
∂2Q̌7

+
6

11
∂

(
C
( 11

2 )
(3)( 7

2 )
W

( 11

2 )
0 +Q̌11

)
+Q̌15

]
(Z2)+· · · ,

where we omit the quasi primary fields Q̌i(Z2) (i = 1, 2, · · · , 15), which depends on T(Z2);

W
( 3
2)

0 (Z2); and W
( 7
2)

0 (Z2). Similarly to the previous derivations, complete expressions for

Q̌11(Z2), Q̌13(Z2), Q̌14(Z2), and Q̌15(Z2) were not determined.

E.4 Operator product expansions between the third N = 2 higher spin mul-

tiplet

Operator product expansions between the third N = 2 higher spin multiplet can be ex-

pressed as

W
( 7

2 )
0 (Z1)W

( 7

2 )
0 (Z2)=

1

z712

[
2c

7
+3θ12θ̄12T

]
(Z2)

+
1

z612

[
3(−θ12DT+θ̄12DT)+θ12θ̄12∂(pole-7)

]
(Z2)+

1

z512

1

(1−c)

[
c[D,D]T+3TT

]
(Z2)
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+
1

z512

[
θ12

(
2

3
∂(pole-6)θ̄=0+Q̆1

)
+θ̄12

(
2

3
∂(pole-6)θ=0+Q̆2

)]
(Z2)

+
θ12θ̄12
z512

[
1

2
∂2(pole-7)+C

(3)

( 7

2 )(
7

2 )
W

(3)
0 +Q̆3

]
(Z2)+

1

z412

[
1

2
∂(pole-5)θ=θ̄=0

]
(Z2)

+
θ12
z412

[
1

4
∂2(pole-6)θ̄=0+

3

5
∂Q̆1+C

( 7

2 )
( 7

2 )(
7

2 )
DW

(3)
0 +Q̆4

]
(Z2)

+
θ̄12
z412

[
1

4
∂2(pole-6)θ=0+

3

5
∂Q̆2−C

( 7

2 )
( 7

2 )(
7

2 )
DW

(3)
0 +Q̆5

]
(Z2)

+
θ12θ̄12
z412

[
1

6
∂3(pole-7)+

2

3
∂

(
C

(3)

( 7

2 )(
7

2 )
W

(3)
0 +Q̆3

)
+Q̆6

]
(Z2)

+
1

z312

[
3

20
∂2(pole-5)θ=θ̄=0+C

(4)

( 7

2 )(
7

2 )
[D,D]W

(3)
0 +Q̆7

]
(Z2)

+
θ12
z312

[
1

15
∂3(pole-6)θ̄=0+

1

5
∂2Q̆1+

4

7
∂

(
C
( 7

2 )
( 7

2 )(
7

2 )
DW

(3)
0 +Q̆4

)
+Q̆8

]
(Z2)

+
θ̄12
z312

[
1

15
∂3(pole-6)θ=0+

1

5
∂2Q̆2+

4

7
∂

(
−C

( 7

2 )
( 7

2 )(
7

2 )
DW

(3)
0 +Q̆5

)
+Q̆9

]
(Z2)

+
θ12θ̄12
z312

[
1

24
∂4(pole-7)+

5

21
∂2

(
C

(3)

( 7

2 )(
7

2 )
W

(3)
0 +Q̆3

)
+
5

8
∂Q̆6+C

(5)

( 7

2 )(
7

2 )
W

(5)
0 +Q̆10

]
(Z2)

+
1

z212

[
1

30
∂3(pole-5)θ=θ̄=0+

1

2
∂

(
C

(4)

( 7

2 )(
7

2 )
[D,D]W

(3)
0 +Q̆7

)]
(Z2)

+
θ12
z212

[
1

72
∂4(pole-6)θ̄=0+

1

21
∂3Q̆1+

5

28
∂2

(
C
( 7

2 )
( 7

2 )(
7

2 )
DW

(3)
0 +Q̆4

)
+
5

9
∂Q̆8

+C
( 11

2 )
( 7

2 )(
7

2 )
DW

(5)
0 +Q̆11

]
(Z2)

+
θ̄12
z212

[
1

72
∂4(pole-6)θ=0+

1

21
∂3Q̆2+

5

28
∂2

(
−C

( 7

2 )
( 7

2 )(
7

2 )
DW

(3)
0 +Q̆5

)
+
5

9
∂Q̆9

−C
( 11

2 )
( 7

2 )(
7

2 )
DW

(5)
0 +Q̆12

]
(Z2)

