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1 Introduction

The concept of conformal higher-spin (CHS) theory was introduced by Fradkin and

Tseytlin [1] in 1985 as a generalisation of Maxwell’s electrodynamics and conformal gravity

in four dimensions. Since then there has been much interest in CHS theories in diverse

dimensions, see [2–10] for an incomplete list of works published within a quarter-century

after [1]. This interest has truly exploded in the last decade and, unfortunately, it is hardly

possible to list all relevant publications (although comments on the literature will be given

in the main body). Among the attractive features of CHS theories are the following: (i)

maximal spin-s gauge symmetry consistent with locality [1]; (ii) natural connection to

the AdS/CFT correspondence [6]; (iii) Lagrangian formulation for a complete interacting

bosonic CHS theory [7]; and (iv) interesting quantum properties [11–15].

Off-shell N = 1 superconformal higher-spin (SCHS) multiplets in four dimensions

were briefly discussed, in the framework of supercurrent multiplets, by Howe, Stelle and

Townsend [16] in 1981, a few years before Fradkin and Tseytlin [1] constructed the free

CHS actions. It was only in 2017 that the higher-spin gauge prepotentials (describing

superspin-(s+ 1
2) multiplet, with s = 2, 3, . . . ) introduced in [16] and more general off-shell

gauge supermultiplets were finally used to construct free N = 1 SCHS actions [17]. Parallel

studies in three dimensions (3D) describing SCHS multiplets and the corresponding Chern-

Simons actions were conducted in [18–20] and [21, 22] for the cases N = 1 and N = 2,

respectively. These 3D and 4D off-shell constructions open the possibility to develop

a manifestly supersymmetric setting for SCHS theories first advocated by Fradkin and

Linetsky [2, 5] in the component approach. It also becomes feasible, as was briefly discussed

in [17], to formulate an interacting SCHS theory by developing a superfield analogue of the

bosonic CHS theory in even dimensions constructed in full generality by Segal [7] (as an

extension of his earlier work [23]), in agreement with Tseytlin’s observations [6].1

An important feature of the approach advocated in [17] is that it provides a new avenue

to study the problem of consistent propagation of conformal higher-spin fields on curved

backgrounds. It is believed that a gauge-invariant action for conformal fields of spin s > 2

may be defined only if the background metric is a solution of the equation of motion for

conformal gravity, which means that the Bach tensor is equal to zero. However, even the

simplest s = 3 case has not yet been studied in full generality [26–29]. When dealing with

N = 1 SCHS theories in curved backgrounds, the gravitational field belongs to the so-

called Weyl multiplet [30, 31] which also contains a conformal gravitino and a U(1) gauge

field. It appears that consistent propagation of SCHS multiplets in such a background

may be defined if the corresponding super Bach tensor [32, 33] vanishes2 and, therefore,

the background Weyl multiplet is a solution to the equations of motion for conformal

supergravity. So far explicit calculations have been carried out only for the superconformal

gravitino multiplet in a supergravity background [17].

1For more recent derivations of the Segal theory see, e.g., [24, 25] and references therein.
2The terminology “super Bach tensor” was introduced in [17]. In linearised conformal supergravity the

super Bach tensor was first computed by Ferrara and Zumino [34].
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The 3D story is considerably simpler and more complete as far as the issue of consistent

propagation of higher-spin fields on curved backgrounds is concerned. The equation of

motion for conformal gravity requires the Cotton tensor to vanish [35–37], and therefore

curved spacetime is conformally flat. In off-shell N -extended conformal supergravity, with

1 ≤ N ≤ 6, the superfield Euler-Lagrange equation states that the super Cotton tensor is

equal to zero [38–40], and therefore curved superspace is conformally flat. It was shown

in [20, 22] that a gauge-invariant action exists for every conformal higher-spin (super)field

on arbitrary conformally flat backgrounds for the cases N = 0, 1, 2. These results may be

naturally extended (at least) to the N = 3 case.

This paper is a continuation of the research program initiated in [17, 20, 22]. Our main

goal will be to develop a formalism with manifest local (super)conformal symmetry. This

will allow us, in particular, to elaborate on several constructions that were only sketched

in [17, 20, 22].

Two years ago, ref. [17] proposed off-shell 4D N = 1 superconformal higher-spin

models in arbitrary conformally flat supergravity backgrounds. Technical details of the

corresponding formulation were not spelled out in [17] since the linearised higher-spin

(super) Weyl tensors were explicitly given in terms of the gauge prepotentials only for the

models describing conformal superspin values s = 1, 3
2 ,

5
2 .

More recently, off-shell actions were derived for linearised 3D N = 0, 1 (su-

per)conformal higher-spin gravity in general conformally flat (super)gravity back-

grounds [20]. This construction was also extended to the N = 2 superconformal case

in [22]. As in the 4D analysis of [17], technical details of the 3D formulations were not

given, since closed-form expressions for the linearised higher-spin (super) Cotton tensors

in terms of the gauge prepotentials were not known.

In this work we fill the technical gaps in the constructions of [17, 20, 22]. In particular,

we explicitly construct CHS models that are Weyl invariant in any curved 4D spacetime or

any conformally flat 3D spacetime. In both dimensions the higher-spin gauge invariance

of these models holds only in conformally flat spacetimes. Supersymmetric extensions of

the models are also given. In addition, by extending the depth of the higher-spin gauge

symmetry, we construct novel generalisations of the proposed CHS models whose Weyl and

gauge invariance hold under the same conditions.

Of central importance to our approach are (i) the formulation of conformal gravity as

the gauge theory of the conformal group [30]; and (ii) the off-shell formulations for con-

formal supergravity in diverse dimensions known as conformal superspace [38, 39, 41–44],

an approach pioneered by Butter in the 4D case [41, 42]. Since superfield techniques are

not well known within the higher-spin community, and also since the conformal super-

space approach is still familiar only to a limited number of superspace practitioners, the

details of our approach and its application to CHS theory will be presented from a non-

supersymmetric point of view. Therefore, the majority of this paper will be devoted to

non-supersymmetric CHS models and their supersymmetric counterparts will be presented

at the end with the technical details being simply sketched.

This paper is organised as follows. In section 2 we review the formulation of conformal

gravity in D > 2 dimensions as the gauge theory of the conformal group. Section 3 is
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devoted to 3D CHS theories in curved backgrounds. Section 4 discusses 4D CHS theo-

ries in curved backgrounds. Supersymmetric extensions are studied in sections 5 and 6.

Concluding comments are given in section 7. The main body of the paper is accompanied

by six technical appendices. Appendix A and B present some of the various conventions

that we adopt. Proofs for several properties of the higher-spin generalised Cotton tensors

are provided in appendix C. Appendix D examines the issue of integration by parts in the

conformal space. Appendices E and F discuss the construction of conformal spin s = 3/2

and s = 2 models that are gauge invariant in any 4D Bach-flat spacetime.

Before turning to the main body of this paper, several comments are in order regarding

the existence of different ways to describe conformal higher-spin fields. They differ only

in the sector of purely gauge degrees of freedom (compensators) that can be eliminated

algebraically by applying local symmetry transformations without derivatives. The orig-

inal Fradkin-Tseytlin model [1] for a conformal field of integer spin s > 1 is described

in terms of a symmetric rank-s tensor field ha1...as = h(a1...as) ≡ ha(s) with the gauge

transformation law

δha1...as = ∂(a1ξa2...as) + η(a1a2λa3...as) , ηbcξbca1...as−3 = 0 , (1.1)

where both gauge parameters ξa(s−1) and λa(s−2) are symmetric, and ξa(s−1) is in addition

traceless.3 It is natural to interpret the gauge symmetries generated by ξa(s−1) and λa(s−2)

for s > 2 as linearised higher-spin gauge and “generalised Weyl” transformations, respec-

tively. The λ-gauge freedom in (1.1) may be used to make the gauge field ha(s) traceless

by requiring

ha(s) = ha(s) , ηbchbca(s−2) = 0 . (1.2)

If one switches to the two-component spinor notation and introduces

ha(s) → hα1...αsα̇1...α̇s := (σa1)α1α̇1 . . . (σ
as)αsα̇sha1...as , (1.3)

then the field hα1...αsα̇1...α̇s proves to be symmetric in its undotted indices and, separately,

in its dotted indices, hα1...αsα̇1...α̇s = h(α1...αs)(α̇1...α̇s) ≡ hα(s)α̇(s). In accordance with (1.1),

the gauge transformation of hα(s)α̇(s) is

δhα1...αsα̇1...α̇s = ∂(α1(α̇1
ξα2...αs)α̇2...α̇s) . (1.4)

It is natural to think of ha(s) (or equivalently hα(s)α̇(s)) as the genuine conformal spin-s

gauge field, due to several reasons. Firstly, one can consistently define hα(s)α̇(s) to be a

conformal primary field, see section 4. Secondly, the other degrees of freedom contained in

ha(s) are purely gauge ones, and as such they may become essential only at the nonlinear

level. Finally, the nonlinear conformal higher-spin theory of [7] is formulated in terms of

the fields ha(s), with s = 0, 1, 2, . . . , in the 4D case.

In principle, one may instead use Fronsdal’s doubly traceless spin-s gauge field [45, 46]

ha1...as = ha1...as + η(a1a2ϕa3...as) , ηbcϕbca(s−4) = 0 , (1.5)

3The gauge transformation law (1.1) is often generalised by removing the condition ηbcξbca(s−3) = 0

imposed on the parameter ξa(s−1). However the resulting transformation law is equivalent to (1.1) with a

modified algebraic parameter λa(s−2).
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to describe conformal spin-s dynamics. In such an approach ϕa(s−2) is a compensator. The

gauge transformation law of ha(s) is given by

δha(s) = ∂(a1ξa2...as) + η(a1a2 λ̃a3...as) , ηbcξbca(s−3) = 0 , ηbcλ̃bca(s−4) = 0 . (1.6)

It is clear that the compensator ϕa(s−2) may be gauged away by applying a

λ̃-transformation, and then we are back to the formulation in terms of ha(s).

Another description of conformal spin-s dynamics is obtained by employing Vasiliev’s

frame field [47, 48]

em,a1...as−1 = em, (a1...as−1) , ηbcem, bca(s−3) = 0 . (1.7)

In addition to a higher-spin ξ-transformation, δem,a(s−1) = ∂mξa(s−1), there are two addi-

tional local symmetries in this setting. These are generalised Lorentz and Weyl transfor-

mations, which do not involve derivatives and allow one to gauge away two compensating

degrees of freedom contained in em,a(s−1) by imposing the gauge condition that em,a(s−1)

is completely symmetric, em,a(s−1) = hma(s−1).

Not all of the field realisations discussed above originate in the 4D N = 1 super-

conformal setting. We recall that the conformal superspin-(s + 1
2) prepotential [16, 17]

Hα(s)α̇(s) := Hα1...αsα̇1...α̇s(θ, θ̄) is a real superfield, which is symmetric in its undotted in-

dices and, independently, in its dotted indices. The gauge transformation law of Hα(s)α̇(s) is

δHα1...αsα̇1...α̇s = D̄(α̇1
Λα1...αsα̇2...α̇s) −D(α1

Λ̄α2...αs)α̇1...α̇s , (1.8)

with the gauge parameter Λα(s)α̇(s−1) being unconstrained. For the s = 1 case this trans-

formation law corresponds to linearised conformal supergravity [34]. The gauge freedom

makes it possible to choose a Wess-Zumino gauge

Hα1...αsα̇1...α̇s(θ, θ̄) = θβ θ̄β̇eβ,α1...αsβ̇,α̇1...α̇s
+ θ̄2θβψβ,α1...αsα̇1...α̇s − θ

2θ̄β̇ψ̄α1...αsβ̇,α̇1...α̇s

+ θ2θ̄2hα1...αsα̇1...α̇s , (1.9)

where the bosonic fields eβ,α(s)β̇,α̇(s) = (σm)ββ̇em,α(s)α̇(s) and hα(s)α̇(s) are real. In the

Wess-Zumino gauge (1.9), we stay with a restricted set of local transformations (1.8).

It is not difficult to check that the transformation law of em,α(s)α̇(s) coincides with that

of the spin-(s + 1) frame field [47, 48]. The gauge transformation of hα(s)α̇(s) coincides

with (1.4). The fermionic field ψβ,α(s)α̇(s) and its conjugate in (1.9) describe the conformal

spin-(s+ 1
2) gauge field. This field realisation coincides neither with the Fradkin-Tseytlin

conformal spin-(s+ 1
2) field [1] nor with Vasiliev’s fermionic frame field [47, 48].

The residual gauge freedom (1.8), which preserves the Wess-Zumino gauge (1.9), con-

tains algebraic local transformations that can be used to eliminate the compensators such

that Hα(s)α̇(s) takes the form [17]

Hα1...αsα̇1...α̇s(θ, θ̄) = θβ θ̄β̇h(βα1...αs)(β̇α̇1...α̇s)
+ θ̄2θβψ(βα1...αs)α̇1...α̇s

− θ2θ̄β̇ψ̄α1...αs(β̇α̇1...α̇s)
+ θ2θ̄2hα1...αsα̇1...α̇s . (1.10)
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The gauge transformation of ψα(s+1)α̇(s) is

δψα1...αs+1α̇1...α̇s = ∂(α1(α̇1
ρα2...αs+1)α̇2...α̇s) . (1.11)

It is natural to think of field ψα(s+1)α̇(s) and its conjugate as the genuine conformal spin-

(s+ 1
2) gauge field.

2 Conformal geometry

Conformal (super)gravity as the gauge theory of the (super)conformal group was con-

structed long ago [30, 31, 37, 49], see [1, 50] for pedagogical reviews. In this section we

give a brief review of the formulation for conformal gravity in D > 2 dimensions follow-

ing [38]. This setting is known to be ideal for extensions to the superspace formulations

for conformal supergravity in diverse dimensions [39, 41–43]. It also turns out to be useful

in the framework of higher-spin (super)conformal dynamics, as will be shown below.

2.1 Gauging the conformal algebra

The conformal algebra in D > 2 dimensions, so(D, 2), consists of the translation (Pa),

Lorentz (Mab), special conformal (Ka) and dilatation (D) generators. The non-vanishing

commutators are given by

[Mab,Mcd] = 2ηc[aMb]d − 2ηd[aMb]c , (2.1a)

[Mab, Pc] = 2ηc[aPb] , [D, Pa] = Pa , (2.1b)

[Mab,Kc] = 2ηc[aKb] , [D,Ka] = −Ka , (2.1c)

[Ka, Pb] = 2ηabD + 2Mab . (2.1d)

The generators Mab,Ka and D span a subalgebra of so(D, 2) and are collectively referred

to as Xa. In contrast, we denote the generators of the full algebra by Xã. Then, the

commutation relations (2.1) may be rewritten as follows4

[Xa, Xb] = −fabcXc , (2.2a)

[Xa, Pb] = −fabcXc − fabcPc (2.2b)

where fãb̃
c̃ are the structure constants whose non-vanishing components are:

fMab,Mcd

Mfg = 4ηa[cδ
[f
d] δ

g]
b − 4ηb[cδ

[f
d] δ

g]
a , (2.3a)

fMab,Pc
Pd = −2ηc[aδ

d
b] , fD,Pa

Pb = −δba , (2.3b)

fMab,Kc
Kd = −2ηc[aδ

d
b] , fD,Ka

Kb = δba , (2.3c)

fKa,Pb
D = −2ηab , fKa,Pb

Mcd = −4δ[c
a δ

d]
b . (2.3d)

4We adopt the convention whereby a factor of 1/2 is inserted when summing over pairs of antisymmetric

indices. For example, fab
cXc = fab

KcKc + 1
2
fab

McdMcd + . . . .
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The structure constants satisfy the Jacobi identities

f[ãb̃
d̃fc̃]d̃

ẽ = 0 . (2.4)

Let MD be a D-dimensional spacetime parameterised by local coordinates xm, where

m = 0, 1, . . . , D − 1. To gauge the conformal algebra, we associate with each generator

Xa a connection one-form, ωa = dxmωm
a, and with Pa the vielbein ea = dxmem

a. We

denote by H the gauge group generated by Xa and postulate that ea and ωa transform

under H as

δHe
a = ebΛcfcb

a , (2.5a)

δHω
a = dΛa + ebΛcfcb

a + ωbΛcfcb
a , (2.5b)

with gauge parameter Λa.

Given a field Φ (with its indices suppressed), we say that Φ is H-covariant if it trans-

forms under the action of H with no derivative on the parameter, δHΦ = ΛaXaΦ. In

addition, if Φ satisfies

KaΦ = 0 , DΦ = ∆Φ , (2.6)

it is called a primary field of dimension (or Weyl weight) ∆.

It is clear that ∂mΦ is no longer H-covariant. We are therefore led to introduce a

covariant derivative according to

∇m = ∂m − ωmaXa . (2.7)

It follows from (2.5) that ∇aΦ = ea
m∇mΦ transforms covariantly,

δH(∇aΦ) = Λb∇aXbΦ− Λbfba
c∇cΦ− Λbfba

cXcΦ . (2.8)

From eq. (2.8) we can deduce the commutation relations of Xa with ∇a,

[Xa,∇b] = −fabcXc − fabc∇c . (2.9)

Comparing this with (2.2b) we see that Xa satisfies the same commutation relations with

∇b as it does with Pb. However, unlike the translation generators Pa, the commutator of

two covariant derivatives is not zero but is given by

[∇a,∇b] = −Tabc∇c −RabcXc . (2.10)

In eq. (2.10), Tabc and Rabc are the torsion and curvature tensors respectively,

Tabc = −Cab
c + 2ω[a

dfb]d
c , (2.11a)

Rabc = −Cab
cωc

c + 2ω[a
dfb]d

c + ω[a
eωb]

dfde
c + 2e[aωb]

c , (2.11b)

where ea = ea
m∂m is the inverse vielbein and the anholonomy coefficients, Cab

c, are given by

Cab
c = (eaeb

m − ebeam)em
c . (2.12)

The definitions (2.7) and (2.10) differ from those used in some previous publications. See

appendix B for a dictionary to convert between these conventions.

