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1 Introduction

String theory is a useful tool to study various aspects of supersymmetric field theories.

For example, 5-brane web diagrams in type IIB string theory proposed in [1, 2] can realize

ultraviolet (UV) complete five-dimensional (5d) theories with eight supercharges. By using

5-brane web diagrams, it is possible to explicitly see non-perturbative features of 5d theories

such as dualities. We can also compute 5d Nekrasov partitions by applying the topological

vertex [3, 4] to 5-brane webs, which makes use of a chain of string dualities between 5-brane

webs in type IIB string theory and non-compact Calabi-Yau threefolds in M-theory [5].

Since 5-brane web diagram is a powerful tool to study 5d theories, it is important to

see how large class of 5d theories 5-brane web diagram can realize. Original 5-brane web

diagrams basically yield 5d SU(N) gauge theories with hypermultiplets in the fundamental

or bi-fundamental representation. The class of gauge theories realized on 5-brane webs

can be further expanded by introducing an orientifold or 7-branes created by decompos-

ing an orientifold 7-plane [6]. An orientifold can change the gauge group into SO(N) or
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Sp(N) [7, 8], or it can also introduce different representations such as the symmetric or

antisymmetric representation of SU(N) or Sp(N) [8–11]. Recently it has been noticed

that 5-brane web diagrams can provide more exotic theories which are typically not re-

alized by brane configurations. An O5-plane may introduce the spinor representation of

SO(N) (7 ≤ N ≤ 12) gauge theories [12] or it can even yield G2 gauge theories with hyper-

multiplets in the fundamental representation [13]. In particular, as for 5d rank 2 theories,

the authors showed in [14] various 5-brane realizations of all the rank 2 theories which are

geometrically constructed in [15].

It is then natural to ask if it is possible to still expand the class of 5d gauge the-

ories which 5-brane web diagrams can construct. In this paper we argue that 5-brane

web diagrams may yield further new type of gauge theories which are SU(6) or Sp(3)

gauge theories with half-hypermultiplets in the rank-3 antisymmetric representation. The

strategy to obtain the rank-3 antisymmetric representation of SU(6) is to make use of a

5-brane web diagram for the SO(12) gauge theory with a half-hypermultiplet in the conju-

gate spinor representation. Since the decomposition of the conjugate spinor representation

under SU(6) × U(1) includes the rank-3 antisymmetric representation of the SU(6) which

is not charged under the U(1), decoupling the degrees of freedom associated to the U(1)

should yield a 5-brane diagram of the SU(6) gauge theory with a half-hypermultiplet in

the rank-3 antisymmetric representation. A similar method was used to obtain the four-

dimensional (4d) Seiberg-Witten curve for the SU(6) gauge theory with a hypermultiplet

in the rank-3 antisymmetric representation in [16]. The extension of the construction can

introduce more half-hypermultiplets in the rank-3 antisymmetric representation until four

half-hypermultiplets or two hypermultiplets in the rank-3 antisymmetric representation.

For related work, see [17].

Since 5d gauge theories with rank-3 antisymmetric matter are realized using 5-brane

webs, it is also possible to compute the 5d Nekrasov partition functions. As an illustration,

we explicitly compute the Nekrasov partition function for an SU(6) gauge theory with a

half-hypermultiplet in the rank-3 antisymmetric representation.

We can then introduce matter in the fundamental representation and the rank-2 an-

tisymmetric representation to 5-brane webs in addition to rank-3 antisymmetric matter.

We can realize many of the SU(6) gauge theories with rank-3 antisymmetric representa-

tion matter that have a six-dimensional (6d) UV completion in the list in [18] which were

obtained from the analysis of effective prepotentials. Moreover a Higgsing associated to a

hypermultiplet in the rank-2 antisymmetric representation of marginal SU(6) gauge theo-

ries with rank-2 and rank-3 antisymmetric matter yields 5-brane diagrams for Sp(3) gauge

theories with matter in the rank-3 antisymmetric representation which also have a 6d UV

completion. From the construction of the 5-brane webs we also find dualities and propose

explicit 6d theories for some of the marginal theories.

The organization of the paper is as follows. In section 2, we propose 5-brane web

diagrams of SU(6) gauge theories with half-hypermultiplets in the rank-3 antisymmetric

representation. From the obtained diagram we compute the Nekrasov partition function

for an SU(6) gauge theory with a half-hypermultiplet in the rank-3 antisymmetric represen-

tation. We extend the construction of 5-brane webs in section 3 by adding hypermultiplets
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in other representations. In particular we propose 5-brane webs for 5d SU(6) gauge the-

ories with rank-3 antisymmetric matter that have a 6d UV completion. In section 4, we

Higgs the diagrams obtained in section 3 to construct 5-brane webs for marginal Sp(3)

gauge theories with rank-3 antisymmetric matter. Finally we find explicit 6d UV complete

theories for some of the marginal SU(6) gauge theories from the 5-brane webs and discuss

dualities involving marginal SU(6) gauge theories with a half-hypermultiplets in the rank-3

antisymmetric representation in section 5.

2 SU(6) gauge theories with rank-3 antisymmetric matter

In this section, we propose 5-brane webs for SU(6) gauge theories with half-hypermultiplets

in the rank three antisymmetric representation. UV complete 5d SU(6) gauge theories can

have at most two hypermultiplets in the rank-3 antisymmetric representation [18]. We

will obtain brane webs with all possible number of massless rank-3 antisymmetric half-

hypermultiplets in this section.

2.1 Decoupling from SO(12) gauge theory with conjugate spinor matter

One way to obtain the rank-3 antisymmetric representation of SU(6) is using the decompo-

sition of the spinor or the conjugate spinor representation of SO(12) under SU(6) × U(1).

We here consider the decomposition from the conjugate spinor for later use. In this case,

the decomposition of the conjugate spinor representation under the SU(6)×U(1) is given by

SO(12) ⊃ SU(6)×U(1)

32′ = 200 ⊕ 6−2 ⊕ 6̄2, (2.1)

where the subscript stands for the U(1) charge.1 The twenty dimensional representation 200

is the rank-3 antisymmetric representation of SU(6). The 5d N = 1 SO(12) gauge theory

with a conjugate spinor also contains a vector multiplet in the adjoint representation of

SO(12). The decomposition of the adjoint representation of SO(12) under the SU(6)×U(1)

is given by

SO(12) ⊃ SU(6)×U(1)

66 = 10 ⊕ 152 + 15−2 + 350. (2.2)

Since 6−2, 6̄2,152 and 15−2 are charged under the U(1) of the SU(6) × U(1), the fields

in those representations acquire large mass when we give a large vev to the Coulomb

branch modulus for the U(1), while the singlet 10 becomes non-dynamical (which will

be more clear when we discuss its brane realization). Therefore, when the vev for the

Coulomb branch modulus of the U(1) in the SO(12) gauge theory becomes infinitely large,

the low energy effective field theory should be described by the SU(6) gauge theory with

a hypermultiplet in the rank-3 antisymmetric representation. This method was made

1We note that the decomposition of the spinor representation of SO(12) under SU(6) ×U(1) is given by

32 = 13 + 1−3 + 15−1 + 151, where all the SU(6) representations are charged under U(1).
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Figure 1. A 5-brane diagram which realizes the SO(12) gauge theory with a half-hypermultiplet

in the conjugate spinor representation. In the left upper conner, two 5-branes of the charge (−3, 1)

should be understood as they are bound by a single 7-brane of the same charge (−3, 1), respecting

the S-rule.

use of to obtain the Seiberg-Witten curve for the 4d SU(6) gauge theory with rank-3

antisymmetric matter in [16].

We can apply this procedure to a 5-brane web for the SO(12) gauge theory with

a conjugate spinor for obtaining a brane web for the SU(6) gauge theory with rank-3

antisymmetric matter. In order to simplify the discussion, we start from the 5d SO(12)

gauge theory with a half-hypermultiplet in the conjugate spinor representation. Then the

decoupling procedure will lead to an SU(6) gauge theory with a half-hypermultiplet in the

rank-3 antisymmetric representation at low energies.

A 5-brane web is constructed by a combination of (p, q) 5-branes in type IIB string

theory [1, 2] and it realizes a 5d theory on the brane web. As for the brane configuration,

our convention is that a D5-brane extends in the (x0, x1, x2, x3, x4, x5)-directions and an

NS5-brane extends in the (x0, x1, x2, x3, x4, x6)-directions in the ten-dimensional spacetime

in type IIB string theory. A (p, q) 5-brane extends in the (x0, x1, x2, x3, x4)-directions and

also in a one-dimensional space in the (x5, x6)-plane. The one-dimensional space is given

by a line with slope q
p in the (x5, x6)-plane. 7-branes in the (x0, x1, x2, x3, x4, x7, x8, x9)-

directions may be also introduced in the configuration by ending a (p, q) 7-brane on top

of an external (p, q) 5-brane. 7-branes are useful to see a global symmetry of the theory

realized on a web and also to consider a Higgsing. Since a non-trivial structure of the brane

appear in the (x5, x6)-plane, we only write the configuration in the two-dimensional plane

where we choose the horizontal direction as the x5-direction and the vertical direction as

the x6-direction.

A 5-brane web for the SO(12) gauge theory with a half-hypermultiplet in the spinor or

the conjugate spinor representation has been proposed in [12] and we depict the diagram

in figure 1. The “Sp(0)” part in-between the (2,−1) 5-brane and the (2, 1) 5-brane yields

“Sp(0)” instantons and they can be interpreted as a half-hypermultiplet in the spinor or

the conjugate spinor representation depending on the discrete theta angle of the Sp(0).

In order to explicitly see if the configuration contains the spinor or the conjugate spinor

representation, we may consider a diagram after a generalized flop transition for the Sp(0)

part, which can distinguish the discrete theta angle of the Sp(0) [19]. It turns out that

the generalized flop transition in the case of the conjugate spinor representation of SO(12)

yields the diagram depicted in figure 2. To see that, we identify a weight of a representation

for the matter in the theory from the length of an internal 5-brane in the diagram. We
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Figure 2. A 5-brane diagram realizing the SO(12) gauge theory with a conjugate spinor which is

obtained after performing a generalized flop transition to the diagram in figure 1.

first label the height of the six color D5-branes as a1, a2, a3, a4, a5, a6 as in figure 2 and

identify them with the six Coulomb branch moduli of the SO(12). This parameterization

corresponds to being in a Weyl chamber specified by positive roots

ei ± ej , (1 ≤ i < j ≤ 6). (2.3)

With the parameterization, the length of the (1, 1) 5-brane depicted as a red line in figure 2

is 1
2(a1 − a2 − a3 − a4 + a5 + a6). Also the length of the (0, 1) 5-brane that is reflected in

the O5-plane depicted as a blue line in figure 2 is 1
2(−a1 + a2 + a3 + a4 + a5 + a6). Hence,

a string with the length 1
2(a1 − a2 − a3 − a4 + a5 + a6) connecting two D5-branes in the

diagram yields a hypermultiplet for a weight

1

2
(e1 − e2 − e3 − e4 + e5 + e6), (2.4)

while a string with the length 1
2(−a1 + a2 + a3 + a4 + a5 + a6) connecting two D5-branes

through the O5-plane in the diagram yields a hypermultiplet for a weight

1

2
(−e1 + e2 + e3 + e4 + e5 + e6), (2.5)

where ei, (i = 1, · · · , 6) are the orthonormal basis of R6. The weight of (2.4) and (2.5) are

indeed weights in the conjugate spinor representation of SO(12). Combining the 5-brane

lines corresponding to the weight (2.4) and (2.5) with 5-brane lines for the positive roots

of (2.3) gives a half of the weights of the conjugate spinor representation which are given by

1

2
(−e1 + e2 + e3 + e4 + e5 + e6),

1

2
(e1 − e2 + e3 + e4 + e5 + e6),

1

2
(e1 + e2 − e3 + e4 + e5 + e6),

1

2
(e1 + e2 + e3 − e4 + e5 + e6),

1

2
(e1 + e2 + e3 + e4 − e5 + e6),

1

2
(e1 + e2 + e3 + e4 + e5 − e6),

(2.6)

and

1

2
(e1 − e2 − e3 − e4 + e5 + e6),

1

2
(e1 − e2 − e3 + e4 − e5 + e6),

1

2
(e1 − e2 − e3 + e4 + e5 − e6),

1

2
(e1 − e2 + e3 − e4 − e5 + e6),

1

2
(e1 − e2 + e3 − e4 + e5 − e6),

1

2
(e1 + e2 − e3 − e4 − e5 + e6),

1

2
(e1 − e2 + e3 + e4 − e5 − e6),

1

2
(e1 + e2 − e3 − e4 + e5 − e6),

1

2
(e1 + e2 − e3 + e4 − e5 − e6),

1

2
(e1 + e2 + e3 − e4 − e5 − e6).

(2.7)
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Figure 3. A 5-brane diagram realizing an SU(6) gauge theory with a half-hypermultiplet in the

rank-3 antisymmetric representation. It will turn out that the Chern-Simons level of this theory is

κ = 5
2 in section 2.2.

