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1 Introduction

Due to the absence of local degrees of freedom, General Relativity is a simpler theory in

three than in four spacetime dimensions. In spite of this simplicity, the theory does contain

black holes when a negative cosmological constant is included [1], whose entropy can be

correctly accounted for, microscopically, by counting states in a dual CFT [2]. Including

local degrees of freedom makes the theory closer to its four dimensional counterpart; this

can be achieved by deforming the theory, giving a mass to the graviton. In this manner by

augmenting the Einstein-Hilbert action with the parity odd, Lorentz-Chern-Simons term

for the Christoffel connection, one obtains a theory that propagates a massive graviton [3]–

[4]. Almost a decade ago it was shown that this can also be achieved in a parity-even

manner by the addition to the Einstein-Hilbert action of a precise quadratic combination

of the Riemann curvature, such that the whole theory, when expanded around flat space-

time, leads to the Fierz-Pauli equation for a massive spin 2 excitation [5]. Both of these

theories possess asymptotically AdS black holes, as well as black holes with more general

asymptotics for particular interesting values of the couplings (see e.g. [6]–[29]).

Efforts to understand, on microscopic terms, the entropy of some of these black holes in

a holographic context lead to the so-called bulk-boundary clash of these theories, according

to which positivity of the energy of the bulk massive graviton seems to be achieved only at

the cost of introducing a negative central charge in the dual theory. A theory that avoids

this problem is Minimal Massive Gravity (MMG). MMG supplements the field equations

of Topologically Massive Gravity (TMG) with a symmetric, rank-two tensor containing

up to second derivatives of the metric [30]. The Lovelock theorem [31] implies that the

latter tensor cannot have an identically vanishing divergence. Nevertheless the theory

is consistent in the so-called “third-way”, since the divergence of the field equations is

identically proportional to those same field equations. Even though the field equations for

MMG cannot be obtained from a diffeomorphism invariant action principle, a Lagrangian
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formulation of the theory can be obtained by considering extra fields, which is useful when

computing the central charge of the boundary theory.

Recently, a new theory fulfilling “third-way” consistency was proposed [32]. This the-

ory, dubbed Exotic Massive Gravity (EMG), supplements the Einstein equations with a

term that contains up to third derivatives of the metric and is constructed with combina-

tions and derivatives of the Cotton tensor, which can also be added by itself with its own

coupling, still maintaining the consistency of the field equations. This theory turns out

to be the next-to-simplest theory fulfilling third-way consistency, from an infinite family

that is constructed from a seed rank-two and divergence free symmetric tensor Gµν . When

Gµν is proportional to the Einstein tensor, the theory obtained is MMG, whereas EMG is

obtained from choosing Gµν proportional to the Cotton tensor.

An exploration of the vacua of EMG was subsequently undertaken [33], which includes

asymptotically AdS geometries as well as asymptotically Lifshitz black holes at a particular

curve of the space of parameters of the theory, the latter resembling the chiral point of

TMG [34]. Given these theories it would be interesting to explore their thermodynamics.

While conjugate variables such as the temperature and rotation velocity of the black hole

can be directly computed from the geometry, the lack of a diffeomorphism invariant action,

in terms of the metric uniquely, makes it difficult to compute the associated global charges

as well as the entropy.

The purpose of this paper is to address this question. Using the Abbot-Deser-Tekin

(ADT) approach [35]–[36, 37], which naturally adapts to the present setup, we shall con-

struct formulae for the global charges of the theory. Focusing on asymptotically AdS

solutions of MMG that exist for generic values of the coupling constants, we shall apply

our results to a computation of the ADT-mass of the rotating Banados-Teitelboim-Zanelli

(BTZ) solution, showing that the parity even terms contribute to the energy as expected,

from the mass parameter in GR with an effective Newton’s constant. Furthermore, as

is the case in TMG, when EMG is supplemented by a Lorentz-Chern-Simons term, the

ADT-mass of the rotating BTZ black hole receives an extra contribution from this parity

odd term, which depends on the rotation parameter a. We then consider other axially

symmetric solutions. At the so-called chiral point, log-deformations of the extremal BTZ

black hole exist, and we show that they remarkably lead to finite charges. We conclude

with comments and possible extensions.

