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1 Introduction

The concept of conformal higher-spin (CHS) theory was introduced by Fradkin and
Tseytlin [1] in 1985 as a generalisation of Maxwell’s electrodynamics and conformal gravity
in four dimensions. Since then there has been much interest in CHS theories in diverse
dimensions, see [2-10] for an incomplete list of works published within a quarter-century
after [1]. This interest has truly exploded in the last decade and, unfortunately, it is hardly
possible to list all relevant publications (although comments on the literature will be given
in the main body). Among the attractive features of CHS theories are the following: (i)
maximal spin-s gauge symmetry consistent with locality [1]; (ii) natural connection to
the AdS/CFT correspondence [6]; (iii) Lagrangian formulation for a complete interacting
bosonic CHS theory [7]; and (iv) interesting quantum properties [11-15].

Off-shell N' = 1 superconformal higher-spin (SCHS) multiplets in four dimensions
were briefly discussed, in the framework of supercurrent multiplets, by Howe, Stelle and
Townsend [16] in 1981, a few years before Fradkin and Tseytlin [1] constructed the free
CHS actions. It was only in 2017 that the higher-spin gauge prepotentials (describing
superspin-(s + %) multiplet, with s = 2,3,...) introduced in [16] and more general off-shell
gauge supermultiplets were finally used to construct free N'= 1 SCHS actions [17]. Parallel
studies in three dimensions (3D) describing SCHS multiplets and the corresponding Chern-
Simons actions were conducted in [18-20] and [21, 22] for the cases N = 1 and N = 2,
respectively. These 3D and 4D off-shell constructions open the possibility to develop
a manifestly supersymmetric setting for SCHS theories first advocated by Fradkin and
Linetsky [2, 5] in the component approach. It also becomes feasible, as was briefly discussed
in [17], to formulate an interacting SCHS theory by developing a superfield analogue of the
bosonic CHS theory in even dimensions constructed in full generality by Segal [7] (as an
extension of his earlier work [23]), in agreement with Tseytlin’s observations [6].!

An important feature of the approach advocated in [17] is that it provides a new avenue
to study the problem of consistent propagation of conformal higher-spin fields on curved
backgrounds. It is believed that a gauge-invariant action for conformal fields of spin s > 2
may be defined only if the background metric is a solution of the equation of motion for
conformal gravity, which means that the Bach tensor is equal to zero. However, even the
simplest s = 3 case has not yet been studied in full generality [26-29]. When dealing with
N = 1 SCHS theories in curved backgrounds, the gravitational field belongs to the so-
called Weyl multiplet [30, 31] which also contains a conformal gravitino and a U(1) gauge
field. It appears that consistent propagation of SCHS multiplets in such a background
may be defined if the corresponding super Bach tensor [32, 33] vanishes? and, therefore,
the background Weyl multiplet is a solution to the equations of motion for conformal
supergravity. So far explicit calculations have been carried out only for the superconformal
gravitino multiplet in a supergravity background [17].

!For more recent derivations of the Segal theory see, e.g., [24, 25] and references therein.
2The terminology “super Bach tensor” was introduced in [17]. In linearised conformal supergravity the
super Bach tensor was first computed by Ferrara and Zumino [34].



The 3D story is considerably simpler and more complete as far as the issue of consistent
propagation of higher-spin fields on curved backgrounds is concerned. The equation of
motion for conformal gravity requires the Cotton tensor to vanish [35-37|, and therefore
curved spacetime is conformally flat. In off-shell N-extended conformal supergravity, with
1 <N < 6, the superfield Euler-Lagrange equation states that the super Cotton tensor is
equal to zero [38-40], and therefore curved superspace is conformally flat. It was shown
in [20, 22] that a gauge-invariant action exists for every conformal higher-spin (super)field
on arbitrary conformally flat backgrounds for the cases N'= 0,1, 2. These results may be
naturally extended (at least) to the N' = 3 case.

This paper is a continuation of the research program initiated in [17, 20, 22]. Our main
goal will be to develop a formalism with manifest local (super)conformal symmetry. This
will allow us, in particular, to elaborate on several constructions that were only sketched
in [17, 20, 22].

Two years ago, ref. [17] proposed off-shell 4D N = 1 superconformal higher-spin
models in arbitrary conformally flat supergravity backgrounds. Technical details of the
corresponding formulation were not spelled out in [17] since the linearised higher-spin
(super) Weyl tensors were explicitly given in terms of the gauge prepotentials only for the

models describing conformal superspin values s = 1, %, g
More recently, off-shell actions were derived for linearised 3D N = 0,1 (su-

per)conformal higher-spin gravity in general conformally flat (super)gravity back-
grounds [20]. This construction was also extended to the AN/ = 2 superconformal case
in [22]. As in the 4D analysis of [17], technical details of the 3D formulations were not
given, since closed-form expressions for the linearised higher-spin (super) Cotton tensors
in terms of the gauge prepotentials were not known.

In this work we fill the technical gaps in the constructions of [17, 20, 22]. In particular,
we explicitly construct CHS models that are Weyl invariant in any curved 4D spacetime or
any conformally flat 3D spacetime. In both dimensions the higher-spin gauge invariance
of these models holds only in conformally flat spacetimes. Supersymmetric extensions of
the models are also given. In addition, by extending the depth of the higher-spin gauge
symmetry, we construct novel generalisations of the proposed CHS models whose Weyl and
gauge invariance hold under the same conditions.

Of central importance to our approach are (i) the formulation of conformal gravity as
the gauge theory of the conformal group [30]; and (ii) the off-shell formulations for con-
formal supergravity in diverse dimensions known as conformal superspace [38, 39, 41-44],
an approach pioneered by Butter in the 4D case [41, 42]. Since superfield techniques are
not well known within the higher-spin community, and also since the conformal super-
space approach is still familiar only to a limited number of superspace practitioners, the
details of our approach and its application to CHS theory will be presented from a non-
supersymmetric point of view. Therefore, the majority of this paper will be devoted to
non-supersymmetric CHS models and their supersymmetric counterparts will be presented
at the end with the technical details being simply sketched.

This paper is organised as follows. In section 2 we review the formulation of conformal
gravity in D > 2 dimensions as the gauge theory of the conformal group. Section 3 is



devoted to 3D CHS theories in curved backgrounds. Section 4 discusses 4D CHS theo-
ries in curved backgrounds. Supersymmetric extensions are studied in sections 5 and 6.
Concluding comments are given in section 7. The main body of the paper is accompanied
by six technical appendices. Appendix A and B present some of the various conventions
that we adopt. Proofs for several properties of the higher-spin generalised Cotton tensors
are provided in appendix C. Appendix D examines the issue of integration by parts in the
conformal space. Appendices E and F discuss the construction of conformal spin s = 3/2
and s = 2 models that are gauge invariant in any 4D Bach-flat spacetime.

Before turning to the main body of this paper, several comments are in order regarding
the existence of different ways to describe conformal higher-spin fields. They differ only
in the sector of purely gauge degrees of freedom (compensators) that can be eliminated
algebraically by applying local symmetry transformations without derivatives. The orig-
inal Fradkin-Tseytlin model [1] for a conformal field of integer spin s > 1 is described
in terms of a symmetric rank-s tensor field hg, o, = h(4,. a,) = hgs) with the gauge
transformation law

5h’a1‘..as = 6(@15@2...(15) + n(alag)‘ag...as) ) nbcé.bcal...as_g = 07 (11)

where both gauge parameters {,(,_1) and A,(s_2) are symmetric, and §,(,_1) is in addition
traceless.® It is natural to interpret the gauge symmetries generated by a(s—1) and Ag(s_2)
for s > 2 as linearised higher-spin gauge and “generalised Weyl” transformations, respec-
tively. The A\-gauge freedom in (1.1) may be used to make the gauge field h,,) traceless
by requiring

ha(s) = ha(s) ) nbchbca(s—Q) =0. (12)

If one switches to the two-component spinor notation and introduces

h‘a(S) - halu-asdl-nds = (O-al)aldl e (o-as)asdshaln-as ) (13)

then the field hq, . a.4,...4, Proves to be symmetric in its undotted indices and, separately,
in its dotted indices, ha, . .a.a1...ce = Pay..as)(@1..as) = Pa(s)a(s)- In accordance with (1.1),
the gauge transformation of hq(s)a(s) 18

5h’a1...a5d1...ds = a(al(dlgaz...as)dg...o'cs) . (14)

It is natural to think of hyy) (or equivalently ha(s)d(s)) as the genuine conformal spin-s
gauge field, due to several reasons. Firstly, one can consistently define hq(5)4(s) to be a
conformal primary field, see section 4. Secondly, the other degrees of freedom contained in
hq(s) are purely gauge ones, and as such they may become essential only at the nonlinear
level. Finally, the nonlinear conformal higher-spin theory of [7] is formulated in terms of
the fields (), with s =0,1,2,..., in the 4D case.

In principle, one may instead use Fronsdal’s doubly traceless spin-s gauge field [45, 46]

bal...as = hal...as + 77(a1a280a3.‘.a5) ) nbc(pbca(sf4) = Oa (15)

3The gauge transformation law (1.1) is often generalised by removing the condition nbcfbm<s_3) =0
imposed on the parameter {,(;—1). However the resulting transformation law is equivalent to (1.1) with a
modified algebraic parameter Aqs—2).



to describe conformal spin-s dynamics. In such an approach ¢g(s_g) is a compensator. The
gauge transformation law of b, is given by

5ba(s) = a(alfag..‘as) + N(a1az 5‘0,3...(15) ) nbcfbca(s—ﬂl) =0, nbcj‘bca(s—4) =0. (16)

It is clear that the compensator ¢,s_2) may be gauged away by applying a
A-transformation, and then we are back to the formulation in terms of ).

Another description of conformal spin-s dynamics is obtained by employing Vasiliev’s
frame field [47, 48]

€m,ar...as—1 = €m, (aj...as_1)> nbcem,bca(s—ii) =0. (17)

In addition to a higher-spin {-transformation, de, 4(s—1) = Om&q(s—1), there are two addi-
tional local symmetries in this setting. These are generalised Lorentz and Weyl transfor-
mations, which do not involve derivatives and allow one to gauge away two compensating
degrees of freedom contained in e, 4,—1) by imposing the gauge condition that e, ,(s—1)
is completely symmetric, €, 4(s—1) = Pma(s—1)-

Not all of the field realisations discussed above originate in the 4D N = 1 super-
conformal setting. We recall that the conformal superspin-(s + %) prepotential [16, 17]
Ho(s)a(s) = Hon..osén i (0,0) is a real superfield, which is symmetric in its undotted in-
dices and, independently, in its dotted indices. The gauge transformation law of H(4)4(s) 18

Do, A

0He,..avi..as = Dia A Aasad)é. b (1.8)

a1..as02...0s)

with the gauge parameter A,(4)4(s—1) being unconstrained. For the s = 1 case this trans-
formation law corresponds to linearised conformal supergravity [34]. The gauge freedom
makes it possible to choose a Wess-Zumino gauge

Hy, . agén..is (97 é) = 96066/3,@1...0455,@1...0'45 + 5206¢5,a1-..a5d1...ds - 92561_#&1---%57@1---‘5‘8
+ 0%0%ha; .0nén.in s (19)

where the bosonic fields €5 a(s)a(s) = (Um)ﬁﬂ-ema(s)d(s) and hq(s)a(s) are real. In the
Wess-Zumino gauge (1.9), we stay with a restricted set of local transformations (1.8).
It is not difficult to check that the transformation law of e, (s)a(s) coincides with that
of the spin-(s + 1) frame field [47, 48]. The gauge transformation of hq(4)4(s) coincides
with (1.4). The fermionic field 9 o(s)4(s) and its conjugate in (1.9) describe the conformal
spin-(s + %) gauge field. This field realisation coincides neither with the Fradkin-Tseytlin
conformal spin-(s + ) field [1] nor with Vasiliev’s fermionic frame field [47, 48].

The residual gauge freedom (1.8), which preserves the Wess-Zumino gauge (1.9), con-
tains algebraic local transformations that can be used to eliminate the compensators such
that He(s)a(s) takes the form [17]

— — A _2
Ha, . asar...is (97 9) = 9696}1(5&1-..&3)(5&1-..éas) +0 0ﬁ¢(ﬂa1...as)d1...ds
— 626%) + 0°0% e, ..avin e - (1.10)

041...065(5.0.(1---0.45)



The gauge transformation of 94 (s41)4(s) 18

0%an..asirdn.is = Oay(G1Pas...aspr)do.dis) - (1.11)

It is natural to think of field ¥, (s11)q(s) and its conjugate as the genuine conformal spin-
(s + 3) gauge field.

2 Conformal geometry

Conformal (super)gravity as the gauge theory of the (super)conformal group was con-
structed long ago [30, 31, 37, 49|, see [1, 50] for pedagogical reviews. In this section we
give a brief review of the formulation for conformal gravity in D > 2 dimensions follow-
ing [38]. This setting is known to be ideal for extensions to the superspace formulations
for conformal supergravity in diverse dimensions [39, 41-43]. It also turns out to be useful
in the framework of higher-spin (super)conformal dynamics, as will be shown below.

2.1 Gauging the conformal algebra

The conformal algebra in D > 2 dimensions, so(D,2), consists of the translation (P,),
Lorentz (M), special conformal (K,) and dilatation (D) generators. The non-vanishing
commutators are given by

[Map, Med] = 200 Myjq — 2041 My , (2.1a
[Mab, Pe] = 20cja Py » D, P] = P, (
[Map, Ke| = 2o Ky , D, Ko] = =K, (2.1c

[Kq, Py] = 20D + 2Myp, - (2.1d

The generators My, K, and D span a subalgebra of so(D,2) and are collectively referred
to as X,. In contrast, we denote the generators of the full algebra by Xz. Then, the
commutation relations (2.1) may be rewritten as follows?

[(Xa, Xp| = —farXe (2.2a)
[Xa, P] = — fap®Xe — fap“Pe (2.2b)

where f.;¢ are the structure constants whose non-vanishing components are:

Frtan itea ™0 = Anaied1] 81 — dmyo0 L 6%, (2.3a)
Pt p.7 = _an[adb} ; fop, T =—=6%, (2.3b)
Pt i = —277c[a5z§i} ; for, o =0t (2.3c)
Frap,” = —2nab , e p,Met = —aglesd. (2.3d)

4We adopt the convention whereby a factor of 1 /2 is inserted when summing over pairs of antisymmetric
indices. For example, fup%Xe = far™ K. + %beMCdMCd +....



