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1 Introduction

The interplay between explicit and spontaneous translational symmetry breaking has re-

cently become a major subject in the field of Holographic Duality and its applications to

Condensed Matter. It is indeed relevant because any condensed matter system is realized on

top of an ionic crystal lattice, and its (explicit) effect has to be well understood. Moreover,

some of the most interesting condensed matter systems, including high temperature su-

perconductors, exhibit phases with spontaneously generated spatial orders, as charge, spin

and pair density waves. It has recently been discussed [1] that the Mott insulating state in

the parent compound of the cuprate high temperature superconductors can be understood

as the spontaneous charge density wave (CDW) pinned by the commensurate crystal lat-

tice. Furthermore, the fluctuating CDW has been proposed as the physical mechanism of

bad metallic behavior [2, 3]. It is therefore important to develop our understanding of the

features of translation symmetry breaking in holographic models.

Although the physics of translation symmetry breaking (TSB) in holographic models

is in many ways similar to the one in conventional systems, some of its features are un-

usual. The well known example is the absence of a gapped insulating state in holographic

models [4]. In this work we will focus on the details of the “gapless insulating”, or rather
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semimetallic, states, which one can obtain in holography. Similarly to the “holographic

strange metal” phase, which is argued to have many features in common with the real

strange metal states observed in strongly correlated condensed matter systems [5, 6], the

holographic “strange insulating” states exhibit resistivity which behaves as a power law

of the temperature. The only difference is that while in a metal state the resistivity van-

ishes at zero temperature, in the insulating state it diverges having a negative power law

exponent. Interestingly, one can achieve this type of behavior in two seemingly different

ways: one can either introduce strong explicit TSB, which becomes relevant at the hori-

zon and therefore changes the zero temperature ground state of the model [7–9], or one

can consider a model with spontaneous TSB and introduce a weak explicit source to pin

down the spontaneous structure [1, 10, 11]. In both cases one arrives at a holographic

“strange insulating” state at small enough temperature. Interestingly, the analogues of

these two classes can be found in conventional Condensed Matter Theory. We can think

about the usual band insulator as being induced solely by the strong ionic lattice potential,

i.e., even the weakly interacting electrons would be gapped due to the shape of the energy

bands, induced by the periodic potential. On the other hand, the Mott insulator can be

seen as a pinned crystal of electrons: the Coulomb repulsion now plays the crucial role,

which would provide the stiffness to the spontaneous Wigner crystal even in the case when

the ionic lattice is absent. These analogies motivate us to call these states insulators due

to the fundamental TSB mechanisms giving rise to these states, even though from the

phenomenological perspective these should rather be called semimetals due to their non-

vanishing conductivity at any finite temperature. Given these similarities, it is interesting

to perform a more detailed comparison between the two insulating configurations arising

in the holographic approach.

From the bulk perspective, the common feature to both classes is that in either case

TSB is relevant in the IR and the near horizon geometry is substantially modified by the

spatially modulated structures. It is therefore intuitively clear that the DC conductivity

will be sensitive to this modification [12]. One would also expect the incoherent conductiv-

ity to play an important role in the defining the features of the low temperature state [13],

since by its definition it is not associated with the momentum drag [14] and therefore

should not be suppressed significantly by the TSB. This makes our study more interesting

and relevant to experiments on strongly correlated electron systems [15], which exhibit

unusual resistivity behavior in low temperature pinned CDW states. The reason for this is

that the incoherent conductivity is a genuinely holographic feature, which is absent in the

conventional Condensed Matter models. It is commonly understood as arising from the

quantum critical subpart of the strongly interacting quantum system having a holographic

dual [13, 16]. Its direct observation in experiments would serve as a smoking gun for the

existence of such a quantum critical sector in real strongly correlated materials. On the

other hand, it has been shown in [2] that an extra contribution to the conductivity in the

pinned CDW state may come from the “phase relaxation rate”, which can be understood

as a feature of the coherent subpart of the system, related to the approximate conservation

of momentum and fluctuations of the weak spontaneous order parameter. With this in

mind, it is very interesting to disentangle the incoherent and, more conventional, coherent
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contributions in the holographic observables and explore their roles in the two classes of

insulating states outlined above.

In what follows we will put this intuition on a solid quantitative ground by considering

the two “strange insulating” states in a concrete holographic model and studying their

similarities and differences from complimentary points of view. We will use a particular

holographic model with Bianchy VII helical symmetry [7, 17–20]. As the linear axion [21,

22], Q-lattice [8, 23] and their generalizations, the model belongs to the class of the so-called

“holographic homogeneous lattices”: it realizes the translational symmetry breaking, but

the presence of an extra internal group which can be used to restore the symmetry allows

one to treat the equations of motion in a homogeneous manner.1This feature leads to a

tremendous technical simplification, since one has to deal only with ordinary differential

equations instead of partial ones and, as we will discuss below, some powerful analytical

techniques to treat the near horizon features become available. However, the homogeneous

lattices are known to introduce some conceptual subtleties in exchange for this technical

simplicity [26, 27] therefore we have to be careful with this choice.

The helical model which we will use is particularly suitable for our studies since it is

the only one from the family of “holographic homogeneous lattices”, which provides a clean

and well studied mechanism for spontaneous translational symmetry breaking — a crucial

part of the phenomenon under investigation. One can study the critical temperature for

the phase transition [17], find the unstable modes in the linearized spectrum of the normal

homogeneous phase [18], follow the thermodynamic potential of the new symmetry broken

ground state [19], identify the order parameter, thermodynamically preferred value of the

helical pitch in the broken phase and the stiffness (Young modulus) of the spontaneously

generated spatial structure [10]. All these features studied previously in the literature follow

the common physical intuition behind the spontaneous crystallization, therefore it makes

us confident that symmetry breaking pattern we are going to study is not pathological in

any way.

An explicit symmetry breaking can be introduced in exactly the same framework [7]. In

our setup, the explicit source couples to a separate field in the bulk, what makes the distinc-

tion between explicit and spontaneous mechanisms of TSB unambiguous [10]. Importantly

for the present study, unlike linear axions, in the helical model the explicit breaking can be

relevant at the horizon, giving rise to a distinct “anisotropic” horizon geometry [20], which

is algebraically insulating and will be the focus of the present study.

We outline the details of the model and discuss the features of the “explicit” and

“pinned spontaneous” insulating states together with their zero temperature fixed points

in section 2. In section 3 we introduce the conductivity matrix and, in particular, identify

the expression for the incoherent conductivity at finite frequency. We first study the DC

response in section 4. We extract conductivities from the near horizon data, check that the

two classes of solutions are indeed gapless insulating, and match the analytically predicted

low temperature scalings. At finite temperature, we clearly observe that the incoherent

transport dominates in the relevant explicit case while it is subleading in the pinned spon-

1A similar family of models is obtained by giving an explicit mass term to the graviton [24, 25].
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taneous one. Then in section 5 we turn to the AC response. We evaluate it numerically

by solving the linearized equations of motion, and show that the incoherent conductivity

does indeed remove the peak from the AC conductivity. We follow the changes in the

conductivity as the temperature is lowered and match the results with the calculation of

the quasinormal modes. This more detailed analysis shows that the coherent subsystem

remains in the pinned spontaneous insulator even at low temperatures. In section 6 we

analyze the coherent contributions in the two cases by fitting the lineshapes to the hy-

drodynamic predictions and we conclude in section 7. The appendices are devoted to the

details of the numerical scheme we use to obtain background solutions (appendix A), zero

temperature asymtpotic analysis (appendix B), derivation of the DC formulas from near

horizon data (appendix C) and the solution to the linearized equations of motion for AC

conductivities and quasinormal modes (appendix D).

