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1 Introduction

Holography provides a framework for studying large classes of strongly coupled field theo-

ries. One of its most attractive aspects is the powerful techniques of classical gravity that

one can use in the bulk in order to study arbitrary deformations and sources of the dual

field theory.

With a view to applications in condensed matter systems [1–3], we are particularly

interested in field theories which have a global U(1) and have been deformed by the corre-

sponding chemical potential. Another set of deformations that we wish to consider break

spatial translations explicitly and thus eliminate momentum from the conserved charges of

the system. This is necessary in order to obtain finite low frequency response of heat and

charge currents upon application of an external electric field and temperature gradient.

The resulting black hole spacetimes are known as holographic lattices [4] and are rather

complicated as one needs to solve a coupled system of non-linear PDEs in order to explicitly

construct them [5–7].

In order to simplify the problem, we will consider holographic lattices which lead

to homogeneous bulk spacetimes such as the helical lattices [8], the Q-lattices [9] or the

linear axion models of [10]. In this paper we have chosen to use a Q-lattice construction

which allows us to consider isotropic lattice backgrounds. We will study CFT’s with two

spatial dimensions. Explicit breaking of translations in both spatial directions via Q-lattices

requires two global U(1)’s in the bulk. The technical advantage of these constructions is

that due to homogeneity, they lead to ODEs which are much simpler. Even though we will

use this special class of lattices, we expect that our main results are general.
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Holography also provides a powerful tool to study phase transitions and spontaneous

symmetry breaking via black hole instabilities. Since the original introduction of holo-

graphic superfluids [11, 12], there has been a lot of progress in understanding different

order parameters and corresponding phases of holographic matter. For the purposes of our

paper, we will be interested in black hole instabilities that lead to spontaneous breaking of

translations. Such instabilities lead to helical phases [13, 14], and more generally to density

waves [15, 16] of different patterns [17, 18].

In this paper we are interested in the physics of the sliding mode associated with

the density wave.1 The existence of a gapless sliding mode for the density waves requires

the breaking of a continuous bulk symmetry in addition to translations which is already

broken explicitly by the holographic lattice. This suggests that we should consider two

additional global U(1)’s in the bulk that will precisely play this role. As we will see, we can

mathematically construct black holes solutions in which the order parameter associated

to the breaking of these additional U(1)’s will also break translations. In the models we

will consider, these solutions are going to be thermodynamically subdominant to solutions

in which the order parameter remains translationally invariant. One can think of more

complex holographic models in which a translationally non-invariant order parameter will

be thermodynamically preferred. However, we expect that the point we are making here will

remain in even more complex holographic models in which a translationally non-invariant

order parameter will be thermodynamically preferred. The novelty of our system is that

it contains a sliding mode despite the explicit breaking of translations. This allows us to

introduce a pinning parameter which can be chosen to be completely independent from

the other scales in the system, including the strength of the holographic lattice. This is in

contrast with the systems used previously when considering the effects of weakly pinning

a density wave2 in the context of holography [23–28].3

From the point of view of the boundary theory, the coexistence of an order parameter

that breaks translations with a background lattice is of interest in condensed matter systems

which exhibit density wave instabilities incommensurate to the atomic lattice. As long as

translations are broken explicitly and the U(1) carrying the chemical potential remains

unbroken, the electric conductivity of the system will remain finite. However, the sliding

mode resulting from symmetry breaking will be gapless and will also couple to the heat

current leaving a significant impact on transport at low frequencies. The aim of our paper

is to study precisely the effects of this coupling in the context of holographic theories.