– 6 –



J
H
E
P
0
5
(
2
0
1
9
)
1
1
3

Using the transformation rules (2.5) and the Jacobi identities (2.4), we find that the

torsion and curvature tensors (2.11) transform covariantly under H according to

δHTabc = TabdΛefedc − 2Λafa[a
dTb]dc , (2.13a)

δHRabc = RabeΛdfdec + 2Λdfd[a
eRb]ec + TabeΛfffec . (2.13b)

In this formulation infinitesimal general coordinate transformations, generated by a lo-

cal parameter ξa, are not covariant with respect to H. To remedy this, they must be

supplemented by an additional H-transformation with gauge parameter Λa = ξaωa
a ,

δcgct(ξ
a) = δgct(ξ

a)− δH(ξaωa
a) . (2.14)

It follows that such transformations act on fields Φ (with all indices Lorentz) as δcgctΦ =

ξa∇aΦ. The conformal gravity gauge group, denoted by G, is then generated by the set of

operators (∇a, Xa) under which Φ transforms as

δGΦ = KΦ, K = ξb∇b + ΛbXb . (2.15)

Finally, the gauge transformation of ∇a under G proves to obey the relation

δG∇a = [K,∇a] (2.16)

provided we interpret

∇aξb := eaξ
b + ωa

cξdfdc
b , ∇aΛb := eaΛ

b + ωa
cξdfdc

b + ωa
cΛdfdc

b . (2.17)

Through this procedure the entire conformal algebra has been gauged in such a way

that the generators Xa act on ∇a in the same way as they do on Pa.

2.2 Conformal gravity

The covariant derivatives given by eq. (2.7) are

∇a = ea −
1

2
ω̂a

bcMbc − fa
bKb − baD , (2.18)

where ω̂a
bc, fa

b and ba are the Lorentz, special conformal and dilatation connections re-

spectively. They satisfy the commutation relations

[∇a,∇b] = −Tabc∇c −
1

2
R(M)ab

cdMcd −R(K)ab
cKc −R(D)abD (2.19)

where the torsion and curvatures are

Tabc = −Cab
c + 2ω̂[ab]

c + 2b[aδb]
c , (2.20a)

R(M)ab
cd = R̂ab

cd + 8f[a
[cδb]

d] , (2.20b)

R(K)ab
c = −Cab

dfd
c − 2ω̂[a

cdfb]d − 2b[afb]
c + 2e[afb]

c , (2.20c)

R(D)ab = −Cab
cbc + 4f[ab] + 2e[abb] , (2.20d)

R̂ab
cd = −Cab

f ω̂f
cd + 2e[aω̂b]

cd − 2ω̂[a
cf ω̂b]f

d . (2.20e)

Here R̂abcd is the Riemann tensor corresponding to the spin connection ω̂abc.
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To ensure that the vielbein is the only independent field in the theory modulo purely

gauge degrees of freedom, we have to impose covariant constraints. These constraints are

Tabc = 0 , (2.21a)

ηbdR(M)abcd = 0 . (2.21b)

Indeed, the conditions (2.21) are preserved by H-transformations, which may be verified

through (2.13). The first constraint determines the spin connection in terms of the vielbein

and the dilatation connection,

ω̂abc = ωabc − 2ηa[bbc] , (2.22)

where ωabc ≡ ωabc(e) = 1
2

(
Cabc−Cacb−Cbca

)
is the standard torsion-free Lorentz connection.

Similarly, the second constraint fixes the special conformal connection to be

fab = − 1

2(D − 2)
R̂ab +

1

4(D − 1)(D − 2)
ηabR̂ , (2.23)

where R̂ab = ηcdR̂acbd is the (non-symmetric) Ricci tensor and R̂ = ηabR̂ab is the scalar

curvature.

Rather than imposing an extra constraint to fix ba in terms of the vielbein, we observe

that under a K-gauge transformation, ba transforms as

δKba = −2Λ(K)a . (2.24)

It follows that we may impose the gauge condition

ba = 0 . (2.25)

After this choice, only the vielbein remains as an independent field. The gauge (2.25) breaks

the special conformal symmetry. For our purposes, it is desirable to keep this symmetry

intact throughout calculations and impose (2.25) only at the end when we wish to extract

physically meaningful results. This process is referred to as ‘degauging’.

Making use of (2.21) and the Jacobi identity

0 =
[
∇a, [∇b,∇c]

]
+
[
∇b, [∇c,∇a]

]
+
[
∇c, [∇a,∇b]

]
, (2.26)

we find that the dilatation field strength vanishes,

R(D)ab = 0 , (2.27)

along with the following Bianchi identities

R(K)[abc] = 0 , (2.28a)

R(M)[abc]d = 0 , (2.28b)

∇[aR(K)bc]d = 0 , (2.28c)

∇[aR(M)bc]
de − 4R(K)[ab

[dδc]
e] = 0 . (2.28d)
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Making use of (2.20e) and (2.22) allows us to decompose R̂abcd into those terms which

depend solely on the vielbein and those involving the dilatation connection,

R̂abcd = Rabcd − 4e[aηb][cbd] − 4η[c[aωb]d]
gbg + 4b[cηd][abb] + 2ηc[aηb]db

fbf , (2.29a)

R̂ab = Rab + (D − 2)
{
eabb − ωabcbc − babb

}
+ ηab

{
ecb

c − ωccdbd + (D − 2)bcb
c
}
, (2.29b)

R̂ = R+ 2(D − 1)
{
eab

a − ωaabbb +
1

2
(D − 2)baba

}
. (2.29c)

Here Rabcd is the Riemann tensor associated with the spin connection ωabc,

Rab
cd = 2e[aωb]

cd − 2ω[ab]
fωf

cd − 2ω[a
cfωb]f

d , (2.30)

and Rab and R stand for the corresponding (symmetric) Ricci tensor and scalar curva-

ture, respectively. Inserting the relations (2.29) into the solution to the conformal gravity

constraint (2.23) yields

fab = −1

2
Pab +

1

2
babb −

1

4
ηabb

cbc +
1

2
ωab

cbc −
1

2
eabb , (2.31)

where Pab is the Schouten tensor,

Pab =
1

(D − 2)

(
Rab −

1

2(D − 1)
ηabR

)
. (2.32)

Using eqs. (2.29a) and (2.31) allows us to show that the dependence on the dilatation

connection drops out of (2.20b) and we obtain

R(M)abcd = Cabcd . (2.33)

Here Cabcd is the Weyl tensor,

Cabcd = Rabcd −
2

(D − 2)

(
Ra[cηd]b −Rb[cηd]a

)
+

2

(D − 1)(D − 2)
ηa[cηd]aR , (2.34)

which is a primary field of dimension +2,

KeCabcd = 0 , DCabcd = 2Cabcd . (2.35)

For further analysis of the constraints, it is necessary to consider separately the choices

D = 3 and D > 3. In both cases we make use of the Lorentz covariant derivative defined by

D̂a = ea −
1

2
ω̂a

bcMbc = Da + bcMac (2.36)

where Da = ea − 1
2ωa

bcMbc is the torsion-free Lorentz covariant derivative.

We note that whenever the gauge (2.25) is chosen, all hatted objects coincide with

their non-hatted counterparts. In particular

D̂a
∣∣
ba=0

= Da , R̂abcd
∣∣
ba=0

= Rabcd , (2.37)
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and in this gauge we may therefore abandon the hat notation without any ambiguity.

Furthermore, in this case it is clear that the conformal covariant derivative takes the form

∇a = Da +
1

2
Pa

bKb . (2.38)

Therefore, in any spacetime with vanishing Schouten tensor, the degauging process

is trivial.

In the D > 3 case, it follows from (2.28d) and (2.33) that the special conformal

curvature is given by

R(K)abc =
1

2(D − 3)
∇dCabcd . (2.39)

As a result, the algebra of conformal covariant derivatives is

[∇a,∇b] = −1

2
CabcdM

cd − 1

2(D − 3)
∇dCabcdKc . (2.40)

It is determined by a single primary tensor field, the Weyl tensor.

The expressions (2.20c) and (2.39) are two equivalent representations for the special

conformal curvature. Upon imposing the gauge (2.25) these relations lead to the well-known

Bianchi identity

DdCabcd = −2(D − 3)D[aPb]c . (2.41)

From (2.40) it follows that if the spacetime under consideration is conformally flat,

then the conformal covariant derivatives commute,

Cabcd = 0 =⇒ [∇a,∇b] = 0 . (2.42)

This observation will be important for our subsequent analysis.

2.3 Conformal gravity in three dimensions

The Weyl tensor vanishes identically in three dimensions. As a result, the Lorentz curva-

ture (2.33) also vanishes and the algebra of conformal covariant derivatives takes the form

[∇a,∇b] = −R(K)ab
cKc . (2.43)

Therefore, all information about conformal geometry is encoded in a single primary field,

R(K)abc, which proves to be proportional to the Cotton tensor, as we now show.

The Lorentz covariant derivative (2.36) allows us to represent (2.20c) as

R(K)abc = 2D[afb]c − 2b[afb]c + 2bcf[ab] + 2ηc[afb]db
d . (2.44)

Using (2.31), one may show that dependence on ba in eq. (2.44) drops out such that

R(K)abc = −1

2
Wabc , Wabc = 2D[aPb]c . (2.45)
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Here Wabc is the Cotton tensor, which is a primary field of dimension +3,

KdWabc = 0 , DWabc = 3Wabc . (2.46)

It is useful to introduce the dual of the Cotton tensor,

Wab =
1

2
εacdW

cd
b , Wabc = −εabdW d

c , (2.47)

which is symmetric and traceless,

Wab = Wba , W b
b = 0 . (2.48)

On account of the Bianchi identity DaRab = 1
2DbR , it is also conserved,

DaWab = 0 . (2.49)

The Cotton tensor contains all information about the conformal geometry of D =

3 spacetime, and it vanishes if and only if spacetime is conformally flat. As follows

from (2.43), the commutator of conformal covariant derivatives vanishes in the conformally

flat case,

Wabc = 0 =⇒ [∇a,∇b] = 0 . (2.50)

In three dimensions, the Einstein-Hilbert action is known to propagate no local degrees

of freedom. However, non-trivial dynamics emerge in topologically massive gravity [35, 36]

which is obtained by combining the Einstein-Hilbert action with a Lorentz Chern-Simons

term. The latter proves to coincide with the action for D = 3 conformal gravity5 [37]

SCG =
1

6

∫
ΣCS , (2.51)

where the three-form

ΣCS = Rb̃ ∧ ωãΓãb̃ +
1

6
ωc̃ ∧ ωb̃ ∧ ωãfãb̃c̃ (2.52)

varies under an infinitesimal H-transformation by an exact form,

δHΣCS = d
(
dωb̃ΛãΓãb̃

)
, Λã =

(
0, Λa

)
. (2.53)

Here and in (2.52), Γãb̃ = fãd̃
c̃fb̃c̃

d̃ is the symmetric non-degenerate Cartan-Killing metric

on so(3, 2) and fãb̃c̃ = fãb̃
d̃Γd̃c̃ are the totally antisymmetric structure constants, see ap-

pendix A. We have also used a unified notation [39] whereby the connection one-forms are

written as ωã = (ea, ωa) and the curvature two-forms as Rã = 1
2e
c ∧ ebRbcã = (T a,Ra).

It should be remarked that we have adopted the super-form conventions for differential

forms, see, e.g., [52] for the details.

5An alternative approach to conformal gravity in three dimensions was developed in [51].
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The action for conformal gravity (2.51) can be rewritten in the form

SCG =
1

4

∫
d3x e εabc

{
R̂ab

fgω̂cfg −
2

3
ω̂ad

eω̂be
f ω̂cf

d + 8fabbc

}
, e := det(em

a) . (2.54)

Since (2.51) is inert under K-transformations up to a total derivative, the dependence on

ba once again drops out6 and the action simplifies to

SCG =
1

4

∫
d3x e εabc

{
Rab

fgωcfg −
2

3
ωad

eωbe
fωcf

d

}
. (2.55)

Equivalently, one may arrive at equation (2.55) from (2.54) by making use of the special

conformal symmetry to impose the gauge (2.25).

The equation of motion derived from the action (2.55) is

Wab = 0 . (2.56)

Such a conformally flat background has to be used in order to linearise the conformal

gravity action (2.55). Before doing that, let us work out how geometric objects change

under an infinitesimal deformation of the vielbein,

δea
m = ha

beb
m , δem

a = −embhba , (2.57a)

for some second-rank tensor hab. Since the antisymmetric and trace parts of hab correspond

to Lorentz and Weyl transformations, respectively, and we know the behaviour of the

geometric objects under such transformations, it suffices to choose hab to be symmetric

and traceless,

hab = hba , haa = 0 . (2.57b)

We represent the corresponding change that the covariant derivative suffers as

δDa = ha
bDb −

1

2
Ξa

bcMbc , (2.58a)

where Da is the background torsion-free Lorentz covariant derivative and Ξabc is a deforma-

tion of the spin connection. The latter is determined by imposing the torsion-free condition

on D′a = Da + δDa, and the result is

Ξabc = −2D[bhc]a . (2.58b)

Making use of (2.58) leads to the well-known relations

δRabcd = −2hf [aRb]fcd − 2DaD[chd]b + 2DbD[chd]a , (2.59a)

δRab = 2hf (aRb)f −�hab + 2DfD(ahb)f , (2.59b)

δR = 2habRab + 2DaDbhab , (2.59c)

6This may be shown explicitly using the relations (2.22), (2.29a) and (2.31).
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where � = DaDa. The relations (2.58) and (2.59) allow one to read off the deformation

δWab of the Cotton tensor. For our subsequent consideration in section 3 it is suitable to

give the expression for δWab in the spinor notation. A summary of our spinor conventions

is given in appendix A to which the reader is referred for the technical details.

Associated with the traceless Ricci tensor, Rab − 1
3ηabR, and the Cotton tensor, Wab,

are symmetric rank-four spinors defined by

Rαβγδ =
(
γa
)
αβ

(
γb
)
γδ

(
Rab −

1

3
ηabR

)
= R(αβγδ) , (2.60a)

Wαβγδ = (γa)αβ(γb)γδWab = W(αβγδ) . (2.60b)

The latter can be represented in the form

Wαβγδ = Dσ(αRβγδ)σ , (2.61)

where Dαβ = (γa)αβDa. The infinitesimal deformation defined by (2.58) and (2.59) may

be shown to lead to

δRα(4) = −D(α1

β1Dα2
β2hα3α4)β(2) +

1

2
Rβ(2)

(α1α2
hα3α4)β(2) +

1

6
Rhα(4) , (2.62a)

δWα(4) =
1

2
W β(2)

(α1α2
hα3α4)β(2) −

1

2
D(α1

β1Dα2
β2Dα3

β3hα4)β(3) −
1

2
�D(α1

β1hα2α3α4)β1

+
(
D(α1

β1Rα2α3
β2β3

)
hα4)β(3) +

1

12

(
D(α1

β1R
)
hα2α3α4)β1 −

1

12
RD(α1

β1hα2α3α4)β1

+ 2Rβ1β2 (α1α2
Dα3

β3hα4)β(3) −
3

4
Rβ1δ(α1α2

Dδβ2hα3α4)β(2) , (2.62b)

where hαβγδ = (γa)αβ(γb)γδhab = h(αβγδ).

The conformal gravity action (2.55) may be linearised around a background spacetime

that is a solution to the equation of motion (2.56). The result is

SCG, linearised = −1

4

∫
d3x e hα(4)Cα(4) , (2.63)

where Cα(4) = −δWα(4) and δWα(4) is obtained from (2.62b), by setting Wα(4) = 0. The lin-

earised action proves to be conformal (assuming hα(4) to be a primary field of dimension 0)

as well as it is invariant under the gauge transformations

δξhα(4) = D(α1α2
ξα3α4) , (2.64)

where the gauge parameter ξαβ is a primary field of dimension −1.

3 Conformal higher-spin models in three dimensions

In order to describe higher-spin models, it is useful to convert to spinor notation. Then

the commutator of two covariant derivatives takes the form

[∇αβ ,∇γδ] =
1

4
εγ(αWβ)δ

ρ(2)Kρ(2) +
1

4
εδ(αWβ)γ

ρ(2)Kρ(2) , (3.1a)
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and the commutation relations of the other generators of the conformal group with the

covariant derivatives are as follows:

[
Mαβ ,∇γδ

]
= εγ(α∇β)δ + εδ(α∇β)γ , (3.1b)[

D,∇αβ
]

= ∇αβ , (3.1c)[
Kαβ ,∇γδ

]
= 4εγ(αεβ)δD− 2εγ(αMβ)δ − 2εδ(αMβ)γ . (3.1d)

The remaining non-vanishing commutators between the generators are given in appendix A.