2 Constructing the ADT charges in EMG

Exotic Massive Gravity is defined by the following field equations [32]:

Rµν −
1

2
gµνR+ Λgµν +

1

µ
Cµν −

1

m2
Hµν +

1

m4
Lµν = 0 , (2.1)

where

Cµν =
1

2
ǫ αβ
µ ∇α

(

Rβν −
1

4
gνβR

)

, Hµν = ǫ αβ
µ ∇αCνβ , Lµν =

1

2
ǫ αβ
µ ǫ γσ

ν CαγCβσ ,

(2.2)

and Cµν is the Cotton tensor.
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It is useful to define Λ = − 1
l2
, l being the curvature radius of the maximally symmetric

AdS solution of the field equations (2.1).

To follow the ADT approach, we linearize the field equations (2.1) around a locally

AdS3 vacuum (not necessarily global AdS) of radius l, by decomposing the metric as:

gµν = ḡµν + hµν , (2.3)

where the background metric ḡµν satisfies

R̄µν +
2

l2
ḡµν = 0 , (2.4)

and hµν is a small perturbation. At the linearized level, the equation of motion (2.1)

reduces to

G(l)
µν +

1

µ
C(l)
µν − 1

m2
H(l)

µν +
1

m4
L(l)
µν ≡ Tµν , (2.5)

where Tµν contains the matter contributions as well as the contributions of orderO(h2), and

G(l)
µν = R(l)

µν −
1

2
ḡµνR

(l) +
2

l2
hµν , (2.6)

with

R(l)
µν =

1

2

[

−∇̄2hµν − ∇̄µ∇̄νh+ ∇̄µ∇̄σh
σ
ν + ∇̄ν∇̄σh

σ
µ

]

(2.7)

R(l) = −∇̄2h+ ∇̄ρ∇̄σh
ρσ +

2

l2
h (2.8)

where h = ḡµνhµν . We also have

C(l)
µν =

1

2
ǫ αβ
µ ∇̄α

(

R
(l)
βν −

1

4
ḡνβR

(l) +
2

l2
hµν

)

(2.9)

which is the linearization of the Cotton tensor.

Choosing the gauge ∇̄µhµν = ∇̄νh and making use of linearized Bianchi identity

(∇̄µ∇̄νh = −∇̄2hµν) the left-hand side of (2.5) becomes

− ∇̄2hµν +
2

l2
hµν +

1

µ
ǫ αβ
µ ∇̄α

(

−∇̄2hβν +
2

l2
hβν

)

− 1

m2

(

−∇̄4hµν +
2

l2
∇̄2hµν

)

(2.10)

where the contribution from L
(l)
µν vanishes since Lµν is quadratic in the Cotton tensor and

we are linearizing around a constant curvature (therefore conformally flat) background.

Rearranging (2.10) implies that (2.5) becomes

−
[(

∇̄2 − 2

l2

)(

hµν +
1

µ
ǫ αβ
µ ∇̄αhβν

)

− 1

m2

(

∇̄2 − 2

l2

)

∇̄2hµν

]

= Tµν (2.11)

where Cµν and Hµν are traceless, yielding h = 0 upon taking the trace of (2.1), in vacuum

and up to orderO(h2). Since the linearized field equations (2.11) are on-shell divergenceless,

their contraction with a Killing vector of the background leads to a conserved current.
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To obtain the charge associated with a solution having a Killing vector ξ̄ν , we contract

both sides of (2.11) with ξ̄ν and integrate, obtaining

Qµ(ξ̄) = Qµ
E(ξ̄) +

1

µ
Qµ

C(ξ̄)−
1

m2
Qµ

H(ξ̄) =

∫

dn−1x
√
−ḡξ̄νT

µν =

∫

Σ
dSiF

µi , (2.12)

where Fµν is an anti-symmetric tensor that satisfies Tµν ξ̄ν = ∇̄νF
µν . Provided one uses

the on-shell consistency of the field equations, such a 2-form always exists.