+
θ12θ̄12
z212

[
1

120
∂5(pole-7)+

5

84
∂3

(
C

(3)

( 7

2 )(
7

2 )
W

(3)
0 +Q̆3

)
+

5

24
∂2Q̆6+

3

5
∂

(
C

(5)

( 7

2 )(
7

2 )
W

(5)
0 +Q̆10

)

+Q̆13

]
(Z2)
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+
1

z12

[
1

168
∂4(pole-5)θ=θ̄=0+

5

36
∂2

(
C

(4)

( 7

2 )(
7

2 )
[D,D]W

(3)
0 +Q̆7

)
+C

(6)

( 7

2 )(
7

2 )
[D,D]W

(5)
0 +Q̆14

]
(Z2)

+
θ12
z12

[
1

420
∂5(pole-6)θ̄=0+

1

112
∂4Q̆1+

5

126
∂3

(
C
( 7

2 )
( 7

2 )(
7

2 )
DW

(3)
0 +Q̆4

)
+
1

6
∂2Q̆8

+
6

11
∂

(
C
( 11

2 )
( 7

2 )(
7

2 )
DW

(5)
0 +Q̆11

)
+Q̆15

]
(Z2)

+
θ̄12
z12

[
1

420
∂5(pole-6)θ=0+

1

112
∂4Q̆2+

5

126
∂3

(
−C

( 7

2 )
( 7

2 )(
7

2 )
DW

(3)
0 +Q̆5

)
+
1

6
∂2Q̆9

+
6

11
∂

(
−C

( 11

2 )
( 7

2 )(
7

2 )
DW

(5)
0 +Q̆12

)
+Q̆16

]
(Z2)

+
θ12θ̄12
z12

[
1

720
∂6(pole-7)+

5

432
∂4

(
C

(3)

( 7

2 )(
7

2 )
W

(3)
0 +Q̆3

)
+

7

144
∂3Q̆6

+
21

110
∂2

(
C

(5)

( 7

2 )(
7

2 )
W

(5)
0 +Q̆10

)
+

7

12
∂Q̆13+C

(7)

( 7

2 )(
7

2 )
W

(7)
0 +Q̆17

]
(Z2)+· · · .

where the structure constants are given by

(
C

(3)

( 7
2)(

7
2)

)2

=
27(675−531c+3687c2−2527c3+220c4+48c5)2

2(−1+c)(6+c)(−3+2c)(3+2c)(−9+4c)(−3+5c)(−39+14c+c2)2
,

(
C
( 7
2)

( 7
2)(

7
2)

)2

=
6(−3942+9369c−12222c2+9646c3−3371c4+238c5+48c6)2

(−1+c)(6+c)(−3+2c)3(3+2c)(−9+4c)(−3+5c)(−39+14c+c2)2
,

(
C

(4)

( 7
2)(

7
2)

)2

=
54c2(4968−14202c+19152c2−15215c3+7000c4−1593c5+78c6+16c7)2

(−1+c)(6+c)(−3+2c)3(3+2c)(−9+4c)(−3+5c)

× 1

(−39+14c+c2)2(18−27c+7c2)2
,

(
C

(5)

( 7
2)(

7
2)

)2

=

50(216−459c+114c2+91c3−22c4)2
(
C

(5)

( 3
2)(

7
2)

)2

3(−3+2c)(3+2c)(−9+4c)(−3+5c)(−39+14c+c2)(18−27c+7c2)
,

(
C
( 11

2 )
( 7
2)(

7
2)

)2

=

2(−513+1269c−855c2+89c3+22c4)2
(
C

(5)

( 3
2)(

7
2)

)2

3(−3+2c)(3+2c)(−9+4c)(−3+5c)(−39+14c+c2)(18−27c+7c2)
,

(
C

(6)

( 7
2)(

7
2)

)2

=

2c2(−3+2c)(−39+14c+c2)

(
C

(5)

( 3
2)(

7
2)

)2

3(3+2c)(−9+4c)(−3+5c)(18−27c+7c2)
.

C
(7)

( 7
2)(

7
2)

is undetermined. The quasi primary fields Q̆i (i = 11, 12, · · · , 17), remain unde-

termined.