The structure constants satisfy the Jacobi identities
d~ ~
f[ai) 5]676 =0. (2.4)

Let MP be a D-dimensional spacetime parameterised by local coordinates 2™, where
m = 0,1,...,D — 1. To gauge the conformal algebra, we associate with each generator
X, a connection one-form, w? = daz"w,,%, and with P, the vielbein e* = dz™e,;,*. We
denote by H the gauge group generated by X, and postulate that e and w® transform
under H as

Se® = ePASf " (2.5a)
Spw? = dA% + A fop® + wbASf 2, (2.5b)

with gauge parameter A2.

Given a field ® (with its indices suppressed), we say that ® is H-covariant if it trans-
forms under the action of H with no derivative on the parameter, 6 ® = A2X,P. In
addition, if ¢ satisfies

K,=0, D®=AD, (2.6)

it is called a primary field of dimension (or Weyl weight) A.
It is clear that 9,,® is no longer H-covariant. We are therefore led to introduce a
covariant derivative according to

Vi = 0m —wn®* X, . (2.7)
It follows from (2.5) that V,® = e¢,""V,,,® transforms covariantly,
on(Va®) = AV, X, ® — AL£,°V.® — ALf1,CX 0. (2.8)
From eq. (2.8) we can deduce the commutation relations of X, with V,,
[(Xa, Vo] = —fap*Xe — far“Ve - (2.9)

Comparing this with (2.2b) we see that X, satisfies the same commutation relations with
Vy as it does with P,. However, unlike the translation generators P,, the commutator of
two covariant derivatives is not zero but is given by

[Vm vb] = - abcvc - RabQXg . (2'10)
In eq. (2.10), T4p¢ and R < are the torsion and curvature tensors respectively,

Tap® = =6 + 2‘*‘}[adfb]dC ) (2113)
Rape = —Capwes + 2w, L f4¢ + wiawyfac® + 2ewy S, (2.11b)

where e, = e, 0y, is the inverse vielbein and the anholonomy coefficients, é,;°, are given by
Cap’ = (eqp™ — epeq”")em . (2.12)

The definitions (2.7) and (2.10) differ from those used in some previous publications. See
appendix B for a dictionary to convert between these conventions.



Using the transformation rules (2.5) and the Jacobi identities (2.4), we find that the
torsion and curvature tensors (2.11) transform covariantly under H according to

01 Tab" = Tap" N fea® — 20 faa" Ty (2.13a)
01 Rab® = RavAfae + 202 f410 Ry + Tap“ AL f e (2.13D)

In this formulation infinitesimal general coordinate transformations, generated by a lo-
cal parameter £%, are not covariant with respect to H. To remedy this, they must be
supplemented by an additional H-transformation with gauge parameter A% = £%w,2 |

Jeget (§%) = Oget (§") — Op(§"wa®) - (2.14)

It follows that such transformations act on fields ® (with all indices Lorentz) as dcget® =
£V, ®. The conformal gravity gauge group, denoted by G, is then generated by the set of
operators (Vg, X,) under which ® transforms as

6P = K0, K =¢V,+ALX,. (2.15)
Finally, the gauge transformation of V, under G proves to obey the relation
gVa = [K, V4] (2.16)
provided we interpret
Vol i= eat® + wo€ b,  VaA2:= eq A + w50 fu l + we AL fy 0. (2.17)

Through this procedure the entire conformal algebra has been gauged in such a way
that the generators X, act on V, in the same way as they do on F,.

2.2 Conformal gravity

The covariant derivatives given by eq. (2.7) are
L. be b
Va = €q — iwa Mbc - fa Kb - ba]D), (2.18)

where @,%, f,* and b, are the Lorentz, special conformal and dilatation connections re-
spectively. They satisfy the commutation relations

1
Va, Vo] = —Tap Ve — 5R(M)abcdzmd — R(K) K. — R(D) D (2.19)

where the torsion and curvatures are

Tar® = —Cap” + 2(a)° + 261,05, (2.20a)
R(M)ap™ = Rap® + 8f, 67 | (2.20b)
RIK)ap® = —Gap"§a" — 200 “Fija — 26(af5)° + 2epafy” (2.20c)
R(D)ap = —Capbe + 4f[ap) + 2€[by) , (2.20d)
Ry = — G 05 + 2e000° — 200, oy 2. (2.20¢)

Here R,pcq is the Riemann tensor corresponding to the spin connection @gpc.



To ensure that the vielbein is the only independent field in the theory modulo purely
gauge degrees of freedom, we have to impose covariant constraints. These constraints are

Tt =0, (2.21a)
NP R(M )apeq = 0. (2.21b)

Indeed, the conditions (2.21) are preserved by H-transformations, which may be verified
through (2.13). The first constraint determines the spin connection in terms of the vielbein

and the dilatation connection,
Wabe = Wabe — 277(1[6[30} ) (222)

where wgpe = wape(€) = %(‘Kabc—%acb—%bm) is the standard torsion-free Lorentz connection.
Similarly, the second constraint fixes the special conformal connection to be

~

Rab +

)nabR, (2.23)

1
b = =55 —9) AD-1)(D-2

where ]A%ab = nCdRade is the (non-symmetric) Ricci tensor and R = nabl%ab is the scalar
curvature.

Rather than imposing an extra constraint to fix b, in terms of the vielbein, we observe
that under a K-gauge transformation, b, transforms as

by = —2A(K), . (2.24)
It follows that we may impose the gauge condition
b, =0. (2.25)

After this choice, only the vielbein remains as an independent field. The gauge (2.25) breaks
the special conformal symmetry. For our purposes, it is desirable to keep this symmetry
intact throughout calculations and impose (2.25) only at the end when we wish to extract
physically meaningful results. This process is referred to as ‘degauging’.

Making use of (2.21) and the Jacobi identity

0= [vaa [vbu vc]] + [vlh [vm va]] + [vm [vcu vb]] ’ (226)
we find that the dilatation field strength vanishes,
R(D)ap = 0, (2.27)

along with the following Bianchi identities

R(E )b =0, (2.284)

R(M)abeja =0, (2.28Db)

ViaR(K)pga =0, (2.28¢)

ViaR(M)pq® — 4R(K )0 %04% = 0. (2.28d)



Making use of (2.20e) and (2.22) allows us to decompose Rgpeg into those terms which
depend solely on the vielbein and those involving the dilatation connection,

Raped = Rabed — 4e(amicba) — Diefawp]a?bg + 4b(cnaabe + 20efatab” by , (2.29a)
Rap = Rap + (D — 2){eabb b — babb}
+ nab{ecbc Wb+ (D — 2)bcbc} , (2.29b)
) 1
R=R+2(D— 1){eaba — Wb’ + (D — 2)b“ba} . (2.29¢)

Here Rgpeq is the Riemann tensor associated with the spin connection wgpe,
R = 2e[qwy cd _ 2w[ab]f(,uf°d — 2w[acfwb}fd , (2.30)

and R, and R stand for the corresponding (symmetric) Ricci tensor and scalar curva-
ture, respectively. Inserting the relations (2.29) into the solution to the conformal gravity
constraint (2.23) yields

1 1 1 1 1
fab = _5 ab t §babb - Znabbcbc + §Wabcbc - §€abbv (2'31)

where Py, is the Schouten tensor,

1 1
Pab = m (Rab - 2(D_1)’l7abR> . (232)

Using eqgs. (2.29a) and (2.31) allows us to show that the dependence on the dilatation
connection drops out of (2.20b) and we obtain

R(M)abcd = Cabcd . (233)

Here Cypeq is the Weyl tensor,

2 2
Cabed = Rabed — m <Ra[c77d}b - Rb[c”d]a) + (D — 1)(D — 2) na[cnd}aRa (234)

which is a primary field of dimension +2,
KeCabcd = 07 ]D)Cabcd = 2Cabcd . (235)
For further analysis of the constraints, it is necessary to consider separately the choices

D =3 and D > 3. In both cases we make use of the Lorentz covariant derivative defined by

A 1
Dy = eq — iwabCMbc =Dy + b M, (2.36)
where D, = ¢, — %wabchc is the torsion-free Lorentz covariant derivative.
We note that whenever the gauge (2.25) is chosen, all hatted objects coincide with

their non-hatted counterparts. In particular

25a‘r;a:o =Da, Rabcd‘bazo = Raped » (2.37)



and in this gauge we may therefore abandon the hat notation without any ambiguity.
Furthermore, in this case it is clear that the conformal covariant derivative takes the form

1
Va="Dy+ 5Pabe. (2.38)

Therefore, in any spacetime with vanishing Schouten tensor, the degauging process
is trivial.

In the D > 3 case, it follows from (2.28d) and (2.33) that the special conformal
curvature is given by

1
R(K)abc = 9

20 =5 VeCaped - (2.39)

As a result, the algebra of conformal covariant derivatives is

1 1
[va,vb] = _5 zzbchCd - 9

d c
acK . 24
(D73)V Cabed (2.40)

It is determined by a single primary tensor field, the Weyl tensor.

The expressions (2.20c) and (2.39) are two equivalent representations for the special
conformal curvature. Upon imposing the gauge (2.25) these relations lead to the well-known
Bianchi identity

D Capea = —2(D — 3)Dy, Py, - (2.41)

From (2.40) it follows that if the spacetime under consideration is conformally flat,
then the conformal covariant derivatives commute,

Cabcd =0 — [Va, Vb] =0. (2.42)
This observation will be important for our subsequent analysis.

2.3 Conformal gravity in three dimensions

The Weyl tensor vanishes identically in three dimensions. As a result, the Lorentz curva-
ture (2.33) also vanishes and the algebra of conformal covariant derivatives takes the form

[VOH Vb] = _R(K)achc . (243)

Therefore, all information about conformal geometry is encoded in a single primary field,
R(K)abe, which proves to be proportional to the Cotton tensor, as we now show.
The Lorentz covariant derivative (2.36) allows us to represent (2.20c) as

R(K)abe = 2D}afsje — 2b(af5je + 26cf(ap) + 207efafrjab® (2.44)

Using (2.31), one may show that dependence on b, in eq. (2.44) drops out such that

1
R(K)abc = _§Wab07 Wabe = 2D[an]c . (2‘45)
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Here Wy, is the Cotton tensor, which is a primary field of dimension 43,
KdWabc = 0, DWabc = 3Wabc . (246)

It is useful to introduce the dual of the Cotton tensor,

1
Wab = 52acaW s, Wabe = —eapaWe, (2.47)

which is symmetric and traceless,
Wap = Wea, W =0. (2.48)
On account of the Bianchi identity D* Ry, = %DbR , it is also conserved,
DWeap, =0. (2.49)

The Cotton tensor contains all information about the conformal geometry of D =
3 spacetime, and it vanishes if and only if spacetime is conformally flat. As follows
from (2.43), the commutator of conformal covariant derivatives vanishes in the conformally
flat case,

Wabc =0 — [Va, Vb] =0. (2.50)

In three dimensions, the Einstein-Hilbert action is known to propagate no local degrees
of freedom. However, non-trivial dynamics emerge in topologically massive gravity [35, 36]
which is obtained by combining the Einstein-Hilbert action with a Lorentz Chern-Simons
term. The latter proves to coincide with the action for D = 3 conformal gravity® [37]

1
Sca = 6/Ecs, (2.51)

where the three-form

- B 1 - - 5
Yos =REA w'T ;7 + gwc AWl A w? i (2.52)

varies under an infinitesimal H-transformation by an exact form,
onSos = d(dwPAT,;), A% = (0, A9). (2.53)

Here and in (2.52), I';; = f& Cf fl;é‘i is the symmetric non-degenerate Cartan-Killing metric
on 50(3,2) and f.;- = fag“ll1 j= are the totally antisymmetric structure constants, see ap-
pendix A. We have also used a unified notation [39] whereby the connection one-forms are
written as w® = (e, w?) and the curvature two-forms as R* = e A e?Ryp.? = (T, R2).
It should be remarked that we have adopted the super-form conventions for differential
forms, see, e.g., [52] for the details.

®An alternative approach to conformal gravity in three dimensions was developed in [51].

- 11 -



The action for conformal gravity (2.51) can be rewritten in the form
1 3 abc ) fg~ 2. e~ [~ d a
Sca = 1 d’zee R0 pq — 3Wad Wee' Wef + 8fapbe ¢ s e:=det(e,®). (2.54)

Since (2.51) is inert under K-transformations up to a total derivative, the dependence on
b, once again drops out® and the action simplifies to

1 2
Scq = 1 /d3xeeabc{Rabfgwcfg — 3wadewbefwcfd} ) (2.55)

Equivalently, one may arrive at equation (2.55) from (2.54) by making use of the special
conformal symmetry to impose the gauge (2.25).
The equation of motion derived from the action (2.55) is

Wap =0. (2.56)

Such a conformally flat background has to be used in order to linearise the conformal
gravity action (2.55). Before doing that, let us work out how geometric objects change
under an infinitesimal deformation of the vielbein,

deg™ = haley™, Sem® = —emPhp?, (2.57a)

for some second-rank tensor hgp. Since the antisymmetric and trace parts of hyp correspond
to Lorentz and Weyl transformations, respectively, and we know the behaviour of the
geometric objects under such transformations, it suffices to choose hy, to be symmetric
and traceless,

hap = hpg h*, =0. (2.57Db)
We represent the corresponding change that the covariant derivative suffers as
1
6Dy = ho"Dy — 5ECJ’CM,,C, (2.58a)

where D, is the background torsion-free Lorentz covariant derivative and =, is a deforma-
tion of the spin connection. The latter is determined by imposing the torsion-free condition
on D), = D, + 6D, and the result is

Eabe = —2Dphea - (2.58D)

Making use of (2.58) leads to the well-known relations

0Rabed = —2h? |, Ry eq — 2DaDichayp + 2Dy Dichq (2.59a)
OR = 2hf(aRb)f — Ohgp + 2DfD(ahb)f s (2.59b)
SR = 2h® Ry, + 2D*DPhyy, (2.59¢)

®This may be shown explicitly using the relations (2.22), (2.29a) and (2.31).
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where O = D*D,. The relations (2.58) and (2.59) allow one to read off the deformation
OWp of the Cotton tensor. For our subsequent consideration in section 3 it is suitable to
give the expression for 6Wy;, in the spinor notation. A summary of our spinor conventions
is given in appendix A to which the reader is referred for the technical details.