3.1 CHS prepotentials and field strengths

We introduce conformal higher-spin gauge fields by extending the discussion in [20]. Con-

sider a real totally symmetric rank-n spinor field hα(n) := hα1...αn = h(α1...αn) which is

primary and of dimension (2 − n/2),

Kβ(2)hα(n) = 0 , Dhα(n) =
(

2− n

2

)
hα(n) . (3.2)

Its dimension is uniquely fixed by requiring hα(n) to be defined modulo gauge transforma-

tions of the form

δξhα(n) = ∇(α1α2
ξα3...αn) , (3.3)

with the real gauge parameter ξα(n−2) being also primary. We say that hα(n) is a conformal

spin-n2 gauge field.

Starting from hα(n) one may construct a descendant Cα(n)(h), known as the higher-spin

Cotton tensor, with the following properties:

1. Cα(n) is of the form Ahα(n), where A is a linear differential operator involving the

covariant derivatives, the Cotton tensor Wα(4), and its covariant derivatives.

2. Cα(n) is a primary field of dimension (1 + n/2) ,

Kβ(2)Cα(n) = 0 , DCα(n) =
(

1 +
n

2

)
Cα(n) . (3.4)

Here we give the most general expressions for Cα(n) for n = 2, 3, 4, 5. They are:

Cα(2) =
1

2

(
2∇(α1

βhα2)β

)
, (3.5a)

Cα(3) =
1

22

(
3∇(α1

β1∇α2
β2hα3)β(2)+�chα(3)

)
, (3.5b)

Cα(4) =
1

23

(
4∇(α1

β1∇α2
β2∇α3

β3hα4)β(3)+4�c∇(α1

βhα2α3α4)β+a0W(α1α2

β(2)hα3α4)β(2)

)
,

(3.5c)
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Cα(5) =
1

24

(
5∇(α1

β1∇α2
β2∇α3

β3∇α4
β4hα5)β(4)+10�c∇(α1

β1∇α2
β2hα3α4α5)β(2)+(�c)

2hα(5)

+

(
745

16
− 1

2
a1+

5

2
a2+3a3

)
W β1β2

(α1α2
∇α3

β3hα4α5)β(3)

+

(
564

48
− 1

2
a1+

1

2
a2+a3

)
Wδ(α1α2

β1∇δβ2hα3α4α5)β(2)

+

(
−40+

1

2
a1−

1

2
a2−a3

)
W β(3)

(α1
∇α2α3hα4α5)β(3)

+a1∇δβ1W β2
δ(α1α2

hα3α4α5)β(2)+a2∇(α1

β1Wα2α3
β2β3hα4α5)β(3)

+a3∇(α1α2
Wα3

β(3)hα4α5)β(3)

)
, (3.5d)

where �c = ∇a∇a is the conformal d’Alembertian and the ai are arbitrary constants.

In a general curved background, for n ≥ 4 the requirements outlined above do not

determine Cα(n) uniquely, since we can always add appropriate terms involving Wα(4).

However, in the n = 4 case, one may fix the constant to a0 = 4 by explicitly linearising

Wα(4) around an arbitrary background as in (2.62b).

The higher-spin Cotton tensor is generally not gauge invariant and the aforementioned

ambiguity associated with its definition cannot rectify this. From the expressions (3.5)

it is evident that as n increases this approach will become exceedingly difficult and the

ambiguity will worsen. However, an attractive feature of this formulation occurs when the

spacetime under consideration is conformally flat,

Wα(4) = 0 , (3.6)

and therefore the conformal covariant derivatives commute (2.50). Consequently, this am-

biguity is eliminated and as we will now show, the unique expression, up to an overall

normalisation, for the spin-n2 Cotton tensor is

Cα(n) =
1

2n−1

dn/2e−1∑
j=0

(
n

2j + 1

)
(�c)

j∇(α1

β1 . . .∇αn−2j−1
βn−2j−1hαn−2j ...αn)β1...βn−2j−1

.

(3.7)

Here dn/2e denotes the ceiling function and is equal to s for n = 2s and s+1 for n = 2s+1,

with s ≥ 0 an integer. In the flat limit, (3.7) reduces to the one derived in [18]. For even

values of n, n = 2, 4, . . . , the flat-space version of (3.7) is equivalent to the one originally

obtained by Pope and Townsend [3].

It is clear that (3.7) is of the form Cα(n) = Ahα(n) and has Weyl weight equal to

(1 + n/2). It remains to show that it is primary. Since Cα(n) is a covariant field, it suffices

to show that under a K-transformation we have δKCα(n) = −1
2Λ(K)γ(2)Kγ(2)Cα(n) = 0.

Using the algebra (3.1) it is possible to show, by induction on j, that the following two

identities hold true

Λ(K)γ(2)
[
Kγ(2), (�c)

j
]

= Λ(K)γ(2)

{
2j(�c)

j−1∇γ(2)(2D + 2j − 3)

− 4j(�c)
j−1∇γ1δMγ2δ

}
, (3.8a)
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Λ(K)γ(2)
[
Kγ(2),∇(α1

β1 . . .∇αjβj
]
ζαj+1...αm)β1...βj

= Λ(K)γ(2)

{
4jδγ1

β1εγ2(α1
∇α2

β2 . . .∇αjβj (D + j − 1)

− 2j∇(α1

β1 . . .∇αj−1
βj−1εαj |γ1Mγ2|

βj − 2j∇(α1

β1 . . .∇αj−1
βj−1δ|γ1

βjMγ2|αj

− j(j − 1)∇γ(2)δ(α1

β1δα2
β2∇α3

β3 . . .∇αjβj
}
ζαj+1...αm)β1...βj , (3.8b)

where ζα(m) is an arbitrary primary field. Therefore, under a special conformal transfor-

mation we have

− 2nδKCα(n) = Λ(K)γ(2)

dn/2e−1∑
j=0

(
n

2j + 1

){[
Kγ(2), (�c)

j
]
∇(α1

β1 . . .∇αn−2j−1
βn−2j−1

+ (�c)
j
[
Kγ(2),∇(α1

β1 . . .∇αn−2j−1
βn−2j−1

]}
hαn−2j ...αn)β1...βn−2j−1

= Λ(K)γ(2)

dn/2e−1∑
j=0

(
n

2j + 1

)

×
{

2j(2j + 1)(�c)
j−1

[
∇γ(2)∇(α1

β1 . . .∇αn−2j−1
βn−2j−1hαn−2j ...αn)β1...βn−2j−1

− 2∇γ1(α1
∇α2

β2 . . .∇αn−2j
βn−2jhαn−2j+1...αn)β2...βn−2jγ2

]
− (n− 2j − 1)(n− 2j − 2)

× (�c)
j

[
∇γ(2)∇(α1

β1 . . .∇αn−2j−3
βn−2j−3hαn−2j−2...αn)β1...βn−2j−3

− 2∇γ1(α1
∇α2

β2 . . .∇αn−2j−2
βn−2j−2hαn−2j−1...αn)β2...βn−2j−2γ2

]}
= 0 .

In the last line we have used the fact that the second and third terms vanish for j = bn/2c
and the first and last terms vanish for j = 0 to shift the summation variable. This shows

that in any conformally flat space (3.7) is the unique tensor satisfying the properties listed

at the beginning of this section.

3.2 CHS actions

For every conformally flat spacetime, the tensor (3.7) has the following properties:

1. Cα(n) is conserved,

∇β(2)Cα(n−2)β(2) = 0 . (3.9)

2. Cα(n) is invariant under the gauge transformations (3.3),

δξhα(n) = ∇(α1α2
ξα3...αn) =⇒ δξCα(n) = 0 . (3.10)

In a general curved space, Cα(n) must reduce to the expression (3.7) in the conformally

flat limit. Therefore, in such spaces the right hand side of eq. (3.7) constitutes the skeleton
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of Cα(n). It immediately follows that its divergence and gauge variation under (3.3) are

proportional to terms involving Wα(4) and its covariant derivatives,

∇β(2)Cα(n−2)β(2) = O(Wα(4)) , δξCα(n) = O(Wα(4)) . (3.11)

The properties listed in eq. (3.4) ensure that the linearised conformal higher-spin action

S
(n)
CS [h] = − in

2bn/2c

∫
d3x e hα(n)Cα(n)(h) , (3.12)

is invariant under the conformal gauge group G. Furthermore, by virtue of (3.9) and (3.10),

in any conformally flat space (3.12) is invariant under the gauge transformations (3.3),

Wab = 0 =⇒ δξS
(n)
CS = 0 . (3.13)

Upon degauging and setting n = 4, the model (3.12) coincides with the action for

linearised conformal gravity given by eq. (2.63).

We would like to point out the following interesting realisation of Cα(n) in terms of the

projection operators

Π(±)
α
β =

1

2

(
δα
β ± ∇α

β

√
�c

)
, Π

(±n)
α(n)

β(n) = Π
(±)
(α1

β1 . . .Π
(±)
αn)

βn , (3.14)

which are obtained by extending the flat-space results of [53]. Then one can express the

higher-spin Cotton tensor as

Cα(n) = (�c)
(n−1)/2

(
Π(n) − (−1)nΠ(−n)

)
hα(n) . (3.15)

We may use the expressions (3.15) to rewrite the action (3.12) in terms of the projec-

tion operators.

3.3 Generalised CHS models

As an extension of the previous constructions, we now consider a conformal higher-spin

gauge field h
(l)
α(n) which is primary and defined modulo gauge transformations of depth l,7

δξh
(l)
α(n) = ∇(α1α2

· · · ∇α2l−1α2l
ξα2l+1...αn) , (3.16)

where l is some integer 1 ≤ l ≤ bn2 c. We also require that the gauge parameter ξα(n−2l) be

primary, after which one can show, using the identity

Λ(K)γ(2)
[
Kγ(2),∇(α1α2

. . .∇α2l−1α2l

]
ξα2l+1...αn)

= Λ(K)γ(2)

{
4lε(α1|γ1εγ2|α2

∇α3α4 . . .∇α2l−1α2l
(D + l − 1)

− 4l∇(α1α2
. . .∇α2l−3α2l−2

εα2l−1|γ1Mγ2|α2l

}
ξα2l+1...αn) , (3.17)

7Such gauge transformations occur in the description of partially massless fields in diverse dimen-

sions [54–69].
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that the dimension of hα(n) is fixed to (l + 1)− n
2 . The conformal properties of h

(l)
α(n) may

then be summarised by

Kβ(2)h
(l)
α(n) = 0 , Dh(l)

α(n) =
(
l + 1− n

2

)
h

(l)
α(n) . (3.18)

As was done earlier in the case l = 1, from h
(l)
α(n) we may construct a generalised higher-spin

Cotton tensor C
(l)
α(n)(h) that possesses the following conformal properties,

Kβ(2)C
(l)
α(n) = 0 , DC(l)

α(n) =
(

2− l +
n

2

)
C

(l)
α(n) . (3.19)

In any conformally flat space, the properties (3.19) determine C
(l)
α(n) uniquely, up to an

overall normalisation, to be

C
(l)
α(n) =

1

2n−2l+1

dn/2e−1∑
j=l−1

(
n

2j + 1

)(
j

l − 1

)
(�c)

j−l+1

×∇(α1

β1 . . .∇αn−2j−1
βn−2j−1h

(l)
αn−2j ...αn)β1...βn−2j−1

. (3.20)

To derive (3.20) we have made use of the identities (3.8). The properties (3.18) and (3.19)

mean that the generalised higher-spin Chern-Simons action,

S
(n,l)
CS [h] = − in

2bn/2c

∫
d3x e h

α(n)
(l) C

(l)
α(n)(h) , (3.21)

is invariant under the conformal gauge group G. Moreover, in any conformally flat space

the generalised higher-spin Cotton tensor possesses the following important properties:

1. C
(l)
α(n) is partially conserved,

∇β1β2 · · · ∇β2l−1β2lC
(l)
α(n−2l)β(2l) = 0 . (3.22a)

2. C
(l)
α(n) is gauge invariant,

δξh
(l)
α(n) = ∇(α1α2

· · · ∇α2l−1α2l
ξα2l+1...αn) =⇒ δξC

(l)
α(n) = 0 . (3.22b)

As a consequence, the action (3.21) is also gauge invariant,

Wab = 0 =⇒ δξS
(n,l)
CS = 0 . (3.23)

The proofs for the properties (3.22) are non-trivial and are given in appendix C.8

An interesting question to ask is the following. For a given spin, which values of l

yield first and second-order Lagrangians in the action (3.21)? To answer this question, we

observe that the number of covariant derivatives in (3.21) is (n − 2l + 1) so that l = 1
2n

and l = 1
2(n − 1), respectively. Since l must be an integer it immediately follows that

first-order conformal models exist only for bosonic spin whilst second-order models must

be fermionic. These models are said to have ‘maximal depth’ since l assumes its maximal

value of l = bn2 c. Our conclusions regarding second-order models are in agreement with

those drawn long ago in [72].

8It would be of interest to apply the methods of [70, 71] to demonstrate that (3.20) is the most general

solution of the l-folded conservation equation (3.22a) in the case of Minkowski spacetime.
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3.4 Degauging

In the gauge (2.25), the spinor covariant derivative assumes the form

∇α(2) = Dα(2) −
1

4
Pα(2),

β(2)Kβ(2) . (3.24)

We may decompose Pα(2),β(2) into irreducible components as

Pα(2),β(2) = Rα(2)β(2) +
1

6
εα1(β1εβ2)α2

R , (3.25)

where Rα(4) is the background traceless Ricci tensor. The goal is then to replace all

occurrences of ∇α(2) with (3.24) and use the algebra (3.1) to eliminate Ka. In general, this

is a difficult technical problem, particularly for higher-derivative tensors such as (3.7).

As an example, in AdS3 the conformal covariant derivative is

∇α(2) = Dα(2) − S2Kα(2) (3.26)

whilst the conformal d’Alembertian is

�c = �− 6S2D + S2Dα(2)Kα(2) −
1

2
S4Kα(2)Kα(2) . (3.27)

Here and in (3.26), the parameter S is related to the AdS scalar curvature through R =

−24S2. Making use of the above relations, one may show that the degauged version of (3.7),

for small n, coincides with the ones given in [20] (up to conventions). However, for general

n we were not able to obtain a closed form expression.

It should be pointed out that various aspects of the bosonic higher-spin Cotton tensors

were studied in [73, 74].

4 Conformal higher-spin models in four dimensions

In this section we work in four dimensions, D = 4, and make use of the two-component

spinor notation and conventions in [33]. It is convenient to replace the Lorentz generators

Mab = −Mba with operators carrying spinor indices, Mαβ = Mβα and M̄α̇β̇ = M̄β̇α̇, which

are defined as

Mαβ =
1

2
(σab)αβMab , M̄α̇β̇ = −1

2
(σ̃ab)α̇β̇Mab , (4.1a)

Mab = (σab)αβM
αβ − (σ̃ab)α̇β̇M̄

α̇β̇ , (4.1b)

and act only on undotted and dotted indices, respectively.

In the two-component spinor notation eq. (2.40) takes the form[
∇αα̇,∇ββ̇

]
= −

(
εα̇β̇CαβγδM

γδ + εαβC̄α̇β̇γ̇δ̇M̄
γ̇δ̇
)

− 1

4

(
εα̇β̇∇

δγ̇Cαβδ
γ + εαβ∇γδ̇C̄α̇β̇δ̇

γ̇
)
Kγγ̇ , (4.2a)
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whilst the commutation relations of the remaining generators with ∇ββ̇ are given by[
Mαγ ,∇ββ̇

]
= εβ(α∇γ)β̇ ,

[
M̄α̇γ̇ ,∇ββ̇

]
= εβ̇(α̇∇βγ̇) , (4.2b)[

D,∇ββ̇
]

= ∇ββ̇ , (4.2c)[
Kαα̇,∇ββ̇

]
= 4εα̇β̇Mαβ + 4εαβM̄α̇β̇ − 4εαβεα̇β̇D . (4.2d)

In eq. (4.2a) the self-dual and anti self-dual Weyl tensors Cαβγδ and C̄α̇β̇γ̇δ̇ are related to

Cabcd as follows

Cαβγδ =
1

2
(σab)αβ(σcd)γδCabcd = C(αβγδ) , (4.3a)

C̄α̇β̇γ̇δ̇ =
1

2
(σ̃ab)α̇β̇(σ̃cd)γ̇δ̇Cabcd = C̄(α̇β̇γ̇δ̇) , (4.3b)

Cαβγδα̇β̇γ̇δ̇ = (σa)αα̇(σb)ββ̇(σc)γγ̇(σd)δδ̇Cabcd = 2εα̇β̇εγ̇δ̇Cαβγδ + 2εαβεγδC̄α̇β̇γ̇δ̇ . (4.3c)

4.1 CHS prepotentials and field strengths

We introduce conformal higher-spin gauge fields by generalising the constructions in [17]

and earlier works [4, 5]. Given two positive integers m and n, a conformal higher-spin

gauge prepotential φα(m)α̇(n) is a primary field defined modulo gauge transformations

δλφα(m)α̇(n) = ∇(α1(α̇1
λα2...αm)α̇2...α̇n) , (4.4)

where the gauge parameter λα(m−1)α̇(n−1) is also assumed to be primary. This gauge

freedom uniquely fixes the conformal dimension of the gauge field,

Kββ̇φα(m)α̇(n) = 0 , Dφα(m)α̇(n) =
(

2− 1

2
(m+ n)

)
φα(m)α̇(n) . (4.5)

In the m 6= n case, the gauge prepotential φα(m)α̇(n) and its gauge parameter λα(m−1)α̇(n−1)

are complex.

From φα(m)α̇(n) one may construct two descendants (and their conjugates) to which we

refer as higher-spin Weyl tensors and denote by Ĉα(m+n) and Čα(m+n). They possess the

following key properties:

1. Ĉα(m+n) and Čα(m+n) are of the form Âφα(m)α̇(n) and Ǎφ̄α(n)α̇(m), respectively. Here

Â and Ǎ are linear differential operators involving the covariant derivatives, the Weyl

tensor Cabcd , and its covariant derivatives.