The Qµ
E , Q

µ
C , and Qµ

H terms respectively correspond to the terms proportional to unity,

1/µ and 1/m2 obtained from (2.11). Explicitly the first two of these are [38]

Qµ
E(ξ̄) =

1

8πG3

∫

dSi

√
−ḡ(ξ̄ν∇̄µhiν − ξ̄ν∇̄ihµν + ξ̄µ∇̄ih− ξ̄i∇̄µh+ hµν∇̄iξ̄ν − hiν∇̄µξ̄ν

+ ξ̄i∇̄νh
µν − ξ̄µ∇̄νh

iν + h∇̄µξ̄i) (2.13)

Qµ
C(ξ̄) =

1

8πG3

∫

dSi

√
−ḡ(ǫµiβG(l)

νβ ξ̄
ν + ǫνiβG(l)µ

β ξ̄ν + ǫµνβGi
β ξ̄ν) +Qµ

E(ǫ∇̄ξ̄). (2.14)

The remaining task is to compute Qµ
H(ξ̄), the contribution to the conserved charges coming

from the H term. We begin by noting that

Hµν = ǫµρσ∇ρC
ν
σ =

1

2
[ǫµρσ∇ρC

ν
σ + ǫνρσ∇ρC

µ
σ ] , (2.15)

whose linearization yields

√
−ḡH(l)µν ξ̄ν =

√−ḡ

2

[

ǫµρσ(∇̄ρC
(l)ν
σ )ξ̄ν + ǫνρσ(∇̄ρC

(l)µ
σ )ξ̄ν

]

. (2.16)

We now need to move the Killing vector inside the covariant derivatives, using

√
−ḡ∇̄ρ

(

ǫµρσC(l)ν
σ

)

ξ̄ν = ∇̄ρ

(√
−ḡǫµρσC(l)ν

σ ξ̄ν

)

−
√
−ḡǫµρσC(l)ν

σ ∇̄ρξ̄ν (2.17)

√
−ḡ∇̄ρ

(

ǫνρσC(l)µ
σ

)

ξ̄ν = ∇̄ρ

(√
−ḡǫνρσC(l)µ

σ ξ̄ν

)

−
√
−ḡǫνρσC(l)µ

σ ∇̄ρξ̄ν (2.18)

yielding

∇̄ρ

[√
−ḡǫµρσC

(l)νσ ξ̄ν +
√
−ḡǫνρσC

(l)µσ ξ̄ν +
√
−ḡǫµνσC

(l)ρσ ξ̄ν

]

=
√
−ḡ

[

ǫµρσ(∇̄ρC
(l)ν
σ ) + ǫνρσ(∇̄ρC

(l)µ
σ )

]

ξ̄ν +
√
−ḡ

[

ǫµρσC
(l)νσ + ǫµνσC

(l)ρσ
]

∇̄ρξ̄ν

+
√
−ḡǫµνσ∇̄ρC

(l)ρσ ξ̄ν +
√
−ḡǫνρσC

(l)µσ∇̄ρξ̄ν ,

= 2
√
−ḡH(l)µν ξ̄ν +

√
−ḡX̄σC

(l)µσ , (2.19)

where ∇̄ρC
(l)ρσ = 0 and the second term in the middle line vanishes because of the anti-

symmetry of ∇̄ρξ̄ν . Noting that X̄σ = ǫνρσ∇̄ρξ̄ν is also a Killing field (the dualized Killing

vector) in the locally AdS background, we obtain

2
√
−ḡH(l)µν ξ̄ν = ∇̄ρ

[√
−ḡǫµρσC

(l)νσ ξ̄ν+
√
−ḡǫνρσC

(l)µσ ξ̄ν+
√
−ḡǫµνσC

(l)ρσ ξ̄ν

]

−
√
−ḡX̄σC(l)µ

σ

(2.20)

where the last term can be written as a surface integral using the same logic as in TMG.
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Hence the contribution to the energy coming from the tensor H(l)µν is

Qµ
H(ξ̄) =

1

8πG3

∫

2
√
−ḡH(l)µν ξ̄νd

3x

=
1

8πG3

[
∫

Σ

[√
−ḡǫµiσC

(l)νσ+
√
−ḡǫνiσC

(l)µσ+
√
−ḡǫµνσC

(l)iσ
]

ξ̄νdSi−
∫

(√
−ḡX̄σC(l)µ

σ

)

d3x

]

.