As we will show, the addition of a small deformation parameter φs that pins down the

sliding mode introduces a drastic change in the DC transport properties. Within hologra-

phy, DC transport in the absence of such sliding modes has been extensively studied [31–

1In order to avoid confusion we note that in this paper we will study systems in which a scalar op-

erator develops a VEV with a non-trivial density profile rather than the time component of a conserved

current density.
2The case of holographic transport in the presence of spontaneous density waves without any explicit

breaking of translations has been studied in [19–22].
3For a more phenomenological approach to spontaneous breaking of translations and pinning of density

waves see [29, 30].
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36]]. It has been shown that DC transport coefficients are completely fixed after solving for

a Stokes flow of a charged fluid living on the curved horizon of a black hole [35, 36]. The

end product of this procedure gives the DC transport coefficients in terms of black hole

horizon data and thermodynamics. When the density wave is pinned down, the previous

results in the literature are applicable and can be directly imported to the model we will

consider here. However, when the density wave is not pinned, the sliding mode needs to be

taken into account discontinuously modifying the transport coefficients as functions of the

pinning parameter. The effects of pinning of density waves have been appreciated before

in the context of condensed matter physics [37].

As we show explicitly in the main text, the diagonal components of the matrix of

transport coefficients with pinning are smaller than in the freely sliding case. The physics

of this DC transport discontinuity becomes more transparent when seen from the point of

view of transport at finite frequency. Away from ω = 0, the optical conductivity is going

to be a smooth function of φs. The discontinuity at ω = 0, φs = 0 is a result of trying

to commute the limits φs → 0 and ω → 0. The sum rules dictate that the total spectral

weight in the conductivities is going to be only perturbatively affected when varying φs
away from zero. This suggests that when the density wave is even weakly pinned, spectral

weight from the origin is going to be transferred up to frequencies whose scale is determined

by φs. In the case of weak momentum relaxation rates, this effect appears as a shift of the

Drude away from the origin.

Our paper is structured in five sections. Section 2 introduces the class of models that

we will study and discusses the numerical construction of the background black holes.

Section 3 is devoted to holographic renormalisation and thermodynamics. In section 4,

we will study the DC transport properties of the thermal states and we will express the

thermoelectric conductivities in terms of horizon data and thermodynamic quantities. In

section 5, we will study the problem of AC transport numerically. Firstly, we will confirm

that the analytic formulae for DC transport formulae of section 4 are indeed equal to the

zero frequency limit of the finite frequency conductivities. Secondly, we will introduce a

small pinning parameter to the system in order to demonstrate the controlled shift of the

Drude peak away from zero frequency. We conclude our paper with a discussion in section 6

where we also point at different projects of interest to us.

2 Set-up and background solutions

We consider the following four-dimensional Einstein-Maxwell action coupled to six real

scalars, φ, ψ, χi and σi with i = 1, 2,

S =

∫
d4x
√
−g
(
R− V (φ, ψ)− 3

2
(∂φ)2 − 1

2
(∂ψ)2 − τ(φ, ψ)

4
F 2

−θ(φ)

2
[(∂χ1)

2 + (∂χ2)
2]− θ1(ψ)

2
[(∂σ1)

2 + (∂σ2)
2]

)
. (2.1)

The global shift symmetries of χi and σi make this theory suitable for Q-lattice construc-

tions [9]. Such constructions have been extensively used in the past to explicitly break
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spatial translations from the boundary point of view. In order to make contact with the

Q-lattice models, we can think of (2.1) as a consistent truncation of a theory that contains

four scalars Zj and Wj taking values in a complex target space with Zj = ρ(φj) e
i χj and

Wj = R(ψj) e
i σj . All the solutions of the model (2.1) we will consider in this paper can be

seen as solutions of the complex scalar model with φj = φ and ψj = ψ.

As we will explain later in more detail, by choosing appropriate boundary conditions

we will use the scalars ψ and σi to break translations explicitly with a period of wavenumber

ks while keeping the system at finite temperature and chemical potential. The physical

motivation behind this choice is to relax momentum in the system and study its low

frequency transport properties.

The scalar φ will correspond to a relevant operator of the UV theory. In the normal

phase black holes φ is going to be trivial everywhere in the bulk. Depending on the details

of the functions V , τ and θ, below a certain temperature the field φ can develop instabilities

which will lead to a broken phase branch of black holes. In our language, the scalars φ and

χi will be used to study the density wave of wavelength k. Since the breaking spontaneous,

the dual operators will not carry any deformation.