Associated with the traceless Ricci tensor, R, — %%bR, and the Cotton tensor, Wy,
are symmetric rank-four spinors defined by

a 1
Ragrs = (1) s (1) 5 <Rab - 377abR> = R(apys) » (2.60a)
Wagys = (1)as(V)vsWab = Wiapas) - (2.60Db)
The latter can be represented in the form
Waps = 'Da(aRﬁ,y(;)U , (2.61)

where Dys = (7*)apDq. The infinitesimal deformation defined by (2.58) and (2.59) may
be shown to lead to

1 1
5Ra(4) = _D(a161Da252 ha3a4)5(2) + 5R6(2) (a1a2 ha3a4)5(2) + éRha(4) s (2623)
1 1 1
5Wa(4) = §Wﬁ(2)(a1a2ho¢3a4)ﬁ(2) - ip(alﬂlpaQﬁTDa:aﬁg ha4)5(3) - §DD(a1f51 ha2a3a4)51
1 1
+ (,D(OQ/B1 RaQaSﬁgﬂB)ha4)5(3) + ﬁ (,D(Oélﬁ1 R) haza3a4)51 - ERD(OQ/BI ha2a3a4),31

3
+ 2R61/82(a1oc2,D01363h044)/3(3) B ZRBl‘S(OélOézD(wzhaBazl)ﬁ(z) ’ (2.62b)

where hagys = (Y)as(1")r6hab = B(agye)-
The conformal gravity action (2.55) may be linearised around a background spacetime
that is a solution to the equation of motion (2.56). The result is

1
SCG,linearised = _Z /d3$ € ha(4)€04(4) ) (263)

where €, 4y = —0W4y and §W(4) is obtained from (2.62b), by setting W4y = 0. The lin-
earised action proves to be conformal (assuming hq(s) to be a primary field of dimension 0)
as well as it is invariant under the gauge transformations

5£ho¢(4) = D(a1a2§a3a4) ) (264)

where the gauge parameter £, is a primary field of dimension —1.

3 Conformal higher-spin models in three dimensions

In order to describe higher-spin models, it is useful to convert to spinor notation. Then
the commutator of two covariant derivatives takes the form

1 1
[Vap: Vasl = 185 Was" P Kz + 725 Wap " Ky (3.1a)
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and the commutation relations of the other generators of the conformal group with the
covariant derivatives are as follows:

[Maﬂv Vvé} =Ey(aVp)s T €5V (3.1b)
[D,Vag] = Vag, (3.1¢)
[Kaﬂ, VW(S] == 467(,165)5@ — 267(04M:8)5 — 28(;(0(]\4,6)7 . (3.1(21)

The remaining non-vanishing commutators between the generators are given in appendix A.

3.1 CHS prepotentials and field strengths

We introduce conformal higher-spin gauge fields by extending the discussion in [20]. Con-
sider a real totally symmetric rank-n spinor field hqn) = hay..an = May..a,) Which is
primary and of dimension (2 — n/2),

n
Ksham =0, Dhaw = (2= 2 ) hagw - (3.2)

Its dimension is uniquely fixed by requiring () to be defined modulo gauge transforma-
tions of the form

5§h04(n) = v(a1a2€a3...o¢n) ) (33)

with the real gauge parameter &, (,_g) being also primary. We say that h,,) is a conformal
spin-5 gauge field.

Starting from h(,,) one may construct a descendant € ,) (h), known as the higher-spin
Cotton tensor, with the following properties:

1. €yp) is of the form Ah,(y,), where A is a linear differential operator involving the
covariant derivatives, the Cotton tensor W,4), and its covariant derivatives.

2. €4y is a primary field of dimension (1 +n/2),

n
Kﬁ(2)€a(n) = 0, ]D)Q:oz(n) = (1 + 5) Q:a(n) . (3.4)

Here we give the most general expressions for €,,) for n = 2,3,4,5. They are:

1
Ca(2) = 9 <2v(a15h02)5) ) (3.5a)
1
Q:a(S) = ? (3v(a1ﬂ1 Va2/32ha3)5(2)+|:|cha(3)) , (35b)
1
Ca() = 23 <4V(°‘161v°‘2 - V0‘363 ha4)/3(3)+4D6v(a1ﬁhtx2a3a4)ﬁ+a0W(a10426(2)h0¢30¢4)/3(2)> ’
(3.5¢)
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1
€a(5) = 271 <5v(04161 Va, & VOl:sﬁS Va4ﬁ4 ha5)6(4) + 10D0v(a1 o VQQﬁz ha3a4a5)6(2) + (Dc)Qha(E))

16 2 2

564 1 1 s
(48_2(114‘2612-1-(13) W(S(magﬁlv ﬁQhOéwws))ﬁ(?)

745 1 5
+ (—a1+a2+3a3> W*Bl*@Q(a1a2va3ﬁ3ha4a5)5(3)

1 1
+ <—40+2CL1 — 5@2 —CL3> VVB(?))(Q1 Vasas ha4a5)5(3)
+a1v551 Wﬁ25(o¢1a2 ha3a4a5)/3(2)+a2v(04161 WQZQSBQB?’ ha40é5)5(3)

+a3v(a102Wasﬁ(3)haws)ﬁ(?’)) ’ (3:5d)

where [, = V?V, is the conformal d’Alembertian and the a; are arbitrary constants.

In a general curved background, for n > 4 the requirements outlined above do not
determine €,(,) uniquely, since we can always add appropriate terms involving Wy).
However, in the n = 4 case, one may fix the constant to ag = 4 by explicitly linearising
W () around an arbitrary background as in (2.62b).

The higher-spin Cotton tensor is generally not gauge invariant and the aforementioned
ambiguity associated with its definition cannot rectify this. From the expressions (3.5)
it is evident that as m increases this approach will become exceedingly difficult and the
ambiguity will worsen. However, an attractive feature of this formulation occurs when the
spacetime under consideration is conformally flat,

Waw =0, (3.6)

and therefore the conformal covariant derivatives commute (2.50). Consequently, this am-
biguity is eliminated and as we will now show, the unique expression, up to an overall
normalisation, for the spin-g Cotton tensor is

[n/2]—-1
1 Z n ; ,
Ca(n) = on—1 §=0 <2j + 1) (Dc)Jv(alﬁl e van—zj—lﬁnﬂ]ilhanﬂjman)ﬂl-.ﬂn—zjfl :

(3.7)
Here [n/2] denotes the ceiling function and is equal to s for n = 2s and s+1 for n = 2s+1,
with s > 0 an integer. In the flat limit, (3.7) reduces to the one derived in [18]. For even
values of n, n = 2,4,..., the flat-space version of (3.7) is equivalent to the one originally
obtained by Pope and Townsend [3].

It is clear that (3.7) is of the form €.,y = Ahy,) and has Weyl weight equal to
(1+n/2). It remains to show that it is primary. Since €, is a covariant field, it suffices
to show that under a K-transformation we have dx€q () = —%A(K)V(Q)KV(Q)QQ(M =0.

Using the algebra (3.1) it is possible to show, by induction on j, that the following two
identities hold true

AK)P[K, o), (Oc)] = A(K)@ {2‘7(@0)“%@) (2D + 25 — 3)

- 4J(Dc)j_1V715Mw26} : (3.8a)
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A(K)’Y(Q) [K’Y(2)’ v(alﬁ1 s vO‘jﬁj] Caj+1~~~am)/81~~~ﬁj
= A(K)V(Z){4j671 Ple @ Vas” .. Vo, (D+j—1)
= 2jV(a, ™ Va7 ey Moyl = 25V (00 Va0, P M,

—j0 - 1)VW(Q)(S(Otlﬁ1 504262 vﬂsﬂg T Vo‘jﬁj }Co‘j+1--.am)ﬁ1--ﬂj ) (3.8b)

where () is an arbitrary primary field. Therefore, under a special conformal transfor-
mation we have

[n/2]-1
n § : n ] — 24—
~ 2oy = MK <2j + 1) { (K@) (B ] Vian™ - Vg 77270
J

+ (Dc)j [KV(2)7 v(alﬁl - 'vanfzj—lﬁn%jil] }hanzjman)ﬁluﬂnzjl

x {2j(2j +1)(3) {vw)v(alﬂl R v

Op—2j...an)B1...Bn_2j—1

=2V (o Va252 e Van—zjﬁnﬁj han2j+1-~~an)52--~5n2j’72:| —(n=2j-1)(n-2j-2)

-+ Vap-_2j-3 Op—2j-2...0n)f1...0n—2j-3

% (Dc)j [V’y@)v(alﬁl A v/ Bn—2j-3p

- 2v71(a1V04262 e Van?j2I8n_2j_2h04n—2]'—1'"O‘n)/82--ﬂn—2j—2’72:| } -0

In the last line we have used the fact that the second and third terms vanish for j = [n/2|
and the first and last terms vanish for j = 0 to shift the summation variable. This shows
that in any conformally flat space (3.7) is the unique tensor satisfying the properties listed
at the beginning of this section.

3.2 CHS actions

For every conformally flat spacetime, the tensor (3.7) has the following properties:

1. €4y is conserved,
VPO i _ayp2) = 0. (3.9)
2. €4(n) 1s invariant under the gauge transformations (3.3),
O¢ham) = Vimas€asan) =  0€qm) =0. (3.10)

In a general curved space, €,(,,) must reduce to the expression (3.7) in the conformally
flat limit. Therefore, in such spaces the right hand side of eq. (3.7) constitutes the skeleton
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of €,(n. It immediately follows that its divergence and gauge variation under (3.3) are
proportional to terms involving W,(4) and its covariant derivatives,

VB(2)€a(n_2)6(2) = O(Wa(4)) , 5§€a(n) = O(Wa(4)) . (3.11)

The properties listed in eq. (3.4) ensure that the linearised conformal higher-spin action

n in a(n
SE[n] = ~ 7] /d3a:eh M€y (h) 4 (3.12)

is invariant under the conformal gauge group G. Furthermore, by virtue of (3.9) and (3.10),
in any conformally flat space (3.12) is invariant under the gauge transformations (3.3),

Wi =0 = 6554 =0. (3.13)

Upon degauging and setting n = 4, the model (3.12) coincides with the action for
linearised conformal gravity given by eq. (2.63).

We would like to point out the following interesting realisation of € ,) in terms of the
projection operators

8
&6 = ;(daﬁ + v% ) B | SRR | LA | S K (3.14)

which are obtained by extending the flat-space results of [53]. Then one can express the
higher-spin Cotton tensor as

€oz(n) = (‘:’c)(nil)/2 <H(n) - (_1)n1—[(n)) ha(n) . (315)

We may use the expressions (3.15) to rewrite the action (3.12) in terms of the projec-
tion operators.

3.3 Generalised CHS models

As an extension of the previous constructions, we now consider a conformal higher-spin

gauge field hggn) which is primary and defined modulo gauge transformations of depth [,”

l
55h£x2n) = Viaras " Vag_1au8as41.an) - (3.16)

where [ is some integer 1 <1 < |5]. We also require that the gauge parameter &,(,_o;) be
primary, after which one can show, using the identity

A(K)’Y(z) [K'y(2)7 v(oqaz s vazz—sz §a2l+l~~-04n)

= A(K)’Y(z){llle(m71572042v063044 ce v0¢21-10621 (D +1— 1)

- 4lv(a1a2 ce va2Z—3a2l72€a2l—1|71 M’YQ|0121 }§a2l+1--'an) ’ (3'17)

"Such gauge transformations occur in the description of partially massless fields in diverse dimen-
sions [54-69)].
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that the dimension of h,(y,) is fixed to (I + 1) — 5. The conformal properties of hgzn) may

then be summarised by
o _ @ _ UAYAU
Kgi)h =0, Dha(n) = (l +1- §)ha(n) . (3.18)

As was done earlier in the case [ = 1, from hggn) we may construct a generalised higher-spin

)

Cotton tensor Qﬁg(n)(h) that possesses the following conformal properties,

W _ O (911 ™\e®
Ks)€ulyy =0, Def, = (2-1+5)el,. (3.19)

D)

a(n)

In any conformally flat space, the properties (3.19) determine € uniquely, up to an

overall normalisation, to be

0) I < A j 1
_ J—l+
€a(n) ~ on—2l+1 Z <2] + 1> (l _ 1> (L)
J

=I1-1

X Vi, ...V Bu—2j-1p (1) . (3.20)

TV An—2j-1 an—2j.-n)B1...Bn_2j-1
To derive (3.20) we have made use of the identities (3.8). The properties (3.18) and (3.19)
mean that the generalised higher-spin Chern-Simons action,

n,l i" a(n l
S0 ) = _M/d%eh(l( e (n), (3.21)

a(n)

is invariant under the conformal gauge group G. Moreover, in any conformally flat space
the generalised higher-spin Cotton tensor possesses the following important properties:

1. Qﬁggn) is partially conserved,

vhibz .. v521—1521¢(l)

ooty = 0 (3.22a)

2. ngn) is gauge invariant,

! !
6§hc(yzn) = v(041042 T anl—1a2l§a21+1...an) = 55(’:&2”) =0. (3.22b)
As a consequence, the action (3.21) is also gauge invariant,
Wa=0 =— 685" =0. (3.23)

The proofs for the properties (3.22) are non-trivial and are given in appendix C.%

An interesting question to ask is the following. For a given spin, which values of [
yield first and second-order Lagrangians in the action (3.21)7 To answer this question, we
observe that the number of covariant derivatives in (3.21) is (n — 20 + 1) so that [ = in
and [ = %(n — 1), respectively. Since [ must be an integer it immediately follows that
first-order conformal models exist only for bosonic spin whilst second-order models must
be fermionic. These models are said to have ‘maximal depth’ since [ assumes its maximal
value of [ = |§]. Our conclusions regarding second-order models are in agreement with
those drawn long ago in [72].

8Tt would be of interest to apply the methods of [70, 71] to demonstrate that (3.20) is the most general
solution of the I-folded conservation equation (3.22a) in the case of Minkowski spacetime.
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3.4 Degauging
In the gauge (2.25), the spinor covariant derivative assumes the form

1
Va2) = Da(z) — ZPQ(Z)F(?)K/;(Q) . (3.24)

We may decompose Py,(2) g(2) into irreducible components as

1
Fa2).82) = Fa@p@)  gEar (81882000 I (3.25)

where R4 is the background traceless Ricci tensor. The goal is then to replace all
occurrences of V) with (3.24) and use the algebra (3.1) to eliminate /. In general, this
is a difficult technical problem, particularly for higher-derivative tensors such as (3.7).

As an example, in AdS3 the conformal covariant derivative is

Va@) = Dag) — 87Ky (3.26)
whilst the conformal d’Alembertian is
0. =0- 65D+ S*D*P K o) — %541(&(2)}(&(2) . (3.27)

Here and in (3.26), the parameter S is related to the AdS scalar curvature through R =
—2482%. Making use of the above relations, one may show that the degauged version of (3.7),
for small n, coincides with the ones given in [20] (up to conventions). However, for general
n we were not able to obtain a closed form expression.