2 Insulating groundstates of the helical model

We study the holographic model in 5-dimensional (xµ = {t, x, y, z, r}) bulk with dynamical

gravity, an Abelian gauge field Aµ, dual to the chemical potential and an auxiliary vector

field Bµ, which will be used to source the explicit translational symmetry breaking. The

action reads

S =

∫
d5x
√
−g
(
R− 2Λ− 1

4
F 2 − 1

4
W 2

)
− γ

6

∫
A ∧ F ∧ F − κ

2

∫
B ∧ F ∧W, (2.1)

where Λ = −6 and F ≡ dA, W ≡ dB — the field strength tensors. We set the mass of the

B field to zero, but this will not play an important role in our results. This model has been

studied in depth in the holographic context. In [17] it has been shown that the model with

κ = 0 in absence of the B field develops a dynamical instability (see figure 2) due to the

Chern-Simons term γ, which breaks the x-translation and (y, z)-rotation symmetries down

to a diagonal subgroup. The endpoint of the instability was studied in [18, 19], where it

was shown that the new groundstate does indeed break the translations spontaneously and

has a Bianchy VII type geometry described in terms of the helical forms

ω
(k)
1 = dx (2.2)

ω
(k)
2 = cos(kx)dy − sin(kx)dz (2.3)

ω
(k)
3 = sin(kx)dy + cos(kx)dz. (2.4)

A different type of solutions has been explored in [7, 20] in the model with γ = 0,

but with finite boundary value of the helical mode of the B-field: B
∣∣
u→0

= λω2. In these

models, translation symmetry is broken explicitly by the external source λ. The momentum

is no longer conserved and therefore at finite charge density these models display finite

resistivity due to momentum dissipation. At finite κ there are two distinct groundstates,

depending on the value of the explicit source and helical pitch k: the metallic phase, with

vanishing resistivity at zero temperature, and the “insulating” phase, defined as the one

with diverging resistivity.
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Figure 1. Background profiles in cases of spontaneous (left) and explicit (right) translation sym-

metry breaking. Solid lines show the cases when the TSB is relevant at the horizon, and we use

dashed for the irrelevant ones. It is clearly seen that in the relevant case the field W1 diverges at

the horizon, while W2 and W3 vanish. In the irrelevant case the Wi are all equal. The parameters

used for the explicit case are: λ = 3µ for relevant, λ = 1µ for irrelevant and T = 0.002µ, p/µ = 1,

κ = 1/
√

2. For spontaneous: λ = 0.05µ, T = 0.005µ, p/µ = 1, γ = 1.7, the irrelevant case is simply

Reissner-Nordström.

More recently in [10] we studied the model with both spontaneous and explicit sym-

metry breaking mechanisms and found that when the Goldstone mode arising due to

spontaneous breaking gets pinned by explicit source, the resulting state becomes again

“insulating” in a similar way: the resistivity grows towards small temperature.

Both types of solutions are captured by the ansatz

ds2 =
1

u2

[
−T (u)f(u)dt2 +

U(u)du2

f(u)
+W1(u)ω2

1 +W2(u)
(
ω2 +Q(u)dt

)2
+W3(u)ω2

3

]
(2.5)

A = At(u)dt+A2(u)ω2, B = Bt(u)dt+B2(u)ω2, (2.6)

where in the pure spontaneous case Bt, B2 = 0 and in the pure explicit case A2, Q = 0. We

keep the system at finite chemical potential by fixing the boundary condition At = µ+O(u2)

near the conformal boundary u = 0. We choose f = (1 − u2)(1 + u2 − u4µ/3), so that

the Reissner-Nordström (RN) solution has the simple form T = U = Wi = 1, Q = 0,

At = µ(1− u2), A2 = Bµ = 0. In the numerical calculations we fix the gauge redundancy

of the ansatz (2.5) by using the DeTurk trick [28–30] (see also appendix A). This implies

that the temperature of the solutions is given by

T

µ
=

6− µ2

6πµ
. (2.7)

In what follows we will measure all the dimensionful quantities in units of µ.

Let us take a closer look at the possible classes of solutions one can get in our

model (2.1). We first start from the case with purely explicit symmetry breaking [7].

Without an explicit symmetry breaking source, the model always admits a translationally

symmetric RN solution. When we turn on a small value of λ, the translations are broken

by the field B2, but the near horizon geometry of the black hole in the IR is not modified

qualitatively. In particular, all the values of Wi metric components are equal (see figure 1).

– 5 –



J
H
E
P
0
5
(
2
0
1
9
)
1
1
9

The deformation introduced by small λ is thus irrelevant and the profile of the B2 field

vanishes at the horizon. These solutions have been studied previously in [20].

However, when we increase the strength of explicit TSB, a (quantum) phase transition

takes place [7]. At some critical value of λ the TSB deformation becomes relevant in the

IR and modifies the near-horizon geometry qualitatively, one observes that the B2 field is

now finite at u = 1 and the geometry becomes anisotropic: W1 field diverges, while W2

and W3 fields vanish on the horizon, see figure 1 (left panel). In most of our examples, the

parameters are

Explicit: κ = 1/
√

2, γ = 0, k/µ = 1, λ = 3µ (2.8)

and the phase transition happens at λ ≈ 2.7µ.

This behavior can be understood analytically by studying the exact T = 0 near horizon

asymptotes of the equations of motion. As it was shown in [7] (as we also revisit in

appendix B), at zero temperature the near horizon behavior of the field profiles is (r ≡
1− u)2

Explicit TSB: W1 ∼W 0
1 r
−2/3, W2 ∼W 0

2 r
4/3, W3 ∼W 0

3 r
2/3 (2.9)

At ∼ A0
t r

5/3, T ∼ T 0r,

B2 ∼ w0 + w1r4/3, A2 = 0, Q = 0.

These scalings match the qualitative behavior of our numerical solutions at small temper-

ature on figure 1 and describe the new IR fixed point which is achieved once the system is

deformed by a relevant explicit translation symmetry breaking potential. As we will show

shortly, this fixed point is insulating : the resistivity diverges at zero temperature.

The other possible class of solutions is driven by the spontaneous translational sym-

metry breaking. This happens in absence of the explicit source λ due to the dynamical

instability induced by the γ CS term in (2.1). At the critical temperature the field A2

develops a nontrivial profile, which breaks translations spontaneously (see figure 2). As

the temperature is lowered this profile backreacts on the geometry and drives the system

to a new ground state. The helical pitch k characterizing this spontaneous solution is fixed

dynamically by the minimum of thermodynamic potential and depends on temperature as

shown on figure 2. Unless otherwise stated, we concentrate on these thermodynamically

stable configurations below. In what follows we will be mostly focusing on the case of γ = 3

with Tc ≈ 0.223µ and kc ≈ 2.18µ.

Similarly to the relevant explicit case, the near horizon geometry in the new state is

modified qualitatively. On the figure 1 (right panel) we see again that W1 field diverges

while W2 and W3 fields vanish. On top of that the off diagonal tω2-component of the metric

Q(u) is now diverging at the horizon. Note that the spontaneous deformation is always

relevant at the horizon, since it is driven by the instability of the homogeneous solution.

Similarly to the relevant explicit case, we can access corresponding zero temperature

groundstate analytically, as we discuss in more details in appendix B. The near horizon

2Note that in order to make connection to the results of [7] one has to substitute Wi = e2vi .