Hence, the diagram in figure 2 yields hypermultiplets corresponding to the weights (2.6)

and (2.7) or equivalently a half-hypermultiplet in the conjugate spinor representation

of SO(12).

In order to obtain a diagram for the SU(6) gauge theory with a half-hypermultiplet in

the rank-3 antisymmetric representation, we need to take a limit where the Coulomb branch

modulus for the U(1) in the decomposition SO(12) ⊃ SU(6)×U(1) becomes infinitely large.

It is in fact straightforward to identify this U(1) degree of freedom from the diagram in

figure 2. Due to the presence of the O5-plane, individual height of the six color D5-branes

can be independent parameters. The U(1) part (or 10 of SU(6)) is the center of mass

position of the color branes with respect to an O5-plane. One can adjust the bare coupling

and increase the the Coulomb parameter of U(1) so that the orientifold gets pushed down

while the SU(6) part remains steady. Therefore, the U(1) part becomes non-dynamical

when we separate the brane configuration in the upper half-plane infinitely far away from

the O5-plane. In this limit, the O5-plane is infinitely far from the other brane configuration

and strings between them are decoupled. The resulting brane diagram without the O5-

plane is depicted in figure 3 and the diagram should realize an SU(6) gauge theory with

a half-hypermultiplet in the rank-3 antisymmetric representation. From the diagram in

figure 3, the right part of the digram is identical to the one for the pure SU(6) gauge

theory. Hence the matter contribution comes only from the left part of the diagram.

It is straightforward to construct a 5-brane diagram for an SU(6) gauge theory with

a hypermultiplet in the rank-3 antisymmetric representation. When we obtained a half-

hypermultiplet in the rank-3 antisymmetric representation, we started from the diagram

which realizes the SO(12) gauge theory with a half-hypermultiplet in the conjugate spinor

representation. Hence, we can start from the SO(12) gauge theory with a hypermultiplet in

the conjugate spinor representation in order to obtain a diagram for a rank-3 antisymmetric

hypermultiplet. The proposed diagram in [12] for the SO(12) gauge theory with a conjugate

spinor is depicted in figure 4(a). The discrete theta angle for the two Sp(0) parts should

be chosen so that the diagram contains matter in the conjugate spinor representation of

SO(12). In this case, we can only realize massless hypermultiplet in the conjugate spinor

representation. We then perform generalized flop transitions for the two Sp(0) parts in the

diagram in figure 4(a) and decouple the U(1) degree of freedom. The procedure yields a

diagram in figure 4(b) which should realize an SU(6) gauge theory with a hypermultiplet in

– 6 –
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Figure 4. (a) A 5-brane diagram for the SO(12) gauge theory with a massless hypermultiplet in the

conjugate spinor representation. (b) A 5-brane diagram for an SU(6) gauge theory with a massless

hypermultiplet in the rank-3 antisymmetric representation, obtained by applying generalized flop

transitions and decoupling to the diagram in figure 4(a). It will turn out that the Chern-Simons

level of this theory is κ = 3 in section 2.2.

the rank-3 antisymmetric representation. Since we started from massless matter, the rank-

3 antisymmetric hypermultiplet after the decoupling is also massless. It is indeed natural

that the diagram in figure 4(b) gives a massless hypermultiplet in the rank-3 antisymmetric

representation given that a half-hypermultiplet in the rank-3 antisymmetric representation

comes from the left part of the diagram in figure 3. The diagram consists of two copies of

the left part of the diagram in figure 3 and hence it should give two half-hypermultiplets in

the rank-3 antisymmetric representation, which correspond to a massless hypermultiplet

in the rank-3 antisymmetric representation.

2.2 Monopole string tension

In the previous subsection, we obtained 5-brane diagrams for SU(6) gauge theories with

rank-3 antisymmetric matter. We give further support for the claim by comparing the

monopole string tension computed from the diagram in figure 3 with that calculated from

the prepotential in the gauge theory. We have not yet determined the Chern-Simons

(CS) level for the theories and the CS level can be also fixed from the monopole string

tension computation.

We first compute the monopole string tension from the diagram in figure 3. A monopole

string in a 5d theory can be realized by a D3-brane stretched on a face bounded by 5-brane

segments in the corresponding 5-brane web. Hence the tension of the monopole string is

given by the area of the face on which the D3-brane is stretched. In order to compute the

area, we label the height of the six color D5-branes as a1, a2, a3, a4, a5, a6 as in figure 5(a).

Contrary to the diagram for the SO(12) gauge theory in figure 2, the overall height is

irrelevant and the parameters satisfy
∑6

i=1 ai = 0, which can be solved by setting

a1 = φ1, a2 = −φ1 + φ2, a3 = −φ2 + φ3,

a4 = −φ3 + φ4, a5 = −φ4 + φ5, a6 = −φ5 (2.8)

On the other hand, the inverse of the squared classical gauge coupling m0 is the length of

D5-branes in the limit where all the Coulomb branch moduli are turned off. It turns out

that the length of the top D5-brane is parameterized by m0 + 7a1 as in figure 5(a).

We can then compute the area of faces in the diagram in figure 5(b). We note that

the external 5-branes in figure 5(b) are bound by 7-branes in such a way that they satisfy

– 7 –



J
H
E
P
0
5
(
2
0
1
9
)
1
3
3

a₁
a₂
a₃

a₄
a₅

a₆

m₀+7a₁

(a)

①

②

③

⑤

⑥
⑦
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(b)

Figure 5. (a) A parameterization of Coulomb branch moduli for the diagram in figure 3. (b) A

labeling for the area of faces in the diagram in figure 3. As the external 5-branes are bound by

7-branes such that they satisfy the S-rule, some of the faces are in fact connected. For instance, 1©
and 2© are connected and so are 6© and 7©.

the S-rule [9], and hence though some of regions appear as distinct regions, they are in

fact a single face. For instance, the region 1© is connected to 2© and it forms a single face

on which a D3-brane is stretched. Similarly the region 7© is connected to 6©. Therefore

we have in total five faces in the diagram in figure 5(b), agreeing with the number of

the Coulomb branch moduli of the SU(6). The area of the five faces parameterized by

m0, ai, (i = 1, · · · , 6) is

1©+ 2© = m0(2φ1 − φ2) +
5

2
φ2

1 + 6φ1φ2 − 4φ2
2 + φ2φ3 − φ2

3 + φ3φ4 − φ2
4 + φ4φ5 − φ2

5,

(2.9)

3© = (m0 − 3φ1 + 2φ2 + 2φ3)(−φ1 + 2φ2 − φ3), (2.10)

4© = (m0 − φ1 − φ2 + 2φ3 + φ4)(−φ2 + 2φ3 − φ4), (2.11)

5© = (m0 − φ1 + 2φ4)(−φ3 + 2φ4 − φ5), (2.12)

6©+ 7© = (m0 − φ1 + φ4 + 2φ5)(−φ4 + 2φ5). (2.13)

We can compare the area (2.9)–(2.13) with the monopole string tension computed

from the effective prepotential. In general the effective prepotential on a Coulomb branch

of a 5d gauge theory with a gauge group G and matter f in a representation Rf is given

by [20–22]2

F(φ) =
1

2
m0hijφiφj +

κ

6
dijkφiφjφk +

1

12

 ∑
r∈roots

|r · φ|3 −
∑
f

∑
w∈Rf

|w · φ−mf |3
 .

(2.14)

Here, m0 is the inverse of the squared gauge coupling, κ is the classical Chern-Simons

level and mf is a mass parameter for the matter f . r is a root of the Lie algebra g

associated to G and w is a weight of the representation Rf of g. Furthermore, we defined

hij = Tr(TiTj), dijk = 1
2Tr (Ti{Tj , Tk}) where Ti are the Cartan generators of the Lie

algebra g.

The sign for the one-loop correction terms in (2.14) is fixed from the parameterization

of the Coulomb branch moduli in the diagram in figure 5(a). Namely, the positive roots

2In [23], the authors approach the prepotential differently.
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are given by ei − ej , (1 ≤ i < j ≤ 6), and the positive weights of the rank-3 antisymmetric

representation are reduced from the positive weights of the conjugate spinor representation

in (2.6) and (2.7), e1 + ei + ej , (2 ≤ i < j ≤ 6). On this phase, the effective prepoten-

tial for the SU(6) gauge theory with a half-hypermultiplet in the rank-3 antisymmetric

representation (TAS) becomes

FSU(6)κ
NTAS= 1

2

=
1

2
m0

6∑
i=1

a2
i +

κ

6

6∑
i=1

a3
i +

1

12

2
∑

1≤i<j≤6

(ai − aj)3 −
∑

2≤i<j≤6

(a1 + ai + aj)
3

 ,

(2.15)

where κ is the CS level. We then rewrite the effective prepotential (2.15) in terms of the

Coulomb branch moduli φi, (i = 1, · · · , 5) in (2.8), and the monopole string tension is

given by taking the derivative of the effective prepotential with respect to the φi. Then

the comparison with (2.9) which corresponds to taking the derivative with respect to φ1,

∂FSU(6)κ
NTAS= 1

2

∂φ1
= 1©+ 2©, (2.16)

yields κ = 5
2 . Hence the diagram in figure 3 realizes the SU(6) gauge theory with a half-

hypermultiplet in the rank-3 antisymmetric representation and the CS level κ = 5
2 . Fixing

the CS level to 5
2 , the other comparison between the area and the monopole string tension

may be interpreted as support for our claim that the diagram in figure 3 yields the SU(6)

gauge theory with NTAS = 1
2 and κ = 5

2 . Indeed the explicit comparison gives

∂F
SU(6) 5

2

NTAS= 1
2

∂φ2
= 3©,

∂F
SU(6) 5

2

NTAS= 1
2

∂φ3
= 4©,

∂F
SU(6) 5

2

NTAS= 1
2

∂φ4
= 5©,

∂F
SU(6) 5

2

NTAS= 1
2

∂φ5
= 6©+ 7©. (2.17)

It is also possible to make a comparison between the area and the monopole string

tension for the diagram in figure 4(b). We checked the agreement and the CS level of the

SU(6) gauge theory realized by the diagram in figure 4(b) is κ = 3.

2.3 Nekrasov partition function

As we have seen in the previous subsection, the computation of the monopole string tension

confirms that the diagrams in figure 3 and in figure 4(b) realize the SU(6) gauge theory with

NTAS = 1
2 and κ = 5

2 and the SU(6) gauge theory with NTAS = 1 and κ = 3 respectively.

We can now use power of 5-brane web diagrams to compute various physical quantities

from the 5-brane web diagrams. One important application is to compute the Nekrasov

partition function or the topological string partition function from the 5-brane webs using

the topological vertex [3, 4]. Although the topological vertex was originally formulated to

compute the all genus topological string partition function for toric Calabi-Yau threefolds,

we can also apply the topological vertex to non-toric diagrams obtained from a Higgsing

of toric diagrams [24–27] and also to diagrams with an O5-plane [28].

By using the techniques, it is straightforward to apply the topological vertex for the 5-

brane diagrams in figure 3 and in figure 4(b). We here illustrate the computation by using
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Figure 6. A labeling of Young diagrams assigned to the horizontal lines in figure 3.

the diagram in figure 3 and we calculate the Nekrasov partition function for the SU(6)

gauge theory with NTAS = 1
2 and κ = 5

2 . To this end, we first assign Young diagrams

Y0, Y1, · · · , Y6 to the horizontal lines as in figure 6. The topological vertex based on the

diagram in figure 6 yields

ZNek =
∑
~Y

q
∑6
i=1 |Yi|(−A6

1)|Y1|(−A6
2)|Y2|(−A1A

2
2A

4
3)|Y3|

× (−A1A
2
2A

2
3A

2
4)|Y4|+|Y5|(−A2

1A
2
2A

2
3A

2
4A

2
5)|Y6|fY1(g)6fY2(g)5fY3(g)3fY4(g)

× fY5(g)−1fY6(g)−1Zleft(~Y )Zright(~Y ), (2.18)

where ~Y = (Y1, Y2, Y3, Y4, Y5, Y6). Zleft(~Y ) and Zright(~Y ) are contributions of the left part

and the right part of the web in figure 6 respectively when we cut the diagram at the

horizontal lines with the Young diagrams Yi, (i = 1, · · · , 6) and they are given by

Zleft(~Y ) =
∑
Y0

(−A1
−1A6

−2)|Y0|g
||Y t0 ||

2+||Y0||
2

2 Z̃2
Y0f

2
Y0(g)

6∏
i=1

g
||Yi||

2

2 Z̃Yi

×R−1
Y1Y t6

(A1A6
−1)

∏
2≤i<j≤5

R−1
YiY tj

(AiAj
−1)

×RY0Y t6 (A1
−1A6

−2)
5∏
i=1

RY t0 Yi(A1AiA6) (2.19)

Zright(~Y ) =
6∏
i=1

g
||Y ti ||

2

2 Z̃Y ti ×
∏

1≤i<j≤6

R−1
YiY tj

(AiAj
−1) (2.20)

with

A6 =

5∏
i=1

Ai
−1, Z̃λ =

∏
(i,j)∈λ

1

1− gλi+λ
t
j−i−j−1

, Rλµ(Q) =

∞∏
i.j=1

(1−Qgi+j−λj−µi−1).