The analysis from section 5 can be similarly described.
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F Partners for (5.13) from section 5.2

The remaining (5.13) generators for the secondN = 2 higher spin multiplet can be obtained

from the relationships in footnote 10,

V
( 7

2
)+

5

2

= 2

(

−i

4

) 5

2

ŷ1ŷ1ŷ1ŷ1ŷ1⊗

(

0 1

0 0

)

,

V
( 7

2
)+

3

2

=

(

−i

4

) 5

2 2

5
(ŷ1ŷ1ŷ1ŷ1ŷ2+ŷ1ŷ1ŷ1ŷ2ŷ1+ŷ1ŷ1ŷ2ŷ1ŷ1+ŷ1ŷ2ŷ1ŷ1ŷ1+ŷ2ŷ1ŷ1ŷ1ŷ1)⊗

(

0 1

0 0

)

,

V
( 7

2
)+

1

2

=

(

−i

4

) 5

2 2

10
(ŷ1ŷ1ŷ1ŷ2ŷ2+ŷ1ŷ1ŷ2ŷ1ŷ2+ŷ1ŷ1ŷ2ŷ2ŷ1+ŷ1ŷ2ŷ1ŷ1ŷ2+ŷ1ŷ2ŷ1ŷ2ŷ1

+ŷ1ŷ2ŷ2ŷ1ŷ1+ŷ2ŷ1ŷ1ŷ1ŷ2+ŷ2ŷ1ŷ1ŷ2ŷ1+ŷ2ŷ1ŷ2ŷ1ŷ1+ŷ2ŷ2ŷ1ŷ1ŷ1)⊗

(

0 1

0 0

)

,

V
( 7

2
)+

−
1

2

=

(

−i

4

) 5

2 2

10
(ŷ2ŷ2ŷ2ŷ1ŷ1+ŷ2ŷ2ŷ1ŷ2ŷ1+ŷ2ŷ2ŷ1ŷ1ŷ2+ŷ2ŷ1ŷ2ŷ2ŷ1+ŷ2ŷ1ŷ2ŷ1ŷ2

+ŷ2ŷ1ŷ1ŷ2ŷ2+ŷ1ŷ2ŷ2ŷ2ŷ1+ŷ1ŷ2ŷ2ŷ1ŷ2+ŷ1ŷ2ŷ1ŷ2ŷ2+ŷ1ŷ1ŷ2ŷ2ŷ2)⊗

(

0 1

0 0

)

,

V
( 7

2
)+

−
3

2

=

(

−i

4

) 5

2 2

5
(ŷ2ŷ2ŷ2ŷ2ŷ1+ŷ2ŷ2ŷ2ŷ1ŷ2+ŷ2ŷ2ŷ1ŷ2ŷ2+ŷ2ŷ1ŷ2ŷ2ŷ2+ŷ1ŷ2ŷ2ŷ2ŷ2)⊗

(

0 1

0 0

)

,

V
( 7

2
)+

−
5

2

= 2

(

−i

4

) 5

2

ŷ2ŷ2ŷ2ŷ2ŷ2⊗

(

0 1

0 0

)

,

V
( 7

2
)−

5

2

= 2

(

−i

4

) 5

2

ŷ1ŷ1ŷ1ŷ1ŷ1⊗

(

0 0

1 0

)

,

V
( 7

2
)−

3

2

=

(

−i

4

) 5

2 2

5
(ŷ1ŷ1ŷ1ŷ1ŷ2+ŷ1ŷ1ŷ1ŷ2ŷ1+ŷ1ŷ1ŷ2ŷ1ŷ1+ŷ1ŷ2ŷ1ŷ1ŷ1+ŷ2ŷ1ŷ1ŷ1ŷ1)⊗

(

0 0

1 0

)

,

V
( 7

2
)−

1

2

=

(

−i

4

) 5

2 2

10
(ŷ1ŷ1ŷ1ŷ2ŷ2+ŷ1ŷ1ŷ2ŷ1ŷ2+ŷ1ŷ1ŷ2ŷ2ŷ1+ŷ1ŷ2ŷ1ŷ1ŷ2+ŷ1ŷ2ŷ1ŷ2ŷ1

+ŷ1ŷ2ŷ2ŷ1ŷ1+ŷ2ŷ1ŷ1ŷ1ŷ2+ŷ2ŷ1ŷ1ŷ2ŷ1+ŷ2ŷ1ŷ2ŷ1ŷ1+ŷ2ŷ2ŷ1ŷ1ŷ1)⊗

(

0 0

1 0

)