– 6 –



J
H
E
P
0
5
(
2
0
1
9
)
1
1
9

1 2 3 4
k

0.12

0.14

0.16

0.18

0.20

0.22

T

(J2)1/3: spontaneous TSB scale

λ: explicit TSB scale
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Figure 2. Spontaneous translational symmetry breaking. Left: Bell curve of marginal modes for

γ = 3, κ = 0 (blue), showing the temperatures at which the instability with given momentum

k develops in the Reissner-Nordstrom background. This instability drives the spontaneous phase

transition. The endpoint of the transition, the thermodynamically preferred non-linear solution

has the momentum show by the red line. Right: temperature dependence of the order parameter

— the expectation value for the spontaneous helical current J2 as compared with the scale of the

explicit pinning source λ = 0.1µ. In all cases studied henceforth the pinning explicit scale is small

compared to the spontaneous one.

asymptotes of the fields turn out to be very similar, except that the role of B2 is now played

by A2 and there is a nonzero Q component:

Spontanoeus TSB: W1 ∼W 0
1 r
−2/3, W2 ∼W 0

2 r
4/3, W3 ∼W 0

3 r
2/3 (2.10)

At ∼ A0
t r

5/3, T ∼ T 0r,

B2 = 0, A2 ∼ b0 + b1r4/3, Q ∼ Q0r2/3.

In the purely spontaneous phase there is a Goldstone mode in the spectrum associated

with homogeneous shifts along the axis of the helix. It witnesses the underlying translation

symmetry of the action and will mediate the perfect conductance under applied electric

field. In order to provide finite resistivity, we will introduce small source of explicit breaking

λ, which will pin the Goldstone mode and move it to finite energy. As discussed in [10],

this will immediately promote the system to the insulating state, which is in the focus of

our present study. It is worth mentioning that the Goldstone mode introduces a technical

complication in our numerical schemes: as we have checked, we cannot reliably address

solutions with very small λ due to the fact that this light mode allows the numerical scheme

to drift away from the true solution and renders in unstable. Therefore, throughout this

work we will address small, but finite values of explicit pinning λ. As a rule, we use λ

which is much smaller then the spontaneous order parameter see figure 2, right. In most

cases we will present the data for

Pinned spontaneous: λ = 0.1µ, γ = 3, κ = 0, Tc ≈ 0.223µ, kc ≈ 2.18µ. (2.11)

The extra λ source requires a more careful treatment at zero temperature since it turns

on the B2 field in (2.10). We will consider the values of λ which are small enough and do not

drive the system in the relevant explicit TSB fixed point discussed above. However, even

– 7 –



J
H
E
P
0
5
(
2
0
1
9
)
1
1
9

an irrelevant deformation of the B2 field near horizon may play an important role, since in

this case it is compared to zero, e.g., it is a so called dangerously irrelevant deformation. It

can be analyzed using the zero temperature linearized equations of motion, see appendix B.

We find that it has the form3

δB2 ∼ δB0
2r
α, δBt = δB0

2

12
√

3κ√
1 + 120κ2 − 1

rα+
1
3

W 0
2

, α =
1

6

(√
1 + 120κ2 − 1

)
. (2.12)

Even though this mode will not play a crucial role in the subsequent discussion, we will

show in the next section why it is important to be aware of its existence.

3 Holographic conductivities

The central object of the present study is the conductivity of the two “insulating” ground

states described above. We will only focus on the conductivities along the helix director,

since this is the direction in which the translational symmetry is broken. In the linear

response approximation, we turn on an electric field (Ex) and temperature gradient (∇xT )

in the dual boundary theory and read off the induced expectation values for the electric

current Jx and heat current Qx, obtaining therefore the full matrix of thermoelectric con-

ductivities. In the bulk, these values correspond to the near boundary asymptotes of the

gauge field Ax and off-diagonal component of the metric gtx, which one can write down as4

δgtx = δg
(0)
tx + u2δg

(2)
tx + u4δg

(4)
tx + . . . (3.1)

δAx = δA(0)
x + u2δA(2)

x + . . . (3.2)

As it is discussed in [33], the leading branches of the solutions δA
(0)
x and δg

(0)
tx correspond

to the sources, while the expectation values of dual operators Jx and Qx are encoded in

the subleading components δA
(2)
x and δg

(4)
tx , see eq. (D.7), (D.8). The precise relation for

the sources reads (
〈Jx〉
〈Qx〉

)
=

(
σ Tα

T ᾱ T κ̄

)(
iω(δA

(0)
x + µδg

(0)
tx )

iωδg
(0)
tx

)
. (3.3)

At the end of the day, in order to study the full conductivity matrix we solve the

linearized equations of motion with the sources δA
(0)
x and δg

(0)
tx and read off the asymptotes

of the solutions, the details are provided in appendix D. As discussed in [34], the presence

of spontaneous magnetic currents, encoded in the A2 field, introduces subtleties in the

definition of the thermoelectric conductivities. However, these magnetic terms do not

contribute to the conductivities along the helix director, as it trivially follows from their

symmetry properties.

A central role in our study is played by a specific linear combination of the thermoelec-

tric conductivities — the so-called incoherent conductivity σinc introduced in [13, 14, 35–37]

in the hydrodynamic approximation, addressed in spontaneous setups in [38–40] and further

3Note that the definition of α differs here from that of [7], where the analogous value is 2/3 + δ,

δ = (
√

1 + 120κ2 − 5)/6.
4Note that here we omit some logarithmic terms which are present due to the conformal anomaly, [31, 32].
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studied at finite frequency in [41]. This quantity describes the propagation of the inco-

herent current — a combination of heat and electric currents, which has no overlap with

momentum. As such, it is insensitive to the physics of momentum conservation/dissipation

and σinc is finite even in the absence of explicit TSB, when the momentum is conserved

and all other conductivities diverge at zero frequency.

The frequency dependent definition of [41] yields

σinc(ω) =
1

(ε+ p)2
[(ε+ p− µρ)2σ(ω)− 2(ε+ p− µρ)ρTα(ω) + ρ2T κ̄(ω)], (3.4)

where ε is the energy density, p the pressure, s is the entropy density, T the temperature,

ρ the charge density, and σ, α and κ̄ the components of the conductivity matrix (3.3). The

overall normalization5 was chosen so that σ(ω)|ω→0 = σinc(ω)+ρ2/(ε+p) · iω−1 in the case

without explicit TSB. We will further discuss the features of σinc in the finite frequency

domain in section 5.

4 DC response

Let us first focus on the DC response. As we discuss in more detail in appendix C, the DC

conductivities can be calculated using the powerful formalism developed in [12, 34, 41–44].

It allows one to avoid solving the linearized equations and obtain the conductivities given

only by the near horizon asymptotics of the background solutions.

Using the expressions for the conductivities in terms of horizon data (C.18) we can

follow their dependence with temperature substituting the numerical backgrounds of the

two classes described in section 2. As far as we consider the backgrounds with finite source

for explicit symmetry breaking λ, all the DC conductivity coefficients are finite and we can

simply evaluate their combination (3.4) and obtain the incoherent conductivity.

We show our results for the temperature dependence of the DC electric and incoherent

conductivities in figure 3. In the pinned spontaneous case (left panel) one can immediately

see the steep drop of the conductivity at the phase transition temperature, where the

spontaneous order is formed and gets immediately pinned. This metal-insulator transition

we studied previously in [1, 10] and will discuss it in more detail in section 6. In the purely

explicit case (right panel) the phase transition is absent since there is no spontaneous

order parameter. At low temperatures for both pinned spontaneous and relevant explicit

cases, we observe that σDC is an increasing function of T , showing the “strange” gapless

insulating behavior.