(2.21)

fY (g) is the framing factor defined by

fY (g) = (−1)|Y |g
1
2

(g||Y
t||2−||Y ||2 ), (2.22)

and the Coulomb branch parameters Ai, (i = 1, · · · , 6), the instanton fugacity q and the

unrefined Ω-deformation parameter g are defined by

Ai = e−ai , q = e−m0 , g = e−ε. (2.23)
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We argue that the topological string partition function (2.18) is the Nekrasov partition

function for the the 5d SU(6) gauge theory with NTAS = 1
2 and κ = 5

2 . The partition

function can be written as a sum of the instanton partition functions

ZNek = Zpert

(
1 +

∞∑
k=1

qkZk

)
, (2.24)

where Zpert represents the perturbative part of the partition function given by the order

q0 in (2.18), while Zk stands for the k-instanton partition function.

Let us first look at the perturbative part. This is obtained from the contribution of

Y1 = Y2 = · · · = Y6 = ∅ in (2.18) and is given as

Zpert =Zleft((∅, ∅, ∅, ∅, ∅, ∅))Zright((∅, ∅, ∅, ∅, ∅, ∅))

= PE

[
g

(1− g)2

(
A1A6

−1 +
∑

2≤i<j≤5

AiAj
−1 +

∑
1≤i<j≤6

AiAj
−1 (2.25)

−A1
−1A6

−2 −
5∑
i=1

A1AiA6

)]

×
∑
Y0

(−A1
−1A6

−2)|Y0|g
||Y t0 ||

2+||Y0||
2

2 Z̃2
Y0f

2
Y0(g)NY t0 ∅(A1

−1A6
−2)

×
5∏
i=1

NY0∅(A1AiA6).

where we used the identity

Rλµ(Q) = PE

[
− g

(1− g)2
Q

]
×Nλtµ(Q) (2.26)

with PE representing the Plethystic exponential and

Nλµ(Q) =
∏

(i,j)∈λ

(
1−Qgλi+µ

t
j−i−j+1

) ∏
(i,j)∈µ

(
1−Qg−λ

t
j−µi+i+j−1

)
. (2.27)

Note that in order to obtain the exact expression for the perturbative part we still need

to sum over the Young diagram Y0. We can still evaluate the summation in terms of

an expansion by A1. Namely when we sum over the Young diagram until |Y0| ≤ k, the

expression is exact until the order Ak1. The summation of the Young diagram Y0 until

|Y0| = 7 yields the expression

Zpert = PE

 g

(1− g)2

2
∑

1≤i<j≤6

AiAj
−1 −

∑
1=i<j<k≤6

AiAjAk +O(A1
8)

 . (2.28)

We observed that the the series expansion by A1 gives an expression which stops at the

order A1 inside the Plethystic exponential as far as we checked. Hence, we claim that

O(A1
8) term is actually exactly zero. Indeed, the partition function (2.28) is exactly equal
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to the perturbative part of the partition function of the SU(6) gauge theory with a half-

hypermultiplet in the rank-3 antisymmetric representation. We can also see that the charge

of the BPS states counted by the perturbative partition function agrees with the charge of

the positive weights used in the prepotential computation for (2.15).

Next, we compute the 1-instanton part. The 1-instanton part can be read off from the

coefficient of the q1 order part in (2.18) divided by the perturbative part given in (2.28).

Hence the order q1 contribution is given by combinations where |Yi| = 1 for one of the

Yi, (i = 1, · · · , 6) and the others are trivial. Furthermore, we still need to sum over Y0 and

evaluate the summation in terms of a series expansion by A1.3 A1 is a good expansion

parameter since the explicit summation of Young diagrams in (2.18) involves only positive

powers of A1. For example, the contribution from |Y1| = 1, |Yj | = 0 (j = 2, 3, 4, 5, 6) to the

1-instanton part is given by

− g

(1− g)2

A5
1∏6

i=2(Ai −A1)2

[
1−

6∑
i=2

Ai
−1A1 +

6∑
i=2

AiA
2
1 −A3

1 +O(A1
8)

]
. (2.29)

We again observed that the stop of the series expansion by A1 in the numerator of (2.29)

and we claim that the O(A1
8) term is actually exactly zero. Similarly we can also compute

the other combinations of the Young diagrams which contribute to the 1-instanton part.

Summing up all the contributions from the other combinations of the Young diagrams

which contribute to the 1-instanton part, we obtain

Z1 = −
6∑
`=1

g

(1− g)2

A5
`∏

i 6=`(Ai −A`)2

[
1−

∑
i 6=`

Ai
−1A` +

∑
i 6=`

AiA
2
` −A3

`

]

= −
6∑
`=1

e−
5
2
a`

(2 sinh ε
2)2
∏
i 6=`(2 sinh ai−a`

2 )2

[(
2 sinh

3a`
2

)
−
∑
i 6=`

(
2 sinh

2ai + a`
2

)]
. (2.30)

This is the explicit expression for the 1-instanton part of the partition function for the

SU(6) gauge theory with NTAS = 1
2 and κ = 5

2 .

The two-instanton contribution can be written in the following form:

Z2 = Z{1,1} + Z{2} + Z{1},{1} +O(A11
1 ) (2.31)

with

Z{1,1} =
6∑
`=1

A`
5g

5
2ZVec
{1,1}`Z

TAS
{1,1}` , Z{2} = Z{1,1}(g → g−1),

Z{1},{1} =
∑

1≤`<m≤6

A`
5
2Am

5
2ZVec
{1}`,{1}mZ

TAS
{1}`,{1}m . (2.32)

Here, the lower indices {1, 1}` indicates the contribution from the Young diagrams Y` =

{1, 1} and Yi = ∅ (i 6= `), while {1}`, {1}m indicates the contribution from Y` = {1},
3The expression (2.18) contains factors with A1 in the denominator. We perform a series expansion by

A1 only for the numerator of (2.18).
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Ym = {1} (m 6= `), and Yi = ∅ (i 6= `,m). The contributions from the vector multiplets

are given as

ZVec
{1,1}` =

g8

(1− g)2(1− g2)2

A`
8∏

i 6=`(Ai −A`)2(Ai − gA`)2

=
1(

2 sinh ε
2

)
2 (2 sinh ε) 2

∏
i 6=`
(
2 sinh ai−a`

2

)
2
(
2 sinh ai−a`−ε

2

)
2

(2.33)

and

ZVec
{1},{1}` =

g2

(1− g)4

A`
4Am

4

(Am − gA`)2(Am − g−1A`)2
∏
i 6=`,m(Ai −A`)2(Ai −Am)2

=
1(

2 sinh ε
2

)4 (
2 sinh a`−am+ε

2

)
2
(
2 sinh a`−am−ε

2

)
2

× 1∏
i 6=`,m

(
sinh ai−a`

2

)
2
(
sinh ai−am

2

)
2

(2.34)

while the contributions from the hypermultiplet in rank-3 antisymmetric tensor represen-

tation are

ZTAS
{1,1}` =g−

3
2A`

−3
[
(g3A3

` − 1)
(
−1 +A`χ` −A2

`χ` +A3
`

)
+ g2A`

2
(
χ` −A`χ`χ` +A2

`

(
χ` + (χ` )

2 − χ`
)
−A3

`χ`

)
+ gA`

(
− χ` +A`(χ` + (χ` )

2 − χ` )−A`2χ`χ` +A`
3χ` )

)]
=

(
2 sinh

3(a` + ε)

2

)2 sinh
3a`
2
−
∑
i 6=`

2 sinh
a` + 2ai

2


−

∑
i 6=`

2 sinh
a` + 2ai

2

2 sinh
3a` + ε

2
−
∑
i 6=`

2 sinh
a` + 2ai + ε

2


−
(

2 sinh
ε

2

) ∑
1≤i<j≤6
i,j 6=`

2 sinh(ai + aj + a`)

 (2.35)

and

ZTAS
{1}`,{1}m =A`

− 3
2Am

− 3
2

[
(g + g−1)

(
A`

3Am
3 +A`

2Am
2
(
χ`,m − χ`,m

)
−A`Amχ`,m + 1

)
− (A`

3+Am
3+A`

4Am
2+A`

2Am
4−A`2Am−A`Am2+A`Am

−1 +A`
−1Am)

+A`Am(A`
2 +Am

2)χ`,m −A`Am(A` +Am)χ`,mχ`,m + (A`
2 +Am

2)χ`,m

+A`Am(χ`,m)2 +A`
2Am

2
(

(χ`,m)2 − 2χ`,m

)]
=

∑
i 6=`,m

2 sinh
2ai + a`

2

∑
i 6=`,m

2 sinh
2ai + am

2
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Figure 7. (a) A 5-brane diagram realizing the SU(6) 5
2
− SU(3)0 quiver theory. (b) The diagram

obtained after shrinking red lines in figure 7(a).

+

(
2 sinh

a` − am + ε

2

)(
2 sinh

a` − am − ε
2

)∑
i 6=`,m

2 cosh
a` + am − 2ai

2


+
(

2 sinh
ε

2

)
2

(
2 cosh

3a` + 3am
2

+
∑

1≤i<j≤6
i 6=`,m
j 6=`,m

cosh
a` + am + 2ai + 2aj

2

)

−
(

2 sinh
am − a`

2

)
2

(
2 cosh

2a` + am
2

)(
2 cosh

a` + 2am
2

)
, (2.36)

Here, we have introduced the following U(5) characters

χ` =
∑
i 6=`

Ai, χ` =
∑
i 6=`

Ai
−1, χ` =

∑
1≤i<j≤6
i 6=`,j 6=`

AiAj , χ` =
∑

1≤i<j≤6
i 6=`,j 6=`

Ai
−1Aj

−1, (2.37)

and the following U(4) characters

χ`,m =
∑
i 6=`,m

Ai, χ`,m =
∑
i 6=`,m

Ai
−1, χ`,m =

∑
1≤i<j≤6
i 6=`,m
j 6=`,m

AiAj . (2.38)

Analogous to the case of the perturbative and the 1-instanton contribution, we claim that

the O(A11
1 ) term in (2.31) is exactly zero.

2.4 SU(6) gauge theories with NTAS = 3
2
and 2

We have constructed 5-brane webs for an SU(6) gauge theory with one or two half-

hypermultiplets in the rank-3 antisymmetric representation. It is natural to ask if we

can add more half-hypermultiplets in the rank-3 antisymmetric representation. For that it

is useful to take a different view for the diagrams in figure 3 and figure 4(b). In fact, the

diagram for the SU(6) 5
2

gauge theory4 with NTAS = 1
2 in figure 3 may be also obtained

from a Higgsing of a diagram for the SU(6) 5
2
− SU(3)0 quiver theory in figure 7(a). In

the diagram we introduced 7-branes ending on the external 5-branes to see the Higgsing

explicitly. The Higgsing procedure can be done as follows. The SU(6) 5
2
− SU(3)0 quiver

theory has an SU(2) × SU(2) flavor symmetry, which can be seen from parallel external

4The subscript of the SU gauge group represents the Chern-Simons level.
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Figure 8. (a) A 5-brane diagram realizing the SU(3)0 − SU(6)3 − SU(3)0 quiver theory. (b) The

diagram obtained after shrinking red lines in figure 8(a).

5-branes in the diagram in figure 7(a), and we will give vevs to hypermultiplets associated

to the flavor symmetry. For that we first set the length of 5-branes depicted as red lines in

figure 7(a) to be zero. The resulting diagram is given by the one in figure 7(b). Then giving

the vevs corresponds to decoupling pieces of 5-branes in between 7-branes which are drawn

as blue lines in figure 7(b). Then moving the blue lines in figure 7(b) to the transverse

(x7, x8, x9) direction, which corresponds to Higgsing procedure,5 reduces to the diagram

in figure 3 which yields a 5-brane realization of the SU(6) gauge theory with half hyper

in the rank-3 antisymmetric representation, as we discussed in the previous subsections.

After this procedure, coincident 5-branes end on the same 7-brane and then the diagram is

equivalent to the one in figure 3. The Higgsing from the SU(3)0 − SU(6)3 − SU(3)0 quiver

theory to SU(6)3 gauge theory with NTAS = 1 may be obtained in similar way. We first

shrink the length of the red lines in a diagram for the SU(3)0 − SU(6)3 − SU(3)0 quiver

theory in figure 8(a), which gives rise to the diagram in figure 8(b). Then decoupling the

blue lines in figure 8(b) reduces to the diagram for the SU(6)3 gauge theory with NTAS = 1

in figure 4(b).