2. Both Ĉα(m+n) and Čα(m+n) are primary fields of dimension 2 − 1
2(m − n) and 2 −

1
2(n−m), respectively,

Kββ̇Ĉα(m+n) = 0 , DĈα(m+n) =
(

2− 1

2
(m− n)

)
Ĉα(m+n) , (4.6a)

Kββ̇Čα(m+n) = 0 , DČα(m+n) =
(

2− 1

2
(n−m)

)
Čα(m+n) . (4.6b)

Strictly speaking, we should use a more detailed notation for Ĉα(m+n) and Čα(m+n)

that would explicitly indicate the values of m and n, say C
(m,n)
α(m+n) instead of Ĉα(m+n). This
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is because there are several choices for m and n such that m+ n = const. However, in the

hope that no confusion will arise we do not use such a cumbersome notation.

In some respect the 4D case is simpler than its 3D counterpart. For instance, in a

general curved space the higher-spin Weyl tensors take the form

Ĉα(m+n) = ∇(α1

β̇1 . . .∇αn β̇nφαn+1...αn+m)β̇1...β̇n
, (4.7a)

Čα(m+n) = ∇(α1

β̇1 . . .∇αm β̇m φ̄αm+1...αm+n)β̇1...β̇m
. (4.7b)

It is clear that both (4.7a) and (4.7b) are of the form specified in property one, and also

that they have the correct Weyl weights as prescribed in property two. We now show that

they are primary.

Using the algebra (4.2) it is possible to prove, via induction on j, that the following

identity holds

[
Kγγ̇ ,∇(α1

β̇1 . . .∇αj β̇j
]
ζαj+1...αj+i)β̇1...β̇j

= −
{

4j∇(α1

β̇1 . . .∇αj−1
β̇j−1εαj |γδγ̇|

β̇jD + 4j(j − 1)∇(α1

β̇1 . . .∇αj−1
β̇j−1εαj |γδγ̇|

β̇j

+ 4j∇(α1

β̇1 . . .∇αj−1
β̇j−1Mαj |γδγ̇|

β̇j

+ 4j∇(α1

β̇1 . . .∇αj−1
β̇j−1εαj |γM̄γ̇|

β̇j

}
ζαj+1...αj+i)β̇1...β̇j

, (4.8)

where ζα(i)α̇(j) is an arbitrary primary field. When the field in (4.8) is restricted to carry

the Weyl weight specified in (4.5), upon setting j = n and i = m and evaluating, one finds

that the right hand side vanishes. This demonstrates that Ĉα(m+n) is primary. A similar

argument holds for Čα(m+n).

In a general curved space, one may construct the following primary descendants from

the higher-spin Weyl tensors,

B̂α(n)β̇(m) = ∇(β̇1
γ1 · · · ∇β̇m)

γmĈα1...αnγ1...γm , (4.9a)

B̌α(m)β̇(n) = ∇(β̇1
γ1 · · · ∇β̇n)

γnČα1...αmγ1...γn . (4.9b)

Both (4.9a) and (4.9b) have Weyl weight 2 + 1
2(m + n). The proof that they are primary

is similar to that of the higher-spin Weyl tensors and makes use of the identity (4.8) and

the properties (4.6). The primary fields (4.9a) and (4.9b) originate from two alternative

expressions for one and the same conformal invariant∫
d4x e Ĉα(m+n)Čα(m+n) =

∫
d4x eφα(m)β̇(n)B̌α(m)β̇(n) =

∫
d4x e φ̄α(n)β̇(m)B̂α(n)β̇(m) .

(4.10)

The derivation of (4.10) is given in appendix D. We will call B̂α(n)β̇(m) and B̌α(m)β̇(n)

(linearised) higher-spin Bach tensors.

– 21 –



J
H
E
P
0
5
(
2
0
1
9
)
1
1
3

4.2 CHS actions

The expressions (4.7a) and (4.7b) are determined uniquely, modulo terms involving the

background Weyl tensor Cabcd, by the key properties listed earlier. However, when the

background spacetime is conformally flat, (4.7a) and (4.7b) are the unique higher-spin

Weyl tensors. By virtue of the commutator (4.2a) they are also invariant under gauge

transformations (4.4),

Cabcd = 0 =⇒ δλĈα(m+n) = δλČα(m+n) = 0 . (4.11)

Since the commutator of covariant derivatives is proportional to the Weyl tensor, it follows

that the gauge variation of (4.7a) and (4.7b) under (4.4) in an arbitrarily curved space is

proportional to the Weyl tensor and its covariant derivatives,

δλĈα(m+n) = O(Cabcd) , δλČα(m+n) = O(Cabcd) . (4.12)

As a consequence of the properties (4.6), the linearised conformal higher-spin action

S
(m,n)
CHS [φ, φ̄] = im+n

∫
d4x e Ĉα(m+n)Čα(m+n) + c.c. (4.13)

is invariant under the gauge group G. Additionally, by virtue of (4.11), in any conformally

flat space it is also invariant under the gauge transformations (4.4),

Cabcd = 0 =⇒ δλS
(m,n)
CHS = 0 . (4.14)

In any conformally flat background the two terms in the right-hand side of (4.13) coincide

because of the identity

im+n+1

∫
d4x e Ĉα(m+n)Čα(m+n) + c.c. ≈ 0 . (4.15)

In appendices E and F we discuss how the action (4.13) can be deformed to make it gauge

invariant in Bach-flat backgrounds for low spin values.

When spacetime is conformally flat, the tensors (4.9) possess the following properties:

1. B̂α(n)β̇(m) and B̌α(m)β̇(n) are invariant under the gauge transformations (4.4),

δλB̂α(n)β̇(m) = δλB̌α(m)β̇(n) = 0 . (4.16a)

2. B̂α(n)β̇(m) and B̌α(m)β̇(n) are transverse,

∇γγ̇B̂γα(n−1)γ̇β̇(m−1) = ∇γγ̇B̌γα(m−1)γ̇β̇(n−1) = 0 . (4.16b)

3. The complex conjugates of B̂α(n)β̇(m) and B̌α(m)β̇(n) satisfy

B̂α(m)β̇(n) = B̌α(m)β̇(n) , B̌α(n)β̇(m) = B̂α(n)β̇(m) . (4.16c)
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The first two properties are obvious. The third property contains non-trivial informa-

tion and when written out in its entirety reads

∇(α1

γ̇1 · · · ∇αm)
γ̇mĈβ̇1...β̇nγ̇1...γ̇m = ∇(β̇1

γ1 · · · ∇β̇n)
γnČα1...αmγ1...γn , (4.17a)

∇(α1

γ̇1 · · · ∇αn)
γ̇nČβ̇1...β̇mγ̇1...γ̇n = ∇(β̇1

γ1 · · · ∇β̇m)
γmĈα1...αnγ1...γm . (4.17b)

To prove (4.17a) one can assume, without loss of generality, that m ≥ n. It may then be

shown that both sides of the equality evaluate to

1

(m+ n)!

n∑
j=0

(
m

j

)(
n

j

)
m!n!(�c)

j∇(α1

γ̇1 · · · ∇αm−j
γ̇m−j∇(β̇1

γ1 · · · ∇β̇n−j
γn−j

× φ̄αm−j+1...αm)γ1...γn−j β̇n−j+1...β̇n)γ̇1...γ̇m−j
.

The proof for (4.17b) is similar.

It is instructive to introduce the spin projection operators Π(m,n) and Π[m,n] which are

defined by their action on tensor fields,

Π(m,n)φα(m)β̇(n) = ∆β̇1
γ1 · · ·∆β̇n

γn∆(γ1
γ̇1 · · ·∆γn

γ̇nφα1...αm)γ̇1...γ̇n , (4.18a)

Π[m,n]φα(m)β̇(n) = ∆α1
γ̇1 · · ·∆αm

γ̇m∆(γ̇1
γ1 · · ·∆γ̇m

γmφγ1...γmβ̇1...β̇n) . (4.18b)

Here we have made use of the involutive operator9

∆α
β̇ =

∇αβ̇√
�c

, ∆α
β̇∆β̇

β = δα
β , ∆α̇

β∆β
β̇ = δα̇

β̇ . (4.19)

In a fashion similar to the proof of (4.17), it may be shown that both projection operators

are equal to one another,

Π(m,n)φα(m)β̇(n) = Π[m,n]φα(m)β̇(n) . (4.20)

In addition, they satisfy the following properties

Π(m,n)Π(m,n) = Π(m,n) , Π[m,n]Π[m,n] = Π[m,n] , (4.21a)

∇γγ̇Π(m,n)φγα(m−1)γ̇β̇(n−1) = 0 , ∇γγ̇Π[m,n]φγα(m−1)γ̇β̇(n−1) = 0 . (4.21b)

Using (4.18a), one can express the higher-spin Weyl tensors as

Ĉα(m+n) = (�c)
n
2 ∆α1

β̇1 · · ·∆αn
β̇nΠ(m,n)φαn+1...αn+mβ̇1...β̇n

, (4.22a)

Čα(m+n) = (�c)
m
2 ∆α1

β̇1 · · ·∆αm
β̇mΠ(n,m)φ̄αm+1...αm+nβ̇1...β̇m

. (4.22b)

We note that due to (4.21b), both Ĉα(m+n) and Čα(m+n) as written above are totally

symmetric.

9The operator ∆αβ̇ is a generalisation of the flat-space one used in [75, 76] to construct (super)projectors.

For two special cases, m = n and m = n + 1, the projection operators defined by (4.18) are equivalent to

the Behrends-Fronsdal projection operators [77, 78].
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If we once again assume that m ≥ n, we may use the descendants (4.9) and the

projectors (4.18) to give two new realisations of the CHS action10 (4.13),

S
(m,n)
CHS [φ, φ̄] = im+n

∫
d4x e φ̄α(n)β̇(m)B̂α(n)β̇(m) + c.c. (4.23a)

= im+n

∫
d4x e φ̄α(n)β̇(m)(�c)

n∇β̇n+1

αn+1 · · · ∇β̇m
αmΠ(m,n)φα(m)β̇(n) + c.c.

(4.23b)

When m = n = s, the prepotential may be chosen to be real,

hα(s)α̇(s) := φα(s)α̇(s) = h̄α(s)α̇(s) . (4.24)

In this case there is only one higher-spin Weyl tensor Ĉα(2s) = Čα(2s) = Cα(2s), and one

higher-spin Bach tensor B̂α(s)β̇(s) = B̌α(s)β̇(s) = Bα(s)β̇(s) = B̄α(s)β̇(s),

Cα(2s) = ∇(α1

β̇1 . . .∇αs β̇shαs+1...α2s)β̇1...β̇s
, (4.25)

Bα(s)β̇(s) = ∇(β̇1
γ1 · · · ∇β̇s)

γsCα1...αsγ1...γs , (4.26)

and the action (4.23) assumes the simple form

S
(s,s)
CHS[h] = 2(−1)s

∫
d4x e hα(s)β̇(s)(�c)

sΠ(s,s)hα(s)β̇(s) . (4.27)

Finally, when m− 1 = n = s the action (4.23) becomes

S
(s+1,s)
CHS = (−1)si

∫
d4x e φ̄α(s)β̇(s+1)∇β̇s+1

αs+1(�c)
sΠ(s+1,s)φα(s+1)β̇(s) + c.c. (4.28)

In the case of Minkowski space, the actions (4.27) and (4.28) coinicde with those proposed

by Fradkin and Tseytlin [1].

4.3 Generalised CHS models

As a simple extension of the previous constructions, we now consider a generalised gauge

field φ
(l)
α(m)α̇(n) which is primary and defined modulo gauge transformations of depth l,11

δλφ
(l)
α(m)α̇(n) = ∇(α1(α̇1

· · · ∇αlα̇lλαl+1...αm)α̇l+1...α̇n) , (4.29)

with l a positive integer, 1 ≤ l ≤ min(m,n). Using an identity similar to (4.8), one may

show that by requiring the gauge parameter λα(m−l)α̇(n−l) to also be primary, the dimension

of φ
(l)
α(m)α̇(n) is fixed to (l+ 1)− 1

2(m+n). The conformal properties of φ
(l)
α(m)α̇(n) may then

be summarised by

Kββ̇φ
(l)
α(m)α̇(n) = 0 , Dφ(l)

α(m)α̇(n) =
(

(l + 1)− 1

2
(m+ n)

)
φ

(l)
α(m)α̇(n) . (4.30)

10See appendix D for a discussion on the technical issue of integration by parts.
11Such gauge transformations occur in the description of partially massless fields in diverse dimen-

sions [54–69]. Special families of generalised CHS models were studied in [10, 12, 72, 79–81].
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As was done earlier in the case l = 1, from φ
(l)
α(m)α̇(n) we may construct generalised

higher-spin Weyl tensors Ĉ
(l)
α(m+n−l+1)α̇(l−1)(φ) and Č

(l)
α(m+n−l+1)α̇(l−1)(φ̄) possessing the fol-

lowing conformal properties,

Kββ̇Ĉ
(l)
α(m+n−l+1)α̇(l−1) = 0 , DĈ(l)

α(m+n−l+1)α̇(l−1) =
(

2− 1

2
(m− n)

)
Ĉ

(l)
α(m+n−l+1)α̇(l−1) ,

(4.31a)

Kββ̇Č
(l)
α(m+n−l+1)α̇(l−1) = 0 , DČ(l)

α(m+n−l+1)α̇(l−1) =
(

2− 1

2
(n−m)

)
Č

(l)
α(m+n−l+1)α̇(l−1) .

(4.31b)

In a general curved space one may show, using the identity (4.8), that these properties

are satisfied by the following expressions:

Ĉ
(l)
α(m+n−l+1)α̇(l−1) =∇(α1

β̇1 · · ·∇αn−l+1

β̇n−l+1φ
(l)

αn−l+2...αm+n−l+1)β̇1...β̇n−l+1α̇1...α̇l−1
, (4.32a)

Č
(l)
α(m+n−l+1)α̇(l−1) =∇(α1

β̇1 · · ·∇αm−l+1

β̇m−l+1 φ̄
(l)

αm−l+2...αm+n−l+1)β̇1...β̇m−l+1α̇1...α̇l−1
. (4.32b)

Associated with these generalised higher-spin Weyl tensors is the action

S
(m,n,l)
CHS = im+n

∫
d4x e Ĉ

α(m+n−l+1)α̇(l−1)
(l) Č

(l)
α(m+n−l+1)α̇(l−1) + c.c. , (4.33)

which is invariant under the conformal gauge group G.

In general, if the background Weyl tensor Cabcd is non-vanishing, the primary descen-

dants (4.32) are not invariant under the gauge transformations (4.29). However, in any

conformally flat space the generalised higher-spin Weyl tensors (4.32) prove to be gauge in-

variant

Cabcd = 0 =⇒ δλĈ
(l)
α(m+n−l+1)α̇(l−1) = δλČ

(l)
α(m+n−l+1)α̇(l−1) = 0 , (4.34)

and hence so too is the action (4.33),

Cabcd = 0 =⇒ δλS
(m,n,l)
CHS = 0 . (4.35)

The equations of motion that follow from (4.33) are the vanishing of the generalised

higher-spin Bach tensors,

B̂
(l)
α(n)α̇(m) = ∇(α̇1

β1 · · · ∇α̇m−l+1

βm−l+1Ĉ
(l)
β1...βm−l+1α1...αnα̇m−l+2...α̇m) , (4.36a)

B̌
(l)
α(m)α̇(n) = ∇(α̇1

β1 · · · ∇α̇n−l+1

βn−l+1Č
(l)
β1...βn−l+1α1...αmα̇n−l+2...α̇n) . (4.36b)

Both (4.36a) and (4.36b) are primary in any curved spacetime. In a conformally flat

spacetime, they satisfy the l-extended versions of the properties (4.16), namely:

1. B̂
(l)
α(n)α̇(m) and B̌

(l)
α(m)α̇(n) are invariant under the gauge transformations (4.29),

δλB̂
(l)
α(n)α̇(m) = δλB̌

(l)
α(m)α̇(n) = 0 . (4.37a)
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2. B̂
(l)
α(n)α̇(m) and B̌

(l)
α(m)α̇(n) are partially conserved,

∇β1β̇1 · · · ∇βlβ̇lB̂(l)

β(l)α(n−l)β̇(l)α̇(m−l) = ∇β1β̇1 · · · ∇βlβ̇lB̌(l)

β(l)α(m−l)β̇(l)α̇(n−l) = 0 .

(4.37b)

3. The complex conjugates of B̂
(l)

α(n)β̇(m)
and B̌

(l)

α(m)β̇(n)
satisfy

B̂
(l)

α(m)α̇(n) = B̌
(l)
α(m)α̇(n) , B̌

(l)

α(n)α̇(m) = B̂
(l)
α(n)α̇(m) . (4.37c)

As was done in the 3D case, we can once again ask which values of l yield second-order

Lagrangians in the action (4.33).12 A similar analysis reveals that second order models

exist only for bosonic spin. These models are of maximal depth and have l = m = n = s

with s = 2, 3, . . . . They were first described in [72, 79].