Using (2.9) and (2.10), we are actually able to study this insulating regime analytically

in the limit of small temperature. As we discuss in more detail in appendix B, the horizon

values for the fields in this case can be obtained from the zero temperature solution by

evaluating it at finite distance from the horizon r → rh ∼ T . When we substitute these

expressions into the horizon formula for DC electric conductivity (C.18) we obtain:

Relevant explicit: σDC =

√
W 0

2W
0
3

W 0
1

(w0)2

(w0)2 + (b0)2
T 4/3 +O(T 8/3). (4.1)

5We use a notation which slightly differs from [41], since σinc|here = (ε+ p)−2σinc|there.

– 9 –



J
H
E
P
0
5
(
2
0
1
9
)
1
1
9

Figure 3. Optical (blue) and incoherent (yellow) DC conductivities as a function of temperature for

pinned spontaneous (left) and explicit (right) holographic insulators. For the pinned spontaneous

case we take the thermodynamically preferred purely spontaneous solutions and place them on a

lattice with λ = 0.1µ (2.11). In the explicit case we take λ = 3µ, k/µ = 1 (2.8). Both plots are

shown in log-log scale. It is apparent that unlike in the explicit case, in the spontaneous case the

incoherent conductivity only brings subleading contribution.

The leading term is finite for the relevant explicit fixed point. Therefore we expect that the

conductivity in this case will behave as T 4/3 at low temperature. The pinned spontaneous

case is different: in this fixed point w0 = 0 and the leading term vanishes, therefore we get

Pinned spontaneous: σDC =
W 0

2

(b0)2

√
W 0

2W
0
3

W 0
1

T 8/3 +O(T 11/3) (4.2)

and we expect the scaling of the conductivity at low temperature to be T 8/3. However,

as we discussed earlier, when the leading term vanishes one has to pay a special attention

to potentially dangerous irrelevant deformations introduced by small λ. Indeed, according

to (2.12) the pinning brings a small finite contribution w0 ∼ Tα and this produces an

additional term in the conductivity of the order

δλσDC = δλ T 4/3+2α, α =
1

6

(√
1 + 120κ2 − 1

)
. (4.3)

When α < 2/3, or κ < 1/
√

5, this term will define the leading scaling of the conductivity

at T → 0. In practice however, this dominant behavior can only be seen at extremely low

temperatures, since it competes with the smallness of λ. As we show below, at reasonably

finite λ all our considered pinned spontaneous solutions tend to display scaling close to

8/3, as expected from the leading order expression (4.2).

We can match these analytic predictions with our numerical data at small tempera-

tures. In order to do so more precisely, we plot the logarithmic derivative of the DC electric

conductivity versus temperature on figure 4. For a pure power law the logarithmic deriva-

tive is a constant. On the plots, however, we see that its value changes in the region of

temperatures which we consider, meaning that our numerical solutions are not cool enough

to actually enter the zero temperature scaling limit. However we clearly see that the series

we plot do extrapolate to the analytically computed values of 8/3 for pinned spontaneous

case and 4/3 for relevant explicit case. We also observe that at larger λ the scaling in the
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Figure 4. Low temperature scaling of DC electric conductivity. The logarithmic derivative shows

how close the data is to a pure power law. Left panel: pinned spontaneous states with p/µ = 1,

γ = 3, κ = 0 and a range of λ. The states with small explicit source λ clearly asymptote to an

analytic value 8/3, (4.2) at low temperatures. As λ grows the irrelevant deformation (4.3) starts

playing the leading role and the low temperature scaling changes. Right panel: relevant explicit

case with p/µ = 1, κ = 1/
√

2 and a range of λ. All the states tend to the same asymptotic scaling

4/3, predicted analytically at small temperature (4.1).

spontaneous case gets reduced due to the irrelevant deformation (4.3). This shows that the

families of solutions which we consider do indeed correspond to the two distinct classes of

IR fixed points, which we studied analytically at zero temperature and, importantly, these

two fixed points yield very different scalings of the DC conductivity.

Another interesting difference between the two classes of holographic strange insula-

tors becomes apparent when we compare the DC electric conductivity with DC incoherent

conductivity, shown as yellow line on figure 3. On the plot for the relevant explicit case

(right panel) we see that at low temperatures T . 0.3µ the electric conductivity is com-

pletely determined by its incoherent part. This behavior is easy to understand: in this

case the explicit translation symmetry breaking is relevant in IR and it gets stronger at

lower temperatures. Therefore the momentum dissipation rate becomes large. This would

lead to a strong suppression of the conductivity if it were completely governed by momen-

tum conservation, but this does not apply to the incoherent part of the conductivity. The

latter is insensitive to the translation symmetry breaking and therefore it dominates the

transport in the regimes where the coherent contribution is suppressed.

The situation is very different in the pinned spontaneous case, figure 3 (left panel).

Here we observe that σDC � [σinc]DC for all T . This is surprising since in this case one

would expect the coherent contribution due to the Goldstone mode to be gapped by the

pinning and therefore be moved to finite frequencies. In this regard the situation would

be similar to the explicit case: the coherent contribution is removed, therefore the only

remaining part should be governed by the incoherent conductivity. However, as we can

see, this logic does not apply since the incoherent conductivity only accounts for a small

fraction of the total transport. Below we will uncover the origin of this mismatch, by

studying the full frequency dependent profiles of the AC conductivity.
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Figure 5. AC optical and incoherent conductivities for the explicit insulator (2.8) at selected values

of the temperature. We show the optical conductivity with a solid line, and the incoherent one with

a dashed line. The left panel zooms into the low frequency range, while the right panel show the

high frequency results.

5 AC conductivity

In order to better understand the physics behind the two classes of hologrpahic strange

insulators, we study the AC conductivity in the finite frequency domain. For this task

we have to solve the linearized equations of motion for time-dependent perturbations as

discussed in section 3, see also appendix D. We will also get additional information by

studying the quasinormal modes, which describe the spectrum of linearized perturbations,

see appendix D. The formula for the incoherent conductivity (3.4) allows us to evaluate it

at finite frequency, which will be crucial for our studies. It should be noted that in [41]

this formula was derived with the assumption that translational symmetry is not broken

explicitly. Therefore, it is not exactly applicable in the cases with finite explicit TSB source

λ which we study. Nonetheless, as we will see below, (3.4) gives very good results at small

λ and works reasonably well in the case of the explicit relevant insulator with larger λ.

We have numerically extracted the optical and incoherent conductivities as explained

in section 3, see figure 7 for the results. We have checked that the small frequency limit is in

excellent agreement with the DC values obtained from the horizon formulae, see figure 15

in appendix C for the exact comparison.

Let us first focus on the explicit relevant case. At high temperature, the relevant

TSB has the weakest effect and a sharp peak is seen on the AC conductivity plot shown

on figure 5. The peak corresponds to a momentum-mediated transport, and it has small

width due to weak momentum dissipation. The dashed line on the same plot corresponds

to the incoherent AC conductivity. Its remarkable feature is that it coincides with electric

conductivity everywhere at higher frequencies, but precisely “cuts off” the pole at low

frequency. This behavior follows from the very definition of incoherent transport: it is

orthogonal to momentum therefore it completely neglects the momentum contribution. We

will analyze this in more detail in the next section, where we will see that the difference

between the optical and incoherent contributions indeed corresponds to a Drude peak at

hight temperatures.
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Figure 6. Four lowest QNMs for the explicit case (2.8) with varying temperature. The green

and blue dots show the coherent modes corresponding to (approximate) momentum conservation.