,

V
( 7

2
)−

−
1

2

=

(

−i

4

) 5

2 2

10
(ŷ2ŷ2ŷ2ŷ1ŷ1+ŷ2ŷ2ŷ1ŷ2ŷ1+ŷ2ŷ2ŷ1ŷ1ŷ2+ŷ2ŷ1ŷ2ŷ2ŷ1+ŷ2ŷ1ŷ2ŷ1ŷ2

+ŷ2ŷ1ŷ1ŷ2ŷ2+ŷ1ŷ2ŷ2ŷ2ŷ1+ŷ1ŷ2ŷ2ŷ1ŷ2+ŷ1ŷ2ŷ1ŷ2ŷ2+ŷ1ŷ1ŷ2ŷ2ŷ2)⊗

(

0 0

1 0

)

,

V
( 7

2
)−

−
3

2

=

(

−i

4

) 5

2 2

5
(ŷ2ŷ2ŷ2ŷ2ŷ1+ŷ2ŷ2ŷ2ŷ1ŷ2+ŷ2ŷ2ŷ1ŷ2ŷ2+ŷ2ŷ1ŷ2ŷ2ŷ2+ŷ1ŷ2ŷ2ŷ2ŷ2)⊗

(

0 0

1 0

)

,

V
( 7

2
)−

−
5

2

= 2

(

−i

4

) 5

2

ŷ2ŷ2ŷ2ŷ2ŷ2⊗

(

0 0

1 0

)

,

V
(4)
3 = 2

(

−i

4

)3

ŷ1ŷ1ŷ1ŷ1ŷ1ŷ1⊗

(

1 0

0 1

)

,
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V
(4)
2 =

(

−i

4

)3
2

6
(ŷ1ŷ1ŷ1ŷ1ŷ1ŷ2+ŷ1ŷ1ŷ1ŷ1ŷ2ŷ1+ŷ1ŷ1ŷ1ŷ2ŷ1ŷ1

+ŷ1ŷ1ŷ2ŷ1ŷ1ŷ1+ŷ1ŷ2ŷ1ŷ1ŷ1ŷ1+ŷ2ŷ1ŷ1ŷ1ŷ1ŷ1)⊗

(

1 0

0 1

)

,

V
(4)
1 =

(

−i

4

)3
2

15
(ŷ1ŷ1ŷ1ŷ1ŷ2ŷ2+ŷ1ŷ1ŷ1ŷ2ŷ1ŷ2+ŷ1ŷ1ŷ1ŷ2ŷ2ŷ1+ŷ1ŷ1ŷ2ŷ1ŷ1ŷ2+ŷ1ŷ1ŷ2ŷ1ŷ2ŷ1

+ŷ1ŷ1ŷ2ŷ2ŷ1ŷ1+ŷ1ŷ2ŷ1ŷ1ŷ1ŷ2+ŷ1ŷ2ŷ1ŷ1ŷ2ŷ1+ŷ1ŷ2ŷ1ŷ2ŷ1ŷ1+ŷ1ŷ2ŷ2ŷ1ŷ1ŷ1

+ŷ2ŷ1ŷ1ŷ1ŷ1ŷ2+ŷ2ŷ1ŷ1ŷ1ŷ2ŷ1+ŷ2ŷ1ŷ1ŷ2ŷ1ŷ1+ŷ2ŷ1ŷ2ŷ1ŷ1ŷ1+ŷ2ŷ2ŷ1ŷ1ŷ1ŷ1)⊗

(

1 0

0 1

)