To summarize, the Higgsing of the SU(6) 5
2
− SU(3)0 quiver theory yields the SU(6) 5

2

gauge theory with NTAS = 1
2 and also the Higgsing of the SU(3)0 − SU(6)3 − SU(3)0

quiver theory gives the SU(6)3 gauge theory with NTAS = 1. Namely, a Higgsing of one

SU(3)0 coupled to an SU(6) gauge node introduces a half-hypermultiplet in the rank-3

antisymmetric representation and it does not change the Chern-Simons level of the SU(6)

gauge theory,

[SU(6)κ]− SU(3)0
Higgsing−−−−−→ [SU(6)κ]− [1/2TAS]. (2.39)

Hence we can add rank-3 antisymmetric matter by coupling more SU(3)0 gauge nodes and

then Higgsing them. For the original theory to be UV complete, one can consider two more

types of quiver theories which are given by SU(6) 1
2
− [SU(3)0]3,6 or SU(6)0 − [SU(3)0]4.

The former one is an D4 quiver theory and the latter one is an affine D4 quiver theory.

The Higgsing of the D4 quiver theory will yields the SU(6) 1
2

gauge theory with NTAS = 3
2

5Unlike the usual Higgsing discussed e.g. in [29], we move (2,−1) and (0, 1) 5-branes instead of D5 branes.

Such type of non-perturbative Higgsing is not realized by giving vev to the hypermultiplets appearing in

the Lagrangian. Instead, we expect that it corresponds to giving a vev to certain instanton operator.
6In this case, we need half-integer Chern-Simons level for the SU(6) since nine fundamental hypermul-

tiplets are effectively coupled to the SU(6) gauge node.
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Figure 9. (a) A 5-brane diagram for the SU(6) 1
2
− [SU(3)0]

3
quiver theory. (b) A 5-brane web for

the SU(6) 1
2

gauge theory with NTAS = 3
2 which is obtained from a Higgsing from the diagram in

figure 9(a).

and the Higgsing of the affine D4 quiver theory will give the SU(6)0 gauge theory with

NTAS = 2 which is supposed to have a 6d UV completion [18]. The latter Higgsing realizes

a renormalization group flow from an affine D4 Dynkin quiver theory which has a 6d UV

completion to another 5d theory which also has a 6d UV completion.

We here make use of the Higgsing procedure to construct 5-branes webs for an SU(6)

gauge theory with NTAS = 3
2 , 2. We first start from the construction of a web for the SU(6)

gauge theory with NTSA = 3
2 and κ = 1

2 which will be obtained from a Higgsing of the

SU(6) 1
2
− [SU(3)0]3 theory. A 5-brane diagram for the SU(6) 1

2
− [SU(3)0]3 may be realized

by introducing an ON-plane [30–33] and it is depicted in figure 9(a). One of the SU(3)0

gauge nodes in figure 9(a) is given by the left part of the diagram in figure 9(a) and two of

the SU(3)0 gauge nodes are realized by the right part of the diagram in figure 9(a) using

an ON-plane. We can also see an SU(2) × SU(2) flavor symmetry from the left part and

also an SO(4)× SO(4) ∼= SU(2)4 flavor symmetry from the right part. Then we apply the

same Higgsing procedure in figure 7 to the diagram in figure 9(a). The Higgsing associated

to the flavor symmetry yields the diagram in figure 9(b). We claim that the diagram in

figure 9(b) gives rise to the SU(6) gauge theory with three half-hypermultiplets in the

rank-3 antisymmetric representation and κ = 1
2 .

In order to obtain a diagram for the SU(6)0 gauge theory with NTAS = 2, we start from

a diagram for the SU(6)0− [SU(3)0]4 affine D4 quiver theory in figure 10(a). The two ON-

planes in figure 10(a) realizes the four SU(3)0 gauge nodes coupled to the middle SU(6)

gauge theory, Applying the Higgsing done in figure 7 to the both sides of the diagram

in figure 10(a) gives rise to the diagram in figure 10(b). We argue that the diagram in

figure 10(b) realizes the SU(6) gauge theory with two massless hypermultiplets in the rank-3

antisymmetric representation with zero Chern-Simons level. After performing S-duality to

the diagram in figure 10(b), which is equivalent to rotating the diagram by 90 degrees, the

diagram contains two O5-planes on the upper side and the lower side. The two O5-planes

implies a periodic direction in the vertical direction, suggesting a 6d UV completion.

We can confirm the claim by comparing the area with the monopole string tension as

done in section 2.2. In order to compute the area of the faces in the diagram in figure 9(b),
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Figure 10. (a) A 5-brane diagram for the SU(6)0 − [SU(3)0]
4

affine D4 quiver theory. (b) A

5-brane web for the SU(6)0 gauge theory with NTAS = 2 which is obtained from a Higgsing from

the diagram in figure 10(a).

a₁
a₂

a₃

a₄
a₅

a₆

m₀+2a₁

(a)

①

②
③

④

⑤

⑥⑦

⑧
⑨

(b)

Figure 11. (a) A parameterization of Coulomb branch moduli for the diagram in figure 9(b). (b) A

labeling for the area of faces in the diagram in figure 9(b).

we label the height of the six color D5-branes as a1, a2, a3, a4, a5, a6 with
∑6

i=1 ai = 0, which

are the Coulomb brach moduli of the SU(6) 1
2

gauge theory with NTAS = 3
2 . The inverse

of the squared gauge coupling m0 is determined by the non-trivial length of the D5-brane

after turning off the Coulomb branch moduli. Then the length of the top color D5-brane

in figure 9(b) is m0 + 2a1. The parameterization is summarized in figure 11(a). With this

parameterization we can compute the area of the faces of the diagram in figure 9(b). A

labeling of the faces is given in figure 11(b). As in the case of the diagram in figure 5(b),

some of them are connected to each other. In fact, 1©, 2© and 3© are a single face and the

area of the region 3© should be doubled due to the presence of the ON−-plane [13, 14].

Simliarly, the region 7©, 8© and 9© are connected to each other and the area of the region

9© needs to be doubled. Then we have in total five faces and the corresponding area is

given by

1©+ 2©+ 2 3© = m0(2φ1 − φ2) +
5

2
φ2

1 + 7φ1φ2 −
9

2
φ2

2 + 3φ2φ3

− 3

2
(φ3 − φ5)2 − 3φ1(φ3 + φ5), (2.40)
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4© =
1

2
(m0 − 7φ1 + 4φ2 + 2φ3)(−φ1 + 2φ2 − φ3), (2.41)

5© = m0(φ2 − 2φ3 + φ4) +
1

2
(−3φ2

1 − φ2
2 − 2φ2φ3 + 5φ2

3 − 2φ2
4

− 6φ3φ5 + 6φ4φ5 − 3φ2
5 + 6φ1(φ2 − φ3 + φ5)), (2.42)

6© = (m0 + 2φ4 − 3φ5)(−φ3 + 2φ4 − φ5), (2.43)

7©+ 8©+ 2 9© = m0(−φ4 + 2φ5) +
1

2

(
− 3φ2

1 − 3φ2
3 − 8φ2

4

+ 6φ1(φ3 − φ5) + 6φ3(φ4 − φ5) + 12φ4φ5 + 5φ2
5

)
. (2.44)

We then compare the area (2.40)–(2.44) with the monopole string tension calculated,

using the effective prepotential (2.14). The parameterization in figure 11(a) fixes the phase

of the SU(3) 1
2

gauge theory with NTAS = 3
2 . Positive roots are ei− ej , (1 ≤ i < j ≤ 6) and

positive weights are e1 +ei+ej , (2 ≤ i < j ≤ 5) and e1 +ei+e6, (i = 2, 3), −e1−ei−e6, (i =

4, 5). Then the effective prepotential (2.14) is given by

F
SU(6) 1

2

NTAS= 3
2

=
1

2
m0

6∑
i=1

a2
i +

1

12

5∑
i=1

a3
i +

1

6

∑
1≤i<j≤6

(ai − aj)3

− 3

12

 ∑
2≤i<j≤5

(a1 + ai + aj)
3 −

∑
i=2,3

{
(a1 + ai + a6)3 − (a1 + ai+2 + a6)3

} ,

(2.45)

After rewriting (2.45) in terms of the Coulomb branch moduli φi, (i = 1, · · · , 5) in (2.8),

taking the derivative of (2.45) with respect to the φi gives the monopole string tension.

Indeed we found that

∂F
SU(6) 1

2

NTAS= 3
2

∂φ1
= 1©+ 2©+ 2 3©,

∂F
SU(6) 1

2

NTAS= 3
2

∂φ2
= 4©,

∂F
SU(6) 1

2

NTAS= 3
2

∂φ3
= 5©,

∂F
SU(6) 1

2

NTAS= 3
2

∂φ4
= 6©,

∂F
SU(6) 1

2

NTAS= 3
2

∂φ5
= 7©+ 8©+ 2 9©, (2.46)

which supports the claim that the diagram in figure 9(b) yields the SU(6) gauge theory

with three half-hypermultiplets in the rank-3 antisymmetric representation and the Chern-

Simons level κ = 1
2 .

Extending the comparison to the case of the SU(6)0 gauge theory with NTAS = 2

realized in the diagram in figure 10(b) is straightforward. We checked that the area of the

faces in the diagram in figure 10(b) reproduces the monopole string tension calculated from

the effective prepotential of the SU(6) gauge theory with two massless hypermultiplets in

the rank-3 antisymmetric representation and zero Chern-Simons level.

3 Marginal SU(6) gauge theory with rank-3 antisymmetric matter

In this section, we provide more 5-brane diagrams for SU(6) gauge theories with rank-3

antisymmetric matter by including hypermultiplets in other representations. In particular
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we present 5-brane web diagrams for SU(6) marginal theories with half-hypermultiplets in

the rank-3 antisymmetric representation and other matter which have the UV completion as

a 6d theory. Possible SU(6) marginal theories with rank-3 antisymmetric hypermultiplets

and other hypermultiplets are classified in [18] based on the Coulomb branch analysis.

Though we do not find all the marginal SU(6) marginal theories with rank-3 antisymmetric

matter listed in [18], 5-brane webs for the marginal theories that we found precisely agree

with the matter content and also show the periodic structure which supports that the

theories can be understood as 6d theory on a circle with or without a twist [26, 34–36].

Moreover, one can put the 7-branes appearing in our 5-brane webs into the 5-brane

loops, and then from which one can read off a global symmetry of the theory. Such

characterization of a global symmetry is only possible for symmetry group of ADE type [37–

39]. For instance, given a 7-brane configuration where one allocates 7-branes into a 5-brane

loop, the corresponding (non-abelian part of) global symmetry is read off from the Kodaira

classification

Am : Am+1, Dm≥4 : AmBC, Em≥6 : Am−1BCC, (3.1)

where the following shorthand notation is used to denote the 7-brane charges

A = (1, 0), B = (1,−1), C = (1, 1). (3.2)

For other types of global symmetry, one may infer it from possible maximal subgroups of

ADE type via various Hanany-Witten transitions on a given 5-brane web. We remark that

in the way, we perform 7-brane monodromy analysis for those 5-brane webs which do not

have orientifolds to find global symmetries for the marginal theories, and we see that the

obtained global symmetries are consistent with those given in [18].

In table 1, we summarize marginal 5-brane web diagrams that we obtained. We note

that as decoupling of hypermultiplets from the marginal theories, one can also perform

decoupling of hypermultiplets on 5-brane webs, as discussed in [14], which would give rise

to various 5-brane webs for other genuine 5d SCFTs.

3.1 5-brane web for SU(6)0 + 2TAS

The maximum number of the hypermultiplet in the rank-3 antisymmetric hypermultiplet

is two, which is itself marginal. The 5-brane web for SU(6)0 theory with two rank-3

antisymmetric hypermultiplets was already discussed in section 2.4, and the corresponding

web diagram is given in figure 10.

3.2 5-brane webs for SU(6) + 1TAS with various hypermultiplets

Following section 2, it is straightforward to get a 5-brane web diagram for an SU(6) gauge

theory with one rank-3 antisymmetric hypermultiplet. For instance, in figure 5, we pre-

sented a 5-brane web for the SU(6) gauge theory with one rank-3 antisymmetric hyper-

multiplet, which has the Chern-Simons level κ = 3. It is then possible to express a 5-brane

web for the SU(6) theory with one rank-3 antisymmetric hypermultiplet which is of the
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NTAS NSym NAS NF CS 5-brane web

2 . . . 0 Figure 10

3/2 . . 5 0 ?

3/2 . . 3 2 ?

3/2 . . . 9/2 ?

1 . 1 4 0 Figure 17

1 . 1 3 3/2 ?

1 . 1 . 4 ?

1 . . 10 0 Figure 13

1 . . 9 3/2 Figure 15

1/2 1 . 1 0 Figure 25

1/2 1 . . 3/2 Figure 27

1/2 . 2 2 3/2 ?

1/2 . 2 2 1/2 ?

1/2 . 2 . 7/2 ?

1/2 . 1 9 0 Figure 21

1/2 . 1 8 3/2 Figure 23

1/2 . . 13 0 Figure 18

1/2 . . 9 3 Figure 20

Table 1. Table for SU(6) marginal theories with rank-3 antisymmetric matter and other matter.