These would be the two sound modes in the translationally invariant case, which turn into two

diffusive modes in presence of momentum relaxation. The red and yellow dots are incoherent, non-

hydrodynamic modes. The left panel shows the motion of these modes in the complex plane, the

arrows pointing towards lower temperatures. We observe two collisions on the imaginary axis as the

temperature is lowered. After the collision the modes acquire a non-zero real part and the coherent

modes can no longer be identified. We show the imaginary parts of these modes as a function of

temperature on the right panel.

Figure 7. AC optical and incoherent conductivities for the pinned spontaneous insulator (2.11)

at selected values of the temperature. We show the optical values with dots, and the incoherent

with a dashed line. The left panel zooms into the low frequency range, while the right panel show

the high frequency results, one can see the right shoulders of the coherent peaks shown on the left

panel, which arise in the low frequency region in the optical conductivity.

As the temperature is lowered, the TSB becomes stronger, momentum dissipates faster

and the peak gets broader. At some point at low temperature one cannot discern the peak

shape anymore and the electric conductivity coincides with the incoherent one everywhere

in the frequency domain. This corresponds to the temperature T ∼ 0.3 as seen on the DC

conductivity plot, figure 3, where the electric conductivity gets completely accounted for

by the incoherent part.

This transition can be very well understood by looking at the behavior of QNMs, shown

on figure 6. At high temperature one observes an isolated purely imaginary quasinormal

mode very close to the real axis. This corresponds to a weakly dissipating momentum and
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gives rise to a sharp peak in the AC conductivity plot. These low lying modes can be

accounted very well by the hydrodynamics [45, 46]. As long as momentum is an (almost)

conserved quantum number, one can treat them hydrodynamically and obtain the late

time dynamics of the system, corresponding to the quasinormal mode with small imagi-

nary part. Importantly, there are other quasinormal modes in the spectrum, which cannot

be accounted for by hydrodynamics and which lie further from the real axis (shown in

red/yellow on figure 6). These are ubiquitous in holography and have been studied previ-

ously at length [47–50]. Importantly for us, since they are not accounted for by hydrody-

namics, they do not correspond to the physics of momentum conservation and therefore,

collectively, describe the incoherent part of transport.

As the temperature is lowered, the momentum dissipation mode moves further down in

the complex ω plane, and consequently the peak getting broader. At some point it gets so

deep into the lower imaginary half plain that it meets with one of the lower lying “incoher-

ent” QNMs and recombines, as seen on figure 6. At this temperature, the hydrodynamic

mode and the corresponding peak can no longer be identified, i.e., transport becomes fully

incoherent. This constitutes the first main result of our study: the holographic insulating

state arising from the relevant explicit translation symmetry breaking is fully characterized

by the incoherent conductivity.

Next we turn to the pinned spontaneous state. Its AC conductivity is shown on the left

panel of figure 7. One can start, again, at high temperature, when the sharp Drude peak is

seen. It is much sharper then that of the explicit relevant case since the value of λ, which

controls its width, is much larger in the latter. As we lower the temperature we hit the

phase transition, where the spontaneous helical structure is formed in the profile of field A2.

In the pure case without explicit symmetry breaking, the arising gapless Goldstone mode

would account for the full spectral weight corresponding to momentum-mediated transport

— the delta function in AC response. In the pinned case, however, the Goldstone mode gets

immediately gapped and drives all this spectral weight to the finite “pinning” frequency

ω0. This mechanism was discussed in detail in [2, 3, 10] and it is responsible for a dramatic

drop of DC conductivity at critical temperature. As the temperature is further lowered, the

pinning frequency grows and the peak corresponding to the momentum-mediated, coherent,

transport is moved to higher energies. Looking at the profile of the incoherent conductivity

we see that it accurately removes the peak and at the same time matches well with the

higher frequency incoherent tails of the plot. This matching at high frequencies provides

a nontrivial check to our treatment of the incoherent conductivity. Note also that, in

agreement with the horizon calculation of section 4, the zero frequency limits of electric

and incoherent conductivities differ by an order of magnitude.

We can again obtain more insight by studying the quasinormal modes. The results for

pinned spontaneous case are shown on figure 8. We see that at the critical temperature

the hydrodynamic quasinormal mode, responsible for the Drude peak, acquires a real part,

the pinning frequency, and moves off the imaginary axis. Contrary to the relevant explicit

case, discussed above, as the temperature is further lowered the mode gets closer to the

real axis and is never dissolved in the swarm of lower lying incoherent QNMs. This shows

the crucial difference between the pinned spontaneous and relevant explicit hologrpahic
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Figure 8. First QNM for the pinned spontaneous case (2.11) with varying temperature. The

left panel shows the motion of the QNM in the complex plane, the arrow pointing towards lower

temperatures as T/Tc changes from 1 to 0.63, same range as figure 7. The right panel shows both

real and imaginary parts as a function of temperature, with the corresponding scales given on the

left and right vertical axes. As the temperature is lowered, the QNM comes closer to the real axis

and the coherent contribution to the transport never disappears.

insulators: in the pinned spontaneous case, the coherent momentum-mediated transport is

always seen in the spectrum. As we will see below this is the reason why the incoherent

conductivity does not fully account for the transport in this case.

6 Coherent transport

As we explained above, we have identified some situations in which transport is mediated

by a hydrodynamic mode which is excluded in the incoherent conductivity. In this section

we will focus specifically on this contribution, therefore it will be convenient to consider

the difference

σcoherent(ω) := σ(ω)− σinc(ω). (6.1)

Importantly, as we noticed in the previous section, σinc(ω) fits the high frequency tails

of the electric conductivity very well, so the coherent conductivity defined via (6.1), has

an isolated peak as its only feature and vanishes at larger ω. We show the data for the

coherent conductivity in figure 9.

In the case of the explicit insulator, we expect transport to be coherent at high tem-

peratures, where there is a mode that lies near the origin which is well separated from the

rest of the excitations. We observe that the coherent conductivity can be adequately fitted

to the Drude formula

σDrude(ω) =
σDC

1− iωτ
(6.2)

at hight temperatures. Indeed, extracting τ by fitting to the AC coherent conductivity,

we find that there is good agreement with the characteristic time given by the imaginary

part of the lowest lying QNM. We show this comparison in figure 10. Upon lowering the

temperature, the peak becomes broader and approximation to the Drude formula worsens,

until we reach the fully incoherent regime.
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Figure 9. Coherent conductivity for the pinned spontaneous (2.11) (left) and explicit (2.8) (right)

cases as a function of frequency. We show the numerical results as data points and corresponding

fits to the models (6.2), (6.3) with solid lines.

τDrude

τQNM

0.8 1.0 1.2 1.4 1.6 1.8 2.0
T

0.05

0.10

0.15

0.20

τ

Figure 10. Characteristic times extracted from a fit of the coherent conductivity to the Drude

formula (6.2) (blue), and from the imaginary part of the lowest lying QNM (yellow), as a function

of temperature for the explicit insulator (2.8).

Let us now turn to the pinned spontaneous holographic insulator, where the coherent

contribution largely dominates at all temperatures. The physics of this metal-insulator

transition, which happens upon condensation of the spontaneous TSB order parameter

can be well understood as a Goldstone mode acquiring a gap. This mechanism is captured

by hydrodynamic approximation, as it has been shown recently on [2, 3]. It is actually

expected from our study above: the corresponding quasinormal mode always lyes close to

the real axis and therefore should be treatable by hydrodynamics.