It should be pointed out that various aspects of the bosonic higher-spin Cotton tensors
were studied in [73, 74].

4 Conformal higher-spin models in four dimensions

In this section we work in four dimensions, D = 4, and make use of the two-component
spinor notation and conventions in [33]. It is convenient to replace the Lorentz generators
Mgy, = — My, with operators carrying spinor indices, M,3 = Mg, and MaB = M'd’ which
are defined as

1 — 1, .
Map = 5(0™)apMab, Mgz =—5(6") ;5Mab (4.1a)
M® = (0%)os M — (5%) M%7 | (4.1b)

and act only on undotted and dotted indices, respectively.
In the two-component spinor notation eq. (2.40) takes the form

[Vadvvﬁ/fj] = _(EdBCaﬁ’Y(SM’WS + EOC,BCaﬁ,Y(SM’Y(S)
1

— 1 (245 V" Clps” + gV Cos ") Ko (4.2a)
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whilst the commutation relations of the remaining generators with V 5 are given by

[Mor, Vigg] = €Vos:  [Mays Vgg] = €56 Van (4.2b)
D, V] = Vs, (4.2¢)
[Kad, VBB] = 480.1/33Ma5 + 480‘5]\_40}5 — 480”36@5@' (4.2(21)

In eq. (4.2a) the self-dual and anti self-dual Weyl tensors C,g,5 and éa 45 are related to
Clubeq as follows

1 a Ci
Caﬁ'yE = 5(0' b)aﬂ(a d)'yﬁcabcd = C(aﬁ'yé) ) (433)
~ 1 ~ab ~cd S
Caéyé = 5(‘7 )ag'(‘f )75Cabcd = C(aBA,S) ) (4.3b)
Caﬁ*yéd/a""y[i = (O-a)adé(o-b)ﬂfj’(Uc)’y’y(o-d)(;jcabcd = 250'45'575004575 + 26&66750&6&5 . (430)
4.1 CHS prepotentials and field strengths

We introduce conformal higher-spin gauge fields by generalising the constructions in [17]
and earlier works [4, 5]. Given two positive integers m and n, a conformal higher-spin
gauge prepotential ¢y (m)a(n) 1S @ primary field defined modulo gauge transformations

5)\¢Oc(m)d(n) = V(oq(o'q )‘aQ...am)ézQ...o'cn) ) (44)

where the gauge parameter A,(,—1)a(n—1) 18 also assumed to be primary. This gauge
freedom uniquely fixes the conformal dimension of the gauge field,

1
Kgsbaimyam) =0, Ddaimyam) = (2 —5(m+ n)>¢a(m)d(n) : (4.5)

In the m # n case, the gauge prepotential ¢ (n)a(n) and its gauge parameter Ay (m—1)a(n—1)
are complex.

From ¢ (m)a(n) One may construct two descendants (and their conjugates) to which we
refer as higher-spin Weyl tensors and denote by € (y,4r) and €, (40). They possess the
following key properties:

1. (;:a(ern) and @a(ern) are of the form fl(]ﬁa(m)d(n) and Aq@a(n)d(m), respectively. Here
A and A are linear differential operators involving the covariant derivatives, the Weyl

tensor Cypeq , and its covariant derivatives.
2. Both éﬁa(ern) and éﬁa(m+n) are primary fields of dimension 2 — %(m —n) and 2 —

%(n — m), respectively,

N A 1
Kﬁﬁ'e:a(m—i-n) =0, DQ:a(m—l—n) = (2 - 5(771 - n))eta(m—i-n) ) (4.6a)

. 1
Ksi€atminy =0, DCupmin) = (2 —5(n— m))%(mm . (4.6b)

Strictly speaking, we should use a more detailed notation for @a(ern) and éa(ern)
(m,n)

that would explicitly indicate the values of m and n, say @a(m )

instead of @a(ern). This
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is because there are several choices for m and n such that m + n = const. However, in the
hope that no confusion will arise we do not use such a cumbersome notation.

In some respect the 4D case is simpler than its 3D counterpart. For instance, in a
general curved space the higher-spin Weyl tensors take the form

(4.7a)
(4.7b)

Ca(mtn) = V(alﬁl T inﬁn¢an+1-..an+m)B1---Bn ’
Ca(mtn) = V(alﬁl e vﬂmﬁm(bamﬂ-..am+n)51.../3m .
It is clear that both (4.7a) and (4.7b) are of the form specified in property one, and also
that they have the correct Weyl weights as prescribed in property two. We now show that
they are primary.

Using the algebra (4.2) it is possible to prove, via induction on j, that the following
identity holds

Koy Vi - Vo B¢

0jg1nn0jyi)Bren By
= —{4jv(a1ﬂ1 Vo, e 05D+ 45( — 1)V (0, Ve, P e 105

+ 45V (0, Vo, M,

ajly

03/%

(4.8)

+ 4jV(alﬁl . Vaj_lﬁjfl%jwMﬂﬁj }Cajﬂ...ajh)ﬁ'l...,é’j 7
where (4 (j)q(;) 1S an arbitrary primary field. When the field in (4.8) is restricted to carry
the Weyl weight specified in (4.5), upon setting j = n and ¢ = m and evaluating, one finds
that the right hand side vanishes. This demonstrates that éfa(m+n) is primary. A similar
argument holds for €, 4p)-

In a general curved space, one may construct the following primary descendants from
the higher-spin Weyl tensors,

%a(n)ﬂ(m) = V(5171 U vﬁ,m)’ym éoq...ozn’yl...’ym ) (498,)

%a(m)ﬁ(n) = v(ﬁ'l’h e an)’ynQ:al...ocm'yl...'yn . (49b)

Both (4.9a) and (4.9b) have Weyl weight 2 + $(m + n). The proof that they are primary
is similar to that of the higher-spin Weyl tensors and makes use of the identity (4.8) and
the properties (4.6). The primary fields (4.9a) and (4.9b) originate from two alternative
expressions for one and the same conformal invariant

4 sa(m—+n) 5 4 a(m)B(n) 4 Ta(n)B(m) &
/d 2@, ) = /d re ™D o) :/d 2e ™MD i)
(4.10)

The derivation of (4.10) is given in appendix D. We will call B a(n)fm) and B a(m)f(n)
(linearised) higher-spin Bach tensors.
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4.2 CHS actions

The expressions (4.7a) and (4.7b) are determined uniquely, modulo terms involving the
background Weyl tensor Cgupeq, by the key properties listed earlier. However, when the
background spacetime is conformally flat, (4.7a) and (4.7b) are the unique higher-spin
Weyl tensors. By virtue of the commutator (4.2a) they are also invariant under gauge
transformations (4.4),

Cabea =0 = 5Aé:a(m+n) - 5/\é:o¢(m+n) =0. (411)

Since the commutator of covariant derivatives is proportional to the Weyl tensor, it follows
that the gauge variation of (4.7a) and (4.7b) under (4.4) in an arbitrarily curved space is
proportional to the Weyl tensor and its covariant derivatives,

5)\¢a(m+n) = O(Cabcd) ) 5)\éa(m+n) = O(Cabcd) . (4.12)

As a consequence of the properties (4.6), the linearised conformal higher-spin action
S [0, @) = im+n/d4$e CUHEE gy + . (4.13)

is invariant under the gauge group G. Additionally, by virtue of (4.11), in any conformally
flat space it is also invariant under the gauge transformations (4.4),

Capea =0 = 5,80 0. (4.14)

In any conformally flat background the two terms in the right-hand side of (4.13) coincide
because of the identity

im+n+1 /d4x e é:a(m+n)é:a(m+n) + c.c. = 0. (415)

In appendices E and F we discuss how the action (4.13) can be deformed to make it gauge
invariant in Bach-flat backgrounds for low spin values.
When spacetime is conformally flat, the tensors (4.9) possess the following properties:

1. B a(n)B(m) and B a(m)B(n) € invariant under the gauge transformations (4.4),

A ~.

2. B ) j(m) and %a(m)ﬁ(n) are transverse,

V’Y’Y%’Ya(nfl);YB(mfl) - v’w%wa(mfl)"yﬁ’(nfl) =0. (4'16b)
3. The complex conjugates of iBa(n) B(m) and SBa(m) B(n) satisfy
‘BG(W)B(N) = %a(m)ﬁ(n) ) %a(n)ﬁ(m) = %a(n)ﬁ'(m) . (4.16¢)
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The first two properties are obvious. The third property contains non-trivial informa-
tion and when written out in its entirety reads

Via LTS vcvm);ymc V(B e 'vﬁn)7n¢a1~-am71~--vn ) (4.17a)

1 1

V(a ;Yl U van)’ynezﬁlﬁm')/l')’n = V(,B T vﬁ.m)WMQOélman’yl""ym ’ (417b)

1 1

Bi Bt Fm

To prove (4.17a) one can assume, without loss of generality, that m > n. It may then be
shown that both sides of the equality evaluate to

1 " /m\ [n . : _— .
) 2 <j > <J> minl(Oe) Vo, ™ -+ Vay, [ mIV (5 oV 0
=0

Qm—j 1o Om ) V1 oY i B jb 1B )1 e Hm—j

The proof for (4.17b) is similar.
It is instructive to introduce the spin projection operators II(™™) and III™" which are

defined by their action on tensor fields,

H(m,n)%(m)ﬁ(n) = Ay ABTLWAM% . A%%%l._.ammm% , (4.18a)
H[m’n]¢a(m)5(n) — Aaﬂl . Aam%LA(%% .. 'A%%nqsm...vm,é‘l..ﬂn) ) (4.18b)
Here we have made use of the involutive operator?
RV . . .
AP = \/%’ APAL =6 ALAG =04 (4.19)

In a fashion similar to the proof of (4.17), it may be shown that both projection operators
are equal to one another,

a(m)B(n) a(m)B(n)

In addition, they satisfy the following properties

) pimn) — rpim.n) 7 rrlmnlglmen] — pplm.n] . (4.21a)

Yyp(men) . — YYTTIMm, "] ) _
VIl (b'YOé(m*l)"Yﬁ("*l) =0, VI gb’yoz(mfl)"yﬁ(nfl) =0. (4'21b)
Using (4.18a), one can express the higher-spin Weyl tensors as
é:cx(m-‘rn) - (Dc)%Aqul cee Aa”BnH(m7n)¢an+1...an+mﬂ1...Bn s (422&)
éoz(m—&-n) = (DC)%AOqu s Aamﬁmn(n’m)&amﬂ...aernﬂ'l.A.Bm . (4.22b)

We note that due to (4.21b), both éﬁa(m+n) and éa(m+n) as written above are totally
symmetric.

9The operator A, 3 is a generalisation of the flat-space one used in [75, 76] to construct (super)projectors.
For two special cases, m = n and m = n + 1, the projection operators defined by (4.18) are equivalent to
the Behrends-Fronsdal projection operators [77, 78].
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If we once again assume that m > n, we may use the descendants (4.9) and the
projectors (4.18) to give two new realisations of the CHS action!® (4.13),

Sgﬁ’g) (¢, @] =" / dlze &a(”)ﬁ(m)’%a(n)g(m) +c.c. (4.23a)
_ m+n 4 _a(n)ﬁ(m) nyy . Qn+1 |, . . amTy(m,n) .
=i /d xeop (Oe) Vi, otV ol ¢a(m)6(n) +c.c.
(4.23Db)
When m = n = s, the prepotential may be chosen to be real,
Ra(s)a(s) = Pa(s)ats) = Pals)a(s) - (4.24)

In this case there is only one higher-spin Weyl tensor éfa@s) = Cu2s5) = Cy(25), and one

(67

Q:a(ZS) = V(alﬁl . vaszS has-t,-lmaQs)BlmBs , 425)
SBoa(s),é.’(s) = V(ﬁlryl T VBS)’YSQtal...aS'yl...fys ) (426)

and the action (4.23) assumes the simple form
Seilh] = 2(-1)° / d*z e R OPENO) Ty s (4.27)

Finally, when m — 1 = n = s the action (4.23) becomes

Sggsl’s) = (—l)si/d4g;e¢a(5)ﬁ'(s+1)V'

5s+1

as+1(DC)SH(8+1’S)¢Q(S+1)B(S) + c.c. (4.28)

In the case of Minkowski space, the actions (4.27) and (4.28) coinicde with those proposed
by Fradkin and Tseytlin [1].

4.3 Generalised CHS models

As a simple extension of the previous constructions, we now consider a generalised gauge

field gbgzm)d(n) which is primary and defined modulo gauge transformations of depth [,
l
5)‘¢£¢2m)a(n) = v(oq(éa e valdl)\al+1‘..am)dl+1...dn) ) (429)

with [ a positive integer, 1 < [ < min(m,n). Using an identity similar to (4.8), one may
show that by requiring the gauge parameter Ay —i)a(n—1) to also be primary, the dimension

of ¢g2m)d(n) is fixed to (I+1) — %(m +n). The conformal properties of qﬁgzm)d(n) may then
be summarised by
K50 s =0 D8 = (4 1) = Tm+ n)ol] (4.30)
BBY a(m)é(n) ’ a(m)éu(n) 2 a(m)é(n) * :

10See appendix D for a discussion on the technical issue of integration by parts.
1Guch gauge transformations occur in the description of partially massless fields in diverse dimen-
sions [54-69]. Special families of generalised CHS models were studied in [10, 12, 72, 79-81].
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As was done earlier in the case [ = 1, from ¢g2m)d(n) we may construct generalised

- : 3l 2 - .
higher-spin Weyl tensors ngm—i-n—l—o—l)d(l—l) (¢) and ¢é2m+n_l+1)d(l_l) (¢) possessing the fol-

lowing conformal properties,

&0 _ () _ 1 (1)
K€ mrn—t+1)a0-1) = 0> D mtn—t41)a0-1) = (2 - §(m - n)>¢a(m+n—l+1)d(l—1) )
(4.31a)

&0 _ (1) _ 1 20
K€ mrn—t+1)a0-1) = 0> D mn—t41)a0-1) = <2 - 5(” - m)>€a(m+n—l+1)a(l—1) :
(4.31b)

In a general curved space one may show, using the identity (4.8), that these properties
are satisfied by the following expressions:

) —v, B Bri41 4D
Qa(m—&-n—l—f—l)o‘z(l—l) - v(041 ' van—l+l ZH¢an—z+2---am+n_z+1)51---Bn_1+1d¢1...dl_1 . (4.32a)
50 _ Bi... Bm—41 50
Q:og(m+nfl+l)d(lfl) - V(al 1 VOszlJrl I+1 ¢am—l+2~~~am+n71+1)lgl~~~Bmfl+1d1mdlfl . (432b)

Associated with these generalised higher-spin Weyl tensors is the action

+c.c., (4.33)

(mnl) _ smin 4., sa(mAn—I+1)a(l—1) 2(0)
Sens =1"" /d xe@(z) Qta(m+nfz+1)a(171)

which is invariant under the conformal gauge group G.