NTAS denotes the number of hypermultiplet in the rank-3 antisymmetric representation, NSym the

number of hypermultiplet in the symmetric representation, NAS the number of hypermultiplet in the

antisymmetric representation, NF the number of hypermultiplet in the fundamental representation,

and CS the Chern-Simons level.

(1,1)

(2,-1)

(2,-1)

(1,1)

(b)

(1,1)(2,-1)

(2,-1)(1,1)
(a)

Figure 12. (a) A 5-brane configuration for SU(6)0 + 1TAS and asymptotic charges of external

5-branes. (b) A 5-brane configuration for the pure SU(3)0 gauge theory. Asymptotic charges of

external 5-branes/7-branes for both 5-brane web diagrams are the same.

Chern-Simons level κ = 0 by suitably choosing the asymptotic (p, q) charges for the exter-

nal 5-branes, as depicted in figure 12(a). Notice that asymptotic 5-brane charges for this

SU(6)0 gauge theory with one rank-3 antisymmetric hypermultiplet is the same as those

for the pure SU(3)0 gauge theory. See figure 12. With this observation in mind, one can

easily construct 5-brane configurations for some of the marginal SU(6) gauge theories with
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(a) (b)

Figure 13. (a) A 5-brane configuration for SU(6)0 + 1TAS+ 10F. (b) SU(6)0 + 1TAS+ 10F Tao

diagram. Here the thick line means two coincident 5-branes and the dotted lines are the monodromy

cuts. 7-brane motions from (a) to (b) are explained in [40].

one rank-3 antisymmetric hypermultiplet by referring to the 5-brane construction for the

corresponding marginal SU(3) gauge theories with proper numbers of flavors.

SU(6)0+1TAS+10F. A 5-brane web for SU(3)0+10F theory is constructed in [34], and

then it follows that a 5-brane web for the SU(6)0 + 1TAS+ 10F theory can be constructed

by adding 10 flavors in the same way as done for 5-brane web for the SU(3)0 + 10F theory.

The resulting 5-brane web is depicted in figure 13. We note that as shown in figure 13(b),

the 5-brane web of the SU(6)0 + 1TAS + 10F theory has an infinite repeated periodic

structure, named Tao web diagrams [26], which is expected as the 5-brane web for the

SU(3)0 +10F theory also has the periodic structure [34]. The period of a Tao web diagram

is expressed in terms of the coupling and mass parameters, which corresponds to the inverse

of the compactification radius. Hence such Tao web diagrams imply that these 5d theories

are realized as a 5-brane for a Kaluza-Klein (KK) theory where a 6d theory is compactified

on a circle associated with the period on the Tao web diagram. We will discuss the 6d

origin of the SU(6)0 + 1TAS + 10F theory later in section 5.1.

The enhanced global symmetry of the SU(6)0 + 1TAS + 10F theory can be read off

from 7-brane monodromy analysis as shown in figure 14. Starting from the 5-brane web

for the SU(6)0 + 1TAS + 10F theory given in figure 13, one puts flavor D7-branes A’s

together as in figure 14(a). As D7-branes can cross D5-branes, one can put all the D7-

branes inside 5-brane loops, which gives 7-brane configuration given in figure 14(b). Using

7-brane monodromy analysis (counterclockwise) like

AX(p,q) = X(p+q,q)A =⇒ A3X(2,−1) = CA3, CA2 = A2B, (3.3)

one can relocate the 7-branes to obtain the configuration in figure 14(c), which leads to

the 7-brane configuration yielding an SO(20) symmetry as D10 = A10BC as shown in

figure 14(d). This agrees with the propsed global symmetry in [18]. It is in fact the same

global symmetry structure as that for the SU(3)0 + 10F theory [34], which is expected as

their asymptotic 7-brane configurations are identical.

SU(6)3
2
+1TAS+9F. Another example of such sort is the SU(6) 3

2
marginal theory with

one rank-3 antisymmetric hypermultiplet and nine flavors. Its asymptotic configuration is
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(b)

CX(2,-1)  A2A3

(c)

CBA2 A3

CB A2A3

C X(2,-1)A3A2

(a)

CAAAAAX(2,-1)

(d)

CBA10

C B

AAAAAC X(2,-1)

Figure 14. (a) 7-brane configurations for 5-brane web in figure 13, where A = (1, 0) 7-brane,

C = (1, 1) 7-brane, and X(2,−1) = (2,−1) 7-brane. (b) 7-brane configuration where all the 7-branes

are put in 5-brane loops. (c) Rearrangement of 7-branes. (d) 7-brane configurations showing an

A10BC = SO(20) symmetry, after allocating five A’s to the lower 5-brane loops.

(a) (b)

m5
m6

m7
m8
m9

m1

m2

m3

m4

Figure 15. (a) SU(6) 3
2

+1TAS+9F configuration. (b) SU(6) 3
2

+1TAS+9F Tao diagram. Here we

denoted that the thick line means two coincident 5-branes and the dotted lines are the monodromy

cuts. 7-brane motions from (a) to (b) are explained in [14].

the same as that of the SU(3) 3
2

+ 9F theory, whose 5-brane web is constructed in [14, 41].

Hence, in the same way, one can construct a 5-brane configuration for the SU(6) 3
2
+1TAS+

9F theory by introducing 9 D7-branes such that the Chern-Simons level is κ = 3/2. For

instance see figure 15. As expected, it is also also a Tao diagram.

One can perform a similar 7-brane monodromy analysis to read off the global symmetry.

As in figure 16, one can rearrange the 7-branes with (3.3) and also

AC = CX(2,1), BCAn = AnBC (3.4)

to find the global symmetry of the SU(6) 3
2

+ 1TAS + 9F theory. Given a 7-brane config-

uration for the SU(6) 3
2

+ 1TAS + 9F theory, for instance, figure 16(a), one can use (3.3)

to obtain

CA3X(2,−1) = A3X2
(2,−1), (3.5)
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(a)

CX(2,-1)A
3

(b)

CBA3

A3

C X(2,-1)A6

(c)

CBA8 C

X(2,-1)
2

C A2

X (3,1)
2

Figure 16. (a) 7-brane configurations for 5-brane web in figure 15 where all the 7-branes are

put in the 5-brane loops. (b) Rearrangement of 7-branes. (c) 7-brane configurations showing the

non-abelian part of the global symmetry being an E8 × SU(2) symmetry.

from which one rearranges the 7-brane in the upper 5-brane loop chamber in figure 16(b).

The rearrangement of the 7-brane in the lower chamber in figure 16(b) is obtained from

CA2 A A3X(2,−1) = A2B AC A3 = A2BC X(2,1)A A2 = A2BCACA2 = A3BCCA2, (3.6)

where the first and third equalities are due to (3.3) and the second and fourth equalities

come from (3.4). One then finally relocates three A’s in the upper chamber to the lower

chamber as well as brings two A’s in front as depicted in figure 16(b). The resulting

configuration is given in figure 16(c),

( X2
(3,1) | ∅ | A

8BCC ), (3.7)

from which we find that the non-Abelian part of the global symmetry7 is E8 × SU(2).

We note that as the 7-brane analysis is insensitive for an abelian symmetry, here U(1)

is added by hand to match with the number of the mass parameters in the 5d theory,

assuming that the rank-3 antisymmetric hypermultiplet is massive in general. We also

note that this global symmetry is slightly different from the expected global symmetry

reported in [18], which is E
(1)
8 × A(1)

2 . As our 5-brane configuration is the same as that

of the SU(3) 3
2

+ 9F theory, and also all the 7-branes can be put in two different 5-brane

loops, it is expected to show the same global symmetry as that of the SU(3) 3
2

+ 9F theory.

Our 5-brane construction for the SU(6) 3
2

+ 1TAS + 9F theory is, in fact, the theory of

massless rank-3 antisymmetric hypermultiplet. It may be that the 5-brane configuration

for the massless rank-3 antisymmetric matter does not capture further enhancement from

SU(2)×U(1) to SU(3), since there are not enough 7-branes.8

7It was discussed in [42] that the 7-brane configuration A8BCC is equivalent to that of A7BCBC, where

the corresponding global symmetry is E8.
8There is a similar case for the 5-brane configuration for the 6d E-string on a circle, which yields a 5-

brane web for the 5d Sp(2) gauge theory with 8 flavors and one antisymmetric hypermultiplet. The expected

global symmetry from 5d perspective is E8 × SU(2). Here, one has both 5-brane webs for massless [26] and

massive [8, 14, 35] antisymmetric hypermultiplet. For the massless case, 7-brane analysis does not capture

the SU(2) part, while the massive case see the full enhanced global symmetry, E8 × SU(2).
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(a) (b)

X
(2,1)

A A A A

X
(0,1)

ON-+ NS5

O7-

(c)

O7-+ 4 D7

Figure 17. (a) A 5-brane configuration for the SU(6)0 +1TAS+1AS+4F theory. (b) Its 7-brane

configuration where 7-branes with charges (2,−1) and (0, 1) can be converted into an O7−-plane.

(c) A 5-brane configuration for the SU(6)0 + 1TAS+ 1AS+ 4F theory with two orientifold planes.

SU(6)0 + 1TAS + 1AS + 4F. One can also introduce a hypermultiplet in the rank-2

antisymmetric representation in addition to a hypermultiplet in the rank-3 antisymmetric

representation as depicted in figure 17(a), which gives the SU(6)0 + 1TAS+ 1AS+ 4F. As

shown in figure 17(b), the presence of the rank-2 antisymmetric matter can be understood

since the diagram contains a configuration with an O7−-plane attached to an NS5-brane [8].

By putting an O7−-plane and four D7 branes together, one constructs a 5-brane web for

the SU(6)0 theory with a hypermultiplet in the antisymmetric representation and four

flavors figure 17(c), which has two orientifolds. Since the combination of an O7−-plane

with four D7-branes is S-dual invariant, its S-dual diagram shows clearly that it is of a

periodic structure in the vertical direction, supporting the consistency that the SU(6)0 +

1TAS + 1AS + 4F is marginal.

3.3 5-brane webs for SU(6) + 1
2
TAS with various hypermultiplets

In section 2, 5-brane webs for SU(6) theories with a half-hypermultiplet in the rank-3

antisymmetric representation is discussed. For instance, figure 3 is a 5-brane web for the

SU(6)+1/2TAS theory with the Chern-Simons level κ = 5/2. One can readily change the

Chern-Simons level by adjusting the charges of the external 5-branes just as done for the

SU(6) + 1TAS theory. Below we construct 5-brane webs for marginal SU(6) + 1/2TAS

theories with various hypermultiplets.

SU(6)0 + 1
2
TAS + 13F. Given a 5-brane web for the SU(6) 5

2
+ 1/2TAS theory in

figure 3, one can modify the charge of the external 5-branes and then add 13 D7 branes in

a way that it leads to the Chern-Simons level κ = 0. An example for 5-brane web for the

SU(6)0+1/2TAS+13F theory is given in figure 18(a). As it is a marginal theory, we expect

it is of a certain periodic structure. In a similar way done in the marginal SU(6) + 1TAS

theories with only flavors in section 3.2, we can move 7-branes and allocate the cuts of

7-branes to show a periodic structure as shown in figure 18(b). By pulling out 7-branes

across the cuts arranged in 18(b). One sees that it is a Tao diagram showing periodic web

configuration as depicted in figure 18(c).
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(a) (b)

m5
m4
m3

m2
m1

m9
m8
m7
m6

m13
m12

m11

m10

(c)

Figure 18. SU(6)0 + 1
2TAS + 13F Tao diagram.

(a)

C

X(2,-1)

X(3,-1)

A6

X (3,1)

A7 X(5,1)

X(3,-1)

A13

X (3,1)

(b)

X(5,-1)

Figure 19. (a) A 7-brane configuration of a web diagram for the SU(6)0 + 1
2TAS + 13F theory.

(b) A 7-brane configuration showing SU(13) as the non-abelian part of global symmetry.

The global symmetry in this case can be readily read off from the 7-brane configuration

associated with the 5-brane web in figure 18. In figure 19, one can allocate all the D7-

branes in the innermost 5-brane loop but other 7-branes are confined to all other 5-brane

loops. This leads to an SU(13) = A13 symmetry, which is the same as the non-abelian

part of the perturbative global symmetry of the theory. As it is the non-abelian part of

the flavor symmetry, the expected global symmetry would be then SU(13) × U(1) × U(1)

since the total number of the mass parameters of the theory is 14, agreeing with the global

symmetry obtained in [18].

SU(6)3 + 1
2
TAS + 9F. One can also construct the SU(6) theory with a half-

hypermultiplet in the rank-3 antisymmetric representation and 9 flavors which has the

Chern-Simons level κ = −3, by introducing 9 D7-branes in such a way that it has the

Chern-Simons level κ = −3. See figure 20. It can be shown that it is also a Tao diagram

as depicted in figure 20(b).