,

V
(4)
0 =

(

−i

4

)3
2

20
(ŷ1ŷ1ŷ1ŷ2ŷ2ŷ2+ŷ1ŷ1ŷ2ŷ1ŷ2ŷ2+ŷ1ŷ1ŷ2ŷ2ŷ1ŷ2+ŷ1ŷ1ŷ2ŷ2ŷ2ŷ1+ŷ1ŷ2ŷ1ŷ1ŷ2ŷ2

+ŷ1ŷ2ŷ1ŷ2ŷ1ŷ2+ŷ1ŷ2ŷ1ŷ2ŷ2ŷ1+ŷ1ŷ2ŷ2ŷ1ŷ1ŷ2+ŷ1ŷ2ŷ2ŷ1ŷ2ŷ1+ŷ1ŷ2ŷ2ŷ2ŷ1ŷ1+ŷ2ŷ1ŷ1ŷ1ŷ2ŷ2

+ŷ2ŷ1ŷ1ŷ2ŷ1ŷ2+ŷ2ŷ1ŷ1ŷ2ŷ2ŷ1+ŷ2ŷ1ŷ2ŷ1ŷ1ŷ2+ŷ2ŷ1ŷ2ŷ1ŷ2ŷ1+ŷ2ŷ1ŷ2ŷ2ŷ1ŷ1

+ŷ2ŷ2ŷ1ŷ1ŷ1ŷ2+ŷ2ŷ2ŷ1ŷ1ŷ2ŷ1+ŷ2ŷ2ŷ1ŷ2ŷ1ŷ1+ŷ2ŷ2ŷ2ŷ1ŷ1ŷ1)⊗

(

1 0

0 1

)

,

V
(4)
−1 =

(

−i

4

)3
2

15
(ŷ2ŷ2ŷ2ŷ2ŷ1ŷ1+ŷ2ŷ2ŷ2ŷ1ŷ2ŷ1+ŷ2ŷ2ŷ2ŷ1ŷ1ŷ2+ŷ2ŷ2ŷ1ŷ2ŷ2ŷ1+ŷ2ŷ2ŷ1ŷ2ŷ1ŷ2

+ŷ2ŷ2ŷ1ŷ1ŷ2ŷ2+ŷ2ŷ1ŷ2ŷ2ŷ2ŷ1+ŷ2ŷ1ŷ2ŷ2ŷ1ŷ2+ŷ2ŷ1ŷ2ŷ1ŷ2ŷ2+ŷ2ŷ1ŷ1ŷ2ŷ2ŷ2

+ŷ1ŷ2ŷ2ŷ2ŷ2ŷ1+ŷ1ŷ2ŷ2ŷ2ŷ1ŷ2+ŷ1ŷ2ŷ2ŷ1ŷ2ŷ2+ŷ1ŷ2ŷ1ŷ2ŷ2ŷ2+ŷ1ŷ1ŷ2ŷ2ŷ2ŷ2)⊗

(

1 0

0 1

)

,

V
(4)
−2 =

(

−i

4

)3
2

6
(ŷ2ŷ2ŷ2ŷ2ŷ2ŷ1+ŷ2ŷ2ŷ2ŷ2ŷ1ŷ2+ŷ2ŷ2ŷ2ŷ1ŷ2ŷ2

+ŷ2ŷ2ŷ1ŷ2ŷ2ŷ2+ŷ2ŷ1ŷ2ŷ2ŷ2ŷ2+ŷ1ŷ2ŷ2ŷ2ŷ2ŷ2)⊗

(

1 0

0 1

)

,

V
(4)
−3 = 2

(

−i

4

)3

ŷ2ŷ2ŷ2ŷ2ŷ2ŷ2⊗

(

1 0

0 1

)

. (F.1)

Higher spin generators for (1.3), in the extension of OSp(2|2) higher spin algebra, can be

described by the tensor product between the generators (whose spins and modes can be

fixed by the number of oscillators ŷα) and the 2× 2 Pauli matrices (plus identity matrix)

with appropriate normalization factors in (F.1).
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[7] K. Hornfeck and É. Ragoucy, A Coset Construction for the Super W3 Algebra,

Nucl. Phys. B 340 (1990) 225 [INSPIRE].

[8] C. Ahn, K. Schoutens and A. Sevrin, The full structure of the super W3 algebra,

Int. J. Mod. Phys. A 6 (1991) 3467 [INSPIRE].

[9] K. Schoutens and A. Sevrin, Minimal super-WN algebras in coset conformal field theories,

Phys. Lett. B 258 (1991) 134 [INSPIRE].

[10] C. Ahn, The Higher Spin Currents in the N = 1 Stringy Coset Minimal Model,

JHEP 04 (2013) 033 [arXiv:1211.2589] [INSPIRE].

[11] C. Ahn, Higher Spin Currents with Arbitrary N in the N = ∞ Stringy Coset Minimal Model,

JHEP 07 (2013) 141 [arXiv:1305.5892] [INSPIRE].

[12] W. Boucher, D. Friedan and A. Kent, Determinant Formulae and Unitarity for the N = 2

Superconformal Algebras in Two-Dimensions or Exact Results on String Compactification,

Phys. Lett. B 172 (1986) 316 [INSPIRE].