In general, if the background Weyl tensor Cypeq is non-vanishing, the primary descen-
dants (4.32) are not invariant under the gauge transformations (4.29). However, in any
conformally flat space the generalised higher-spin Weyl tensors (4.32) prove to be gauge in-

variant
Cabea =0 = 5Aéggm+n—l+1)a(1—1) = 5Aég2m+n—l+1)a(1—1) =0, (4.34)
and hence so too is the action (4.33),
Capea =0 = 650l —o, (4.35)

The equations of motion that follow from (4.33) are the vanishing of the generalised
higher-spin Bach tensors,

30 _v,. By, Bun—111 (D)
%a(n)d(m) - v(oq 1 vam_z+1 I+1 ¢,81~~~5mfl+1011~~~andm—l+2~~-dm) s (4.36&)
B0 —v,. B v, Baiag®

%a(m)a(n) - v(al ' vO‘n—H—l l+1 eﬂl---ﬁn—l—o—lal---amdn—l+2---d¢n) : (436b)

Both (4.36a) and (4.36b) are primary in any curved spacetime. In a conformally flat
spacetime, they satisfy the l-extended versions of the properties (4.16), namely:

1. %ggn)a(m) and %gzm)a(n) are invariant under the gauge transformations (4.29),

() _ 0 _
5A§Ba(n)c’v(m) - 6)‘%a(m)d(n) =0. (4.37a)
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2. ‘Bgzn)d(m) and %ggm)d(n) are partially conserved,

BB .. BB ) _ BB .. BB ) _
v v %ﬁ(l)a(n—l)ﬂ(l)d(m—l) v v %ﬁ(l)a(m—l)ﬂ(l)d(n—l) 0.
(4.37Db)
: a0 ya (1) :
3. The complex conjugates of %a (n)B(m) and %a (m)(n) satisfy
= O A0 O A (1)
%a(m)o}(n) - %a(m)d(n) ’ %a(n)d(m) - %a(n)d(m) . (4.37C)

As was done in the 3D case, we can once again ask which values of [ yield second-order
Lagrangians in the action (4.33).'2 A similar analysis reveals that second order models
exist only for bosonic spin. These models are of maximal depth and have [ =m =n = s
with s = 2,3,.... They were first described in [72, 79].

It is of interest to provide a more detailed analysis of the maximal depth spin-2 model

in a general curved space Setting [ = m = n = 2 and denoting €,(3)4 = 622()3)(5( ég():s)a
and Ay = ¢ 2)a(2) = ﬁa(g)d(g), the action (4.33) takes the form
SO — / d*z e @®AE, 54 + coc. Ca@i = Vior Paganas - (4.38)
We can still add a non-minimal term to this action whilst respecting its G-invariance,
§(02ﬁ12é2) S(CQH282) + wa\?l\’f’z) : (4.392)
Ser? = / Atz e COPPO 0 P hg o) + cuc, (4.39b)

where w is some constant and C*2#() is the self-dual part of the Weyl tensor, eq. (4.3).
We find that under the gauge transformations

Inha@)a@) = Viar(a Vaz)ao) A (4.40)

the deformed action (4.39a) varies as
SAS) — 2 / d4:ce)\{(1 + W) Ca(3)s Ve € G 1 2(1 4 w)ePAV0C, )5
— OJBa(Z)d(Q)ha(Q)d(Q)} + c.c. 5 (441)

where B 2)4(2) 1 the Bach tensor,

Ba@a@) = V7 (@1 V%42 Ca@50) = Vi Van)* Camyp2) = Ba@at) - (4.42)
Therefore, if we choose w = —1 then it follows that (4.39a) is gauge invariant in any
Bach-flat spacetime,

2,2,2
Ba(2)d(2) =0 - 5)\S(CHS ) =0. (443)
w=—1

2Pirst-order models in this context are not well defined.
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This model was discussed in ref. [12], where the authors concluded that gauge invari-
ance could be extended to any Einstein space. Although this statement is true, as we have
just shown, it may be extended even further to Bach-flat backgrounds. Perhaps the reason
they did not arrive at this conclusion was because they demanded gauge transformations
of the type

1
Orhapy = Dy DpA — Z’nabD)\. (4.44)

However, the right-hand side does not preserve its form under Weyl transformations. The
correct gauge transformation in a general curved background is the degauged version
of (4.40), which in vector notation reads

4

The two expressions coincide in the case of Einstein spaces.

1 1 1
Oxhab = <Dan - 2Rab> A — —Tab (D — 2R> A (4.45)

4.4 Degauging

To conclude this section, we discuss the 4D degauging procedure, which turns out to
be much more tractable than the 3D one. In the gauge (2.25), the conformal covariant
derivative reads

1 .
vwzpw—zaﬁwﬁw. (4.46)
The Schouten tensor may be decomposed into irreducible components as

1 1
FPocps = 5 Rasap — 135085

R (4.47)
where R 55 = (aa)ad(ab)ﬂﬁ (Rap — 3napR) = R,5)(ap) 18 the traceless Ricci tensor. The
aim is then to express all descendants in terms of the torsion-free Lorentz covariant deriva-
tive, the curvature and the prepotential.

Using the identity (4.8) and the degauged covariant derivative, it is possible to show

that the following identity holds true

Do, .. . Doy 17V, VY, (4.48)

an+1...an+m)61---8n
_ D(a1ﬁ1 o Daj_lﬁj—l {'Da]ﬂj vaj+1/3j+1 o Vanﬁ"

an+1---an+m)ﬁl---;8n :

2

Therefore, in any background spacetime with a vanishing traceless Ricci tensor, or in other

—=j (n _ ])Rajaj+1ﬁjﬁj+1vaj+2ﬁj+2 o Vanﬁn}d)

words an Einstein space,

Ra,BQB =0 <= Rup=Naw, (4.49)

the degauging procedure is trivial and we obtain'3
Q:O‘(m+n) = D(alﬁl e Danﬁn¢O‘n+1-~~0¢n+m)31~-~6n ’ (450&)
Q:a(m—i-n) = D(Ozlﬁl . Damﬁm¢am+1...am_;,_n)ﬂ'l,..ﬁ.m R (450b)

3 An identity similar to (4.48) holds with ®a(m)a(n) Teplaced with @(X(,,,LJrn).
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% D(Bl’h .. 'Dg'm)'ymé:al---an%---”/m , (4.50(3)

D, Dy )" Caamm - (4.50d)

a(n)f(m) —

&<

a(m)B(n) —

In the case where R,(2)4(2) does not vanish we have not yet been able to obtain a
closed-form expression for the degauged version of any of the above tensors, for arbitrary
m and n. However, the expressions for €, (o5 with s = 2,3,4,5 are as follows:

Q:a(4) = ’D(alﬂl'DOQB? ha3a4)3132 — §R(a1a25152 ha3a4)6162 , (4,513)
Q:Oz(G) - D(alﬁl Da252pa3’83 ha4a5a6)5152ﬁ.3

_ (D(a131 Ra2a35233)h

agasag)B1P28s

— 2R (00,12 D, Bk (4.51b)

asasag)pifeBs
Q:a(8) = D(alﬁlpa252pa3ﬂgpa4ﬁ4h

-3 (D(alﬁlpag ﬁzRa3a45354) h
_ 5(D(a151 Ra2a35253)pa4ﬁ4h

asagaras)BifB2B3 P4
asagaras)BB2Psba

asagaras) B B28384

— 5R(a1agﬁlB2Da363Da4B4h

asagaras)f26364

+ 1 Rlaras * Ragas ¥t (4.51c)

asagoras)B1B2fBsba

€o(10) = D, - Das ™

a6...a10)P1--.B5

_ 2(D(a151Da2ﬁzpa353Ra4a5ﬂ4B5)h

a6...a10)P1--.B5

_ Q(D(Oq,gl Da, B2 Ra3a4’83'84)pa5'85h

a6...a10)P1---B5

_ 15(D(a161 Ra2a35253)pa4ﬁ4pa555h

a6...a10)B1---B5

_ 10R(a1a2BlB2Da363Da4B4Da5 BSh

@6...a10) 5105

+ 16R(a1a25162 (Da3,33 Ra4a5ﬁ465)h

a6...a10)B1...85

+ 16R (00" Ragars ™4 Dy (4.51d)

@6...010)B1.-.B5

Modulo terms involving the background Weyl tensor, eq. (4.51a) proves to coincide with
the linearised self-dual Weyl tensor Cy4).
The expressions for éﬁa(m 4n) Withm —1=mn=s for s =1,2,3,4 are as follows:

€az) = Do, ™ Paraz)f * (4.52a)
€a(s) = Do, Dy *Pasasas)brfe %R<a1a25152¢a3a4a5)5~1 by (4.52Db)
€a() = e Pas™ Py by ageugarnyn i

- (D(OélB1 Ra?aSBQBs)¢a4a5a6a7)[31[3233

- QR(alath&Das&%4&5&6&7)313253 ; (4.52¢)
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éa(g):D( ﬁlD 52'D 53Da4ﬁ ¢
3
— §(D(alﬁlpa2B2Ra3a4 3 4)¢O¢5...O¢9)B1...B4

_5(1)( BIR 5233)]) 34¢

as...00) 1.1

a5...00)B1...Ba

_5R(a A1 ﬁzD 53Da4ﬁ b

as...a0) 1.1

9
+ ZR(WzW? Rayas 90 (4.52d)

as...a9)f1...B "

Finally, the expressions for @a(m 4n) With m —1=mn = s for s = 1,2,3,4 are as follows:

- 1 L.
Q:CY(3) == D( BlDa2ﬂ2¢a1 6162 5R(a1a25162¢a3)8152 9 (4533)

Q:a(5) = D(alﬁlpa2ﬂ2pa3 3¢a4a5)513253

- (D(alﬁl Ra2a362ﬁ3)¢a4a5)515253

- 2R(a1a25152pa3ﬁ3 ¢a4a5)515263 ’

Co(r) = D(mBlDazﬂzpa:sﬁspm&¢a5a6a7)51525354
3 .

_ 5 (D(alﬁlpazﬁQRa

(4.53b)

B3Ba\ 3 L
: 4)¢a5a6a7)51525354
—5(D( BlR ﬁzﬂs)p Ba 46

asagar)B1feBsBa

- 5R( 51622) BSD ¢a5a6a7)51525334

9
+ ZR(QMBI@RQSQ (4.53¢)

ﬂ3ﬁ4¢_5 L
4 asagar)B1PefsBa

Ca = P - Das™ by ao)pr.. s

_ 2(D(C‘ll61Da252pa3ﬁ3Ra4a56455>qgag...ag)ﬁ'l..ﬂg,
_ 9(D(a161Da252Ra3a4B364)Da565§5a6 o).
_ 15(D(a151Ra2a35253)D 541)&513 ¢

a6...9)f1...B5

_ 10R(a1a2ﬂ1ﬁ2'Da3/33Da464Da55 ¢

...9) 1.5
+ 16R 010, (Das™ Rasas™) b o). s

+16R(a1a26162Ra3 53,341) 55¢ (4.53d)

a6...9)B1...05 °

Here we do not attempt to degauge the generalised higher-spin Weyl and Bach tensors
introduced in the previous subsection. However, we do note that they will also degauge
trivially in any Einstein space.

5 SCHS theories in three dimensions

In three dimensions, N -extended conformal supergravity was formulated in superspace as
the gauge theory of the superconformal group in [38]. Upon degauging, this formulation
reduces to the conventional one, sketched in [82] and fully developed in [83], with the
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local structure group SL(2,R) x SO(N). The former formulation is known as N-extended
conformal superspace, while the latter is often referred to as SO(N') superspace. In this
section we only make use of the conformal superspace formulations for N'= 1,2 and 3. To
start with, we recall the main facts about the 3D AN -extended superconformal algebra and
primary superfields in conformal superspace following [38].

The 3D N-extended superconformal algebra, osp(AN]4,R), contains bosonic and
fermionic generators. Its even part s0(3,2) @ so(N) includes the generators of so(N),
Nk = —Npk, where K,L = 1,...,N, in addition to the generators of the conformal
group described in section 2.1. Their commutation relations are:

[Nk, N'| = 26( Ny — 265Ny (5.1a)

The odd part of osp(N|4,R) is spanned by the @-supersymmetry (Q!) and
S-supersymmetry (S!) generators. In accordance with [38], the fermionic operators Q%
obey the algebra

{Qé 3 Qé} = 2151J(’70)a,3P07 [Qév Pb] = 07 (51b)
[Ma,ﬁv Q’Iy] = gy(aQé) ) []D7 Qé] - %Qé ’ [NKLa ng] - 25{](QQL] ’ (51C)

while the operators S. obey the algebra
{85,853} = 216" (v%)apKe, [SL K] =0, (5.1d)

1
[Maﬁ’ S’ﬂ = gw(a‘s’é) ) D, Sé] = _isgc ) [Nkr, Sé] = 25[IKSQL} . (5.1e)

In the supersymmetric case, the translation (P,) and special conformal (K,) generators
are extended to Py = (P,,Ql) and K4 = (K,,S%), respectively. The remainder of the
algebra of K4 with P4 is given by

(Ko, Qi) = =i(va)a”Sh,  [Sa: Pal =i(7a)a”Qf (5.1f)
{SL,Q4} = 2ea30""D — 26" Mg — 2603 N . (5.1g)

The superspace geometry of N-extended conformal supergravity is formulated in terms
of the covariant derivatives of the form

1 1
Va=(Va, VL) = EaM0y — 5QAbCMbC - §¢APQNPQ — BaD - §4PKp. (5.2)

Here Q4% is the Lorentz connection, ® 479 the SO(N) connection, By the dilatation
connection, and F47 the special superconformal connection. The graded commutation
relations of V4 with the generators M., Npg, D and Kp are obtained from (5.1) by the
replacement P4 — V 4. However the relations (5.1b) turn into
1 1
[Va,Vi} = =Tap"Veo = SR(M)ap™Mea — 5R(N) ap"“ Npg
— R(D)asD — R(S)ap}SY — R(K)ap°Ke. (5.3)
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To describe the off-shell conformal supergravity multiplet, the torsion and curvature ten-
sors should obey certain N-dependent covariant constraints given in [38]. The complete
solutions to the constraints are derived in [38]. We will reproduce the N' =1 and N = 2
solutions below.