Following the 7-brane analysis for the SU(6)0 + 1
2TAS + 13F theory in figure 19, one

easily sees that the 7-brane configuration for the SU(6)3 + 1
2TAS + 9F theory is readily
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(a) (b)

Figure 20. SU(6)3 + 1
2TAS + 9F Tao diagram.

manipulated to yields the non-abelian part of global symmetry is SU(9) = A9 symmetry,

which is the non-abelian part of the perturbative flavor symmetry of the theory. The

expected global symmetry would be then SU(9) ×U(1)×U(1).

SU(6)0 +
1
2
TAS+1AS+9F. As done in [8] and also in section 3.2, one can introduce

a rank-2 antisymmetric hypermultiplet by introducing a configuration of an NS5-brane

ending on an O7−-plane. A 5-brane web for the SU(6)0 theory with a rank-3 antisymmetric

half-hypermultiplet and one antisymmetric hypermultiplet and 9 flavors can be constructed

as in figure 21(a). It can be also shown that it is a Tao diagram as depicted in figure 21(b),

implying that the theory has a 6d UV completion. As drawn in figure 22, the non-Abelian

part of the global symmetry is SU(10).

SU(6)3
2
+ 1

2
TAS+1AS+8F. A 5-brane web for the SU(6)− 3

2
+ 1

2TAS+1AS+8F theory

is depicted in figure 23. One can show that the corresponding 5-brane web diagram is a

Tao diagram, though it requires delicate arrangements of 7-branes as shown in figure 23(b).

The non-abelian part of the global symmetry that we can see from the corresponding 7-

brane configuration seems to be SU(8), which means that this 7-brane configuration may

not show any enhancement other than the perturbative symmetry of the 8 flavors. Hence,

the rank of the global symmetry from the 7-brane configuration is smaller than that of the

global symmetry SO(16)× SU(2)×U(1) proposed in [18].

SU(6)0 + 1
2
TAS + 1Sym + 1F. In 5-brane web, a hypermultiplet in the symmetric

representation is represented with an NS5-brane ending on an O7+-plane [8]. Examples

of 5-brane webs for marginal theories with symmetric matter, SU(3)0 + 1Sym + 1F and

SU(3)− 3
2

+ 1Sym, are discussed in [14]. They are, in fact, instructive examples for con-

structing the SU(6) theories with a rank-3 antisymmetric half-hypermultiplet and a sym-
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Figure 21. (a) A 5-brane configuration for the SU(6)0 + 1
2TAS + 1AS + 9F theory. (b) Its Tao

diagram. As there are many 5-branes attached to the 7-branes which make 5-brane web complicated,

here we give a sketch on how the 7-brane charges are altered. The number of 5-branes attached

to a 7-brane can be read off by tracking the number of Hanany-Witten transitions taking place in

figure (b).

(a)

C

NA
6

X (2,-1)

X (2,-1)

A

X (4,-1)

(b)

A

X (2,-1)

6A

(c)

C C

X (2,-1)

10A3 3 N

X (4,-1)X (4,-1)

X (-5,1) X (-5,1)

Figure 22. A 7-brane configuration of a web diagram for the SU(6)0 + 1
2TAS+ 1AS+ 9F theory.

(a) A 7-brane configuration for the 5-brane web given in figure 21(a). (b) In the upper chamber,

using (3.3), N A3X(−2,1) = N CA3 (c) The resulting 7-brane configuration after moving 7-branes

along the red arrows in figure (b) with NC = CA . The non-abelian part of global symmetry SU(10)

is obtained from the 7-brane configuration A10 in a chamber of 5-brane loops.

metric hypermultiplet as the asymptotic 7-brane configurations for both the SU(3) theories

and the SU(6) theories are the same. We first consider a 5-brane configuration for the

SU(6)0 + 1
2TAS + 1Sym + 1F theory. Using the fact that a decoupling of a symmetric

hypermultiplet for an SU(N) theory gives rise to the change of the Chern-Simons level

κ by κ − 1
2(N + 4), (for N = 6, κ → κ − 5), one has a 5-brane configuration for the

SU(6)0 + 1
2TAS + 1Sym + 1F theory as follows: one prepares a 5-brane web diagram for

SU(6)−5 + 1
2TAS + 1F and then attaches one external single 5-brane to an O7+-plane, as

shown in figure 24. We know that its 7-brane charges are the same as those appear in a

5-brane web for the SU(3)0 + 1Sym + 1F theory. (See figure 49 in [14].) We note that

unlike the 5-brane web for the SU(3)0 + 1Sym + 1F theory, two 5-branes are attached to

some 7-branes. It is however still possible to make this 5-brane configuration to have a

periodic structure, by moving 7-branes inside the 5-brane loops and also by manipulating

a pair of 7-branes to be converted into an O7−-plane, as shown in figure 25. It is therefore

a 5-brane web with an O7−-plane and an O7−-plane.
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Figure 23. A SU(6) 3
2

+ 1
2TAS + 1AS + 8F Tao diagram. The number of 5-branes attached to

a 7-brane can be read off by tracking the number of Hanany-Witten transitions taking place in

figure (b).

O7+

(1,1) (1,-1)
(0,1)

(3,-1)(6,1)

Figure 24. A 5-brane configuration for the SU(6)0 + 1
2TAS + 1Sym + 1F theory.

O7+

(1,-1)(1,1)

(a) (b)

O7+

O7 -

Figure 25. (a) A web diagram for SU(6)0 + 1
2TAS + 1Sym + 1F obtained by moving two color

branes below O7+-plane in figure 24. (b) An SU(6)0 + 1
2TAS+ 1Sym+ 1F web diagram with both

O7−- and O7+-planes.

SU(6)3
2
+ 1

2
TAS + 1Sym. Next, we consider the construction of a 5-brane for the

SU(6) 3
2

+ 1
2TAS + 1Sym theory. Its 7-brane charges are also the same as those for the

SU(3) 3
2

+1Sym theory. In a similar way, one can have a 5-brane configuration as shown in

figure 26, and also can make the configuration has both O7−- and O7+-planes as depicted

in figure 27. Hence the resulting 5-brane web is also of a periodic structure.
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O7+

(0,1) (1,-1)(1,1)

(4,-1)(7,1)

Figure 26. A 5-brane configuration for the SU(6)− 3
2

+ 1
2TAS + 1Sym theory.

O7+

(0,1)
(4,-1)(7,1)

O7-

(0,1) (4,-1) (4,-1) ……

Figure 27. An SU(6)− 3
2

+ 1
2TAS + 1Sym diagram with both O7−- and O7+-planes.

4 Sp(3) gauge theories with rank-3 antisymmetric matter

It is also possible to introduce matter in the rank-3 antisymmetric representation to Sp(3)

gauge theories. In order to introduce rank-3 antisymmetric matter to an Sp(3) gauge theory,

we may use a Higgsing of an SU(6) gauge theory by giving a vev to a hypermultiplet in

the antisymmetric representation of the SU(6). Note that the decomposition of the rank-3

antisymmetric representation of SU(6) under Sp(3) is given by

SU(6) ⊃ Sp(3)

20 = 14′ + 6, (4.1)

where 14′ is the rank-3 antisymmetric representation of the Sp(3),9 and 6 is the funda-

mental representation of Sp(3). Hence, the Higgsing of an SU(6) gauge theory with a

hypermultiplet in the rank-3 antisymmetric representation yields a hypermultiplet in the

rank-3 antisymmetric representation and also a hypermultiplet in the fundamental repre-

sentation of an Sp(3) gauge theory.

Then, all the marginal Sp(3) gauge theories with rank-3 antisymmetric matter listed

in [18] may be given by the following Higgsing10

SU(6)0 + 1TAS + 1AS + 4F → Sp(3) + 1TAS + 5F, (4.2)

SU(6)κ= 1
2
, 3
2

+
1

2
TAS + 2AS + 2F → Sp(3) +

1

2
TAS + 1AS +

5

2
F, (4.3)

SU(6)0 +
1

2
TAS + 1AS + 9F → Sp(3) +

1

2
TAS +

19

2
F. (4.4)

The result is summarized in table 2.
9There are two 14-dimensional representations of Sp(3). One is the rank-2 antisymmetric representation

whose Dynkin label is [0, 1, 0] and the other is the rank-3 antisymmetric representation whose Dynkin label

is [0, 0, 1]. We used 14′ for the rank-3 antisymmetric representation.
10The Chern-Simons level of an SU(6) gauge theory does not affect the IR Sp(3) gauge theory. This can

bee seen for example from the effective prepotential computation. The Higgsing of SU(6) to Sp(3) using a

vev for an antisymmetric hypermultiplet requires the tuning a6 = −a1, a5 = −a2 and a4 = −a3. Therefore

the contribution to the effective prepotential from the Chern-Simons term becomes zero after the tuning.
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NTAS NAS NF Web

1 . 5 Figure 32

1/2 1 5/2 ?

1/2 . 19/2 Figure 31

Table 2. Sp(3) marginal theories with rank-3 antisymmetric half-hypermultiplets and matter in

other representations.

(a) (b)

(c) (d)

Figure 28. (a) A diagram involving the rank-2 antisymmetric matter for an SU(6) gauge theory.

(b) Performing flop transitions to the diagram in figure 28(a) and then moving the (2,−1) 7-brane

in the direction given by the arrow. (c) The diagram obtained after moving the (2,−1) 7-brane.

(d) The diagram obtained after performing flop transitions to the diagram in figure 28(c).

As we already constructed 5-brane diagrams for the SU(6)0 gauge theory with NTAS =

1, NAS = 1, NF = 4 and the SU(6)0 gauge theory with NTAS = 1
2 , NAS = 1, NF = 9, we

consider the Higgsings (4.2) and (4.4).

Sp(3) + 1
2
TAS + 19/2F. We first consider the Higgsing from the SU(6)0 gauge theory

with NTAS = 1
2 , NAS = 1, NF = 9. A diagram for the SU(6)0 gauge theory with NTAS =

1
2 , NAS = 1, NF = 9 is given by figure 21. The Higgsing associated to the antisymmetric

matter can be carried out diagrammatically as follows. The essential part involving the

antisymmetric matter for an SU(6) gauge theory is depicted in figure 28(a). From the

diagram in figure 28(a) we first perform flop transitions and move the (2,−1) 7-brane in
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Figure 29. Higgsing from a [SU(6)κ]− SU(4)0 − SU(2) quiver theory to [SU(6)κ+1]− [1AS].

Figure 30. Higgsing from [SU(6)]− 1AS to [Sp(3)].

the direction specified in figure 28(b), which results in the diagram in figure 28(c). In

order to perform the Higgsing associated to the antisymmetric matter, we further do flop

transitions until we obtain the diagram in figure 28(d).

Note that the diagram in figure 28(d) itself can be also understood from a Higgsing of

a quiver theory involving an SU(6) gauge node. The Higgsing is depicted in figure 29. The

left diagram in figure 29 has an SU(3)× SU(3) flavor symmetry associated to the external

5-branes. We can then partially Higgs the diagram by shrinking the lines in red of the

left diagram in figure 29. The tuning opens up a Higgs branch which is related to the

space of deformations of pieces of 5-branes between 7-branes. After decoupling the pieces

of 5-branes we end up with a diagram at low energies and it is given by the right diagram

in figure 29 which is the same diagram as the one in figure 28(d). Then reading off the

gauge theory content from the two diagrams in figure 29 implies the following relation

[SU(6)κ]− SU(4)0 − SU(2)
Higgsing−−−−−→ [SU(6)κ+1]− [1AS] . (4.5)

In order to perform the Higgsing associated to the antisymmetric hypermultiplet, we

need to further tune the length of lines in figure 28(d). The lines which need to be shrunken

are depicted in red in the left diagram in figure 30. The tuning opens up a Higgs branch and

decoupling pieces of 5-branes yields the right diagram in figure 30. Hence, gauging the six

horizontal D5-branes in the right diagram in figure 30 gives rises to an Sp(3) gauge theory.

Therefore, the Higgsing associated to the antisymmetric matter can be achieved dia-

grammatically by replacing the right part of the diagram in figure 21 with the diagram in
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(a) (b)

Figure 31. (a) A diagram for the Sp(3) gauge theory with NTAS = 1
2 , NF = 19

2 obtained by

Higgsings the diagram in figure 21. (b) A Tao diagram from the diagram in figure 31(a).