Thinking of constructing these broken phase solutions, the scalars χi can be taken to

depend linearly on the spatial coordinates of the boundary theory with the constant of

proportionality k playing the role of a wavelength. Note that k can in general be different

from ks leading to the order parameter breaking translations incommensurately to the

background lattice. Moreover, one can add a constant to each of the scalars χi and still

satisfy the boundary conditions which we will choose to be consistent with spontaneous

symmetry breaking. This is precisely a Goldstone mode in the bulk which will give rise

to a massless mode from the boundary theory point of view. When k is non-zero, this

massless mode will couple to the heat current.

The black hole solution ansatz that captures the above ingredients is given by

ds2 = −U(r)dt2 +
1

U(r)
dr2 + e2V1(r)δijdx

idxj ,

A = α(r)dt , φ = φ(r) , χi = kxi , ψ = ψ(r) , σi = ksx
i , (2.2)

where i = 1, 2 and k, ks are the wavelengths of the spontaneous and explicit breaking

respectively. The variation of the action (2.1) gives rise to the following field equations of

motion

Rµν −
τ

2

(
FµρFν

ρ − 1

4
gµνF

2

)
− 1

2
gµνV −

3

2
∂µφ∂νφ−

1

2
∂µψ∂νψ

−
∑
i

(
θ

2
∂µχi∂νχi +

θ1
2
∂µσi∂νσi

)
= 0 ,

3√
−g

∂µ
(√
−g ∂µφ

)
− ∂φV −

1

4
∂φτ F

2 − 1

2
θ′
∑
i

(∂χi)
2 = 0 ,

1√
−g

∂µ
(√
−g ∂µψ

)
− ∂ψV −

1

4
∂ψτ F

2 − 1

2
θ′1
∑
i

(∂σi)
2 = 0 ,
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1√
−g

∂µ
(
θ1
√
−g ∂µσi

)
= 0 ,

1√
−g

∂µ
(
θ
√
−g ∂µχi

)
= 0 ,

∂µ(
√
−g τFµν) = 0 . (2.3)

For definiteness we will consider

V (φ, ψ) = −6 coshφ ,

θ(φ) = 12 sinh2(δ φ) ,

θ1(ψ) = ψ2 ,

τ(φ, ψ) = cosh(γ φ) , (2.4)

but unless stated otherwise the main points of our paper are independent of this particu-

lar choice.

In order to construct the backgrounds and eventually study AC transport, we will

solve numerically the equations (2.3) to construct black hole solutions with temperature T

that asymptote to AdS4 in the UV and are regular in the IR. The ansatz (2.2) provides a

solution of the equations of motion (2.3) provided the functions appearing in (2.2) satisfy

a system of four second order and one first order ODEs. This counting implies that the

solution to this system of equations is fully determined by nine constants of integration.

The metric ansatz (2.2) is invariant under translations of the radial coordinate r and we

will use this freedom to set the horizon at r = 0. To ensure that we have a regular Killing

horizon we assume that we have the following expansions at r = 0

U = 4πT r + . . . , V1 = V
(0)
1 + . . . , α = α(0) r + . . . ,

φ = φ(0) + . . . , ψ = ψ(0) + . . . . (2.5)

where we have four constants of integration to be fixed via a double sided shooting method.

In the UV, we have the following expansion

U = (r +R)2 + · · ·+W (r +R)−1 + . . . ,

V1 = log(r +R) + . . . ,

α = µ+Q (r +R)−1 + . . . ,

φ = φs (r +R)−1 + SV (r +R)−2 + . . . ,

ψ = ψs + · · ·+ ψV (r +R)−3 + . . . . (2.6)

The constants of integration µ, φs and ψs represent sources of the dual field theory and are

going to be held fixed. In particular µ will be the chemical potential of the theory and ψs
is the source for the explicit lattice we will consider. On the other hand φs will be set to

zero for most of our calculatons in order for the asymptotics of φ and χi to be consistent

with spontaneous symmetry breaking. Given these boundary conditions, the constants R,

W , Q, SV and ψV along with the four constants from the near horizon expansion (2.5)
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yield the total of nine necessary constants. Using a shooting technique we will construct

black hole solutions with {k/µ, ks/µ, φs/µ, ψs, γ, δ} = ( 15
100 ,

3
10 , 0, 4, 3,

1
2) and various values

of T/µ.