(2.21)

Let’s now look at the last term of equation (2.21). Writing Cµν in its symmetric form

we have

2
√
−ḡX̄νC

(l)µν = X̄ν

(

ǫµαβ∇̄αG(l)νβ + ǫναβ∇̄αG(l)µβ
)

(2.22)

and using

ǫµαβX̄ν∇̄αG(l)νβ = ∇̄α

[

ǫµαβX̄νG(l)νβ
]

− ǫµαβ∇̄αX̄νG(l)νβ (2.23)

we obtain

∇̄α

[

ǫµαβX̄νG(l)νβ + ǫναβX̄νG(l)µβ + ǫµνβX̄νG(l)α
β

]

= ǫµαβX̄ν∇̄αG(l)νβ + ǫναβX̄ν∇̄αG(l)µβ + ǫµνβX̄ν∇̄αG(l)α
β

+
(

ǫµαβ∇̄αX̄νG(l)νβ + ǫναβ∇̄αX̄νG(l)µβ + ǫµνβ∇̄αX̄νG(l)α
β

)

= ǫµαβX̄ν∇̄αG(l)νβ + ǫναβX̄ν∇̄αG(l)µβ + ǫµνβX̄ν∇̄αG(l)α
β + ǫναβ∇̄αX̄νG(l)µβ , (2.24)

where the first and last terms of the middle line in brackets cancel because X̄ν is a Killing

vector. Recalling that X̄σ = ǫνρσ∇̄ρξ̄ν and ∇̄ρ∇̄µξ̄ν = R̄νµρ
σ ξ̄σ, we get

ǫναβ∇̄αX̄νG(l)µβ = ǫναβǫ
ρσ

ν∇̄α∇̄ρξ̄σG(l)µβ = ǫναβǫ
ρσ

ν

(

R̄σρα
γ ξ̄γ

)

G(l)µβ = −4Λξ̄βG(l)µβ

(2.25)

where the last relation follows from

R̄µσνρ = Λ(ḡµν ḡσρ − ḡµρḡσν) (2.26)

which is the assumption of a constant curvature background. Consequently the last term

in (2.21) contributes as

2

∫ √
−ḡX̄νC

(l)µνd3x =

∫

∇̄α

[

ǫναβX̄νG(l)µβ + ǫµαβX̄νG(l)νβ + ǫµνβX̄νG(l)α
β

]

d3x

− 4Λ

∫

ξ̄βG(l)µβd3x . (2.27)

The final result of the new contribution to the Abbott-Deser-Tekin charges is

Qµ
H(ξ̄) =

1

8πG3

∫

2
√
−ḡH(l)µν ξ̄νd

3x

=
1

8πG3

∫

Σ

[√
−ḡǫµiσC

(l)νσ +
√
−ḡǫνiσC

(l)µσ +
√
−ḡǫµνσC

(l)iσ
]

ξ̄νdSi

− 1

16πG3

∫

[

ǫνiβG(l)µβ + ǫµiβG(l)νβ + ǫµνβG(l)i
β

]

X̄νdSi +
Λ

4πG3

∫

ξ̄βG(l)µβd3x

(2.28)

where the last term of equation (2.28) is the Einstein surface term (Qµ
E(ξ̄)).
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Using (2.13), (2.14) and (2.28) the desired gauge invariant conserved charges for a

maximally symmetric background in EMG is:

Qµ(ξ̄) = Qµ
E(ξ̄) +

1

µ
Qµ

C(ξ̄)−
1

m2
Qµ

H(ξ̄). (2.29)

This expression will allow us to compute the charges in the following sections, for solutions

that are deformations of constant curvature background, a family that includes rotating

black holes, as well as log-deformations of extremal BTZ.