The generators K4 = (K,, S.) are used to define conformal primary superfields:
K@ =0. (5.4)

In accordance with (5.1d), if a superfield is annihilated by the S-supersymmetry generator,
then it is necessarily primary,

Slo=0 = K, 2=0. (5.5)

5.1 AN =1 SCHS theories

The algebra of A/ =1 conformal covariant derivatives [38] is

(Va, V5) = 2iVas. (5.6a)
1
[V, Vi = 1(fya)/ﬁWW,K%, (5.6b)
V.. V] = i c\apf K'y(5 1 c\af S
[ as b] = _ggabc(’y ) Vawﬁfyé - Zgabc('Y ) Wa,B'y . (5'6C)

It is written in terms of the A" = 1 super Cotton tensor Wy, which is a primary superfield

of dimension 5/2,
5
S(SWa,B'y = 07 ]D)Wozﬁ'y = §Waﬂv 5 (57)
obeying the Bianchi identity

Vo Weap, = 0. (5.8)

The super Cotton tensor Wz, was originally introduced in [84].
Consider a real primary superfield L of dimension +2,

SeL=0, DL=2L. (5.9)

Then the functional
I= /d?’l?zEL, E~! = Ber(E4M) (5.10)

is locally superconformal. We will use this action principle to construct N = 1 locally
superconformal higher-spin actions.

We now introduce SCHS gauge prepotentials by extending the definitions given
in [18-20] to conformal superspace. Given a positive integer n > 0, a real tensor su-
perfield H,,) is said to be a SCHS gauge prepotential if (i) it is primary and of dimension

(1 - TL/2)7
n .
SgHomy =0,  DHyp = (1 _ 72) Hony (5.11)

and (ii) it is defined modulo gauge transformations of the form

6AHa(n) = inv(a Aaz...an) ) (512)

1
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with the gauge parameter A,(,_1) being real but otherwise unconstrained. The dimen-
sion of Hy () is uniquely fixed by requiring A,(,—1) and the right-hand side of (5.12) to
be primary.

Let us first discuss the case n = 1 corresponding to a superconformal vector multiplet.
Associated with the prepotential H, is the real spinor descendant

W (H) = —%VBVQHB, (5.13)
which proves to be gauge invariant,
0AWao =0, (5.14)

and primary,

SsW, =0,  DW, = gwa. (5.15)

The field strength (5.13) obeys the Bianchi identity

VW, =0. (5.16)
In general, this conservation equation is superconformal, for some primary spinor 2, if
the dimension of 20, is equal to 3/2. The Chern-Simons action

Ssos[H] = —% / B2 B HOw, (H) (5.17)

has the following basic properties: (i) it is locally superconformal; and (ii) it is invariant
under the gauge transformations (5.12) with n = 1.

It turns out that some of the properties of the conformal vector supermultiplet (n = 1),
given by egs. (5.14)—(5.16), cannot be extended to n > 1 in the case of an arbitrary curved
background. So let us first consider a conformally flat superspace,

Wapy = 0. (5.18)

Then it follows from (5.6) that the conformally covariant derivatives V4 = (V,, V) obey
the same graded commutation relations as the flat-superspace covariant derivatives. This
allows us to use the flat-superspace results of [18] provided local superconformal invariance
can be kept under control. We associate with the gauge prepotential H,,) the following
linearised higher-spin super Cotton tensor

[n/2]
1 n ; .
Qnoa...an = 27 { <2j> (DC)JV(alﬁl - van72jﬁn_2]Han—2j+1n~an)ﬁln~ﬂn—2j (5.19)
=0
L NIV Ve, e H, |
2\2j +1 c (a1 Qn_2j-1 Qp—2j...an)B1...Bn—25-1  *

where we have denoted V2 = V*V,,. Making use of (5.1) it may be shown that 2, (H)
has the following properties:

1. Tt is primary, n
SeWam) =0, DWe(n) = (1 + *> We(n) - (5.20)
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2. It is conserved,
VAW (-1) = 0. (5.21)

3. It is invariant under the gauge transformations (5.12),

A Wem) = 0. (5.22)
These properties imply that the Chern-Simons-type action

n ln a(n

has the following fundamental properties: (i) it is locally superconformal; and (ii) it is
invariant under the gauge transformations (5.12). It is worth pointing out the existence of
an alternative representation for 2, inspired by the flat-superspace construction of [18].
It is given by

i

7>nvﬁlva1 e VB”V%HBLU% = Qﬂ(al...an) . (5.24)

mal...an - <_ 9

To conclude our N = 1 discussion, we remark that the off-shell formulations for mass-
less and massive higher-spin N' = 1 supermultiplets in Minkowski and anti-de Sitter back-
grounds were constructed in [19, 20]. These theories are realised in terms of the conformal
gauge prepotentials H,(,) in conjunction with certain compensating supermultiplets.

5.2 AN = 2 SCHS theories

In the N/ = 2 case it is convenient to replace the real spinor covariant derivatives V2 with

complex ones,

1 _ 1
(Vo —iVa): Va=——=(Va+iVy), (5.25)

Vo=
2 V2

S

which are eigenvectors,

[Ja Va] = va 5 [Ja va] = —Va > (5.26)

of the U(1) generator J defined by
Ji=——efINgp . (5.27)

It is also useful to introduce the operators

1

_ 1
S = —=(SL +iS?), §,:= —=(S! —iS?), 5.28
\/i( o T15) \/5( 155) (5.28)
which have the properties
[J,S4] = Sy [J,54] = —Sa. (5.29)

— 33 —



The graded commutation relations specific to the new basis are

{84,858} =0, {84,585} =0, {Sa, S5} = 2iK,p, (5.30a)
[Ka, Va] = ~i(7a)a” S5 , [Ka, Va] = i(7a)a” S5, (5.30Db)
[Sas Vo] = i(7a)a” V3, [Sa, Vol = —i(74)a’ V5, (5.30c)
{S4,Vs} =0, {S4,Vs} =0, (5.30d)
{50, Vgt = —2e05D + 2Mog — 2208, {Sa, Vi} = 224D — 2Myp5 — 2605J . (5.30e)

In the complex basis, the algebra of N' = 2 covariant derivatives [38] is

{Va,Vpg}=0, {Va,Vs}=0, (5.31a)
{(Va,Vg} = —2iVap—apWs K7, (5.31b)
i _
[Va, Vgl = g(va)ﬂ”VvWa‘sKaa— (Ya) g, W° S5, (5.31c)
i i = o - -
[Va, Vo) = = geae(1)” (i[7, Vol Wap K 4V, Wy S 44V, Wi S” —8W.57 )
(5.31d)
where the N = 2 super Cotton tensor W3 is a primary real superfield,
SWap=0 <= S’»yWa/g =0, DWys=2W,z, (5.32)
with the fundamental property
V*Weap =0. (5.33)

In SO(2) superspace [83], the super Cotton tensor W,z was introduced originally in [85].
Given an integer n > 0, a real tensor superfield H, ) is said to be a superconformal
gauge prepotential if (i) it is primary and of dimension (—n/2),

_ n
H, = H,.,, = DHyn) = —=Ham); .34
SgHummy =0 <= SgHym =0, a(n) 5 Ho(m) (5.34)

and (ii) it is defined modulo gauge transformations of the form
5AHa(n) = ?(alAag...an) - (_1)nv(a1j_xa2..,an) ) (535)

where the gauge parameter A,(,_1) is a primary complex superfield of U(1) charge +1,
that is, JAq(n—1) = Ag(n—1)- The dimension of the gauge prepotential is uniquely fixed by
requiring H,(,) and A, ,_1) to be primary.
In the remainder of this section we assume that the background curved superspace
MB3* is conformally flat,
Wap =0. (5.36)

Associated with the gauge prepotential H () is the following real descendant

[n/2]
1 n ; )
wa(n) (H) = 2n7—1 Z { (2]) A(DC)JV(OélIBl s van—zj&kg] Han,2j+1...o¢n),81..ﬂn,gj
7=0

n - .
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where A = %Va?a. This descendant proves to be primary,

SoWam =0 =  SpWoy =0, DW,, = (1 n g) W) (5.38)
and gauge invariant,
AW,y =0. (5.39)
Moreover, it obeys the conservation equation
ViWsa.ans =0 = V' Wga. ., , =0. (5.40)
These properties imply that the action
S H] = —ﬁzjﬂ / &3z B HOM90,, ) (H) (5.41)

is superconformal and invariant under the gauge transformations (5.35).

To conclude our NV = 2 analysis, we remark that the off-shell formulations for massless
and massive higher-spin N’ = 2 supermultiplets in Minkowski superspace, as well as in the
(1,1) and (2,0) anti-de Sitter backgrounds were constructed in [21, 22, 86]. These theories
are realised in terms of the conformal gauge prepotentials H, ) in conjunction with certain
compensating supermultiplets.

5.3 N = 3 SCHS gauge prepotentials
We introduce N = 3 SCHS prepotentials H, a(n)> With n a positive integer, with the following

properties: (i) it is primary and of dimension —(1 + n/2),

J n .
S§Ham =0, DHay = — (14 5) Hagw (5.42)

and (ii) it is defined modulo gauge transformations of the form

SAHo(m) = 1"V ALy an) s (5.43)

(a1t ag...an

with the primary gauge parameter Aé (n—1) being real but otherwise unconstrained. In the
right-hand side of (5.43), summation over I is assumed. The prepotential H, corresponds
to linearised N = 3 conformal supergravity [38].

The N = 3 story is still incomplete since higher-spin super Cotton tensors are not
yet known.

6 SCHS theories in four dimensions

In A/ = 1 conformal superspace [41] in four dimensions, the covariant derivatives V4 =
(Va, Va, VY) have the form

1
Va=EsMoy — 5QAbCMbC —i®4Y — BaD — §4PKp

= EaMOy — Q4P Mgy — QuP My, —i94Y — BaD — §aPKp . (6.1)
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Here Q4% is the Lorentz connection, ® 4 the U(1)Rr connection, By the dilatation connec-
tion, and a2 the special superconformal connection. Below we list the graded commu-
tation relations for the A/ = 1 superconformal algebra su(2,2|1) following the conventions
adopted in [87, 88], keeping in mind that (i) the translation generators P4 = (Ps, Qa, Q%)
are replaced with V 4; and (ii) the graded commutator [V 4, Vp} differs from that obtained

from [Py, P} by torsion and curvature dependent terms,
1 .
[V, Vp}= —TABCVC—§RABcd(M)Mcd—1RAB(Y)Y—RAB(D)D—RABC(K)KC. (6.2)

The Lorentz generators My, act on the covariant derivatives as

[(Map, Vel = 20a Vi s [Mab, V4] = (0a)2° Vs, [Map, V1] = (60) 73V (6.3)

The Lorentz generators with spinor indices act on the spinor covariant derivatives

[Maﬁ, VW] = Eﬂ/(an s [ _dﬁ" VW] = E;y(avﬁ') . (6.4&)
The U(1)r and dilatation generators obey
[V,Va] =Va, [V,VY]=-V2, (6.4b)

1 _ . 1-_.
D,V =Va, [D,Va]=3Va, [D,V)=7V" (6.4c)

The special superconformal generators K4 = (K@, 5%,8S,) transform in the obvious way
under the Lorentz group,

[Map, K = 200Ky, [Map, S = —(0w)" 8", [Mu, S5] = _(Uab)ﬁ"y‘§5> (6.4d)
and carry opposite U(1)g and dilatation weight to V 4:
[Y, 5% = -5%, Y, 84] = Sa, (6.4c)
D, K, = —K,, [D,S% = —%sa, D, 54] = —%S*d. (6.4f)
Among themselves, the generators K obey the algebra
{57, 84} = 2i(0%) 4 K, (6.42)
with all the other (anti-)commutators vanishing. Finally, the algebra of K4 with Vg is
given by
[K® V] =20D + 2M%, (6.4h)
(5%, V) = 263D — 4M® 5 — 353V, (6.41)
{84,V = 268D + 481, + 355y . (6.4))
K%, V5] = ~i(0")5"S, (K, VP = —i(0%)? 557 , (6.4k)
(5%, V3] = i(04)* V7, [Sa, Vi) = i(03)6°V 3, (6.41)

where all other graded commutators vanish.
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In conformal superspace [41], the torsion and curvature tensors in (6.2) are subject to
covariant constraints such that [V 4, Vp} is expressed in terms of the super Weyl tensor
Wasy = Wi(agy), its conjugate V_Vd & and their covariant derivatives. The solutions to the

constraints are given by

(Vo Vsl ={Va. Vsl =0,  Vaa:= %{va,vd}, (6.5a)
(V5. Vaa] = 2iega W5, M7 — R(S)ga 157 = R(K)gac Ke. (6.5b)

where R(S)gaa+ and R(K)gaa¢ involve derivatives of the superfield W, 4 Their precise
expressions will not be necessary for our discussion; they can be found in the original
publication [41].

Consider a primary superfield ¥ (with suppressed indices), KpW¥ = 0. Its dimension
A and U(1)g charge ¢ are defined as DU = AV and YU = ¢qV. As is well known, for every
primary covariantly chiral superfield ¢ (y), its U(1)r charge is determined in terms of its
dimension,

_ 2
KBd)a(n) =0, V/B¢a(n) =0 = q= _gA : (66)
The super Weyl tensor W3, is a primary chiral superfield of dimension 3/2,
3

KpWagy =0, ?BWQ&, =0, DWus, = §Wa57' (6.7)
It obeys the Bianchi identity
Bog =1V 4V Wagy =iVa"VIW, 5. = Bas - (6.8)

Upon degauging (see [41] for the technical details of the degauging procedure) B, takes
the form given in [32, 33] (see also [17]). It is clear that B,g is the AV = 1 supersymmetric
generalisation of the Bach tensor (4.42). One may check that B, is primary,

KpBua =0, DBag = 3Baa s (6.9)
and obeys the conservation equation
VoBas =0 <= VB, =0. (6.10)

The super-Bach tensor defined by eq. (6.8) naturally originates (see [32, 33] for the
technical details) as a functional derivative of the conformal supergravity action'* [89, 90],

Iosc = /d4x d20 E WP W o, + c.c., (6.11)
with respect to the gravitational superfield H® [89], specifically

5 / d*xd?0 EWPNW 5, = / d*xd*0d*0 E AH*" B, (6.12)

14T Minkowski superspace, the linearised action for conformal supergravity was constructed by Ferrara
and Zumino [34].
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where £ denotes the chiral integration measure, and AH® the covariant variation of the
gravitational superfield defined in [91, 92]. The conservation equation (6.10) expresses the
gauge invariance of the conformal supergravity action.