ON
-

(a)

ON +NS5

O7 +4D7-

-

(b)

O5 +D5

O7 +4D7-

-

(c)

Figure 32. (a) A diagram for the Sp(3) gauge theory with NTAS = 1, NF = 5 obtained by

Higgsings the diagram in figure 17. (b) The diagram after forming an O7−-plane from the diagram

in figure 32(a). (c) S-dual of the diagram in figure 32(b), exhibiting a periodic direction in the

vertical direction.

figure 30. Then we obtain a diagram for the Sp(3) gauge theory with NTAS = 1
2 , NF = 19

2

and it is given in figure 31(a). By moving 7-branes of the diagram in figure 31(a), it yields

the diagram in figure 31(b) and the diagram in figure 31(b) shows that the diagram is a

Tao diagram, implying that the the Sp(3) gauge theory with NTAS = 1
2 , NF = 19

2 has a

6d uplift.
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Sp(3)+1TAS+5F. It is also possible to perform the same Higgsing to the diagram for

the SU(6)0 gauge theory with NTAS = 1, NAS = 1, NF = 4 in figure 17. By replacing the

part involving the antisymmetric matter to the part giving the Sp(3) gauge group which

is given by the diagram in figure 30, we obtain a diagram depicted in figure 32(a) for the

Sp(3) gauge theory with NTAS = 1 and NF = 5 where one of the five hypermultiplets in

the fundamental representation as well as a hypermultiplet in the rank-3 antisymmetric

representation are massless. We can confirm that the Sp(3) gauge theory with NTAS = 1

and NF = 5 has a 6d UV completion from the diagram in figure 32(a). From the diagram

in figure 32(a), we first move the (1,−1) 7-brane and the (1, 1) 7-brane inside the middle

5-brane loop together with the four flavor D7-branes. Then the (1,−1) 7-brane and the

(1, 1) 7-brane form an O7−-plane and the diagram becomes the one in figure 32(b). The

combination of an O7−-plane and four D7-branes is S-dual invariant and hence after S-

duality we obtain the diagram in figure 32(c) which has a pair of an O7−-plane and an

O5−-plane, showing periodicity in the vertical direction. The appearance of the periodicity

in the vertical direction implies that the Sp(3) gauge theory with NTAS = 1 and NF = 5

has a 6d uplift.

5 Dualities and 6d uplift of marginal SU(6) gauge theories with rank-3

antisymmetric matter

Since we have constructed 5-brane web diagrams which imply a 6d UV completion for the

realized 5d theory on the web, it is natural to ask what is the 6d theory which completes

5d SU(6) or Sp(3) gauge theories with rank-3 antisymmetric matter at UV. In order to

see the 6d uplift explicitly, we need to convert a 5-brane web diagram into some another

configuration realizing a 6d theory. One way is to use T-duality and transform a 5-brane

web into a brane configuration in type IIA string theory. In fact it is possible to convert

the 5-brane web diagrams for the SU(6) gauge theory with NTAS = 1, NF = 10, κ = 0,

the SU(6) gauge theory with NTAS = 1
2 , NF = 13, κ = 0 and the SU(6) gauge theory with

NTAS = 1
2 , NSym = 1, NF = 1, κ = 0 into type IIA brane system.

Furthermore, in order to see the 6d uplift of the SU(6)0 gauge theory with NTAS =
1
2 , NF = 13, it will be useful to first go to a dual frame which is given by a 5d quiver theory

by moving 7-branes. The 6d uplift of the quiver theory has been known in [35, 41, 43]

and we can make use of the result to see the UV completion of the the SU(6)0 gauge

theory with NTAS = 1
2 , NF = 13. Similar deformations by moving 7-branes will yield other

dualities from SU(6) gauge theories with a half-hypermultiplet in the rank-3 antisymmetric

representation and other matter.

5.1 6d uplift of SU(6)0 + 1TAS + 10F

We start from the 5-brane web diagram in figure 13 which realizes the SU(6) gauge theory

with NTAS = 1, NF = 10, κ = 0. In section 3.2 we have seen that the SU(6)0 gauge theory

with NTAS = 1, NF = 10 has a 6d UV completion since it can be written as a Tao diagram

which is given by the right diagram in figure 13. Another way to see that the theory has

a 6d UV completion is to form a pair of O7−-planes placed in the vertical direction. For
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O7 +4D7

-

-

O7 +4D7-

(a)

O8 + 10D8
-

Sp(2) SU(2)

D6 D6NS5 NS5

(b)

Figure 33. (a) Another diagram for the SU(6)0 aguage theory with NTAS = 1, NF = 10 with

two O7−-planes. (b) A type IIA brane configuration after applying T-duality along the vertical

direction in figure 33(a).

that after flop transitions we move the (1, 1) 7-brane and the (1,−1) 7-brane in the upper

part and in the lower part inside 5-brane loops. Then each pair of the (1, 1) 7-brane and

the (1,−1) 7-brane are put into the same 5-brane loops and two O7−-planes are formed as

in figure 33(a). With the two O7−-planes separated in the vertical direction, we can apply

T-duality along the vertical direction which convert a pair of O7−-planes into an O8−-plane

in type IIA string theory. Similarly a D5-brane becomes a D6-brane and an NS5-brane

still remains to be an NS5-brane in type IIA string theory. Then the 5-brane web diagram

in figure 33(a) is transformed into the one in figure 33(b). It is straightforward to read off

the gauge theory content from the brane system in figure 33(b) and it is an Sp(2)− SU(2)

quiver theory where ten flavors are coupled to the Sp(2) gauge group. Namely the brane

configuration implies the following UV completion

5d [1TAS]− SU(6)0 − [10F]
UV completion−−−−−−−−−→ 6d [10F]− Sp(2)− SU(2), (5.1)

for the SU(6)0 gauge theory with NTAS = 1, NF = 10.

We can further support the 6d uplift (5.1) by counting the number of the parameters

from both sides. We compactify the 6d theory on a circle and turn on holonomies for the

SO(20) flavor symmetry. Hence we have ten parameters in addition to the radius of the

circle, which gives eleven parameters in total. On the other hand the 5d theory has ten

mass parameters for the ten flavors and also there is a gauge coupling for the SU(6) gauge

theory. Therefore we have also eleven parameters in 5d, which matches with the number

of the parameters obtained by a circle compactification of the 6d theory. Note that the

rank-3 antisymmetric hypermultiplet of the SU(6) gauge theory is massless and there is no

mass parameter for the rank-3 antisymmetric matter. Let us also see the matching of the

number of Coulomb branch moduli. After a circle compactification a 6d tensor multiplet

becomes a 5d vector multiplet. Hence two tensor multiplets in addition to the Cartan part

for the Sp(2) and SU(2) vector multiplets yield 2 + 2 + 1 = 5 dimensional Coulomb branch
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Figure 34. (a) A 5-brane web diagram for the SU(6) gauge theory with NTAS = 1
2 , NF = 13, κ =

0. (b) The diagram after moving the (2,−1) 7-brane and the (1, 1) 7-brane along the arrows in

figure 34(a). (c) A 5-brane diagram for the [4] − SU(3)0 − SU(4)0 − [7] quiver theory which is

obtained from moving the (0, 1) 7-brane and the (1,−1) 7-brane in figure 34(b).

moduli space in five dimensions. This agrees with the five Coulomb branch moduli of the

SU(6) gauge theory.

5.2 Dualities and 6d uplift of SU(6)0 + 1
2
TAS + 13F

We then consider the SU(6) gauge theory with NTAS = 1
2 , NF = 13, κ = 0. The 5-

brane diagram is given in figure 18. From the diagram in figure 18 we move D7-branes

and perform flop transitions to arrive at the diagram in figure 34(a). From the diagram in

figure 34(a), we move the (2, 1) 7-brane and the (1,−1) 7-brane along the arrows specified in

figure 34(a). Then the diagram becomes the one in figure 34(b). We further move the (0, 1)

7-brand and the (1, 1) 7-brane in the diagram along the arrows depicted in figure 34(b).

The resulting diagram after the movement of the 7-branes is given in figure 34(c). Then

diagram in figure 34(c) is nothing but a diagram for the [4]− SU(3)0− SU(4)0− [7] quiver

theory. The 6d UV completion of the quiver theory has been discussed in [35, 41, 43] from
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Figure 35. Type IIA brane configuration for the SU(5) gauge theory with NAS = 1, NF = 13.

manipulation of the 5-brane web and the 6d uplift is given by the SU(5) gauge theory with

NF = 13, NAS = 1. We can form a pair of O7−-planes from the diagram in figure 34(c) and

T-duality yields the type IIA brane system in figure 35. Namely the brane configuration

implies the following UV completion

5d

[
1

2
TAS

]
− SU(6)0 − [13F]

UV completion−−−−−−−−−→ 6d [13F]− SU(5)− [1AS], (5.2)

for the SU(6)0 gauge theory with NTAS = 1
2 , NF = 13. We can also see that the number

of the mass parameters and the Coulomb branch moduli from a circle compactification of

the 6d theory agrees with the number of the mass parameters and the Coulomb branch

moduli of the 5d theory.

Furthermore, since we can deform the diagram of the SU(6) gauge theory with NTAS =
1
2 , NF = 13, κ = 0 in figure 34(a) to the diagram of the [4] − SU(3)0 − SU(4)0 − [7] quiver

theory in figure 34(c), the two 5d theories are dual to each other. From the 6d uplift given

by (5.2) we can also obtain various other dual 5d theories [35]. Namely the SU(6) gauge

theory with NTAS = 1
2 , NF = 13, κ = 0 is dual to

[(3n− 2)F]− SU(n+ 1)0 − SU(6− n)0 − [(13− 3n)F], (n = 1, 2), (5.3)

and it is also dual to

[1AS]− SU(6)0 − [12F]. (5.4)

We can also see a relation to the 6d SU(6) gauge theory with NTAS = 1
2 , NF = 15.

Note that applying a 5d limit to the 6d SU(6) gauge theory with NTAS = 1
2 , NF = 15 will

yield a 5d SU(6) gauge theory with NTAS = 1
2 and some flavors. A 5d limit may be achieved

by decoupling some Coulomb branch moduli of a 5d theory whose UV completion is given

by the 6d SU(6) gauge theory with NTAS = 1
2 , NF = 15. On the other hand, it has been

proposed that the UV completion of the 5d [7]−SU(4)0−SU(3)0−SU(2)−[4] quiver theory is

the 6d SU(6) gauge theory with NTAS = 1
2 , NF = 15 [35, 41]. Then decoupling the Coulomb
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Figure 36. (a) A 5-brane web diagram for the SU(6) gauge theory with NTAS = 1
2 , NF = 9, κ = −3.

(b) The diagram after moving the (2,−1) 7-brane along the arrow in figure 36(a). (c) The diagram

after we flop the line in blue and also move 7-branes in the blue circle in the diagram in figure 36(b).

(d) The diagram of the quiver [2F]−SU(2)−SU(5)− 5
2
−[5F] obtained by moving the (1,−1) 7-brane

along the arrow in figure 36(c).

branch modulus for the SU(2) gauge theory of the 5d [7] − SU(4)0 − SU(3)0 − SU(2)− [4]

quiver theory gives another quiver given by [7] − SU(4)0 − SU(3)0 − [2]. We can also

obtain the same quiver theory by decoupling the flavors of the [7] − SU(4)0 − SU(3)0 − [4]

quiver theory which is dual to the 5d SU(6)0 gauge theory with NTAS = 1
2 , NF = 13.

By doing a similar deformation to the one through figure 34(a)–34(c), it is possible to

see that the [7] − SU(4)0 − SU(3)0 − [2] quiver theory is dual to the 5d SU(6)0 gauge

theory with NTAS = 1
2 , NF = 11. Hence a 5d limit of the 6d SU(6) gauge theory with

NTAS = 1
2 , NF = 15 indeed yields the 5d SU(6)0 gauge theory with NTAS = 1

2 , NF = 11.

5.3 Other dualities involving marginal SU(6) gauge theories with NTAS = 1
2

In section 5.2, we have seen that a deformation of a 5-brane web implies that the SU(6)

gauge theory with NTAS = 1
2 , NF = 13, κ = 0 is dual to quiver theories given by (5.3). A

similar deformation of 5-brane webs of SU(6) gauge theories with NTAS = 1
2 can lead to

other dualities.
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Figure 37. (a) A 5-brane web diagram for the SU(6) gauge theory with NTAS = 1
2 , NF = 6, κ = 5

2 .

(b) The diagram after moving the (1, 1) 7-brane along the arrow in figure 37(a). (c) The diagram

after moving the (2,−1) 7-brane along the arrow in the diagram in figure 37(b). It gives the quiver

theory SU(2) − SU(5)3 − [4F]. (d) The diagram of the quiver SU(2) − SU(5)1 − [7F, 1AS] by

adding three flavors and a hypermultiplet in the antisymmetric representation to the diagram in

figure 37(c).

SU(6)−3 + 1
2
TAS + 9F. We first consider the 5-brane diagram of the SU(6)−3 gauge

theory with NTAS = 1
2 and NF = 9 which is given in figure 20. From the diagram

in figure 20 moving some of the flavor D7-branes lead to the diagram in figure 36(a).

In the diagram in figure 36(a), we move the (2,−1) 7-brane along the arrow and the

diagram becomes the one in figure 36(b). The moved (2,−1) 7-brane is now attached

at the end of the external (2,−1) 5-brane in the upper right part of the diagram. From

the diagram in figure 36(b), we flop the line in blue and also move 7-branes in the blue

circle to obtain the diagram in figure 36(c). Finally, moving the (1, 1) 7-brane along

the arrow in figure 36(c) yields the diagram in figure 36(d), which can be interpreted as

a diagram of the [2F] − SU(2) − SU(5)− 5
2
− [5F] quiver theory. Namely, the SU(6)−3

gauge theory with NTAS = 1
2 , NF = 9 is dual to the [2F] − SU(2) − SU(5)− 5

2
− [5F].