3 Mass and angular momentum for axisymmetric vacua of EMG: generic

couplings

We now apply our result (2.29) to a variety of interesting solutions to EMG.

BTZ spacetime. The BTZ metric

ds2 = −N2(r)dt2 +
dr2

N2(r)
+ r2

(

Nφdt+ dφ
)2

(3.1)

with

N2(r) = −M +
r2

l2
+

a2

4r2
, Nφ(r) = − a

2r2
(3.2)

is also a solution of the EMG field equations. Even though the tensors Cµν and Hµν vanish

identically, we will see that they do contribute non-trivially to the charges.

As in GR, to define the constant curvature background, let us set M = a = 0 so that

ds2BG = −r2

l2
dt2 +

l2

r2
dr2 + r2dφ2 , (3.3)

is the background metric. The BTZ metric can then be regarded as a perturbation from

this background by setting

ds2p = Mdt2 +
Ml4

r4
dr2 − adtdφ , (3.4)

where we have kept the leading order in the radial expansion as r → +∞. The energy, ob-

tained as the conserved charge associated with future-directed time translations generated

by the Killing vector ξ̄µ = (−1, 0, 0), finally reads

E = Qµ(ξ̄) = M − a

l2µ
− M

m2l2
(3.5)

using (2.29).

Note that in the limit of large m and large µ we obtain the expected relation E = M .

The ADT-angular momentum

J = Qµ(ξ̄) = a− M

µ
− a

m2l2
(3.6)

is likewise obtained using the Killing field ξ̄µ = δµφ.

– 6 –
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We have introduced a suitable global normalization to match the charges of BTZ

black hole in TMG reported in [39]. It is interesting to notice that the parity-even terms

in the field equations, i.e. the Einstein and H tensors contribute to the energy and angular

momentum by means of the mass term M and rotation parameter a, respectively. On the

other hand, the contribution of the Lorentz-Chern-Simons terms, contributes to the charges

in a “twisted fashion”, as originally observed in the presence of topological matter [40].

“Static” AdS waves with fast fall-off. For generic values of the couplings, EMG has

also been shown [33] to admit AdS-wave solutions, which can be written as

ds2 =

(

−2ρ

l2
+ F (ρ)

)

dt2 +
l2dρ2

4ρ2
− 2lF (ρ)dtdφ+ (2ρ+ l2F (ρ))dφ2 , (3.7)

here

F (ρ) = a+ρ
p+ + a−ρ

p
− + cρ+ e , p± =

lm2 + 2µ±
√

m4l2 + 4m2µ2l2

4µ
, (3.8)

where we have chosen a±, c and e as integration constants. Although these can be arbitrary

functions of the null-direction u [33], leading to radiative spacetimes, to compute the energy

content of the spacetime as an integral at the spatial infinity, we shall concentrate on the

“static” AdS wave case. Note that these spacetimes do not have a constant Riemann

curvature, and we will use as a constant curvature background the metric obtained by

setting F (ρ) = 0 in the metric (3.7).

Considering ξ̄µ = δµt, the total ADT-energy reads

E = Qµ(ξ̄) = 2e− 2e

lµ
− 2e

l2m2
+ 2

(

(2p+ − 1)2

l2m2
− 1− (2p+ − 1)

lµ

)

a+(p+ − 1)ρp+c

+ 2

(

(2p− − 1)2

l2m2
− 1− (2p− − 1)

lµ

)

a−(p− − 1)ρp+c , (3.9)

where we have introduced a cut-off ρc that has to be taken to infinity. Finiteness of the

mass therefore requires the couplings to be such that p+ and p− are negative (one of them

could also vanish, but this leads to logarithmic terms having slower fall-off to AdS than

that considered in this section). The energy of this “static”-AdS wave solution is then

given by the first three terms in (3.9).

With respect to the axial symmetry of the background, we use the Killing vector

ξ̄µ = δµφ, interestingly leading to the conserved charge

J = Qµ(ξ̄) = El (3.10)

with E given in equation (3.9).