[13] R. Gopakumar, A. Hashimoto, I.R. Klebanov, S. Sachdev and K. Schoutens, Strange Metals

in One Spatial Dimension, Phys. Rev. D 86 (2012) 066003 [arXiv:1206.4719] [INSPIRE].

[14] C. Ahn, Higher Spin Currents in the N = 2 Stringy Coset Minimal Model,

Phys. Rev. D 94 (2016) 126014 [arXiv:1604.00756] [INSPIRE].

[15] T. Creutzig, Y. Hikida and P.B. Rønne, Higher spin AdS3 holography with extended

supersymmetry, JHEP 10 (2014) 163 [arXiv:1406.1521] [INSPIRE].

[16] C. Ahn and H. Kim, Higher spin currents in the enhanced N = 3 Kazama-Suzuki model,

JHEP 12 (2016) 001 [arXiv:1607.00728] [INSPIRE].

[17] M.R. Gaberdiel and R. Gopakumar, An AdS3 Dual for Minimal Model CFTs,

Phys. Rev. D 83 (2011) 066007 [arXiv:1011.2986] [INSPIRE].

[18] S.F. Prokushkin and M.A. Vasiliev, Higher spin gauge interactions for massive matter fields

in 3D AdS space-time, Nucl. Phys. B 545 (1999) 385 [hep-th/9806236] [INSPIRE].

[19] S. Prokushkin and M.A. Vasiliev, 3D higher spin gauge theories with matter, in proceedings

of the 31st International Ahrenshoop Symposium on the Theory of Elementary Particles,

Buckow, Germany, 2–6 September 1997, hep-th/9812242 [INSPIRE].

[20] M.R. Gaberdiel and R. Gopakumar, Triality in Minimal Model Holography,

JHEP 07 (2012) 127 [arXiv:1205.2472] [INSPIRE].

[21] M.R. Gaberdiel and R. Gopakumar, Minimal Model Holography,

J. Phys. A 46 (2013) 214002 [arXiv:1207.6697] [INSPIRE].

– 38 –

https://inspirehep.net/search?p=find+R+%22CALT-68-1453%22
https://inspirehep.net/search?p=find+R+%22ITFA-87-22%22
https://doi.org/10.1016/0370-2693(88)91263-4
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B206,62%22
https://doi.org/10.1007/BF01464283
https://inspirehep.net/search?p=find+J+%22Comm.Math.Phys.,103,105%22
https://doi.org/10.1016/0550-3213(90)90162-7
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B340,225%22
https://doi.org/10.1142/S0217751X91001684
https://inspirehep.net/search?p=find+J+%22Int.J.Mod.Phys.,A6,3467%22
https://doi.org/10.1016/0370-2693(91)91220-P
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B258,134%22
https://doi.org/10.1007/JHEP04(2013)033
https://arxiv.org/abs/1211.2589
https://inspirehep.net/search?p=find+EPRINT+arXiv:1211.2589
https://doi.org/10.1007/JHEP07(2013)141
https://arxiv.org/abs/1305.5892
https://inspirehep.net/search?p=find+EPRINT+arXiv:1305.5892
https://doi.org/10.1016/0370-2693(86)90260-1
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B172,316%22
https://doi.org/10.1103/PhysRevD.86.066003
https://arxiv.org/abs/1206.4719
https://inspirehep.net/search?p=find+EPRINT+arXiv:1206.4719
https://doi.org/10.1103/PhysRevD.94.126014
https://arxiv.org/abs/1604.00756
https://inspirehep.net/search?p=find+EPRINT+arXiv:1604.00756
https://doi.org/10.1007/JHEP10(2014)163
https://arxiv.org/abs/1406.1521
https://inspirehep.net/search?p=find+EPRINT+arXiv:1406.1521
https://doi.org/10.1007/JHEP12(2016)001
https://arxiv.org/abs/1607.00728
https://inspirehep.net/search?p=find+EPRINT+arXiv:1607.00728
https://doi.org/10.1103/PhysRevD.83.066007
https://arxiv.org/abs/1011.2986
https://inspirehep.net/search?p=find+EPRINT+arXiv:1011.2986
https://doi.org/10.1016/S0550-3213(98)00839-6
https://arxiv.org/abs/hep-th/9806236
https://inspirehep.net/search?p=find+EPRINT+hep-th/9806236
https://arxiv.org/abs/hep-th/9812242
https://inspirehep.net/search?p=find+EPRINT+hep-th/9812242
https://doi.org/10.1007/JHEP07(2012)127
https://arxiv.org/abs/1205.2472
https://inspirehep.net/search?p=find+EPRINT+arXiv:1205.2472
https://doi.org/10.1088/1751-8113/46/21/214002
https://arxiv.org/abs/1207.6697
https://inspirehep.net/search?p=find+EPRINT+arXiv:1207.6697


J
H
E
P
0
5
(
2
0
1
9
)
1
3
5

[22] M.R. Gaberdiel and R. Gopakumar, Higher Spins & Strings, JHEP 11 (2014) 044

[arXiv:1406.6103] [INSPIRE].