In order to understand the phase diagram of our theory, it is useful to point out that

for no lattice deformation ψs = 0, the unbroken phase black hole solution is the electrically

charged Reissner-Nördstrom black hole with

U = (r +R)2 −
(
R2 +

µ2

4

)
R

r +R
+

µ2R2

4 (r +R)2
, V1 = ln(r +R),

a = µ
r

r +R
, φ = 0, ψ = 0,

R =
2

3
πT +

1

6

√
16π2T 2 + 3µ2 . (2.7)

The near horizon limit of the T = 0 RN black hole is given by the AdS2 × R2 solu-

tion with

U = 6 r2, V1 = V
(0)
1 , a = 2

√
3 r, φ = 0, ψ = 0 , (2.8)

where V
(0)
1 = ln (µ/

√
12). It is now enlightening to consider the static modes δφ = ε rδ

(±)
φ

and δψ = ε rδ
(±)
ψ of the scalars around the ground state (2.8) . Plugging in this perturbation

in the equations of motion and expanding in ε we find that

δ
(±)
ψ = −1

2
± 1

6

√
9 + 12 e−2V

(0)
1 k2s

δ
(±)
φ = −1

2
± 1

6

√
−3(1 + 4γ2) + 48e−2V

(0)
1 δ2 k2 . (2.9)

The above expressions reveal that the explicit lattice associated to ψ and σi corresponds to

an irrelevant operator of the IR solution (2.8). As a result, we have that the near horizon

limit of the zero temperature limit of our unbroken phase black holes will again be given

by (2.8) even after introducing the explicit lattice.

In additon, one can also see that there is a range of k for which the exponent δ
(±)
φ

becomes complex and therefore φ and χi yield a mode that violates the BF bound. This

signifies the existence of a tachyonic mode that will make the previously described normal

phase black holes unstable below a critical temperature which will depend on k. Exactly

at the critical temperature there will be a zero mode for φ that will give rise to the new

branch of broken phase black holes. From (2.9) we see that the lightest mode has k = 0 and

therefore we expect that this is going to be the broken phase black hole with the highest

critical temperature. As a result, the corresponding branch will be the thermodynamically

dominant black holes solution at finite temperature. As one increases the value of k, the

corresponding critical temperature will decrease up to a maximum value of k where it will

go all the way down to zero. For the particular model we study, one can see a plot of the

critical temperature Tc as a function of k in figure 1.

In this paper, we will study the transport properties of those finite k black holes. Even

though they are not thermodynamically preferred in this model, the general ideas in our

paper and derivation will remain valid even in models where the black holes that minimise

the free energy will be at finite k.
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Figure 1. Plot of the temperature T at which a zero more for φ appears as a function of the

wavelength k.

3 Thermodynamics

In this section we will study the thermodynamics of the black holes constructed in section 2.

We can read off the area of the event horizon and since we are working in units with

16πG = 1, we deduce that the entropy density is given by

s = 4π e2V
(0)
1 . (3.1)

In order to analyse the thermodynamics we calculate the on-shell Euclidean action.

To do this, we analytically continue the time coordinate t = −iτ . We consider the total

Euclidean action, Itot, defined as

ITot = I + Ibdr , (3.2)

where I = −iS and Ibdr is given by the following integral on the boundary r →∞:

Ibdr =

∫
dtdxdy

√
γ

(
− 2K + 4 +

3

2
φ2 − 1

2
θ1∇σI · ∇σI

)
(3.3)

Here K is the trace of the extrinsic curvature of the boundary and γµν is the induced

boundary metric. It is possible to write the bulk part of the Euclidean on-shell action in a

total derivative form

IOS = −
∫
dx4(−e2V1U ′ + e2V1 cosh γφ a a′)′ , (3.4)

We next define the free energy W = T [ITot]OS ≡ wV ol3. Using the UV and the IR

expansions we obtain the following expression for the free energy density:

w = −2W − 3SV φs +Qµ− sT , (3.5)