We introduce SCHS gauge prepotentials by generalising the construction of [17]. Given
two positive integers m and n, a SCHS gauge prepotential T ,(,n)4(n) is @ primary superfield,
KBY(m)an) = 0, defined modulo gauge transformations [17]

5A,CTa1...amd1.A.dn = v((jzlAoq...ozmo'zg...ézn) + v(041 Cag...ocm)d1...o'cn ) (613)

with unconstrained primary gauge parameters Ay(m)a(n—1) and Ca(m—1)a(n)- The condi-
tions that To(mya(n)s Aa@m)an—1) and Com—1)a(n) be primary superfields uniquely fix the
dimension and U(1)r charge of T4 (m)a(n);

1 1
]D)Ta(m)éz(n) = _§(m + n)Ta(m)éz(n) ) YTa(m)d(n) = g(m - n)Ta(m)éz(n) : (614)
Associated with Ty (n)a(n) and its conjugate Ta(n)d(m) are higher-derivative descen-
dants
. 1o, : ;.
wa(m+n+1) = —Zv V(Ollﬁl e vanﬁ van+1 Tan+2---am+n+1)61---ﬁ.n 3 (6.15&)
< 1o, ; n _
wa(ernJrl) = —Zv v(alﬁl “ e vamﬁ vam+1Tam+2~~~am+n+1)51~~~6m . (6.15b)
By construction they are obviously covariantly chiral,
?B@a(m+n+1) - 0, ?B@a(m+n+1) — 0 . (616)
What is less trivial is the fact that they are primary,
. . 1 .
. . 1 .
These properties imply that the following action
Sggl—?s) =imtn / dzd?0 £ Qﬁo‘l"'am+”+1ﬁﬁa1,,,am+n+l + c.c. (6.18)
is locally superconformal.
Consider a conformally flat background superspace,
Wapy =0. (6.19)

Then it may be shown that the chiral descendants (6.15) are invariant under the gauge
transformations (6.13),

5A,C@a(m+n+l) =0, 6A,Cgvna(m+n+1) =0. (620)

As a result, the higher-spin actions (6.18) are gauge invariant. It is clear that these actions
are modelled on the conformal supergravity action.
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There are several special cases that require a separate discussion. Firstly, choosing
m =n = s > 0 allows us to impose the reality condition

To(s)ats) = Lal)as) = Ha(s)als) » (6.21)

and then (6.13) turns into the transformation law [17]

5AH061---Q’5(541---(5¢5 = v(0'41*/\‘Cl(l‘..013(512...(:](5) - v(alf_\ag...as)dl...ds ) (622)

which is a curved-superspace extension of (1.8). The gauge prepotential H,s)4(s) describes
the conformal superspin-(s + %) multiplet, with the lowest choice s = 1 corresponding to
linearised conformal supergravity. It is one of the dynamical variables in terms of which the
off-shell massless superspin-(s+ %) multiplets in Minkowski and anti-de Sitter backgrounds
are formulated [93, 94].

The second special case corresponds to m = n+ 1 = s > 1. The gauge prepotential
Yo(s)a(s—1) and its conjugate, along with certain compensating supermultiplets, are used
to describe the off-shell massless superspin-s multiplet in Minkowski and anti-de Sitter
backgrounds, originally proposed in [94, 95] and recently reformulated in [96, 97].

Thirdly, the case m = 1 and n = 0, which corresponds to the superconformal gravitino
multiplet, has been excluded from the previous consideration since the transformation
law (6.13) is not defined. This supermultiplet is characterised by the gauge freedom [17]

Yo = Vol + Ao, %Aa =0, (6.23)

which is a curved superspace extension of the transformation law given by Gates and
Siegel [98] who studied an off-shell formulation for the massless gravitino supermultiplet in
Minkowski superspace.

7 Concluding comments

There exist two modern approaches to formulate conformal geometry. One of them was
developed by mathematicians and is often referred to as tractor calculus [99, 100], with
its roots going back to the work of Thomas [101]. The other formalism was created by
supergravity practitioners [30]. It describes conformal gravity as the gauge theory of the
conformal group, which was reviewed in section 2. It may be shown that the former
approach is obtained from the latter by imposing the gauge condition (2.25), which makes
transparent the fact that the so(D,2) connection (2.18) encodes the tractor connection
of [99, 100]. This means that the two approaches to conformal geometry are essentially
equivalent and complementary.

Tractor calculus has been used to construct families of conformal differential opera-
tors. Moreover, there have appeared interesting applications of this formalism in physics,
see [102-106] and references therein. At the same time, tractor calculus is not practical
if one is interested in constructing superconformal field theories, and alternative ideas are
required. Fortunately, the work of Butter in four dimensions [41, 42] and its extensions
to three, five and six dimensions [38, 39, 43, 44] have provided powerful tools to describe
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conformal supergravity and its higher-order invariants in superspace.'® In this paper we
have demonstrated the power of conformal (super)space to generate (super) CHS theories.

In four dimensions, all of the higher-spin models which have been constructed in this
paper are (super) Weyl-invariant on general curved backgrounds. However, their higher-
spin gauge invariance is present, in general, only for conformally flat backgrounds. In
principle, extensions to more general (Bach-flat) backgrounds are possible by deforming
the action with non-minimal primary terms containing factors of the (super) Weyl tensor
and its covariant derivatives. Instructive examples are provided by (i) the model (4.39)
with w = —1; (ii) the conformal gravitino model considered in appendix E; (iii) the con-
formal graviton model considered in appendix F; and (iv) the superconformal gravitino
model studied in [17]. Conformal (super)space is an ideal formalism for constructing such
deformations since the algebra of covariant derivatives is determined by the (super) Weyl
tensor and its covariant derivatives.

The structure of the (super) CHS actions presented in this paper indicate that there
should exist a generating formalism to formulate all of these models in terms of a single
hyper-action. Recently there has been much interest in the so-called tensorial or hyperspace
approach to the description of massless higher-spin (super)fields [108-122], see also [123] for
a pedagogical review. It would be interesting to study whether the conformal (super)space
methods can be extended to hyperspace.

Acknowledgments

SMK acknowledges email correspondence with Daniel Butter, Dmitri Sorokin and espe-
cially Arkady Tseytlin. MP is grateful to Gabriele Tartaglino-Mazzucchelli for illuminating
discussions. The work of SMK is supported in part by the Australian Research Council,
project No. DP160103633. The work of MP is supported by the Hackett Postgraduate
Scholarship UWA, under the Australian Government Research Training Program.

A 3D notation and conventions

In 3D we follow the notation and conventions adopted in [83]. In particular, the Minkowski
metric is 74, = diag(—1,1,1). The spinor indices are raised and lowered using the SL(2, R)
invariant tensors

0 -1 0 1
T (1 0 ) S (—1 0) e =0 (A1)

by the standard rule:
Y=g, Yo =capy’. (A.2)

We make use of real gamma-matrices, 7, := ((’ya)aﬁ ), which obey the algebra

YoV = Nabl + Eabe?” (A.3)

15The conformal superspace approach is at the heart of the construction of all N' = 4 conformal super-
gravity theories in four dimensions [107].
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012

where the Levi-Civita tensor is normalised as €% = —egg12 = 1. The completeness relation

for the gamma-matrices reads
() (1a)*” = —(0565 + 02.05) - (A.4)

Here the symmetric matrices (7,)*’ and (7,)as are obtained from (v,)a” by the rules (A.2).

Some useful relations involving y-matrices are
Eabc('yb)aﬂ(ﬁyc)’ﬁ = &5(a (%1)5)6 + €5(a (%l),é’)'y ) (A'5a)
tr[Ya VeVl = 20abTed — 2MacTdb + 2Mad e - (A.5b)

Given a three-vector x,, it can be equivalently described by a symmetric second-rank spinor
xqp defined as

1
Zag = (7")aBTa = Ta , Tgq = —5(%)“533&5. (A.6)
In the 3D case, an antisymmetric tensor Fy, = —F}p, is Hodge-dual to a three-vector F,,
specifically
1
F,= EeachbC, Fuy = —capeFC. (A7)

Then, the symmetric spinor F,,3 = Fp,, which is associated with F,, can equivalently be
defined in terms of F:

1
Faﬁ = (VG)Q,BF = 5(7a)a,8€achbc . (AS)

These three algebraic objects, F,, Iy, and F,g, are in one-to-one correspondence with
each other, Fj, <+ F,, <+ F,3. The corresponding inner products are related to each other
as follows:

1 1
— F'G, = 5F“baal, = 5Faﬁc;aﬁ. (A.9)
The Lorentz generators with two vector indices (Mg, = —My,), one vector index (M,)

and two spinor indices (Myg = Mp, ) are related to each other by the rules: M, = %&szM be
and Mys = (7*)agMa. These generators act on a vector V. and a spinor ¥, as follows:

Mo Ve = 2770[(1‘/27] 5 Maﬁq”y = 67(04\116) . (AlO)

The D = 3 conformal algebra in spinor notation is

[Mag, Mys] = ey(aMgays + €5 M)y (A.11a)
[Mag, Pys| = ey(aPs)s + €s(alp)y » [D, Pag] = Pag , (A.11b)
[Mag, Kys] = ey(akp)s + €50 K p)y » D, Kogl = —Kag , (A.11c)
[Kaps Pysl = 4ey(a2p)sD — 4e(y(aMp)s) (A.11d)

where Mug = (V*)apMa, Pap = (V*)apPa and Kop = (7*)apKa.

To describe conformal gravity in three dimensions we made use of the symmetric
Cartan-Killing metric on s0(3,2), T';; = f.:°f5:%, see [39] for the technical details. In
accordance with (2.3), the non-vanishing components of I'_; are

UMy Mg = — 12040 ap 5 Tk, p, = —1214, I'pp = 6. (A.12)
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B Converting between conventions

In several papers such as ref. [20], a different set of conventions were used. The purpose of
this appendix is to provide a summary of how to easily convert between conventions.

Suppose that a field ® transforms under some tensor representation of the gauge
group G. We may write the action of the generators Xz on ® as
X;® =1;9 (B.1)
for some matrix ¢z. Since the operator X3 passes through ¢;, we find that the commutator is
[(Xa, X;]® = —[ta, ;] P (B.2)
The X; and t; therefore satisfy
[Xa, X;) = — f.;° Xz, [ta, tg] = +fa5'tc - (B.3)
In particular, the action of the Lorentz generators is M, ® = mg,®. The Lorentz generators
of ref. [20] correspond to mgp, i.e. no change is necessary here.
In section 2, the connection one-forms, torsion and curvature tensors were defined
through

Va = €q — wangv [vm Vb] = - abcvc - RabQXga (B4)

which differs to the definitions in refs. [20] and [33] by a minus sign. Thus, to flow between
conventions, one must impose the gauge b, = 0 and make the following replacements

Tabc — *Tabcy (B5)
Ropea — —Raped <B6)
Wabe r —Wabe - (B.7)

Additionally, since the Cotton, Weyl and Schouten tensors, given by (2.45), (2.34)
and (2.32) respectively, are defined in terms of Rgp.q, we must also rescale each of them
by —1. This accounts for the sign discrepancy between the second and third terms of (2.62b)
and the first two terms of (3.5¢).

C Properties of the generalised HS Cotton tensor

In this section we present the main steps that are needed in order to prove the two prop-
erties (3.22) of the generalised higher-spin Cotton tensor (’:gzn). Namely, that in any con-

formally flat spacetime it is partially conserved and gauge invariant.
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It may be shown that the I*" divergence of @gzn) is given by

n—21+1 ®
9 + v5152 vﬂm 1521@ a(n—20)5(2])
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Making use of the combinatoric identity

l

Z% <l'_1><,i)—0 vizl, (C.1)

which may be proved by induction on [, it follows that the last line in the above is equal
to zero. In the second line we have used the combinatoric factors to shift the upper and
lower bounds of the summation over j. Then, in the third line we have shifted the dummy
variable j — j — k.

Under the gauge transformations (3.16), it may be shown that € )

transforms as
a(n)
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It follows that the gauge variation vanishes after making use of (C.1) once more. In the
second line of the above we have used the combinatoric factors to shift the upper and
lower bounds of the summation over j. Then, in the third line we have shifted the dummy
variable j +— 7 — k.

D Integration by parts

In this section we discuss integration by parts in conformal space. To demonstrate the
technique we give a detailed analysis of how it works in the case of the 4D CHS ac-
tion (4.13) in a general curved space. However, before we begin the analysis let us give
some general remarks.

To integrate by parts in D dimensions, we must impose the gauge'6 (2.25). As discussed
earlier, the conformal covariant derivative then takes the form

1
bo=0 = V,=D,+ 5Pabe. (D.1)

Consider some vector V%, we obtain the following identity regarding total conformal deriva-
tives

1
/deevava = 2/dD:1;ePabK“Vb. (D.2)

In the usual way we have integrated out the total derivative arising from the torsion-free

Lorentz covariant derivative. One then uses the conformal algebra and the conformal

properties of the physical fields which comprise V, to eliminate the generator K,.
Consider an integral of the form

I:/dee[,, DL =DL, K, L=0. (D.3)

This means that [ is invariant under the gauge group G and since £ is primary all depen-
dence on b, drops out. Let us further suppose that £ takes the form

L =g’ Ahy (D.4)

18Tn fact, since most Lagrangians we consider are primary, all dependence on b, drops out and we
needn’t choose the gauge b, = 0. However, the two are equivalent because in both cases the K-symmetry
is exhausted.
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where g5 and hj are primary fields with abstract index structure and A is a linear differ-
ential operator such that Ah; = Ay h; is also primary. We define the transpose of the
operator A by

/dD.'EngAhJ:/dDIEGhJATgJ+/dD$BQ (D.5)

where 2 is a total conformal derivative and may be written as Q2 = V,V% for some vector
V@ with Weyl weight D — 1. The first term on the right hand side of (D.5) is the result of
integrating I by parts in the usual way.