It is of interest to provide a more detailed analysis of the maximal depth spin-2 model

in a general curved space. Setting l = m = n = 2 and denoting Cα(3)α̇ := Ĉ
(2)
α(3)α̇ = Č

(2)
α(3)α̇

and hα(2)α̇(2) := φ
(2)
α(2)α̇(2) = h̄α(2)α̇(2), the action (4.33) takes the form

S
(2,2,2)
CHS =

∫
d4x eCα(3)α̇Cα(3)α̇ + c.c. , Cα(3)α̇ = ∇(α1

β̇hα2α3)α̇β̇ . (4.38)

We can still add a non-minimal term to this action whilst respecting its G-invariance,

S̃
(2,2,2)
CHS =S

(2,2,2)
CHS + ωS

(2,2,2)
NM , (4.39a)

S
(2,2,2)
NM =

∫
d4x eCα(2)β(2)hα(2)

α̇(2)hβ(2)α̇(2) + c.c. , (4.39b)

where ω is some constant and Cα(2)β(2) is the self-dual part of the Weyl tensor, eq. (4.3).

We find that under the gauge transformations

δλhα(2)α̇(2) = ∇(α1(α̇1
∇α2)α̇2)λ , (4.40)

the deformed action (4.39a) varies as

δλS̃
(2,2,2)
CHS = −2

∫
d4x e λ

{
(1 + ω)Cα(3)δ∇α̇δCα(3)α̇ + 2(1 + ω)Cα(3)α̇∇α̇δCα(3)δ

− ωBα(2)α̇(2)hα(2)α̇(2)

}
+ c.c. , (4.41)

where Bα(2)α̇(2) is the Bach tensor,

Bα(2)α̇(2) = ∇β1 (α̇1
∇β2 α̇2)Cα(2)β(2) = ∇(α1

β̇1∇α2)
β̇2C̄α̇(2)β̇(2) = B̄α(2)α̇(2) . (4.42)

Therefore, if we choose ω = −1 then it follows that (4.39a) is gauge invariant in any

Bach-flat spacetime,

Bα(2)α̇(2) = 0 =⇒ δλS̃
(2,2,2)
CHS

∣∣∣∣
ω=−1

= 0 . (4.43)

12First-order models in this context are not well defined.
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This model was discussed in ref. [12], where the authors concluded that gauge invari-

ance could be extended to any Einstein space. Although this statement is true, as we have

just shown, it may be extended even further to Bach-flat backgrounds. Perhaps the reason

they did not arrive at this conclusion was because they demanded gauge transformations

of the type

δλhab = DaDbλ−
1

4
ηab�λ . (4.44)

However, the right-hand side does not preserve its form under Weyl transformations. The

correct gauge transformation in a general curved background is the degauged version

of (4.40), which in vector notation reads

δλhab =

(
DaDb −

1

2
Rab

)
λ− 1

4
ηab

(
�− 1

2
R

)
λ . (4.45)

The two expressions coincide in the case of Einstein spaces.

4.4 Degauging

To conclude this section, we discuss the 4D degauging procedure, which turns out to

be much more tractable than the 3D one. In the gauge (2.25), the conformal covariant

derivative reads

∇αα̇ = Dαα̇ −
1

4
Pαα̇,

ββ̇Kββ̇ . (4.46)

The Schouten tensor may be decomposed into irreducible components as

Pαα̇,ββ̇ =
1

2
Rαβα̇β̇ −

1

12
εαβεα̇β̇R (4.47)

where Rαβα̇β̇ = (σa)αα̇(σb)ββ̇
(
Rab − 1

4ηabR
)

= R(αβ)(α̇β̇) is the traceless Ricci tensor. The

aim is then to express all descendants in terms of the torsion-free Lorentz covariant deriva-

tive, the curvature and the prepotential.

Using the identity (4.8) and the degauged covariant derivative, it is possible to show

that the following identity holds true

D(α1

β̇1 . . .Dαj−1
β̇j−1∇αj β̇j . . .∇αn β̇nφαn+1...αn+m)β̇1...β̇n

(4.48)

= D(α1

β̇1 . . .Dαj−1
β̇j−1

{
Dαj β̇j∇αj+1

β̇j+1 . . .∇αn β̇n

− 1

2
j(n− j)Rαjαj+1

β̇j β̇j+1∇αj+2
β̇j+2 . . .∇αn β̇n

}
φαn+1...αn+m)β̇1...β̇n

.

Therefore, in any background spacetime with a vanishing traceless Ricci tensor, or in other

words an Einstein space,

Rαβα̇β̇ = 0 ⇐⇒ Rab = ληab , (4.49)

the degauging procedure is trivial and we obtain13

Ĉα(m+n) = D(α1

β̇1 . . .Dαn β̇nφαn+1...αn+m)β̇1...β̇n
, (4.50a)

Čα(m+n) = D(α1

β̇1 . . .Dαm β̇m φ̄αm+1...αm+n)β̇1...β̇m
, (4.50b)

13An identity similar to (4.48) holds with φα(m)α̇(n) replaced with Ĉα(m+n).
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B̂α(n)β̇(m) = D(β̇1
γ1 · · · Dβ̇m)

γmĈα1...αnγ1...γm , (4.50c)

B̌α(m)β̇(n) = D(β̇1
γ1 · · · Dβ̇n)

γnČα1...αmγ1...γn . (4.50d)

In the case where Rα(2)α̇(2) does not vanish we have not yet been able to obtain a

closed-form expression for the degauged version of any of the above tensors, for arbitrary

m and n. However, the expressions for Cα(2s) with s = 2, 3, 4, 5 are as follows:

Cα(4) = D(α1

β̇1Dα2
β̇2hα3α4)β̇1β̇2

− 1

2
R(α1α2

β̇1β̇2hα3α4)β̇1β̇2
, (4.51a)

Cα(6) = D(α1

β̇1Dα2
β̇2Dα3

β̇3hα4α5α6)β̇1β̇2β̇3

−
(
D(α1

β̇1Rα2α3
β̇2β̇3

)
hα4α5α6)β̇1β̇2β̇3

− 2R(α1α2

β̇1β̇2Dα3
β̇3hα4α5α6)β̇1β̇2β̇3

, (4.51b)

Cα(8) = D(α1

β̇1Dα2
β̇2Dα3

β̇3Dα4
β̇4hα5α6α7α8)β̇1β̇2β̇3β̇4

− 3

2

(
D(α1

β̇1Dα2
β̇2Rα3α4

β̇3β̇4
)
hα5α6α7α8)β̇1β̇2β̇3β̇4

− 5
(
D(α1

β̇1Rα2α3
β̇2β̇3

)
Dα4

β̇4hα5α6α7α8)β̇1β̇2β̇3β̇4

− 5R(α1α2

β̇1β̇2Dα3
β̇3Dα4

β̇4hα5α6α7α8)β̇1β̇2β̇3β̇4

+
9

4
R(α1α2

β̇1β̇2Rα3α4
β̇3β̇4hα5α6α7α8)β̇1β̇2β̇3β̇4

, (4.51c)

Cα(10) = D(α1

β̇1 . . .Dα5
β̇5hα6...α10)β̇1...β̇5

− 2
(
D(α1

β̇1Dα2
β̇2Dα3

β̇3Rα4α5
β̇4β̇5

)
hα6...α10)β̇1...β̇5

− 9
(
D(α1

β̇1Dα2
β̇2Rα3α4

β̇3β̇4
)
Dα5

β̇5hα6...α10)β̇1...β̇5

− 15
(
D(α1

β̇1Rα2α3
β̇2β̇3

)
Dα4

β̇4Dα5
β̇5hα6...α10)β̇1...β̇5

− 10R(α1α2

β̇1β̇2Dα3
β̇3Dα4

β̇4Dα5
β̇5hα6...α10)β̇1...β̇5

+ 16R(α1α2

β̇1β̇2
(
Dα3

β̇3Rα4α5
β̇4β̇5

)
hα6...α10)β̇1...β̇5

+ 16R(α1α2

β̇1β̇2Rα3α4
β̇3β̇4Dα5

β̇5hα6...α10)β̇1...β̇5
. (4.51d)

Modulo terms involving the background Weyl tensor, eq. (4.51a) proves to coincide with

the linearised self-dual Weyl tensor Cα(4).

The expressions for Ĉα(m+n) with m− 1 = n = s for s = 1, 2, 3, 4 are as follows:

Ĉα(3) = D(α1

β̇1φα2α3)β̇1
, (4.52a)

Ĉα(5) = D(α1

β̇1Dα2
β̇2φα3α4α5)β̇1β̇2

− 1

2
R(α1α2

β̇1β̇2φα3α4α5)β̇1β̇2
, (4.52b)

Ĉα(7) = D(α1

β̇1Dα2
β̇2Dα3

β̇3φα4α5α6α7)β̇1β̇2β̇3

−
(
D(α1

β̇1Rα2α3
β̇2β̇3

)
φα4α5α6α7)β̇1β̇2β̇3

− 2R(α1α2

β̇1β̇2Dα3
β̇3φα4α5α6α7)β̇1β̇2β̇3

, (4.52c)
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Ĉα(9) = D(α1

β̇1Dα2
β̇2Dα3

β̇3Dα4
β̇4φα5...α9)β̇1...β̇4

− 3

2

(
D(α1

β̇1Dα2
β̇2Rα3α4

β̇3β̇4
)
φα5...α9)β̇1...β̇4

− 5
(
D(α1

β̇1Rα2α3
β̇2β̇3

)
Dα4

β̇4φα5...α9)β̇1...β̇4

− 5R(α1α2

β̇1β̇2Dα3
β̇3Dα4

β̇4φα5...α9)β̇1...β̇4

+
9

4
R(α1α2

β̇1β̇2Rα3α4
β̇3β̇4φα5...α9)β̇1...β̇4

. (4.52d)

Finally, the expressions for Čα(m+n) with m− 1 = n = s for s = 1, 2, 3, 4 are as follows:

Čα(3) = D(α1

β̇1Dα2
β̇2 φ̄α1)β̇1β̇2

− 1

2
R(α1α2

β̇1β̇2 φ̄α3)β̇1β̇2
, (4.53a)

Čα(5) = D(α1

β̇1Dα2
β̇2Dα3

β̇3 φ̄α4α5)β̇1β̇2β̇3

−
(
D(α1

β̇1Rα2α3
β̇2β̇3

)
φ̄α4α5)β̇1β̇2β̇3

− 2R(α1α2

β̇1β̇2Dα3
β̇3 φ̄α4α5)β̇1β̇2β̇3

, (4.53b)

Čα(7) = D(α1

β̇1Dα2
β̇2Dα3

β̇3Dα4
β̇4 φ̄α5α6α7)β̇1β̇2β̇3β̇4

− 3

2

(
D(α1

β̇1Dα2
β̇2Rα3α4

β̇3β̇4
)
φ̄α5α6α7)β̇1β̇2β̇3β̇4

− 5
(
D(α1

β̇1Rα2α3
β̇2β̇3

)
Dα4

β̇4 φ̄α5α6α7)β̇1β̇2β̇3β̇4

− 5R(α1α2

β̇1β̇2Dα3
β̇3Dα4

β̇4 φ̄α5α6α7)β̇1β̇2β̇3β̇4

+
9

4
R(α1α2

β̇1β̇2Rα3α4
β̇3β̇4 φ̄α5α6α7)β̇1β̇2β̇3β̇4

, (4.53c)

Čα(9) = D(α1

β̇1 . . .Dα5
β̇5 φ̄α6...α9)β̇1...β̇5

− 2
(
D(α1

β̇1Dα2
β̇2Dα3

β̇3Rα4α5
β̇4β̇5

)
φ̄α6...α9)β̇1...β̇5

− 9
(
D(α1

β̇1Dα2
β̇2Rα3α4

β̇3β̇4
)
Dα5

β̇5 φ̄α6...α9)β̇1...β̇5

− 15
(
D(α1

β̇1Rα2α3
β̇2β̇3

)
Dα4

β̇4Dα5
β̇5 φ̄α6...α9)β̇1...β̇5

− 10R(α1α2

β̇1β̇2Dα3
β̇3Dα4

β̇4Dα5
β̇5 φ̄α6...α9)β̇1...β̇5

+ 16R(α1α2

β̇1β̇2
(
Dα3

β̇3Rα4α5
β̇4β̇5

)
φ̄α6...α9)β̇1...β̇5

+ 16R(α1α2

β̇1β̇2Rα3α4
β̇3β̇4Dα5

β̇5 φ̄α6...α9)β̇1...β̇5
. (4.53d)

Here we do not attempt to degauge the generalised higher-spin Weyl and Bach tensors

introduced in the previous subsection. However, we do note that they will also degauge

trivially in any Einstein space.

5 SCHS theories in three dimensions

In three dimensions, N -extended conformal supergravity was formulated in superspace as

the gauge theory of the superconformal group in [38]. Upon degauging, this formulation

reduces to the conventional one, sketched in [82] and fully developed in [83], with the
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local structure group SL(2,R)× SO(N ). The former formulation is known as N -extended

conformal superspace, while the latter is often referred to as SO(N ) superspace. In this

section we only make use of the conformal superspace formulations for N = 1, 2 and 3. To

start with, we recall the main facts about the 3D N -extended superconformal algebra and

primary superfields in conformal superspace following [38].

The 3D N -extended superconformal algebra, osp(N|4,R), contains bosonic and

fermionic generators. Its even part so(3, 2) ⊕ so(N ) includes the generators of so(N ),

NKL = −NLK , where K,L = 1, . . . ,N , in addition to the generators of the conformal

group described in section 2.1. Their commutation relations are:

[NKL, N
IJ ] = 2δI[KNL]

J − 2δJ[KNL]
I . (5.1a)

The odd part of osp(N|4,R) is spanned by the Q-supersymmetry (QIα) and

S-supersymmetry (SIα) generators. In accordance with [38], the fermionic operators QIα
obey the algebra

{QIα , QJβ} = 2iδIJ(γc)αβPc , [QIα, Pb] = 0 , (5.1b)

[Mαβ , Q
I
γ ] = εγ(αQ

I
β) , [D, QIα] =

1

2
QIα , [NKL, Q

I
α] = 2δI[KQαL] , (5.1c)

while the operators SIα obey the algebra

{SIα, SJβ } = 2iδIJ(γc)αβKc , [SIα,Kb] = 0 , (5.1d)

[Mαβ , S
I
γ ] = εγ(αS

I
β) , [D, SIα] = −1

2
SIα , [NKL, S

I
α] = 2δI[KSαL] . (5.1e)

In the supersymmetric case, the translation (Pa) and special conformal (Ka) generators

are extended to PA = (Pa, Q
I
α) and KA = (Ka, S

I
α), respectively. The remainder of the

algebra of KA with PA is given by

[Ka, Q
I
α] = −i(γa)α

βSIβ , [SIα, Pa] = i(γa)α
βQIβ , (5.1f)

{SIα, QJβ} = 2εαβδ
IJD− 2δIJMαβ − 2εαβN

IJ . (5.1g)

The superspace geometry of N -extended conformal supergravity is formulated in terms

of the covariant derivatives of the form

∇A = (∇a,∇Iα) = EA
M∂M −

1

2
ΩA

bcMbc −
1

2
ΦA

PQNPQ −BAD− FA
BKB . (5.2)

Here ΩA
bc is the Lorentz connection, ΦA

PQ the SO(N ) connection, BA the dilatation

connection, and FA
B the special superconformal connection. The graded commutation

relations of ∇A with the generators Mbc, NPQ, D and KB are obtained from (5.1) by the

replacement PA → ∇A. However the relations (5.1b) turn into

[∇A,∇B} = −TABC∇C −
1

2
R(M)AB

cdMcd −
1

2
R(N)AB

PQNPQ

−R(D)ABD−R(S)AB
γ
KS

K
γ −R(K)AB

cKc . (5.3)
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To describe the off-shell conformal supergravity multiplet, the torsion and curvature ten-

sors should obey certain N -dependent covariant constraints given in [38]. The complete

solutions to the constraints are derived in [38]. We will reproduce the N = 1 and N = 2

solutions below.

The generators KA = (Ka, S
I
α) are used to define conformal primary superfields:

KAΦ = 0 . (5.4)

In accordance with (5.1d), if a superfield is annihilated by the S-supersymmetry generator,

then it is necessarily primary,

SIαΦ = 0 =⇒ KaΦ = 0 . (5.5)

5.1 N = 1 SCHS theories

The algebra of N = 1 conformal covariant derivatives [38] is

{∇α,∇β} = 2i∇αβ , (5.6a)

[∇a,∇β ] =
1

4
(γa)β

γWγδσK
δσ , (5.6b)

[∇a,∇b] = − i

8
εabc(γ

c)αβ∇αWβγδK
γδ − 1

4
εabc(γ

c)αβWαβγS
γ . (5.6c)

It is written in terms of the N = 1 super Cotton tensor Wαβγ which is a primary superfield

of dimension 5/2,

SδWαβγ = 0 , DWαβγ =
5

2
Wαβγ , (5.7)

obeying the Bianchi identity

∇αWαβγ = 0 . (5.8)

The super Cotton tensor Wαβγ was originally introduced in [84].

Consider a real primary superfield L of dimension +2,

SαL = 0 , DL = 2L . (5.9)

Then the functional

I =

∫
d3|2z E L , E−1 = Ber(EA

M ) (5.10)

is locally superconformal. We will use this action principle to construct N = 1 locally

superconformal higher-spin actions.

We now introduce SCHS gauge prepotentials by extending the definitions given

in [18–20] to conformal superspace. Given a positive integer n > 0, a real tensor su-

perfield Hα(n) is said to be a SCHS gauge prepotential if (i) it is primary and of dimension

(1− n/2),

SβHα(n) = 0 , DHα(n) =
(

1− n

2

)
Hα(n) ; (5.11)

and (ii) it is defined modulo gauge transformations of the form

δΛHα(n) = in∇(α1
Λα2...αn) , (5.12)
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with the gauge parameter Λα(n−1) being real but otherwise unconstrained. The dimen-

sion of Hα(n) is uniquely fixed by requiring Λα(n−1) and the right-hand side of (5.12) to

be primary.