The first law takes the form

δw =− sδT +Qδµ− 3SV δφs − 3ψv δψs

+
δk

k

∫
dr 2 k2 θ (3.6)

– 7 –
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Given the renormalised theory, we can also compute the expectation value of the

boundary stress-energy tensor. The relevant terms are given by

〈T̃µν〉 ≡ lim
r→∞

[
− 2Kµν + γµν

(
2K − 4− 3

2
φ2 +

1

2
θ1∇σI · ∇σI

)
− θ1∇µσI∇νσI

+ 2

(
Rµν − 1

2
γµνR

)]
(3.7)

Using the asymptotic expansion (2.6), one obtains the boundary stress-energy tensor

Ttt = −2W − 3SV φs Tii = −W , (3.8)

which is traceless for φs = 0.

4 DC conductivity from horizon data

In this section we will consider the DC transport properties of our broken phase black

holes. We will significantly modify the original analysis of [34] by adding the contribution

of the sliding mode which is present in the broken phase black holes. We will introduce a

constant electric field E and temperature gradient source ζ on the boundary. In order to

achieve this, we consider the perturbation

δAx1 = −E t+ ζ a(r) t+ δαx1(r) ,

δgtx1 = −U(r) ζ t+ δhtx1(r) ,

δgrx1 = δhrx1(r) ,

δχ1 = δcg t+ δχ1(r) ,

δσ1 = δσ1(r) , (4.1)

keeping terms up to leading order in the perturbations. Notice that we kept the metric

perturbation δgrx1 which we could have set to zero by an appropriate choice of coordinates.

However, here we choose a slightly different class of coordinate systems to perform our

calculation and for which we will only need to specify the behaviour of the function δhrx1
close to the boundary and the horizon. In other words we will imagine that we are not

solving for δhrx1 as long as we fix it in a way that satisfies the boundary conditions we will

specify for it. The linear term in time that shows up in δχ1 is precisely capturing the bulk

Goldstone mode that couples to the perturbation for the heat current.

The system of equations that we get after plugging the perturbation ansatz (4.1) in

the equations of motion (2.3) and expanding is an inhomogeneous system of second order

of equations for δax1 , δhtx1 , δχ1 and δσ1 in addition to the constraint

δhrx1U e
−2V1 (θ k2 + θ1 k

2
s

)
+ (E − a ζ)τ a′ + ζ U ′ − U

(
2ζV ′1 + ksθ1δσ

′
1 + kθ δχ′1

)
= 0 .

(4.2)

As long as we satisfy the constraint (4.2) at a single value of r, the second order ODEs

imply that this is going to be satisfied everywhere. We will later choose to impose the

constraint in the near horizon limit.
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To set up the problem, we examine the perturbation close to the conformal boundary

to write the expansion

δax1 =
δavx1
r +R

+
k2sδa

v
x1ψ

2
s

6 (r +R)3
+O

(
1

r4

)
,

δhtx1 =
δhvtx1
r +R

+O
(

1

r2

)
,

δχ1 = δχv1 +
kζ

6 (r +R)2
+O

(
1

r4

)
,

δσ1 = − kζ

2 (r +R)2
+

δσv1
(r +R)3

+O
(

1

r4

)
,

δhrx1 = O
(

1

r3

)
, (4.3)

where without loss of generality we have assumed that θ1(ψ) → ψ2
s close to the confor-

mal boundary. The above asymptotics ensure that we are not introducing any additional

boundary sources apart from E and ζ in (4.1). From the boundary point of view, the terms

which are not directly proportional to either E or ζ in (4.1) carry information only about

the VEVs of the dual operators. For the current operators we are interested in, we have

δJ∞ = lim
r→∞

√
−gτ(φ, ψ)F x1 r = δavx1 ,

δQ∞ = −T x1 t − µ δJ∞ = −3 δhvtx1 − µ δa
v
x1 . (4.4)