[23] M.R. Gaberdiel and R. Gopakumar, String Theory as a Higher Spin Theory,

JHEP 09 (2016) 085 [arXiv:1512.07237] [INSPIRE].

[24] I.R. Klebanov and A.M. Polyakov, AdS dual of the critical O(N) vector model,

Phys. Lett. B 550 (2002) 213 [hep-th/0210114] [INSPIRE].

[25] S.L. Lukyanov and V.A. Fateev, Additional symmetries and exactly soluble models in

two-dimensional conformal field theory, Sov. Sci. Rev. A 15 (1990) 1 [INSPIRE].

[26] P. Goddard, A. Kent and D.I. Olive, Virasoro Algebras and Coset Space Models,

Phys. Lett. B 152 (1985) 88 [INSPIRE].

[27] C. Ahn, Higher Spin Currents in the Orthogonal Coset Theory,

Eur. Phys. J. C 77 (2017) 394 [arXiv:1701.02410] [INSPIRE].

[28] D. Kumar and M. Sharma, Conformal embeddings and higher-spin bulk duals,

Phys. Rev. D 95 (2017) 066015 [arXiv:1606.00791] [INSPIRE].

[29] T. Creutzig, Y. Hikida and P.B. Rønne, N = 1 supersymmetric higher spin holography on

AdS3, JHEP 02 (2013) 019 [arXiv:1209.5404] [INSPIRE].

[30] C. Ahn and J. Paeng, Higher Spin Currents in the Holographic N = 1 Coset Minimal Model,

JHEP 01 (2014) 007 [arXiv:1310.6185] [INSPIRE].

[31] C. Candu and C. Vollenweider, The N = 1 algebra W∞[µ] and its truncations,

JHEP 11 (2013) 032 [arXiv:1305.0013] [INSPIRE].

[32] M.R. Gaberdiel and R. Gopakumar, Large N = 4 Holography, JHEP 09 (2013) 036

[arXiv:1305.4181] [INSPIRE].

[33] M.R. Gaberdiel, R. Gopakumar and C. Hull, Stringy AdS3 from the worldsheet,

JHEP 07 (2017) 090 [arXiv:1704.08665] [INSPIRE].

[34] K. Ferreira, M.R. Gaberdiel and J.I. Jottar, Higher spins on AdS3 from the worldsheet,

JHEP 07 (2017) 131 [arXiv:1704.08667] [INSPIRE].

[35] L. Eberhardt, M.R. Gaberdiel and W. Li, A holographic dual for string theory on

AdS3 × S3 × S3 × S1, JHEP 08 (2017) 111 [arXiv:1707.02705] [INSPIRE].

[36] G. Giribet, C. Hull, M. Kleban, M. Porrati and E. Rabinovici, Superstrings on AdS3 at

k = 1, JHEP 08 (2018) 204 [arXiv:1803.04420] [INSPIRE].

[37] M.R. Gaberdiel and R. Gopakumar, Tensionless string spectra on AdS3,

JHEP 05 (2018) 085 [arXiv:1803.04423] [INSPIRE].

[38] L. Eberhardt, Supersymmetric AdS3 supergravity backgrounds and holography,

JHEP 02 (2018) 087 [arXiv:1710.09826] [INSPIRE].

[39] S. Datta, L. Eberhardt and M.R. Gaberdiel, Stringy N = (2, 2) holography for AdS3,

JHEP 01 (2018) 146 [arXiv:1709.06393] [INSPIRE].

[40] K. Thielemans, A Mathematica package for computing operator product expansions,

Int. J. Mod. Phys. C 2 (1991) 787 [INSPIRE].

[41] M. Henneaux and S.-J. Rey, Nonlinear W∞ as Asymptotic Symmetry of Three-Dimensional

Higher Spin Anti-de Sitter Gravity, JHEP 12 (2010) 007 [arXiv:1008.4579] [INSPIRE].