Based on the treatment of [2, 3] we can introduce the phenomenological model for the

electric conductivity in the pinned Goldstone case, whose coherent part is simply

σcoherent(ω) = A0
Ω̃− iω

(Γ− iω)(Ω̃− iω) + ω2
0

, A0 =
ρ2

µρ+ sT
. (6.3)

Here A0 = ρ2/(µρ+ sT ) equals the static momentum susceptibility χPP , ω0 is the pinning

frequency — the gap introduced in the spectrum of pseudo-Goldstone by the explicit TSB

source, Γ — the momentum relaxation rate. The Ω̃ parameter has been associated in [3]

with the phase relaxation rate (denoted Ω), which can be included in the Josephson relation

for the Goldstone mode. We intentionally use a tilde for this coefficient since its precise

physical interpretation will not be important for us: we only use (6.3) as a phenomenological

– 16 –



J
H
E
P
0
5
(
2
0
1
9
)
1
1
9

model to fit our results. Moreover, as we will discuss below, the phase relaxation rate may

not be the dominant physical effect setting the value of Ω̃.

It has already been shown in our previous work [10], that the model (6.3) describes

the AC conductivity across the spontaneous phase transition very well. It was found

in particular that the parameters near the phase transition behave as ω0 ∼ λ〈J〉 and

Γ ∼ λ2, where 〈J〉 is the spontaneous helical current — the order parameter of TSB, see

figure 2. Here we extend this analysis to lower temperatures and focus in particular on

the contribution to the DC conductivity, and the role of the parameter Ω̃, which was not

considered in [10].

Since we have access to the full frequency dependent incoherent conductivity, we can

exclude it from the data and extract the parameters of the model (6.3) very precisely by

fitting the coherent part of the conductivity (6.1). We find that the model describes our

AC data very well (see figure 9), see figure 11 for the dependence of the fit parameters as

a function of temperature. We can also extract ω0 and Γ from the position of the leading

quasinormal mode (see figure 8) and these are in agreement with ones obtained from the

AC fit up to less than 1%. In addition, we have computed σ(−iw) for real w, which allows

us to easily extract Ω̃ as σ(−iΩ̃)coherent = 0. Again, we find better than 1% agreement

between this calculation and the fits for σ(ω). Moreover, we have checked that the Onsager

relation at finite frequency α(ω) = ᾱ(ω) is satisfied within good accuracy.

The result of all this precise analysis is the surprising finding that although numerically

quite small, the parameter Ω̃ is clearly nonzero for all the data sets which we have analyzed.

One would be surprised by that since our ansatz (2.5) clearly cannot take into account the

dynamical topological defects, responsible for the phase relaxation rate as suggested in [3].

However, our data shows unambiguously that Ω̃ is indeed. We see this not only in the AC

conductivity fits, but also in the DC conductivity plots, as we discuss below.

We have seen in the previous section that the incoherent DC conductivity in the pinned

spontaneous case is orders of magnitude smaller than the electric DC value. Given our

discussion above, it is clear that the coherent part is responsible for this large difference.

More concretely, note that at zero frequency the ansatz (6.3) leads to

σDC = [σinc]DC +A0
Ω̃

ΓΩ̃ + ω2
0

(6.4)

We see here that in order to get σDC � [σinc]DC, it is crucial to have Ω̃ 6= 0. This

large coherent contribution might seem surprising since in the data shown in figure 11,

we observe that Ω̃ is one order of magnitude smaller than Γ and two orders of magnitude

smaller than ω0. However, considering the structure of (6.4) in more detail, we note that

the difference (σDC − [σinc]DC) is controlled by the ratio Ω̃/ω2
0, which is of order 1.

Because of the importance of this effect, and given the large scale separation between

the relevant physical parameters, we have performed a more detailed analysis of the pa-

rameter Ω̃. It is very instructive to uncover the effect of the explicit symmetry breaking on

the full electric conductivity of the pinned spontaneous insulator and on Ω̃ in particular.

For this purpose we studied a series of solutions as a function of λ at fixed temperature,

– 17 –



J
H
E
P
0
5
(
2
0
1
9
)
1
1
9

Figure 11. Fitting parameters of the model (6.3) for pinned CDW, describing the pinned spon-

taneous data (2.11) as a function of T . The data points denote the fit parameters extracted from

σ(ω), while the solid lines represent different cross-checks. In the case of Γ, ω0 and Ω̃ these are

the computation of the QNMs combined with the extraction of σ(−iw). The solid line in A0 was

obtained from the thermodynamical quantities on the right hand side of (6.3).

keeping therefore the spontaneous order parameter the same. The behavior of the con-

ductivities as a function of λ is shown on figure 12. As expected on general grounds, the

incoherent conductivity is largely insensitive to the strength of explicit symmetry break-

ing, which controls the momentum relaxation rate. However it is quite surprising that the

full electric conductivity, which is mostly controlled by the momentum sensitive coherent

part, behaves in a similar way. Firstly, one expects the electric conductivity to diverge at

λ = 0, since in this limit momentum is conserved and the transport is ballistic. Secondly,

considering (6.4), taking into account that Γ ∼ λ2 and ω0 ∼ λ [10], and assuming constant

Ω̃, one would expect σDC to diverge as 1/λ2. However this is not the case: σDC behaves as

a constant at small λ.

The more precise analysis of the DC and AC data at different λ, presented on fig-

ure 13 points towards the resolution. One clearly discerns that the fitting parameter Ω̃ is

proportional to λ2. This behavior is robust and is observed at all temperatures as shown

on figure 14. This finding is the second major result of our study: The resistivity of the

pinned spontaneous holographic strange insulator is mostly controlled by coherent contri-

bution, which is nonzero due to finite parameter Ω̃ in (6.3). The latter, however, is of the

different physical origin then the phase relaxation rate due to topological defects consid-

ered in [2, 3]. It vanishes at λ = 0 and therefore cannot be attributed to the features of

the pure spontaneous superstructure, as it would be the case for the moving topological

defects, suggested in [3].

One possible explanation of the behavior which we observe comes from the recent

work [51]. Following [2, 3], the authors take into account the extra hydrodynamical co-
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Figure 12. DC conductivity (circles) and incoherent conductivity (squares) in the pinned sponta-

neous case (2.11) as a function of λ for selected temperatures. We join the data points with a solid

and dashed line, respectively, to guide the eye.

efficient γ1 which enters the Josephson relation and modifies the expression for the AC

conductivity as6

σ(ω) = σ0 +
A0(Ω− iω) + γ1ω

2
0B0

(Γ− iω)(Ω− iω) + ω2
0

, A0 =
ρ2

µρ+ sT
, B0 = 2ρ (6.5)

In our case, the measured small values of Ω̃ (figures 11, 13) are such that Ω̃ can safely be

neglected in the denominator of (6.3) as compared to the Γ and ω0 scales. Therefore, by

comparing (6.5) with (6.3), we learn that in our setup the parameter γ1 effectively adds an

extra contribution to Ω̃:

Ω̃ = Ω + ω2
0γ1. (6.6)

The coefficient γ1 has been neglected in [2, 3] and has been also found to be negligible

in [51]. However in our case it appears to be playing an important role, since it naturally

explains the observed λ2 scaling of Ω̃ (recall ω0 ∼ λ). Assuming that Ω does not depend on

λ it can be seen immediately from the fits of figure 14 that γ1 gives the leading contribution

to Ω̃. The presence a non-vanishing γ1 deserves a deeper study, since it may indeed play

a significant role in the conductivity of the pinned spontaneous insulator, and we plan to

address it elsewhere.

7 Conclusions

In this work we study in detail the different gapless insulating states which one can en-

counter in holographic models. One class features explicit translation symmetry breaking,

which is relevant in the IR and is the holographic counterpart of the conventional band

insulator. The other class arises due to weak pining of spontaneous translational symmetry

breaking and can be associated with the Mott insulators. We focus in particular on the

physical mechanisms which govern the transport in these two classes.