Let us first discuss the case n = 1 corresponding to a superconformal vector multiplet.

Associated with the prepotential Hα is the real spinor descendant

Wα(H) = − i

2
∇β∇αHβ , (5.13)

which proves to be gauge invariant,

δΛWα = 0 , (5.14)

and primary,

SβWα = 0 , DWα =
3

2
Wα . (5.15)

The field strength (5.13) obeys the Bianchi identity

∇αWα = 0 . (5.16)

In general, this conservation equation is superconformal, for some primary spinor Wα, if

the dimension of Wα is equal to 3/2. The Chern-Simons action

SSCS[H] = − i

2

∫
d3|2z E HαWα(H) (5.17)

has the following basic properties: (i) it is locally superconformal; and (ii) it is invariant

under the gauge transformations (5.12) with n = 1.

It turns out that some of the properties of the conformal vector supermultiplet (n = 1),

given by eqs. (5.14)–(5.16), cannot be extended to n > 1 in the case of an arbitrary curved

background. So let us first consider a conformally flat superspace,

Wαβγ = 0 . (5.18)

Then it follows from (5.6) that the conformally covariant derivatives ∇A = (∇a,∇α) obey

the same graded commutation relations as the flat-superspace covariant derivatives. This

allows us to use the flat-superspace results of [18] provided local superconformal invariance

can be kept under control. We associate with the gauge prepotential Hα(n) the following

linearised higher-spin super Cotton tensor

Wα1...αn :=
1

2n

bn/2c∑
j=0

{(
n

2j

)
(�c)

j∇(α1

β1 . . .∇αn−2j
βn−2jHαn−2j+1...αn)β1...βn−2j

(5.19)

− i

2

(
n

2j + 1

)
∇2(�c)

j∇(α1

β1 . . .∇αn−2j−1
βn−2j−1Hαn−2j ...αn)β1...βn−2j−1

}
,

where we have denoted ∇2 = ∇α∇α. Making use of (5.1) it may be shown that Wα(n)(H)

has the following properties:

1. It is primary,

SβWα(n) = 0 , DWα(n) =
(

1 +
n

2

)
Wα(n) . (5.20)
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2. It is conserved,

∇βWβα(n−1) = 0 . (5.21)

3. It is invariant under the gauge transformations (5.12),

δΛWα(n) = 0 . (5.22)

These properties imply that the Chern-Simons-type action

S
(n)
SCS[H] = − in

2bn/2c+1

∫
d3|2z E Hα(n)Wα(n)(H) (5.23)

has the following fundamental properties: (i) it is locally superconformal; and (ii) it is

invariant under the gauge transformations (5.12). It is worth pointing out the existence of

an alternative representation for Wα(n) inspired by the flat-superspace construction of [18].

It is given by

Wα1...αn =
(
− i

2

)n
∇β1∇α1 . . .∇βn∇αnHβ1...βn = W(α1...αn) . (5.24)

To conclude our N = 1 discussion, we remark that the off-shell formulations for mass-

less and massive higher-spin N = 1 supermultiplets in Minkowski and anti-de Sitter back-

grounds were constructed in [19, 20]. These theories are realised in terms of the conformal

gauge prepotentials Hα(n) in conjunction with certain compensating supermultiplets.

5.2 N = 2 SCHS theories

In the N = 2 case it is convenient to replace the real spinor covariant derivatives ∇Iα with

complex ones,

∇α =
1√
2

(∇1
α − i∇2

α) , ∇̄α = − 1√
2

(∇1
α + i∇2

α) , (5.25)

which are eigenvectors,

[J,∇α] = ∇α , [J, ∇̄α] = −∇̄α , (5.26)

of the U(1) generator J defined by

J := − i

2
εKLNKL . (5.27)

It is also useful to introduce the operators

Sα :=
1√
2

(S1
α + iS2

α) , S̄α :=
1√
2

(S1
α − iS2

α) , (5.28)

which have the properties

[J, S̄α] = S̄α , [J, Sα] = −Sα . (5.29)
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The graded commutation relations specific to the new basis are

{Sα, Sβ} = 0 , {S̄α, S̄β} = 0 , {Sα, S̄β} = 2iKαβ , (5.30a)

[Ka,∇α] = −i(γa)α
βS̄β , [Ka, ∇̄α] = i(γa)α

βSβ , (5.30b)

[S̄α,∇a] = i(γa)α
β∇β , [Sα,∇a] = −i(γa)α

β∇̄β , (5.30c)

{S̄α,∇β} = 0 , {Sα, ∇̄β} = 0 , (5.30d)

{S̄α, ∇̄β} = −2εαβD + 2Mαβ − 2εαβJ , {Sα,∇β} = 2εαβD− 2Mαβ − 2εαβJ . (5.30e)

In the complex basis, the algebra of N = 2 covariant derivatives [38] is

{∇α,∇β}= 0 , {∇̄α,∇̄β}= 0 , (5.31a)

{∇α,∇̄β}=−2i∇αβ−εαβWγδK
γδ , (5.31b)

[∇a,∇β ] =
i

2
(γa)β

γ∇γWαδKαδ−(γa)βγW
γδS̄δ , (5.31c)

[∇a,∇b] =− i

8
εabc(γ

c)γδ
(

i[∇γ ,∇̄δ]WαβK
αβ+4∇̄γWδβS̄

β+4∇γWδβS
β−8WγδJ

)
,

(5.31d)

where the N = 2 super Cotton tensor Wαβ is a primary real superfield,

SγWαβ = 0 ⇐⇒ S̄γWαβ = 0 , DWαβ = 2Wαβ , (5.32)

with the fundamental property

∇αWαβ = 0 . (5.33)

In SO(2) superspace [83], the super Cotton tensor Wαβ was introduced originally in [85].

Given an integer n > 0, a real tensor superfield Hα(n) is said to be a superconformal

gauge prepotential if (i) it is primary and of dimension (−n/2),

SβHα(n) = 0 ⇐⇒ S̄βHα(n) = 0 , DHα(n) = −n
2
Hα(n) ; (5.34)

and (ii) it is defined modulo gauge transformations of the form

δΛHα(n) = ∇̄(α1
Λα2...αn) − (−1)n∇(α1

Λ̄α2...αn) , (5.35)

where the gauge parameter Λα(n−1) is a primary complex superfield of U(1) charge +1,

that is, JΛα(n−1) = Λα(n−1). The dimension of the gauge prepotential is uniquely fixed by

requiring Hα(n) and Λα(n−1) to be primary.

In the remainder of this section we assume that the background curved superspace

M3|4 is conformally flat,

Wαβ = 0 . (5.36)

Associated with the gauge prepotential Hα(n) is the following real descendant

Wα(n)(H) =
1

2n−1

bn/2c∑
j=0

{(
n

2j

)
∆(�c)

j∇(α1

β1 . . .∇αn−2j
βn−2jHαn−2j+1...αn)β1...βn−2j

+

(
n

2j+1

)
∆2(�c)

j∇(α1

β1 . . .∇αn−2j−1
βn−2j−1Hαn−2j ...αn)β1...βn−2j−1

}
, (5.37)
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where ∆ = i
2∇

α∇̄α. This descendant proves to be primary,

SβWα(n) = 0 ⇐⇒ S̄βWα(n) = 0 , DWα(n) =
(

1 +
n

2

)
Wα(n) , (5.38)

and gauge invariant,

δΛWα(n) = 0 . (5.39)

Moreover, it obeys the conservation equation

∇βWβα1...αn−1 = 0 ⇐⇒ ∇̄βWβα1...αn−1 = 0 . (5.40)

These properties imply that the action

S
(n)
SCS[H] = − in

2bn/2c+1

∫
d3|4z E Hα(n)Wα(n)(H) (5.41)

is superconformal and invariant under the gauge transformations (5.35).

To conclude our N = 2 analysis, we remark that the off-shell formulations for massless

and massive higher-spin N = 2 supermultiplets in Minkowski superspace, as well as in the

(1,1) and (2,0) anti-de Sitter backgrounds were constructed in [21, 22, 86]. These theories

are realised in terms of the conformal gauge prepotentials Hα(n) in conjunction with certain

compensating supermultiplets.

5.3 N = 3 SCHS gauge prepotentials

We introduceN = 3 SCHS prepotentials Hα(n), with n a positive integer, with the following

properties: (i) it is primary and of dimension −(1 + n/2),

SJβHα(n) = 0 , DHα(n) = −
(

1 +
n

2

)
Hα(n) ; (5.42)

and (ii) it is defined modulo gauge transformations of the form

δΛHα(n) = in∇I(α1
ΛIα2...αn) , (5.43)

with the primary gauge parameter ΛI
α(n−1) being real but otherwise unconstrained. In the

right-hand side of (5.43), summation over I is assumed. The prepotential Hα corresponds

to linearised N = 3 conformal supergravity [38].

The N = 3 story is still incomplete since higher-spin super Cotton tensors are not

yet known.

6 SCHS theories in four dimensions

In N = 1 conformal superspace [41] in four dimensions, the covariant derivatives ∇A =

(∇a,∇α, ∇̄α̇) have the form

∇A = EA
M∂M −

1

2
ΩA

bcMbc − iΦAY −BAD− FA
BKB

= EA
M∂M − ΩA

βγMβγ − Ω̄A
β̇γ̇M̄β̇γ̇ − iΦAY −BAD− FA

BKB . (6.1)
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Here ΩA
bc is the Lorentz connection, ΦA the U(1)R connection, BA the dilatation connec-

tion, and FA
B the special superconformal connection. Below we list the graded commu-

tation relations for the N = 1 superconformal algebra su(2, 2|1) following the conventions

adopted in [87, 88], keeping in mind that (i) the translation generators PA = (Pa, Qα, Q̄
α̇)

are replaced with ∇A; and (ii) the graded commutator [∇A,∇B} differs from that obtained

from [PA, PB} by torsion and curvature dependent terms,

[∇A,∇B} = −TABC∇C−
1

2
RABcd(M)Mcd−iRAB(Y )Y −RAB(D)D−RABC(K)KC . (6.2)

The Lorentz generators Mab act on the covariant derivatives as

[Mab,∇c] = 2ηc[a∇b] , [Mab,∇γ ] = (σab)γ
δ∇δ , [Mab, ∇̄γ̇ ] = (σ̃ab)

γ̇
δ̇∇̄

δ̇ . (6.3)

The Lorentz generators with spinor indices act on the spinor covariant derivatives

[Mαβ ,∇γ ] = εγ(α∇β) , [M̄α̇β̇ , ∇̄γ̇ ] = εγ̇(α̇∇̄β̇) . (6.4a)

The U(1)R and dilatation generators obey

[Y,∇α] = ∇α , [Y, ∇̄α̇] = −∇̄α̇ , (6.4b)

[D,∇a] = ∇a , [D,∇α] =
1

2
∇α , [D, ∇̄α̇] =

1

2
∇̄α̇ . (6.4c)

The special superconformal generators KA = (Ka, Sα, S̄α̇) transform in the obvious way

under the Lorentz group,

[Mab,Kc] = 2ηc[aKb] , [Mab, S
γ ] = −(σab)β

γSβ , [Mab, S̄γ̇ ] = −(σab)
β̇
γ̇S̄β̇ , (6.4d)

and carry opposite U(1)R and dilatation weight to ∇A:

[Y, Sα] = −Sα , [Y, S̄α̇] = S̄α̇ , (6.4e)

[D,Ka] = −Ka , [D, Sα] = −1

2
Sα , [D, S̄α̇] = −1

2
S̄α̇ . (6.4f)

Among themselves, the generators KA obey the algebra

{Sα, S̄α̇} = 2i(σa)αα̇Ka , (6.4g)

with all the other (anti-)commutators vanishing. Finally, the algebra of KA with ∇B is

given by

[Ka,∇b] = 2δabD + 2Ma
b , (6.4h)

{Sα,∇β} = 2δαβD− 4Mα
β − 3δαβY , (6.4i)

{S̄α̇, ∇̄β̇} = 2δβ̇α̇D + 4M̄α̇
β̇ + 3δβ̇α̇Y , (6.4j)

[Ka,∇β ] = −i(σa)β
β̇S̄β̇ , [Ka, ∇̄β̇ ] = −i(σa)β̇βS

β , (6.4k)

[Sα,∇b] = i(σb)
α
β̇∇̄

β̇ , [S̄α̇,∇b] = i(σb)α̇
β∇β , (6.4l)

where all other graded commutators vanish.
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In conformal superspace [41], the torsion and curvature tensors in (6.2) are subject to

covariant constraints such that [∇A,∇B} is expressed in terms of the super Weyl tensor

Wαβγ = W(αβγ), its conjugate W̄α̇β̇γ̇ and their covariant derivatives. The solutions to the

constraints are given by

{∇α,∇β} = {∇̄α̇, ∇̄β̇} = 0 , ∇αα̇ :=
i

2
{∇α, ∇̄α̇} , (6.5a)

[∇β ,∇αα̇] = 2iεβαW̄α̇β̇γ̇M̄
β̇γ̇ −R(S̄)β αα̇ γ̇S̄

γ̇ −R(K)β αα̇
cKc , (6.5b)

where R(S̄)β αα̇ γ̇ and R(K)β αα̇
c involve derivatives of the superfield W̄α̇β̇γ̇ . Their precise

expressions will not be necessary for our discussion; they can be found in the original

publication [41].

Consider a primary superfield Ψ (with suppressed indices), KBΨ = 0. Its dimension

∆ and U(1)R charge q are defined as DΨ = ∆Ψ and YΨ = qΨ. As is well known, for every

primary covariantly chiral superfield φα(n), its U(1)R charge is determined in terms of its

dimension,

KBφα(n) = 0 , ∇̄β̇φα(n) = 0 =⇒ q = −2

3
∆ . (6.6)

The super Weyl tensor Wαβγ is a primary chiral superfield of dimension 3/2,

KBWαβγ = 0 , ∇̄β̇Wαβγ = 0 , DWαβγ =
3

2
Wαβγ . (6.7)

It obeys the Bianchi identity

Bαα̇ := i∇βα̇∇γWαβγ = i∇αβ̇∇̄γ̇W̄α̇β̇γ̇ = B̄αα̇ . (6.8)

Upon degauging (see [41] for the technical details of the degauging procedure) Bαα̇ takes

the form given in [32, 33] (see also [17]). It is clear that Bαα̇ is the N = 1 supersymmetric

generalisation of the Bach tensor (4.42). One may check that Bαα̇ is primary,

KBBαα̇ = 0 , DBαα̇ = 3Bαα̇ , (6.9)

and obeys the conservation equation

∇αBαα̇ = 0 ⇐⇒ ∇̄α̇Bαα̇ = 0 . (6.10)

The super-Bach tensor defined by eq. (6.8) naturally originates (see [32, 33] for the

technical details) as a functional derivative of the conformal supergravity action14 [89, 90],

ICSG =

∫
d4x d2θ EWαβγWαβγ + c.c. , (6.11)

with respect to the gravitational superfield Hαα̇ [89], specifically

δ

∫
d4xd2θ EWαβγWαβγ =

∫
d4xd2θd2θ̄ E∆Hαα̇Bαα̇ , (6.12)

14In Minkowski superspace, the linearised action for conformal supergravity was constructed by Ferrara

and Zumino [34].
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where E denotes the chiral integration measure, and ∆Hαα̇ the covariant variation of the

gravitational superfield defined in [91, 92]. The conservation equation (6.10) expresses the

gauge invariance of the conformal supergravity action.

We introduce SCHS gauge prepotentials by generalising the construction of [17]. Given

two positive integers m and n, a SCHS gauge prepotential Υα(m)α̇(n) is a primary superfield,

KBΥα(m)α̇(n) = 0, defined modulo gauge transformations [17]

δΛ,ζΥα1...αmα̇1...α̇n = ∇̄(α̇1
Λα1...αmα̇2...α̇n) +∇(α1

ζα2...αm)α̇1...α̇n , (6.13)

with unconstrained primary gauge parameters Λα(m)α̇(n−1) and ζα(m−1)α̇(n). The condi-

tions that Υα(m)α̇(n), Λα(m)α̇(n−1) and ζα(m−1)α̇(n) be primary superfields uniquely fix the

dimension and U(1)R charge of Υα(m)α̇(n),

DΥα(m)α̇(n) = −1

2
(m+ n)Υα(m)α̇(n) , YΥα(m)α̇(n) =

1

3
(m− n)Υα(m)α̇(n) . (6.14)

Associated with Υα(m)α̇(n) and its conjugate Ῡα(n)α̇(m) are higher-derivative descen-

dants

Ŵα(m+n+1) := −1

4
∇̄2∇(α1

β̇1 · · · ∇αn β̇n∇αn+1Υαn+2...αm+n+1)β̇1...β̇n
, (6.15a)

W̌α(m+n+1) := −1

4
∇̄2∇(α1

β̇1 · · · ∇αm β̇m∇αm+1Ῡαm+2...αm+n+1)β̇1...β̇m
. (6.15b)

By construction they are obviously covariantly chiral,

∇̄β̇Ŵα(m+n+1) = 0 , ∇̄β̇W̌α(m+n+1) = 0 . (6.16)

What is less trivial is the fact that they are primary,

KBŴα(m+n+1) = 0 , DŴα(m+n+1) =
1

2
(3 + n−m)Ŵα(m+n+1) , (6.17a)

KBW̌α(m+n+1) = 0 , DW̌α(m+n+1) =
1

2
(3 +m− n)W̌α(m+n+1) . (6.17b)

These properties imply that the following action

S
(m,n)
SCHS = im+n

∫
d4xd2θ E Ŵα1...αm+n+1W̌α1...αm+n+1 + c.c. (6.18)

is locally superconformal.