– 39 –

https://doi.org/10.1007/JHEP11(2014)044
https://arxiv.org/abs/1406.6103
https://inspirehep.net/search?p=find+EPRINT+arXiv:1406.6103
https://doi.org/10.1007/JHEP09(2016)085
https://arxiv.org/abs/1512.07237
https://inspirehep.net/search?p=find+EPRINT+arXiv:1512.07237
https://doi.org/10.1016/S0370-2693(02)02980-5
https://arxiv.org/abs/hep-th/0210114
https://inspirehep.net/search?p=find+EPRINT+hep-th/0210114
https://inspirehep.net/search?p=find+IRN+2786222
https://doi.org/10.1016/0370-2693(85)91145-1
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B152,88%22
https://doi.org/10.1140/epjc/s10052-017-4956-9
https://arxiv.org/abs/1701.02410
https://inspirehep.net/search?p=find+EPRINT+arXiv:1701.02410
https://doi.org/10.1103/PhysRevD.95.066015
https://arxiv.org/abs/1606.00791
https://inspirehep.net/search?p=find+EPRINT+arXiv:1606.00791
https://doi.org/10.1007/JHEP02(2013)019
https://arxiv.org/abs/1209.5404
https://inspirehep.net/search?p=find+EPRINT+arXiv:1209.5404
https://doi.org/10.1007/JHEP01(2014)007
https://arxiv.org/abs/1310.6185
https://inspirehep.net/search?p=find+EPRINT+arXiv:1310.6185
https://doi.org/10.1007/JHEP11(2013)032
https://arxiv.org/abs/1305.0013
https://inspirehep.net/search?p=find+EPRINT+arXiv:1305.0013
https://doi.org/10.1007/JHEP09(2013)036
https://arxiv.org/abs/1305.4181
https://inspirehep.net/search?p=find+EPRINT+arXiv:1305.4181
https://doi.org/10.1007/JHEP07(2017)090
https://arxiv.org/abs/1704.08665
https://inspirehep.net/search?p=find+EPRINT+arXiv:1704.08665
https://doi.org/10.1007/JHEP07(2017)131
https://arxiv.org/abs/1704.08667
https://inspirehep.net/search?p=find+EPRINT+arXiv:1704.08667
https://doi.org/10.1007/JHEP08(2017)111
https://arxiv.org/abs/1707.02705
https://inspirehep.net/search?p=find+EPRINT+arXiv:1707.02705
https://doi.org/10.1007/JHEP08(2018)204
https://arxiv.org/abs/1803.04420
https://inspirehep.net/search?p=find+EPRINT+arXiv:1803.04420
https://doi.org/10.1007/JHEP05(2018)085
https://arxiv.org/abs/1803.04423
https://inspirehep.net/search?p=find+EPRINT+arXiv:1803.04423
https://doi.org/10.1007/JHEP02(2018)087
https://arxiv.org/abs/1710.09826
https://inspirehep.net/search?p=find+EPRINT+arXiv:1710.09826
https://doi.org/10.1007/JHEP01(2018)146
https://arxiv.org/abs/1709.06393
https://inspirehep.net/search?p=find+EPRINT+arXiv:1709.06393
https://doi.org/10.1142/S0129183191001001
https://inspirehep.net/search?p=find+J+%22Int.J.Mod.Phys.,C2,787%22
https://doi.org/10.1007/JHEP12(2010)007
https://arxiv.org/abs/1008.4579
https://inspirehep.net/search?p=find+EPRINT+arXiv:1008.4579


J
H
E
P
0
5
(
2
0
1
9
)
1
3
5

[42] A. Campoleoni, S. Fredenhagen, S. Pfenninger and S. Theisen, Asymptotic symmetries of

three-dimensional gravity coupled to higher-spin fields, JHEP 11 (2010) 007

[arXiv:1008.4744] [INSPIRE].

[43] M.R. Gaberdiel and T. Hartman, Symmetries of Holographic Minimal Models,

JHEP 05 (2011) 031 [arXiv:1101.2910] [INSPIRE].

[44] A. Campoleoni, S. Fredenhagen and S. Pfenninger, Asymptotic W-symmetries in

three-dimensional higher-spin gauge theories, JHEP 09 (2011) 113 [arXiv:1107.0290]

[INSPIRE].
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