In general we cannot conclude that the second term on the right hand side of (D.5)
vanishes. However, under the condition that A” gy is primary then Q must also be primary.
It follows that

0= K,Q = [K,, V|V? + VK,V = (20D + 2M ) V? + VP K,V = VPK,V;,.  (D.6)

It is clear that the condition VK, V; = 0 is satisfied if V, is primary. What is not so clear
is that any solution V, to this equation is necessarily primary. However, for all cases known
to us this is true. Application of the rule (D.2) then allows us to conclude that the second
term on right side of (D.5) vanishes up to a total derivative,

1
/deeQ = /dee (DaVa + 2PabKaV},) ~0. (D.7)
Therefore, we arrive at the following rule for integration by parts:
/dD:cng.AhJ = /dDa:ehJATgJ (D.8)

if Kogr = Kohr = Ko(Ahy) = Ko(ATgr) = 0. We remark that most of the Lagrangians
proposed in the main body of this paper are of the form (D.4).

As an example, presented below are the steps one must take in order to integrate the
4D CHS action by parts in a general curved space. For convenience we do not include the
complex conjugated part of the action.

Séﬂ&g) —_jmtn / dre é:a(m+n)é:a(m+n)
= im+n/d4xe(_1)nva1d1 -'~vamdméam+1~-.am+ndlmdm@a(m—m)

= i””"/d4a;e(—1)"{(—1)m¢>am+1__.am+nd1"'d’"valdl ...Vamdmé:a(ern)

*Z(*l)jvauh |:vo¢j+1dj+1 VN QZ_)Oém-p-l..‘Oém_;,_ndl.“dm Veandn Vajdj éa(m+n):| }
=1

= jmin / d'ze g MAMIB sy — (— 1) / dzeVy,a, VI (D.9)

where

m

Q1o _ 1\ . . 7 &1...Q L. . ga(mn)
4 - E ( 1) voéj+1aj+1 v&mam¢am+1mam+n "LVOQOQ Voéjan: :
j=1
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In accordance with the previous discussion, since the integrand of the first term in (D.9)
is of the form h’/ATg; and all primary conditions listed below (D.8) are met, the total
conformal derivative must vanish. However, to support our belief that V, appearing in (D.6)
is primary, we show that this is indeed the case for the current example,

m—1

Y1dn E 1V K. . P Gi..Q C o . ga(m+n)
KWVV - ( 1) K’Y'Yvaj+laj+1 vamam¢am+1-nam+n vaéQOQ vajaje:
Jj=1

m
j . 7 Q1...0um . . . goa(m+n
+Z(_1) Vaj+1aj+1 "'vamam¢am+1mam+n ! K’}"Yva2a2 "'Vajan: ( )
7j=2

m
= Z(_l)j ([K’Y'Y7 vajdj e Vamdm] $Qm+1...am+nd1mdm VO{QdQ e vozjflohljfl Q:a(m+n)
j=2

_vaj+1dj+1 e Vamo'zm éam+1...am+nd1---dm [K’y"yvozgdg e vajdj] éa(m—‘rn)) =0.

In the first line we have used the fact that the first term vanishes for j = m whilst the
second term vanishes for j = 1. This allows us to translate the summation index of the
first term in the second line. In going from the second to the third line, we have used the
identity (4.8) twice, whereupon all terms in the round brackets cancel among themselves.

E Conformal gravitino model

As an application of the techniques developed earlier, we will discuss in detail the construc-
tion of a gauge-invariant model for the conformal gravitino in any 4D Bach-flat spacetime.
This model can be extracted from the action for N’ = 1 conformal supergravity [30, 31] by
linearising it around a Bach-flat background.

The conformal gravitino is described by a complex primary field ¢(2)4 of dimension
+1/2 and its conjugate, which are defined modulo gauge transformations of the type

6A¢o¢(2)d = V(oqé)‘ocg) ’ (El)

where the complex gauge parameter \, is primary of dimension —1/2.
Associated with the gravitino are the two field strengths

Ca3) = Viar"bagayis € = Ve Ve "Gy (E.2)

and their conjugates, which are primary fields of dimensions +3/2 and +5/2 respectively.
Under the gauge transformation (E.1), their variations are given by

. . 1 - _ .
53€a3) = Ca@isA’, nCyz) = §Ca(3)5V§6>\5 — XV Cloa)s- (E.3)

In accordance with the results from section 4, the action (4.13) with m = 2,n = 1, which
we now denote by

Sg’é? (6, 9] = —i/d4x e é:a(3)¢a(3) +c.c., (E.4)
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is invariant under the conformal gauge group G, but not under (E.1). However, if (E.4) is
supplemented by the non-minimal term that is linear in the Weyl tensor,

S£?;1/1§2)1r = l/d4.1' e ¢a(2)dja(2)d +c.c., (E5)
Ja@a = Ca@”PV5, b5 = 03,45V5" Ca2)”? (E.6)

where ja(Z)d is a dimension +7/2 primary field, then the resulting action

SGravitino = Sg)é? + 5(3/2) (E7)

Linear

is invariant under (E.1) provided the background Bach tensor (4.42) vanishes,
Ba@2)yaz) = 0. (E.8)

We remark that the following primary deformation of the linearised Bach tensor,

Bo2)a = Ba@)a — Ja2)d » (E.9)

which may be used to rewrite the action (E.7) as

SGravitino = —1 / d'ze ¢a(2)dga(2)d +c.c., (ElO)
is transverse and gauge invariant in any Bach-flat spacetime,
Ba(2)o’c(2) =0 — VWBQW = 5)\5,04(2)0'4 =0. (Ell)

To conclude, we present the degauged versions of the above results. In the gauge (2.25),
the gauge transformations (E.1) are

rPa2)a = Diaratas) - (E.12)

Under (E.12), the degauged gravitino field strengths

. : § : . 1 o
C01(3) = ’D(alﬂgbagag)ﬂ ) 6@(3) = D(alﬁlpazﬁ2¢a3)3(2) - iR(a1a2B(2)¢a3)B(2) ’ (E'13)

transform as

~

. 1 . B .
02Ca@) = Ca@pX’ s 0a€a@) = ica(s)ap(sa)\g — AD%Clzys - (E.14)

The degauged gravitino action (E.7) remains the same except with (E.2) replaced by (E.13)

in Séglé? as well as the replacement V4 +— Dy in S (3/2)

Linear+ TFinally, Scravitino is invariant

under the gauge transformations (E.12) as long as the degauged Bach tensor,
1 2
Ba@a@) = D™ (6, P"4) Ca@a — 5Cams R e (E-15)

vanishes.
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F Conformal graviton model

In this appendix we construct a conformally invariant model for the graviton that is gauge
invariant in any Bach-flat spacetime. This model may of course be obtained by linearising
the action of 4D conformal gravity around a Bach-flat background. However, in principle
the method presented below can be applied to higher-spin models, albeit with consider-
able effort.

In accordance with section 4, the conformal graviton is described by a real primary field
ha@2)a2) = Ba@)d(g) with zero Weyl weight and is defined modulo the gauge transformations

nha@)a@) = Viar(a Nas)as) - (F.1)
Associated with the graviton is the linearised Weyl tensor,

Ca(4) = V(alﬁlvaﬁh (F.2)

azaq)pifa
which is a primary field of dimension 2. Under the gauge transformation (F.1), its variation

is given by

(F.3)

nCop) = §Ca(4)vﬁﬁ)\55 - )\g,évﬁﬁoa(zl) - QCﬁ(alazagvm)ﬁ)‘ﬁB'

The action of linearised conformal gravity is given by (4.13), with m = n = 2, which we

now denote by S((JQ})Isv

Sg&s = /d4are(’:a(4)€a(4) +c.c. (F.4)

In general (F.4) is invariant under the gauge group G, but only in conformally flat space-
times is it invariant under (F.1). Indeed, upon integrating by parts, we find that under (F.1)
the action (F.4) varies as

58 = / dize Aad{4¢5<4>vﬁdcﬁ(3)a +4C5(3)0V 5o €@ (F.5)

_ C,B(4)vad€6(4) _ 3¢6(4)Vaa0,3(4)} +ec.c.

In the spirit of the previous appendix, to extend the gauge invariance of this model we
seek a weight +4 primary deformation of the linearised Bach tensor, denoted by Jq(2)a(2);

Kgida@a@ =0,  DJa@ae) = 4Ja@a@) - (F.6)

Restricting our attention to the construction of tensors with the properties of Ju(2)4(2)
greatly lightens the workload. In fact, beginning with the most general weight +4 tensor
with this index structure, the condition of being primary is so strong that one may show
that there are only three (up to complex conjugation) such inequivalent tensors that are
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linear in the Weyl tensor. They are given by

33(2)@(2) = Boy Va1 Pasyias » (F.7a)
33(2)@(2) — _2Ca(2)6(2)vo’q’yv/51;yh'yﬁgdg’y _ vdlvca@)ﬁ@)vv‘yhﬁ@)dﬂ

+ 2vd1’YCa(Q)ﬁ(Z)V/JH;YhﬁQ’YO‘Q"y _ Valdlc%ﬁ(i%)vﬁl‘yhﬁﬂsdw

_ vﬁl’yCagﬁ(S)Vﬁldlhﬁgﬁgdg’y + 3V51ﬁca(2)5(2)V"yﬂ/hyﬁza@)

1.
+ 5V Ca(n) P Vihs@ac) + ha@ae DeCay”® (F.7b)

Ja@)a@2) = —Car "V 5,6,V 3, Pigrasirs + Ca(2)? @ Dehs@)a2)
- 2v510'c1Calﬁ(g)vaﬂhﬁz&dﬂ - V517Ca(2)5(2)v;},7h6ﬂd(2)

1. '
— §V'WCO¢(2)’B(2)V'yf'yhﬁ(2)d(2) - h'y,31"yd1 Vd27v62’70a(2)5(2)
+ hg2pa(2)DcCaie)” - (E.7c)

In the above and for the remainder of this appendix we employ the conven-
tion whereby all free dotted and undotted indices appearing in any tensor are
assumed to be independently symmetrised over, e.g., ValalCaf(?’)Vﬁﬂhﬁﬁmﬂ
V(Oq(étlCa2)ﬁ(3)vlﬂl’yhﬁ2ﬂ3ld2)ﬁ‘

In addition to the primary fields (F.7a), (F.7b) and (F.7¢), there are precisely three
(up to complex conjugation) inequivalent structures that are quadratic in the Weyl tensor
and which satisfy the properties (F.6). They are given by

~4 2 2
Ja2)a2) = Ca(z)% )Cw(z)ﬁ( )h5(2)a(2), (F.7d)
Ja@a = Conry(2) Car™ P hg4(2) » (F.7e)

~6 2) A 3(2
Joa@ = Ca”@Ca)Phy) g - (F.71)

The tensors (F.7) span all primary structures of the type J,(2)a(2) and in particular
any linear combination will also satisfy (F.6). Furthermore, if we express them in the form

Ja@a@) = Aiha@a@) (F.8)

where A; is a linear differential operator then, with the exception of As, it may be shown
that each operator is symmetric in the sense A; = AZT (see appendix D for the definition of
T . . . .

A;). This property reduces the amount of yvork required to compute the gauge variation
of each of the functionals associated with 33(2)@(2)‘

Any operator A may be decomposed into symmetric and antisymmetric parts, A =
As 4+ Ax with Ag = (A + A7) and Ap = $(A — AT). Tt follows that the antisymmetric
part of A vanishes identically in any integral of the form

/d4a;ehJAhJ = /d43:ehJ.AshJ. (F.9)
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Using (F.9) it is possible to show that at the level of actions, the following correspon-
dence between J2 and the remaining primary structures holds

/d4$ e hO‘(Q)é‘(Q)\“;i(z)d(Q) = /d4x e h*(2)a(2) (2A1 — A3z +2A4 + A5 + AG)ha(2)d(2) .
(F.10)

Additionally, the structure J' vanishes in any Bach-flat spacetime and will be of no use.
Therefore, it suffices to consider only one of the primary structures that is linear in the
Weyl tensor, say J3, and its associated functional

@

Linear

= /d4xeho‘(2)d‘(2)3i(2)d(2) + c.c. (F.11)

One can then show that under the gauge transformation (F.1) and upon integrating by
parts, the action (F.11) transforms as

1 ) .
5)\S£?I)16ar = §5AS§32I}IS+ <2/d4$e)\aa {V(S(S [06(2)7(2) Ca7(2)6h,3(2)d5]
$ 2 2)8 3) A B3
+V5,° [CP® ) Ca? Pl 551 =V g, 5, [Ca” @ O™ )hﬂ@)ﬁ'(z)]}

To annihilate the terms quadratic in the Weyl tensor, we define the functional

2 « e ~ ~ ~
S((leadratic = /d4x€h @ (2){J§(2)a(2) +Ja@ae) +dg(2)a(2)} +c.c. (F.13)
It follows that the action
2 2 2
SGraviton = Sé})IS - 2S£ir)16ar + QS(Slzadratic

= /d4ﬂf e ha(2)d(2) {%a(g)d(g) + 20a1'8(3)vﬂ1d1 vﬂg;yhﬁgazdzﬁ/ - 20&(2)ﬂ(2)DCh5(2)d(2)

+ 4V 8,61 Cor "V 0, 1 0y + 2V 5, Ca2) @ V5 hgpnaa) — 2hsaeDcCar)”?
+ VI Co0) OV s hg2)a2) + 2hysiian V'V, Ca2)”™® + 2C0) Y@ CL )" @ hg2)42)

whose variation under (F.1) is given by

4 ad 61 B22 B1B(2 \V/ B2
5)\SGraviton =2 / d*zeA { VoL 1Ba dhﬁ(2)5(2) BO‘ 15(2) & hﬁ(Z),B(Q)} c.C.,
(F.15)

is the unique model describing the graviton that is both conformally invariant in a general
curved spacetime and gauge invariant in any Bach-flat spacetime,

Ba(2)d(2) =0 g drScraviton = 0. (Flﬁ)
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This model was analysed in [29] using a similar methodology, the main differences
being that their analysis was performed in the gauge b, = 0 and the graviton field was
not traceless. In accordance with (1.1), this means that their model contains an extra
algebraic gauge symmetry which may be used to gauge away the trace. The authors found
two inequivalent primary Lagrangians that were linear in the Weyl tensor and used both in
the construction of their gauge invariant action. Upon eliminating the trace of the graviton
field, one of these structures vanishes and the other must be proportional to (F.11) modulo
terms involving the Bach tensor and the square of the Weyl tensor.

Finally, we remark that the following primary deformation of the linearised Bach ten-
sor,

~3 ~4 ~D ~6
Ba@)a2) = Ba@a@ — Za@)ae) T 23a@a@) T 2a@a@) T 2a@)ae) (F.17)

which may be used to rewrite the action (F.14) as

SGraviton = /d41‘ € ha(2)d(2)606(2)d(2) ) (F18)
is transverse and gauge invariant in any Bach-flat spacetime,
Ba@a =0 = V" Bayia=0\Ba@)az) =0- (F.19)
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