6It is worth mentioning, however, that in [51] the contribution from γ1 turned out to be negligible, which

may not be the case in our model.
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Figure 13. Fitting parameters of the model (6.3) for pinned CDW, describing the pinned spon-

taneous data (2.11) as function of λ. The data points denote the fit parameters extracted from

σ(ω), while the solid lines represent different cross-checks. In the case of Γ, ω0 and Ω these are

the computation of the QNMs combined with the extraction of σ(−iw). The solid line in A0 was

obtained from the thermodynamical quantities on the right hand side of (6.3).

Figure 14. Phase relaxation Ω as a function of the explicit breaking parameter λ. The solid lines

are fits to the data of the form Ω = a+ bλc, for which we obtain a ∼ 10−8, b ∈ (1 · 10−3, 1.8 · 10−3),

c = 2± 10−4.

We use the powerful technical tool developed recently in [41], which allows us to

evaluate the incoherent conductivity at all frequencies and therefore to explore precisely

the lineshapes of the AC conductivities in different classes of insulators.

We find that in the case of the explicit relevant insulator, the conductivity is com-

pletely determined by its incoherent part and the momentum mediated coherent transport

is suppressed at low temperatures. Said differently, the incoherent conductivity cannot be

understood in terms of the hydrodynamic low lying quasinormal modes. Instead it is set

by the scaling features of the near horizon IR geometry.
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On the other hand we show that the conductivity in the pinned spontaneous hologr-

pahic insulator is mediated by very different mechanism. In fact, we find that the incoherent

conductivity only accounts for a small fraction of the total transport. Instead the leading

contribution to the DC transport is coming from the shoulder of the gapped momentum

transport peak. This is finite due to the nonzero coefficient Ω̃, which was originally associ-

ated with the phase relaxation rate due to topological defects in [3]. However our finding

demonstrates that the physical nature of this coefficient is different from the motion of

topological defects in the spontaneous structure, suggested in [3]. More concretely, we find

that it is proportional to the strength of the explicit pinning potential squared and there-

fore cannot be attributed to the features of pure spontaneous order parameter. The higher

derivative hydrodynamic coefficient γ1, considered recently in [51], can provide a more nat-

ural physical explanation to our results instead. However, within our current framework

we cannot unambiguously isolate its value since we only measure its combination with the

phase relaxation rate (6.6).

Another explanation to the observed phenomenon may come from other mechanisms

of phase relaxation, which may arise due to the explicit breaking of translations. The com-

mensurate lock in and the creation of discommensurations [1, 52] can destroy the space

coherence of the spontaneous order parameter, resulting in the similar relaxation terms

in the Josephson relation. The more precise study of γ1 and its independent evaluation

from the different observables will help to separate its contribution from the other po-

tential mechanisms and will shed light on the nature of coherent transport in the pinned

spontaneous holographic strange insulators.
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A Numerical background solutions

We construct all solutions numerically following [10]. In particular we use the DeTurk trick

to fix the gauge symmetry of the metric ansatz, and solve the resulting non-linear equations

by a Newton-Raphson procedure. In all our calculations, we have used a homogeneous grid

of 80 points in the radial direction. The near boundary asymptotics of the background

fields read

U = 1 + u2U (2) + u4U (4) + u4 log uŨ (4) + . . . (A.1)

T = 1 + u2T (2) + u4T (4) + u4 log uT̃ (4) + . . . (A.2)

Wi = W
(0)
i + u2W

(2)
i + u4W

(4)
i + u4 log uW̃

(4)
i + . . . (A.3)

Q = u4Q(4) + u4 log uQ̃(4) . . . (A.4)

At = µ+ u2A
(2)
t + u2 log uÃ

(2)
t + . . . (A.5)

A2 = u2A
(2)
2 + u2 log uÃ

(2)
2 + . . . (A.6)

Bt = u2B
(2)
t + u2 log uB̃

(2)
t (A.7)

B2 = λ+ u2B
(2)
2 + u2 log uB̃

(2)
2 + . . . (A.8)

The near horizon asymptotics are given by

U = U
(0)
H + (1− u)U

(1)
H + . . . (A.9)

T = T
(0)
H + (1− u)T

(1)
H + . . . (A.10)

Wi = W
(0)
i,H + (1− u)W

(1)
i,H + . . . (A.11)

Q = (1− u)[Q
(0)
H + (1− u)Q

(1)
H ] + . . . (A.12)

At = (1− u)[A
(0)
t,H + (1− u)A

(1)
t,H ] + . . . (A.13)

A2 = A
(0)
2,H + (1− u)A

(1)
2,H + . . . (A.14)

Bt = (1− u)[B
(0)
t,H + (1− u)B

(1)
t,H ] + . . . (A.15)

B2 = B
(0)
2,H + (1− u)B

(1)
2,H + . . . (A.16)

B Zero temperature analysis

The behavior of the background profiles near horizon at zero temperature can by analyzed

by studying the near horizon expansion of the equations of motion following from (2.1),

what we do in complete analogy to the treatment of [7]. At zero temperature the horizon

of the black hole gets critical and the gtt component of the metric develops a double zero.

Therefore instead of (A.9) we use an ansatz with U
(0)
H → 0. We assume the arbitrary

leading exponents in the behavior of the other fields

W1 ∼W 0
1 r

αW1 , W2 ∼W 0
2 r

αW2 , W3 ∼W 0
3 r

αW3 (B.1)

At ∼ A0
t r
αAt , A2 = b0 + b1rαA2 ,

B2 ∼ w0 + w1rαB2 , Q = Q0rαQ ,
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and obtain the powers α from the consistency conditions of the leading order near horizon

expansions for the equations of motion. This procedure gives several solutions correspond-

ing to different zero temperature ground states, including (2.9) and (2.10).

The irrelevant deformations of this near horizon expansion can be obtained by the

analysis of the linearized perturbations around the ground state solutions. Similarly to

the background we assume the arbitrary exponents of the leading power law expansions

for the linearized perturbations and these powers are obtained by solving the consistency

condition of the linear system resulting from the near horizon expansion of the equations

for perturbations. We find the spectrum of deformation exactly analogous to [7]. In the

spontaneous case we find an additional mode due to weak pinning (2.12). We checked that

the irrelevant deformation modes never acquire the imaginary powers and therefore the

ground states which we discuss are stable IR fixed points.

One of the marginal deformations is particularly important since it accounts to moving

away from the zero temperature state. This is the deformation of U -field of order 1 at the

horizon. One can check that it is equivalent to the shift in coordinate r applied to all the

field profiles. Therefore the expressions for infinitesimal temperature (4.1) and (4.2) can

be obtained by evaluating the zero temperature profiles at the distance r ∼ T from the

critical horizon.

C DC conductivities from near horizon data

Following [12, 34, 42–44], we can find expressions for the DC limit of the thermoelectric

conductivities. The first step is to identify the bulk radially conserved currents that yield

the boundary currents when pulled back to the boundary. As we have already mentioned,

there are no extra contributions due to the magnetization currents, which largely simplifies

our analysis.

The electric current easily follows from the equation of motion for the gauge field A,

which we can write as

∂µH
µν = 0 (C.1)

where

Hµν = Fµν − γ

4
εµναβγAαFβγ + κεµναβγBαWβγ (C.2)

This allows us to define the boundary current

J i =
√
−gHui (C.3)

It is straightforward to check that the linearized current δJx defined as the variation of (C.3)

satisfies ∂uδJ
x = 0 as a consequence of the linearized equations of motion. As we shall see

below, this corresponds precisely to the boundary current when evaluated at u = 0, so it

is indeed the quantity we are after.