4 ADT mass and angular momentum for axisymmetric vacua of

log-EMG

Log deformations of Extremal BTZ geometry. When the chirality relation µ =
lm2

1−m2l2
is fulfilled, EMG admits asymptotically AdS solutions with logarithmic deforma-

tions [33]. The same occurs in Chiral Gravity [41] as well as in Minimal Log Gravity [42].

– 7 –
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Remarkably, as in those cases, even though the asymptotic behaviour is relaxed with respect

to the Brown-Henneaux conditions [44], the charges are finite. The potentially divergent

terms are multiplied by the chiral relation, which identically vanishes on-shell. The back-

ground in this case, is the extremal rotating BTZ geometry, which is also locally AdS, but

globally differs from the maximally symmetric AdS3 spacetime [45].

At the chiral point, the following metric solves the field equations of EMG

ds2 = −Ndt2 +
dr2

N
+ r2(Nφdt+ dφ)2 +Nk(dt+ ldφ)2 (4.1)

where

N = −M +
r2

l2
+

M2l2

4r2
, Nφ =

Ml

2r2
, Nk = k ln

(

r2 − Ml2

2

)

(4.2)

and M = k = 0 defines the background metric (the massless BTZ geometry).

For generic couplings we find from (2.29) that the ADT mass and the angular momen-

tum are respectively given by

E =
2k(5µ+ 4lµµc − 3µc)

(1 + lµc) l2µm2
+

(µc − µ) (4k ln (r) +M)

l2m2µ (1 + lµc)
,

J = −2k(5µ+ 4lµµc − 3µc)

(1 + lµc) lµm2
+

(µ− µc) (4k ln (r) +M)

(1 + lµc) lµm2

where the chiral value of µ is µc = m2l/(1−m2l2). It is clear that

E = 4k +
4k

l2m2
J = −lE (4.3)

at the chiral point µ = µc.

5 Conclusion

In this note we have constructed the general formula for computing conserved charges of so-

lutions to the Exotic Massive Gravity theory, recently introduced in [32]. The theory is the

next-to-simplest gravitational theory fulfilling the so-called “third-way consistency” [47].

Although the theory does not admit a Lagrangian formulation purely given in terms of

the metric, the theory nevertheless turns out to be consistent, since the divergence of the

field equations is proportional to the same field equations. Using the Abbot-Deser-Tekin

approach to compute conserved currents for the theory associated with Killing vectors of

the background, we showed that this leads to finite charges, even at the chiral point at

which the solutions acquired a relaxed asymptotic behaviour containing log-terms.

It is interesting to notice that for the case of MMG, the charges of the BTZ black hole

computed within the canonical formalism of the formulation with auxiliary fields [48], differ

from those computed with the Abbott-Deser-Tekin approach [49]. While it is beyond the

scope of this work to explore whether a similar situation occurs in EMG, we note that the

charges we have computed here, have recently been used in [50] to propose an expression

for the central charges of the dual theory of EMG. Those expressions lead to a chiral theory

– 8 –
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exactly at the point at which the theory admits asymptotically AdS solutions with relaxed

asymptotic behavior, which is reminiscent to what occurs in NMG and TMG.

As described in [32], theories fulfilling “third-way” consistency are constructed from a

seed symmetric, rank-two tensor with an identically vanishing divergence. A simple candi-

date for these seed tensors are the Euler-Lagrange derivatives with respect to the metric,

of diffeomorphism invariant actions, even though it remains an open problem whether this

procedure leads to the most general tensor fulfilling such properties, see [51]. Following

this approach a general “third-way consistent” theory containing a seed that is the field

equations of a generic quadratic action was recently constructed [52]. It would be inter-

esting to explore further properties of the whole, infinite hierarchy of such theories in the

future, using for example as a seed tensor the Euler-Lagrange equations coming from the

action

I[gµν ] =

∫ √
−g d3x

∑

cabcR
a (RµνR

µν)b
(

Rµ
νR

ν
λR

λ
µ

)c

, (5.1)

since this is the most general action, algebraic in the Riemann tensor in three dimensions

(see e.g. [53]).
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