Consider a conformally flat background superspace,

Wαβγ = 0 . (6.19)

Then it may be shown that the chiral descendants (6.15) are invariant under the gauge

transformations (6.13),

δΛ,ζŴα(m+n+1) = 0 , δΛ,ζW̌α(m+n+1) = 0 . (6.20)

As a result, the higher-spin actions (6.18) are gauge invariant. It is clear that these actions

are modelled on the conformal supergravity action.
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There are several special cases that require a separate discussion. Firstly, choosing

m = n = s > 0 allows us to impose the reality condition

Υα(s)α̇(s) = Ῡα(s)α̇(s) ≡ Hα(s)α̇(s) , (6.21)

and then (6.13) turns into the transformation law [17]

δΛHα1...αsα̇1...α̇s = ∇̄(α̇1
Λα1...αsα̇2...α̇s) −∇(α1

Λ̄α2...αs)α̇1...α̇s , (6.22)

which is a curved-superspace extension of (1.8). The gauge prepotential Hα(s)α̇(s) describes

the conformal superspin-(s + 1
2) multiplet, with the lowest choice s = 1 corresponding to

linearised conformal supergravity. It is one of the dynamical variables in terms of which the

off-shell massless superspin-(s+ 1
2) multiplets in Minkowski and anti-de Sitter backgrounds

are formulated [93, 94].

The second special case corresponds to m = n + 1 = s > 1. The gauge prepotential

Υα(s)α̇(s−1) and its conjugate, along with certain compensating supermultiplets, are used

to describe the off-shell massless superspin-s multiplet in Minkowski and anti-de Sitter

backgrounds, originally proposed in [94, 95] and recently reformulated in [96, 97].

Thirdly, the case m = 1 and n = 0, which corresponds to the superconformal gravitino

multiplet, has been excluded from the previous consideration since the transformation

law (6.13) is not defined. This supermultiplet is characterised by the gauge freedom [17]

δΥα = ∇αζ + λα , ∇̄β̇λα = 0 , (6.23)

which is a curved superspace extension of the transformation law given by Gates and

Siegel [98] who studied an off-shell formulation for the massless gravitino supermultiplet in

Minkowski superspace.

7 Concluding comments

There exist two modern approaches to formulate conformal geometry. One of them was

developed by mathematicians and is often referred to as tractor calculus [99, 100], with

its roots going back to the work of Thomas [101]. The other formalism was created by

supergravity practitioners [30]. It describes conformal gravity as the gauge theory of the

conformal group, which was reviewed in section 2. It may be shown that the former

approach is obtained from the latter by imposing the gauge condition (2.25), which makes

transparent the fact that the so(D, 2) connection (2.18) encodes the tractor connection

of [99, 100]. This means that the two approaches to conformal geometry are essentially

equivalent and complementary.

Tractor calculus has been used to construct families of conformal differential opera-

tors. Moreover, there have appeared interesting applications of this formalism in physics,

see [102–106] and references therein. At the same time, tractor calculus is not practical

if one is interested in constructing superconformal field theories, and alternative ideas are

required. Fortunately, the work of Butter in four dimensions [41, 42] and its extensions

to three, five and six dimensions [38, 39, 43, 44] have provided powerful tools to describe
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conformal supergravity and its higher-order invariants in superspace.15 In this paper we

have demonstrated the power of conformal (super)space to generate (super) CHS theories.

In four dimensions, all of the higher-spin models which have been constructed in this

paper are (super) Weyl-invariant on general curved backgrounds. However, their higher-

spin gauge invariance is present, in general, only for conformally flat backgrounds. In

principle, extensions to more general (Bach-flat) backgrounds are possible by deforming

the action with non-minimal primary terms containing factors of the (super) Weyl tensor

and its covariant derivatives. Instructive examples are provided by (i) the model (4.39)

with ω = −1; (ii) the conformal gravitino model considered in appendix E; (iii) the con-

formal graviton model considered in appendix F; and (iv) the superconformal gravitino

model studied in [17]. Conformal (super)space is an ideal formalism for constructing such

deformations since the algebra of covariant derivatives is determined by the (super) Weyl

tensor and its covariant derivatives.

The structure of the (super) CHS actions presented in this paper indicate that there

should exist a generating formalism to formulate all of these models in terms of a single

hyper-action. Recently there has been much interest in the so-called tensorial or hyperspace

approach to the description of massless higher-spin (super)fields [108–122], see also [123] for

a pedagogical review. It would be interesting to study whether the conformal (super)space

methods can be extended to hyperspace.
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A 3D notation and conventions

In 3D we follow the notation and conventions adopted in [83]. In particular, the Minkowski

metric is ηab = diag(−1, 1, 1). The spinor indices are raised and lowered using the SL(2,R)

invariant tensors

εαβ =

(
0 −1

1 0

)
, εαβ =

(
0 1

−1 0

)
, εαγεγβ = δαβ (A.1)

by the standard rule:

ψα = εαβψβ , ψα = εαβψ
β . (A.2)

We make use of real gamma-matrices, γa :=
(
(γa)α

β
)
, which obey the algebra

γaγb = ηab1 + εabcγ
c , (A.3)

15The conformal superspace approach is at the heart of the construction of all N = 4 conformal super-

gravity theories in four dimensions [107].
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where the Levi-Civita tensor is normalised as ε012 = −ε012 = 1. The completeness relation

for the gamma-matrices reads

(γa)αβ(γa)
ρσ = −(δραδ

σ
β + δσαδ

ρ
β) . (A.4)

Here the symmetric matrices (γa)
αβ and (γa)αβ are obtained from (γa)α

β by the rules (A.2).

Some useful relations involving γ-matrices are

εabc(γ
b)αβ(γc)γδ = εγ(α(γa)β)δ + εδ(α(γa)β)γ , (A.5a)

tr[γaγbγcγd] = 2ηabηcd − 2ηacηdb + 2ηadηbc . (A.5b)

Given a three-vector xa, it can be equivalently described by a symmetric second-rank spinor

xαβ defined as

xαβ := (γa)αβxa = xβα , xa = −1

2
(γa)

αβxαβ . (A.6)

In the 3D case, an antisymmetric tensor Fab = −Fba is Hodge-dual to a three-vector Fa,

specifically

Fa =
1

2
εabcF

bc , Fab = −εabcF c . (A.7)

Then, the symmetric spinor Fαβ = Fβα, which is associated with Fa, can equivalently be

defined in terms of Fab:

Fαβ := (γa)αβFa =
1

2
(γa)αβεabcF

bc . (A.8)

These three algebraic objects, Fa, Fab and Fαβ , are in one-to-one correspondence with

each other, Fa ↔ Fab ↔ Fαβ . The corresponding inner products are related to each other

as follows:

− F aGa =
1

2
F abGab =

1

2
FαβGαβ . (A.9)

The Lorentz generators with two vector indices (Mab = −Mba), one vector index (Ma)

and two spinor indices (Mαβ = Mβα) are related to each other by the rules: Ma = 1
2εabcM

bc

and Mαβ = (γa)αβMa. These generators act on a vector Vc and a spinor Ψγ as follows:

MabVc = 2ηc[aVb] , MαβΨγ = εγ(αΨβ) . (A.10)

The D = 3 conformal algebra in spinor notation is

[Mαβ ,Mγδ] = εγ(αMβ)δ + εδ(αMβ)γ , (A.11a)

[Mαβ , Pγδ] = εγ(αPβ)δ + εδ(αPβ)γ , [D, Pαβ ] = Pαβ , (A.11b)

[Mαβ ,Kγδ] = εγ(αKβ)δ + εδ(αKβ)γ , [D,Kαβ ] = −Kαβ , (A.11c)

[Kαβ , Pγδ] = 4εγ(αεβ)δD− 4ε(γ(αMβ)δ) , (A.11d)

where Mαβ = (γa)αβMa, Pαβ = (γa)αβPa and Kαβ = (γa)αβKa.

To describe conformal gravity in three dimensions we made use of the symmetric

Cartan-Killing metric on so(3, 2), Γãb̃ = fãd̃
c̃fb̃c̃

d̃, see [39] for the technical details. In

accordance with (2.3), the non-vanishing components of Γãb̃ are

ΓMab,Mcd
= −12ηa[cηd]b , ΓKa,Pb = −12ηab , ΓDD = 6 . (A.12)
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B Converting between conventions

In several papers such as ref. [20], a different set of conventions were used. The purpose of

this appendix is to provide a summary of how to easily convert between conventions.

Suppose that a field Φ transforms under some tensor representation of the gauge

group G. We may write the action of the generators Xã on Φ as

XãΦ = tãΦ (B.1)

for some matrix tã. Since the operator Xã passes through tb̃, we find that the commutator is

[Xã, Xb̃]Φ = −[tã, tb̃]Φ . (B.2)

The Xã and tã therefore satisfy

[Xã, Xb̃] = −fãb̃
c̃Xc̃ , [tã, tb̃] = +fãb̃

c̃tc̃ . (B.3)

In particular, the action of the Lorentz generators is MabΦ = mabΦ. The Lorentz generators

of ref. [20] correspond to mab, i.e. no change is necessary here.

In section 2, the connection one-forms, torsion and curvature tensors were defined

through

∇a = ea − ωabXb , [∇a,∇b] = −Tabc∇c −RabcXc , (B.4)

which differs to the definitions in refs. [20] and [33] by a minus sign. Thus, to flow between

conventions, one must impose the gauge ba = 0 and make the following replacements

Tab
c 7−→ −Tabc , (B.5)

Rabcd 7−→ −Rabcd , (B.6)

ωabc 7−→ −ωabc . (B.7)

Additionally, since the Cotton, Weyl and Schouten tensors, given by (2.45), (2.34)

and (2.32) respectively, are defined in terms of Rabcd, we must also rescale each of them

by−1. This accounts for the sign discrepancy between the second and third terms of (2.62b)

and the first two terms of (3.5c).

C Properties of the generalised HS Cotton tensor

In this section we present the main steps that are needed in order to prove the two prop-

erties (3.22) of the generalised higher-spin Cotton tensor C
(l)
α(n). Namely, that in any con-

formally flat spacetime it is partially conserved and gauge invariant.
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It may be shown that the lth divergence of C
(l)
α(n) is given by

2n−2l+1∇β1β2 · · ·∇β2l−1β2lC
(l)
α(n−2l)β(2l)

=

dn
2
e−1∑

j=l−1

(
n

2j+1

)(
j

l−1

)
(�c)

j−l+1∇β1β2 · · ·∇β2l−1β2l

× 1

n!

l∑
k=0

(
l

k

)(
n−2j−1

2k

)
(2k)!

(
n−2l

n−2j−2k−1

)
(n−2j−2k−1)!(2j+1)!

×∇β1γ1 · · ·∇β2k
γ2k∇(α1

γ2k+1 · · ·∇αn−2j−2k−1

γn−2j−1h
(l)
αn−2j−2k...αn−2l)β2k+1...β2lγ1...γn−2j−1

=

l∑
k=0

dn
2
e−k−1∑
j=l−k

(−1)k
(

n

2j+1

)(
j

l−1

)(
l

k

)(
n−2j−1

2k

)(
n−2l

n−2j−2k−1

)
(2k)!(2j+1)!

n!

×(n−2j−2k−1)!(�c)
j+k−l+1∇γ1γ2 · · ·∇γ2l−1γ2l∇(α1

γ2l+1 · · ·∇αn−2j−2k−1

γn−2j−2k+2l−1

×h(l)
αn−2j−2k...αn−2l)γ1...γn−2j−2k+2l−1

=

dn
2
e−1∑
j=l

(
n−2l

n−2j−1

)
(�c)

j−l+1∇γ1γ2 · · ·∇γ2l−1γ2l∇(α1

γ2l+1 · · ·∇αn−2j−1
γn−2j+2l−1

×h(l)
αn−2j ...αn−2l)γ1...γn−2j+2l−1

{ l∑
k=0

(−1)k
(
j−k
l−1

)(
l

k

)}
.

Making use of the combinatoric identity

l∑
k=0

(−1)k
(
j − k
l − 1

)(
l

k

)
= 0 ∀ j ≥ l , (C.1)

which may be proved by induction on l, it follows that the last line in the above is equal

to zero. In the second line we have used the combinatoric factors to shift the upper and

lower bounds of the summation over j. Then, in the third line we have shifted the dummy

variable j 7→ j − k.

Under the gauge transformations (3.16), it may be shown that C
(l)
α(n) transforms as

δξ

(
2n−2l+1C

(l)
α(n)

)

=

dn
2
e−1∑

j=l−1

(
n

2j + 1

)(
j

l − 1

)
(�c)

j−l+1∇(α1

β1 · · · ∇αn−2j−1
βn−2j−1

× 1

n!

l∑
k=0

(
n− 2j − 1

2k

)(
l

k

)
(2k)!

(
2j + 1

2l − 2k

)
(2l − 2k)!(n− 2l)!

×∇|β1β2 · · · ∇β2k−1β2k|∇αn−2jαn−2j+1 · · · ∇αn−2j−2k+2l−2αn−2j−2k+2l−1

× ξαn−2j−2k+2l...αn)β2k+1...βn−2j−1
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=
l∑

k=0

dn
2
e−k−1∑
j=l−k

(−1)k
(

n

2j + 1

)(
j

l − 1

)(
n− 2j − 1

2k

)(
l

k

)(
2j + 1

2l − 2k

)
(2k)!(2l − 2k)!(n− 2l)!

n!

× (�c)
j+k−l+1∇(α1α2

· · · ∇α2l−1α2l
∇α2l+1

β2l+1 · · · ∇αn−2j−2k+2l+1

βn−2j−2k+2l+1

× ξαn−2j−2k+2l+2...αn)β2l+1...βn−2j−2k+2l+1

=

dn
2
e−1∑
j=l

(
n− 2l

2j − 2l + 1

)
(�c)

j−l+1∇(α1α2
· · · ∇α2l−1α2l

∇α2l+1

β2l+1 · · · ∇αn−2j+2l+1

βn−2j+2l+1

× ξαn−2j+2l+2...αn)β2l+1...βn−2j+2l+1

{ l∑
k=0

(−1)k
(
j − k
l − 1

)(
l

k

)}
.

It follows that the gauge variation vanishes after making use of (C.1) once more. In the

second line of the above we have used the combinatoric factors to shift the upper and

lower bounds of the summation over j. Then, in the third line we have shifted the dummy

variable j 7→ j − k.

D Integration by parts

In this section we discuss integration by parts in conformal space. To demonstrate the

technique we give a detailed analysis of how it works in the case of the 4D CHS ac-

tion (4.13) in a general curved space. However, before we begin the analysis let us give

some general remarks.

To integrate by parts in D dimensions, we must impose the gauge16 (2.25). As discussed

earlier, the conformal covariant derivative then takes the form

ba = 0 =⇒ ∇a = Da +
1

2
Pa

bKb . (D.1)

Consider some vector V a, we obtain the following identity regarding total conformal deriva-

tives ∫
dDx e∇aV a =

1

2

∫
dDx ePabK

aV b . (D.2)

In the usual way we have integrated out the total derivative arising from the torsion-free

Lorentz covariant derivative. One then uses the conformal algebra and the conformal

properties of the physical fields which comprise Va to eliminate the generator Ka.

Consider an integral of the form

I =

∫
dDx eL , DL = DL , KaL = 0 . (D.3)

This means that I is invariant under the gauge group G and since L is primary all depen-

dence on ba drops out. Let us further suppose that L takes the form

L = gJAhJ (D.4)

16In fact, since most Lagrangians we consider are primary, all dependence on ba drops out and we

needn’t choose the gauge ba = 0. However, the two are equivalent because in both cases the K-symmetry

is exhausted.
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where gJ and hJ are primary fields with abstract index structure and A is a linear differ-

ential operator such that AhJ ≡ AJ IhI is also primary. We define the transpose of the

operator A by ∫
dDx e gJAhJ =

∫
dDx e hJAT gJ +

∫
dDx eΩ (D.5)

where Ω is a total conformal derivative and may be written as Ω = ∇aV a for some vector

V a with Weyl weight D− 1. The first term on the right hand side of (D.5) is the result of

integrating I by parts in the usual way.

In general we cannot conclude that the second term on the right hand side of (D.5)

vanishes. However, under the condition that AT gJ is primary then Ω must also be primary.

It follows that

0 = KaΩ = [Ka,∇b]V b +∇bKaVb = (2ηabD + 2Mab)V
b +∇bKaVb = ∇bKaVb . (D.6)

It is clear that the condition ∇bKaVb = 0 is satisfied if Va is primary. What is not so clear

is that any solution Va to this equation is necessarily primary. However, for all cases known

to us this is true. Application of the rule (D.2) then allows us to conclude that the second

term on right side of (D.5) vanishes up to a total derivative,∫
dDx eΩ =

∫
dDx e

(
DaVa +

1

2
P abKaVb

)
≈ 0 . (D.7)

Therefore, we arrive at the following rule for integration by parts:∫
dDx e gJAhJ =

∫
dDx e hJAT gJ (D.8)

if KagI = KahI = Ka(AhI) = Ka(AT gI) = 0. We remark that most of the Lagrangians

proposed in the main body of this paper are of the form (D.4).