From the quiver theory moving 7-branes can lead to another dual quiver theory such as

[3F]− SU(2)−
[
SU(3) 1

2
− [2F]

]
− SU(3)− 5

2
.
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Figure 38. The diagram obtained by deforming the diagram in figure 23. The diagram gives the

[1F]− SU(2)− SU(5)2 − [5F, 1AS] quiver theory.

SU(6)0 + 1
2
TAS + 1AS + 9F. In fact, the similar deformation can be applied to the

SU(6) gauge theory with a hypermultiplet in the rank-2 antisymmetric representation in

addition to NTAS = 1
2 and flavors. The first example is the SU(6) gauge theory wtih

NTAS = 1
2 , NAS = 1, NF = 9 and κ = 0. The diagram of the theory has been given

in figure 21. We then deform the diagram in figure 21 to another diagram which can be

interpreted as a quiver theory. For that it is enough to focus on a part of the diagram in

figure 21 which is given in figure 37(a). Compared with the diagram in figure 21, three D7-

branes and a (0, 1) 7-brane are decoupled in the upper direction and the diagram yields the

SU(6) gauge theory with NTAS = 1
2 , NF = 6, κ = 5

2 . From the diagram in figure 37(a), we

first move the (1, 1) 7-brane along the arrow to go to the diagram in figure 37(b) and then

move the (2,−1) 7-brane as in figure 37(b). After the deformation, the resulting theory

from the web in figure 37(c) leads to the SU(2)−SU(5)3−[4F] quiver theory. Since we start

the diagram with three D7-branes and the (0, 1) 7-brane decoupled, we need to reintroduce

the 7-branes to the diagram in figure 37(c) which yields the diagram in figure 37(d). Then

reintroducing the (0, 1) 7-brane adds a hypermultiplet in the antisymmetric representation

of SU(5) and three D7-branes give three flavors to the SU(5). Hence, the deformations in

figure 37 imply that the SU(6)0 gauge theory with NTAS = 1
2 , NAS = 1, NF = 9 is dual to

the SU(2)− SU(5)1− [7F, 1AS] quiver theory. Another deformation by 7-branes may give

further dual quiver theory such as [3F]− SU(2)− SU(3) 1
2
− SU(3)2 − [2F, 1AS].

SU(6)3
2
+ 1

2
TAS+1AS+8F. The next example of dualities which involve SU(6) gauge

theories with an antisymmetric hypermultiplet in addition to NTAS = 1
2 is the SU(6) gauge

theory with NTAS = 1
2 , NAS = 1 and κ = 3

2 . The diagram has been obtained in figure 23.

In order to obtain a dual quiver description we can make use of the deformations from

figure 37(a) to figure 37(c). From the diagram in figure 3.3, decoupling one D7-brane and a

(0, 1) 7-brane in the upper direction and also remove a D7-brane in the lower direction gives

rise to the diagram in figure 37(a). Hence we can reintroduce the 7-branes to the diagram in

figure 37(c) for a deformed diagram from the one in figure 23. The final deformed diagram

is depicted in figure 38 and it realizes the [1F]−SU(2)−SU(5)2− [5F, 1AS] quiver theory.

Therefore, the SU(6) 3
2

gauge theory with NTAS = 1
2 , NAS = 1, NF = 8 is dual to the
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Figure 39. Type IIB web diagram corresponding to twisted circle compactification of 6d SU(3)

quiver gauge theory. All the (p, 1) 5-branes are written vertically for simplicity.

[1F]−SU(2)−SU(5)2− [5F, 1AS] quiver theory. The distribution duality in [35] can yield

another dual quiver theory such as [4F]− SU(3)0 − SU(4) 5
2
− [2F, 1AS].

5.4 6d uplift of SU(6)0 + 1
2
TAS + 1Sym + 1F

Here, we discuss the 5d SU(6) gauge theory with NTAS = 1
2 , NSym = 1

2 , NF = 1, κ = 0.

In [36], it is discussed that we obtain

5d [1Sym]− SU(N+2k−1)− SU(N+2k−5)− · · · − SU(N−2k+3)− [N−2k+1F]

(5.5)

by the twisted circle compactification of

6d [NF]− SU(N)− · · · − SU(N)− · · · − SU(N)− [NF] (5.6)

where we have 2k SU(N) gauge nodes. Although N was assumed to be even number for

simplicity when this was diagrammatically derived in [36], we can generalized this relation

to the case for odd N . The 5d SU(6) gauge theory with NTAS = 1
2 , NSym = 1

2 , NF =

1, κ = 0 turns out to be related to the case N = 3, k = 2.

The corresponding web diagram of this theory is given in figure 39. It is straightforward

to see that Figure 25 can be obtained by the Higgsing of this web diagram. From the point

of view of the 6d theory, this Higgsing has to be done at the left hand side and the right

hand side so that it is compatible with the twist. Therefore, we conclude that

6d [1F]− SU(2)−

[1F]
|

SU(3)−

[1F]
|

SU(3)− SU(2)− [1F]

Twisted circle compactification−−−−−−−−−−−−−−−−−−−→ 5d [1Sym]− SU(6)− [1/2TAS + 1F]. (5.7)

6 Summary and discussion

In this paper, we explicitly constructed 5-brane webs for 5d SU(6) and Sp(3) gauge theories

with hypermultiplets in the rank-3 antisymmetric representation. For an SU(6) gauge
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theory with a half-hypermultiplet in the rank-3 antisymmetric representation, we started

from a 5-brane diagram for the SO(12) gauge theory with a half-hypermultiplet in the

conjugate spinor representation, and utilized the embedding SO(12) ⊃ SU(6)×U(1) where

the rank-3 antisymmetric representation of the SU(6) is not charged under the U(1). Then

decoupling the degree of freedom associated with the U(1) yields a 5-brane configuration for

the SU(6) gauge theory of the Chern-Simons level κ = 5
2 with a half-hypermultiplet in the

rank-3 antisymmetric representation. We also confirmed the validity of the brane diagram

by computing the monopole string tension. Using the topological vertex, we computed the

Nekrasov partition function for the SU(6) 5
2

+ 1
2TAS theory up to two instanton orders

and confirmed that the instanton part correctly captures the Chern-Simons level, which

also supports our 5-brane construction of the SU(6) 5
2

+ 1
2TAS theory. This would be

the first quantitative result for the partition function for the SU(6) 5
2

gauge theory with a

half-hypermultiplet in the rank-3 antisymmetric representation.

By increasing the number of half-hypermultiplets in the rank-3 antisymmetric repre-

sentation and also adding various hypermultiplets in other representations, we constructed

5-brane diagrams for 5d marginal SU(6) gauge theories with NTAS = 1
2 , 1, 2 hypermulti-

plets in the rank-3 antisymmetric representation, which are summarized in table 1. The

matter content of what we found for the 5d marginal SU(6) gauge theories with rank-

3 antisymmetric hypermultiplets is in agreement with those classified in [18]. Moreover,

global symmetries that one can read off from the 5-brane webs also support our 5-brane

construction for the marginal SU(6) theories with half-hypermultiplets in the rank-3 anti-

symmetric representation. The 5-brane web diagrams also imply 6d uplifts or dualities for

some of the marginal theories. Interestingly, as discussed in section 5, some SU(6) gauge

theories with half-hypermultiplets in the rank-3 antisymmetric representation are dual to

quiver theories.

For marginal Sp(3) gauge theories with half-hypermultiplets in the rank-3 antisym-

metric representation, we used a Higgsing of marginal SU(6) gauge theories involving a

hypermultiplet in the rank-2 antisymmetric representation. Possible Higgsings are dis-

cussed in (4.2)–(4.4). Since we know two of the UV SU(6) theories of the three Higgsings,

we explicitly realized 5-brane configuration for the Sp(3)+ 1
2TAS+ 19

2 F theory in figure 31,

and for the Sp(3) + 1TAS + 5F theory in figure 32.

Although we have constructed 5-brane webs for many of the marginal SU(6) gauge

theories with rank-3 antisymmetric matter in table 1 which are classified in [18], there are

some marginal theories that we did not find their 5-brane web configurations. We note

that not having a 5-brane web for a marginal theory does not imply that 5-brane webs for

its descendent theories are not constructed. For instance, consider SU(6)0 + 3/2TAS+ 5F

or SU(6)2 + 3/2TAS + 3F. As discussed in section 2.4, a 5-brane web for the SU(6) 1
2

+

3/2TAS theory is given in figure 9(b). In fact, one can introduce flavors to the 5-brane

web diagram properly to make the CS level to be that of the marginal theories of interest.

For SU(6)0 + 3/2TAS + 5F, one may find a configuration with 3 D7-branes added above

and 2 D7-branes below, so that the resulting configuration has the CS level 0. It is also not

so difficult to find that a little manipulation of the 7-branes allows a pair of 7-branes which

can be converted to an O7−-plane, and hence together with an ON−-plane, it yields a
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configuration with two orientifolds horizontally separated. On the other hand, we were not

able to make this 5-brane web to be a conventional 5-brane configuration with O7−-plane

and O5-plane vertically apart, after performing the S-duality. Hence, we did not include

such 5-brane configuration in table 1.

It is also worth noting that there may be some intrinsic issues on 5-brane realization of

marginal theories. For example, our construction utilizes 5-brane web diagrams and there

will be some restriction to theories which 5-brane web on a plane can realize. Second, the

marginal theories in [18] were classified based on only necessary conditions and hence it

may be still possible that some of them may not have a UV completion. We here make

some comments on marginal SU(6) gauge theories which we have not constructed from 5-

brane webs in this paper. One class of such theories is SU(6) gauge theories with NTAS =
1
2 , NAS = 2 and flavors. Note that a half-hypermultiplet in the rank-3 antisymmetric

representation can arise from a Higgsing from [SU(6)] − SU(3)0 whereas a hypermultiplet

in the rank-2 antisymmetric representation can be realized by a Higgsing from [SU(6)] −
SU(4)0 − SU(2). Hence an SU(6) gauge theory with NTAS = 1

2 , NAS = 2 may be obtained

by considering the Higgsing from a quiver

SU(2)− SU(4)0 −

SU(3)0

|
SU(6) − SU(4)0 − SU(2), (6.1)

where the CS level for the SU(6) gauge node needs to be chosen so that the quiver theory

has a UV completion. The quiver theory (6.1) has a shape of the E6 Dynkin diagram and

it is difficult to realize the quiver theory from 5-brane web diagrams on a plane. Therefore

the Higgsed theories, which are SU(6) gauge theories with NTAS = 1
2 , NAS = 2, would be

also difficult to be obtained by 5-brane webs on a plane. We will need trivalent gauging

for web diagrams considered in [44].

There are also marginal SU(6) gauge theories which only have the rank-2 antisym-

metric representation as matter. The SU(6) gauge theories have three hypermultiplets

in the rank-2 antisymmetric representation and the CS level can be |κ| = 0, 1, 2, 3 [18].

Since a hypermultiplet in the rank-2 antisymmetric representation arises from a Higgsing

from [SU(6)] − SU(4)0 − SU(2), an SU(6) gauge theory with NAS = 3 can be realized by

considering the Higgsing from a quiver

SU(2)− SU(4)0 −

SU(2)
|

SU(4)0

|
SU(6) − SU(4)0 − SU(2) (6.2)

The quiver theory (6.2) has a shape of the affine E6 Dynkin diagram which might have a

6d UV completion for some specific CS level for the SU(6) gauge node. In particular when

the CS level for the SU(6) gauge node is zero, the Higgsed theory becomes the SU(6) gauge

theory with NAS = 3, κ = 3 since each Higgsing which gives the rank-2 antisymmetric

matter increases the CS level by one as in (4.5). The SU(6) theory is exactly one of the
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marginal SU(6) theories classified in [18]. Since this quiver is an affine E6 Dynkin quiver

it is difficult to realize it by a 5-brane web on a plane, implying that the Higgsed theories

would be also difficult to be obtained by a brane web on a plane. In order to construct the

affine E6 quiver theory, we will need trivalent gauging for web diagrams again.

5-brane webs we found for marginal theories show the periodicity either as a Tao

diagram [26] or as a 5-brane configuration with two orientifolds. It clearly suggests that

they are a realization of 6d theory on a circle with/without some twists. For some marginal

theories, we discussed their 6d uplifts. It would be interesting to find 6d uplifts for other

marginal theories as well as possible dual quiver descriptions.

In this paper we have focused on half-hypermultiplets in the rank-3 antisymmetric

representation for SU(6) and Sp(3) gauge theories. It would be also interesting to generalize

the result to rank-3 antisymmetric matter for other gauge theories such as SU(7) or Sp(4)

gauge theories which were also discussed in [18].
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