In order to construct the heat current, we consider

Gµν = 2∇[µkν] − 2

3
k[µF ν]ρAρ −

2

3
k[µW ν]ρBρ −AtHµν −BtH̃µν (C.4)
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where

H̃µν = Wµν + 2κεµναβγAαWβγ (C.5)

and k = ∂t. Following the calculations in [12, 34, 42–44], we can show that in general, this

quantity leads to a conserved current,

Qi =
√
−gGui (C.6)

Indeed, it is straightforward to verify that ∂uδQ
x = 0 by virtue of the linearized equations

of motion. The pull-back of Qx at the boundary leads to the desired boundary operator,

as we shall see below.

The next step is to consider a set of perturbations with a particular linear in time

dependence which allows us to introduce DC sources in a convenient way. This can be

found in [34], and for the present case reduce to

δ(ds2) = 2[(δgu1du+ δgt1dt)ω1 + (δgu3du+ δgt3dt)ω3 + (δg12ω1 + δg23ω3)ω2]

+ 2tζω1(gttdt+ gt2ω2) (C.7)

δA = δA1ω1 + δA3ω3 + t(−E +Atζ) (C.8)

δB = δB1ω1 + δB3ω3 + tBtζ (C.9)

where E and ζ are constant, while all the other unknowns are functions of the radial

coordinate. As argued in [34], this corresponds to a particular diffeomorphism plus a U(1)

gauge transformation, guaranteeing that the time dependence drops out of the equations

of motion, as we have explicitly checked. When evaluated at the boundary, the perturbed

radial currents δJx, δQx reduce to the expressions for the dual operators (D.7), (D.8).

Therefore, using the fact that ∂uδJ
x = ∂uδQ

x = 0, we can obtain expressions for the

currents in terms of the sources Ex, ζx, and the horizon data. These can be written in

terms of the coefficients of the near horizon expansions (A.9)–(A.16), as

δJx = (−detgH)−1/2W
(0)
2,H [U

(0)
H W

(0)
3,HE −A

(0)
t,HW

(0)
3,Hδg

(0)
t1 − kU

(0)
H A

(0)
t,Hδg

(0)
t3 ] (C.10)

δQx = −(4πT )(−detgH)−1/2U
(0)
H W

(0)
2,HW

(0)
3,Hδg

(0)
t1 (C.11)

where (−detgH) = U
(0)
H T

(0)
H W

(0)
1,HW

(0)
2,HW

(0)
3,H The linearized pieces of horizon data δg

(0)
t1 ,

δg
(0)
t3 can be eliminated from (C.10), (C.11) using the constraint equations evaluated at the

horizon. Evaluating the constraint equations at the horizon, we obtain the relations,

−(4πT )ζ −
A

(0)
t,H

T
(0)
H

E + C1δg
(0)
t1 + C2δg

(0)
t3 = 0 (C.12)

B
(0)
t,H

W
(0)
1,H

E + C3δg
(0)
t1 + C4δg

(0)
t3 = 0 (C.13)
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Figure 15. Percentage difference between DC calculation from horizon data and AC calculation at

ω = 10−8. (Left): pinned spontaneous data (2.11) at fixed λ = 0.1; (Center): pinned spontaneous

data (2.11) at fixed T/Tc = 0.76; (Right): explicit insulator (2.8) at fixed λ = 3.

where

C1 =
k2

W
(0)
1,HW

(0)
2,HW

(0)
3,H

[
W

(0)
2,H(A

(0)
3,H)2+(W

(0)
2,H)2+(W

(0)
3,H)2+W

(0)
2,H

(
(B

(0)
3,H)2−2W

(0)
3,H

)]
(C.14)

C2 =
k

T
(0)
H W

(0)
3,H

[
A

(0)
t,HA

(0)
3,H+Q

(0)
H W

(0)
2,H+B

(0)
t,HB

(0)
3,H

]
(C.15)

C3 =
1

T
(0)
H W

(0)
1,H

[
A

(0)
t,HA

(0)
3,H+Q

(0)
H W

(0)
2,H+B

(0)
t,HB

(0)
3,H

]
(C.16)

C4 =
k

W
(0)
1,HW

(0)
3,H

[
(A

(0)
3,H)2+(B

(0)
3,H)2+W

(0)
2,H

]
(C.17)

It is clear that using equations (C.12)–(C.17) we can write the currents in terms of the

sources and the horizon data of the background fields, as desired. The final expressions are

not illuminating, so we do not transcribe them. The elements of the DC thermoelectric

conductivities are then simply given by the partial derivatives with respect to the sources as

σDC = ∂Eδj
x, αDC = ∂ζδj

x, ᾱDC = ∂EδQ
x, κ̄DC = ∂ζQ

x (C.18)

We can readily check that the Onsager relation αDC = ᾱDC hods, providing a non-trivial

check of our procedure. Moreover, we find excellent agreement with the small frequency

AC calculation, see figure 15. The main source of inaccuracy is the computation of the

thermal conductivity κ̄, since it involves extracting a term which is suppressed by u4 in

the linearized numerics for the AC calculation.

D AC conductivities from linearized equations of motion

In this appendix we provide a more detailed description of our computation of the frequency

dependence thermoelectric conductivity. As mentioned in the main text, the sources of

interest are contained in the UV expansion of the fields δgt1, δA1, see (3.1). All fields are

assume to depend on the radial coordinate u and to have a harmonic time dependence
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e−iωt. In order to find a consistent system of perturbation equations, we need to consider

the fluctuations

{δgu1, δgu3, δgt1, δgt3, δg12, δg23, δA1, δA3, δB1, δB3} (D.1)

This set of perturbations contains gauge ambiguities which we fix using the DeDonder

gauge as in [9]. More specifically, denoting by δEµν to the linearized Einstein equations,

we replace them by δEµν → δEµν + τµν where the gauge fixing term corresponds to

τµν = ∇(µτν), τµ = ∇νδgµν (D.2)

Solving the asymptotic equations near u = 0, we obtain

δgab = u−2
(
δg

(0)
ab + u2δg

(2)
ab + u4δg

(4)
ab + u4 log uδg̃

(4)
ab + . . .

)
(D.3)

δgua = u−1
(
δg(0)ua + u2δg(2)ua + u4δg(4)ua + u4 log uδg̃(4)ua + . . .

)
(D.4)

where xa = t, xi. Near the horizon we find that regular perturbations must satisfy

δgab = (1− u)α(δgHab +O[(1− u)]) (D.5)

δgua = (1− u)α−1(δgHab +O[(1− u)]) (D.6)

where α = −iω/(4πT ). We solve the resulting perturbation equations imposing ingoing

boundary conditions at the horizon, and fixing the sources on the UV by means of the

asymptotic expansions (D.3), (D.5). We also obtain the QNMs by setting all sources

to zero.

According to the standard AdS/CFT dictionary, the dual operators are encoded in the

subleading terms δg
(4)
tx , δA

(2)
x . Using the counter-term prescription of [53] we arrive at

Jx = 2δA(2)
x − ρδg

(0)
tx (D.7)

Qx = 4δg
(4)
tx + 2µδA(2)

x +

(
2A

(2)
t + 4T (4) +

2

3
µ2 + 4

)
δg

(0)
tx (D.8)
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[39] A. Amoretti, D. Areán, B. Goutéraux and D. Musso, DC resistivity of quantum critical,

charge density wave states from gauge-gravity duality, Phys. Rev. Lett. 120 (2018) 171603

[arXiv:1712.07994] [INSPIRE].
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