As an example, presented below are the steps one must take in order to integrate the

4D CHS action by parts in a general curved space. For convenience we do not include the

complex conjugated part of the action.

S
(m,n)
CHS = im+n

∫
d4xe Čα(m+n)Ĉα(m+n)

= im+n

∫
d4xe(−1)n∇α1α̇1 . . .∇αmα̇m φ̄αm+1...αm+n

α̇1...α̇mĈα(m+n)

= im+n

∫
d4xe(−1)n

{
(−1)mφ̄αm+1...αm+n

α̇1...α̇m∇α1α̇1 . . .∇αmα̇mĈα(m+n)

−
m∑
j=1

(−1)j∇α1α̇1

[
∇αj+1α̇j+1 · · ·∇αmα̇m φ̄αm+1...αm+n

α̇1...α̇m∇α2α̇2 · · ·∇αj α̇j Ĉα(m+n)

]}
= im+n

∫
d4xeφ̄α(n)α̇(m)B̂α(n)α̇(m)−(−1)nim+n

∫
d4xe∇α1α̇1V

α1α̇1 (D.9)

where

V α1α̇1 =
m∑
j=1

(−1)j∇αj+1α̇j+1 · · · ∇αmα̇m φ̄αm+1...αm+n
α̇1...α̇m∇α2α̇2 · · · ∇αj α̇j Ĉα(m+n) .
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In accordance with the previous discussion, since the integrand of the first term in (D.9)

is of the form hJAT gJ and all primary conditions listed below (D.8) are met, the total

conformal derivative must vanish. However, to support our belief that Va appearing in (D.6)

is primary, we show that this is indeed the case for the current example,

Kγγ̇V
α1α̇1 =

m−1∑
j=1

(−1)jKγγ̇∇αj+1α̇j+1 · · ·∇αmα̇m φ̄αm+1...αm+n
α̇1...α̇m∇α2α̇2 · · ·∇αj α̇j Ĉα(m+n)

+

m∑
j=2

(−1)j∇αj+1α̇j+1 · · ·∇αmα̇m φ̄αm+1...αm+n
α̇1...α̇mKγγ̇∇α2α̇2 · · ·∇αj α̇j Ĉα(m+n)

=
m∑
j=2

(−1)j
([
Kγγ̇ ,∇αj α̇j · · ·∇αmα̇m

]
φ̄αm+1...αm+n

α̇1...α̇m∇α2α̇2 · · ·∇αj−1α̇j−1Ĉ
α(m+n)

−∇αj+1α̇j+1 · · ·∇αmα̇m φ̄αm+1...αm+n
α̇1...α̇m

[
Kγγ̇∇α2α̇2 · · ·∇αj α̇j

]
Ĉα(m+n)

)
= 0 .

In the first line we have used the fact that the first term vanishes for j = m whilst the

second term vanishes for j = 1. This allows us to translate the summation index of the

first term in the second line. In going from the second to the third line, we have used the

identity (4.8) twice, whereupon all terms in the round brackets cancel among themselves.

E Conformal gravitino model

As an application of the techniques developed earlier, we will discuss in detail the construc-

tion of a gauge-invariant model for the conformal gravitino in any 4D Bach-flat spacetime.

This model can be extracted from the action for N = 1 conformal supergravity [30, 31] by

linearising it around a Bach-flat background.

The conformal gravitino is described by a complex primary field φα(2)α̇ of dimension

+1/2 and its conjugate, which are defined modulo gauge transformations of the type

δλφα(2)α̇ = ∇(α1α̇λα2) , (E.1)

where the complex gauge parameter λα is primary of dimension −1/2.

Associated with the gravitino are the two field strengths

Ĉα(3) = ∇(α1

β̇φα2α3)β̇ , Čα(3) = ∇(α1

β̇1∇α2
β̇2 φ̄α3)β̇(2) , (E.2)

and their conjugates, which are primary fields of dimensions +3/2 and +5/2 respectively.

Under the gauge transformation (E.1), their variations are given by

δλĈα(3) = Cα(3)δλ
δ , δλČα(3) =

1

2
Cα(3)δ∇δδ̇λ̄δ̇ − λ̄δ̇∇

δδ̇Cα(3)δ . (E.3)

In accordance with the results from section 4, the action (4.13) with m = 2, n = 1, which

we now denote by

S
(3/2)
CHS [φ, φ̄] = −i

∫
d4x e Ĉα(3)Čα(3) + c.c. , (E.4)
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is invariant under the conformal gauge group G, but not under (E.1). However, if (E.4) is

supplemented by the non-minimal term that is linear in the Weyl tensor,

S
(3/2)
Linear = i

∫
d4x eφα(2)α̇J̌α(2)α̇ + c.c. , (E.5)

J̌α(2)α̇ = Cα(2)
β(2)∇β1 β̇φ̄β2α̇β̇ − φ̄β1α̇β̇∇β2

β̇Cα(2)
β(2) , (E.6)

where J̌α(2)α̇ is a dimension +7/2 primary field, then the resulting action

SGravitino = S
(3/2)
CHS + S

(3/2)
Linear (E.7)

is invariant under (E.1) provided the background Bach tensor (4.42) vanishes,

Bα(2)α̇(2) = 0 . (E.8)

We remark that the following primary deformation of the linearised Bach tensor,

B̌α(2)α̇ = B̌α(2)α̇ − J̌α(2)α̇ , (E.9)

which may be used to rewrite the action (E.7) as

SGravitino = −i

∫
d4x eφα(2)α̇B̌α(2)α̇ + c.c. , (E.10)

is transverse and gauge invariant in any Bach-flat spacetime,

Bα(2)α̇(2) = 0 =⇒ ∇γγ̇B̌αγγ̇ = δλB̌α(2)α̇ = 0 . (E.11)

To conclude, we present the degauged versions of the above results. In the gauge (2.25),

the gauge transformations (E.1) are

δλφα(2)α̇ = D(α1α̇λα2) . (E.12)

Under (E.12), the degauged gravitino field strengths

Ĉα(3) = D(α1

β̇φα2α3)β̇ , Čα(3) = D(α1

β̇1Dα2
β̇2 φ̄α3)β̇(2) −

1

2
R(α1α2

β̇(2)φ̄α3)β̇(2) , (E.13)

transform as

δλĈα(3) = Cα(3)δλ
δ , δλČα(3) =

1

2
Cα(3)δDδδ̇λ̄δ̇ − λ̄δ̇D

δδ̇Cα(3)δ . (E.14)

The degauged gravitino action (E.7) remains the same except with (E.2) replaced by (E.13)

in S
(3/2)
CHS as well as the replacement ∇αα̇ 7→ Dαα̇ in S

(3/2)
Linear. Finally, SGravitino is invariant

under the gauge transformations (E.12) as long as the degauged Bach tensor,

Bα(2)α̇(2) = Dβ1 (α̇1
Dβ2 α̇2)Cα(2)β(2) −

1

2
Cα(2)β(2)R

β(2)
α̇(2) , (E.15)

vanishes.
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F Conformal graviton model

In this appendix we construct a conformally invariant model for the graviton that is gauge

invariant in any Bach-flat spacetime. This model may of course be obtained by linearising

the action of 4D conformal gravity around a Bach-flat background. However, in principle

the method presented below can be applied to higher-spin models, albeit with consider-

able effort.

In accordance with section 4, the conformal graviton is described by a real primary field

hα(2)α̇(2) = h̄α(2)α̇(2) with zero Weyl weight and is defined modulo the gauge transformations

δλhα(2)α̇(2) = ∇(α1(α̇1
λα2)α̇2) . (F.1)

Associated with the graviton is the linearised Weyl tensor,

Cα(4) = ∇(α1

β̇1∇α2
β̇2hα3α4)β̇1β̇2

, (F.2)

which is a primary field of dimension 2. Under the gauge transformation (F.1), its variation

is given by

δλCα(4) =
1

2
Cα(4)∇ββ̇λββ̇ − λββ̇∇

ββ̇Cα(4) − 2Cβ(α1α2α3
∇α4)

β̇λββ̇ . (F.3)

The action of linearised conformal gravity is given by (4.13), with m = n = 2, which we

now denote by S
(2)
CHS,

S
(2)
CHS =

∫
d4x eCα(4)Cα(4) + c.c. (F.4)

In general (F.4) is invariant under the gauge group G, but only in conformally flat space-

times is it invariant under (F.1). Indeed, upon integrating by parts, we find that under (F.1)

the action (F.4) varies as

δλS
(2)
CHS =

∫
d4x e λαα̇

{
4Cβ(4)∇βα̇Cβ(3)α + 4Cβ(3)α∇βα̇Cβ(4) (F.5)

− Cβ(4)∇αα̇Cβ(4) − 3Cβ(4)∇αα̇Cβ(4)

}
+ c.c.

In the spirit of the previous appendix, to extend the gauge invariance of this model we

seek a weight +4 primary deformation of the linearised Bach tensor, denoted by Jα(2)α̇(2),

Kββ̇Jα(2)α̇(2) = 0 , DJα(2)α̇(2) = 4Jα(2)α̇(2) . (F.6)

Restricting our attention to the construction of tensors with the properties of Jα(2)α̇(2)

greatly lightens the workload. In fact, beginning with the most general weight +4 tensor

with this index structure, the condition of being primary is so strong that one may show

that there are only three (up to complex conjugation) such inequivalent tensors that are
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linear in the Weyl tensor. They are given by

J1
α(2)α̇(2) = Bα1

γγ̇
α̇1hα2γγ̇α̇2 , (F.7a)

J2
α(2)α̇(2) = −2Cα(2)

β(2)∇α̇1
γ∇β1 γ̇hγβ2α̇2γ̇ −∇α̇1

γCα(2)
β(2)∇γγ̇hβ(2)α̇2γ̇

+ 2∇α̇1
γCα(2)

β(2)∇β1 γ̇hβ2γα̇2γ̇ −∇α1α̇1Cα2
β(3)∇β1 γ̇hβ2β3α̇2γ̇

−∇α1
γ̇Cα2

β(3)∇β1α̇1hβ2β3α̇2γ̇ + 3∇β1 γ̇Cα(2)
β(2)∇γ̇γhγβ2α̇(2)

+
1

2
∇γγ̇Cα(2)

β(2)∇γγ̇hβ(2)α̇(2) + hβ(2)α̇(2)�cCα(2)
β(2) , (F.7b)

J3
α(2)α̇(2) = −Cα1

β(3)∇β1α̇1∇β2 γ̇hβ3α2α̇2γ̇ + Cα(2)
β(2)�chβ(2)α̇(2)

− 2∇β1α̇1Cα1
β(3)∇α2

γ̇hβ2β3α̇2γ̇ −∇β1 γ̇Cα(2)
β(2)∇γ̇γhβ2γα̇(2)

− 1

2
∇γγ̇Cα(2)

β(2)∇γγ̇hβ(2)α̇(2) − hγβ1γ̇α̇1∇α̇2
γ∇β2 γ̇Cα(2)

β(2)

+ hβ(2)α̇(2)�cCα(2)
β(2) . (F.7c)

In the above and for the remainder of this appendix we employ the conven-

tion whereby all free dotted and undotted indices appearing in any tensor are

assumed to be independently symmetrised over, e.g., ∇α1α̇1Cα2
β(3)∇β1 γ̇hβ2β3α̇2γ̇ =

∇(α1(α̇1
Cα2)

β(3)∇|β1 γ̇hβ2β3|α̇2)γ̇ .

In addition to the primary fields (F.7a), (F.7b) and (F.7c), there are precisely three

(up to complex conjugation) inequivalent structures that are quadratic in the Weyl tensor

and which satisfy the properties (F.6). They are given by

J4
α(2)α̇(2) = Cα(2)

γ(2)Cγ(2)
β(2)hβ(2)α̇(2) , (F.7d)

J5
α(2)α̇(2) = Cα1γ(2)

β1Cα2
β2γ(2)hβ(2)α̇(2) , (F.7e)

J6
α(2)α̇(2) = Cα(2)

β(2)C̄α̇(2)
β̇(2)hβ(2)β̇(2) . (F.7f)

The tensors (F.7) span all primary structures of the type Jα(2)α̇(2) and in particular

any linear combination will also satisfy (F.6). Furthermore, if we express them in the form

Jiα(2)α̇(2) = Aihα(2)α̇(2) (F.8)

where Ai is a linear differential operator then, with the exception of A2, it may be shown

that each operator is symmetric in the sense Ai = ATi (see appendix D for the definition of

ATi ). This property reduces the amount of work required to compute the gauge variation

of each of the functionals associated with Jiα(2)α̇(2).

Any operator A may be decomposed into symmetric and antisymmetric parts, A =

AS +AA with AS = 1
2(A+AT ) and AA = 1

2(A−AT ). It follows that the antisymmetric

part of A vanishes identically in any integral of the form∫
d4x e hJAhJ =

∫
d4x e hJAShJ . (F.9)
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Using (F.9) it is possible to show that at the level of actions, the following correspon-

dence between J2 and the remaining primary structures holds∫
d4x e hα(2)α̇(2)J2

α(2)α̇(2) =

∫
d4x e hα(2)α̇(2)

(
2A1 −A3 + 2A4 +A5 +A6

)
hα(2)α̇(2) .

(F.10)

Additionally, the structure J1 vanishes in any Bach-flat spacetime and will be of no use.

Therefore, it suffices to consider only one of the primary structures that is linear in the

Weyl tensor, say J3, and its associated functional

S
(2)
Linear =

∫
d4x e hα(2)α̇(2)J3

α(2)α̇(2) + c.c. (F.11)

One can then show that under the gauge transformation (F.1) and upon integrating by

parts, the action (F.11) transforms as

δλS
(2)
Linear =

1

2
δλS

(2)
CHS+

(
2

∫
d4xeλαα̇

{
∇δδ̇

[
Cβ(2)

γ(2)Cα
γ(2)δhβ(2)α̇δ̇

]
+∇β1 δ̇

[
Cβ(2)

γ(2)Cα
γ(2)δhβ2δα̇δ̇

]
−∇β1β̇1

[
Cα

β(3)C̄α̇
β̇(3)hβ(2)β̇(2)

]}
−
∫

d4xeλαα̇
{
∇β1β̇1Bαβ2β̇2 α̇hβ(2)β̇(2)+Bα

β1β̇(2)∇α̇β2hβ(2)β̇(2)

}
+c.c.

)
. (F.12)

To annihilate the terms quadratic in the Weyl tensor, we define the functional

S
(2)
Quadratic =

∫
d4x e hα(2)α̇(2)

{
J4
α(2)α̇(2) + J5

α(2)α̇(2) + J6
α(2)α̇(2)

}
+ c.c. (F.13)

It follows that the action

SGraviton = S
(2)
CHS − 2S

(2)
Linear + 2S

(2)
Quadratic

=

∫
d4x e hα(2)α̇(2)

{
Bα(2)α̇(2) + 2Cα1

β(3)∇β1α̇1∇β2 γ̇hβ3α2α̇2γ̇ − 2Cα(2)
β(2)�chβ(2)α̇(2)

+ 4∇β1α̇1Cα1
β(3)∇α2

γ̇hβ2β3α̇2γ̇ + 2∇β1 γ̇Cα(2)
β(2)∇γ̇γhβ2γα̇(2) − 2hβ(2)α̇(2)�cCα(2)

β(2)

+∇γγ̇Cα(2)
β(2)∇γγ̇hβ(2)α̇(2) + 2hγβ1γ̇α̇1∇α̇2

γ∇β2 γ̇Cα(2)
β(2) + 2Cα(2)

γ(2)Cγ(2)
β(2)hβ(2)α̇(2)

+ 2Cα1γ(2)
β1Cα2

β2γ(2)hβ(2)α̇(2) + 2Cα(2)
β(2)C̄α̇(2)

β̇(2)hβ(2)β̇(2)

}
+ c.c. , (F.14)

whose variation under (F.1) is given by

δλSGraviton = 2

∫
d4x e λαα̇

{
∇β1β̇1Bαβ2β̇2 α̇hβ(2)β̇(2) +Bα

β1β̇(2)∇α̇β2hβ(2)β̇(2)

}
+ c.c. ,

(F.15)

is the unique model describing the graviton that is both conformally invariant in a general

curved spacetime and gauge invariant in any Bach-flat spacetime,

Bα(2)α̇(2) = 0 =⇒ δλSGraviton = 0 . (F.16)
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This model was analysed in [29] using a similar methodology, the main differences

being that their analysis was performed in the gauge ba = 0 and the graviton field was

not traceless. In accordance with (1.1), this means that their model contains an extra

algebraic gauge symmetry which may be used to gauge away the trace. The authors found

two inequivalent primary Lagrangians that were linear in the Weyl tensor and used both in

the construction of their gauge invariant action. Upon eliminating the trace of the graviton

field, one of these structures vanishes and the other must be proportional to (F.11) modulo

terms involving the Bach tensor and the square of the Weyl tensor.

Finally, we remark that the following primary deformation of the linearised Bach ten-

sor,

Bα(2)α̇(2) = Bα(2)α̇(2) − 2J3
α(2)α̇(2) + 2J4

α(2)α̇(2) + 2J5
α(2)α̇(2) + 2J6

α(2)α̇(2) , (F.17)

which may be used to rewrite the action (F.14) as

SGraviton =

∫
d4x e hα(2)α̇(2)Bα(2)α̇(2) , (F.18)

is transverse and gauge invariant in any Bach-flat spacetime,

Bα(2)α̇(2) = 0 =⇒ ∇γγ̇Bαγγ̇α̇ = δλBα(2)α̇(2) = 0 . (F.19)

Open Access. This article is distributed under the terms of the Creative Commons
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