Regularity at the horizon is then achieved by imposing the following near horizon boundary

conditions

δαx1 = − E

4πT
log r + δα(0)

x1 + . . . ,

δhtx1 = −v + δh
(0)
tx1

r + . . . ,

δhrx1 = − v

4πT r
+ . . . ,

δχ1 =
δcg
4πT

log r + δχ
(0)
1 + . . . ,

δσ1 = δσ
(0)
1 + . . . . (4.5)

At this point it is useful to establish the uniqueness of the solution we are after. From

the expansions (4.3) and (4.5) we count a total of ten constants δavx1 , δhvtx1 , δχv1, δσv1 ,

δα
(0)
x1 , δh

(0)
tx1

, δχ
(0)
1 , δσ

(0)
1 , δcg and v. However, we only need nine in order to fully specify

a solution to the system of four second order ODEs and the constraint (4.2). The extra

constant comes from the fact that asymptotically we are free to shift χ1 by a constant

and still produce a valid solution to our boundary value problem and therefore only the

difference δχ
(0)
1 − δχv1 can be uniquely fixed. Given this, we have now identified the nine

integration constants that uniquely fix our solution and in particular, we see that one of

these is δcg which was introduced in the linear in time term for δχ1 in (4.1). Without it,

we wouldn’t be able to find a valid solution to our boundary value problem.

– 9 –



J
H
E
P
0
5
(
2
0
1
9
)
0
7
9

We now define the bulk quantities

δJ =
√
−g τ(φ, ψ)F x1 r = −τ(φ, ψ)

(
U(r) δα′x1 + α′δhtx1

)
, (4.6)

δQ = −aJ + U2

(
δhtx1
U

)′
(4.7)

for which the equations of motion (2.3) imply their radial evolution according to

∂rδJ = 0 , (4.8)

∂rδQ = −δcg k θ , (4.9)

Upon integration from the horizon to infinity the above equations can be used to relate

the boundary electric current and heat current pertubations δJ (∞) and δQ(∞) to horizon

quantities along with an integral over the bulk

δJ (∞) = τ (0)
(
a(0) v + E

)
δQ(∞) = 4πT v − δcg

∫ ∞
0

k θ dr . (4.10)

We now consider the gravitational constraint (4.2) close to the horizon from which we

obtain the relation

−4πTζ − τ (0)a(0)E + θ(0)k
(
e−2V

(0)
1 k v + δcg

)
+ θ

(0)
1 e−2V

(0)
1 k2sv = 0 . (4.11)

From the equations of motion for χ1 and σ1 in (2.3) we obtain

∂r
(
θ e2V1U ∂rδχ1

)
− k θ ζ − k∂r (θUδhrx) = 0 (4.12)

∂r
(
θ1 e

2V1U ∂rδσ1
)
− ks θ1 ζ − ks∂r (θ1Uδhrx) = 0 . (4.13)

At this point it is crucial to highlight the difference between the spontaneous breaking

related to φ and χ1 versus the explicit related to ψ and σ1. After integrating the above

equations from the horizon up to infinity, we see that the first terms receive contributions

from different boundary terms

θ(0) e2V
(0)
1 δcg + k θ(0) v + ζ k

∫ ∞
0

θ dr = 0 (4.14)

3ψ2
s δσ

v
1 + ks θ

(0)
1 v + ζ ks lim

y→∞

(
−ψ2

s y +

∫ y

0
θ1 dr

)
= 0 (4.15)

Apart from fixing the constant δcg, the above point once again highlights the fact that

not having a source for φ forces us to introduce the constant δcg in the perturbation (4.1).

In more physical terms, there is a sliding mode which couples to our perturbation. The

equations (4.11), (4.12) and (4.10) can now be used to fix the boundary currents in terms

of the sources

δJ (∞) =

(
τ (0) +

τ (0)
2
a(0)

2

θ
(0)
1 k2se

−2V (0)
1

)
E +

τ (0)a(0)

θ
(0)
1 k2se

−2V (0)
1

(
4πT + k2e−2V

(0)
1 wk

)
ζ (4.16)
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δQ(∞) =
τ (0)a(0)

θ
(0)
1 k2se

−2V (0)
1

(
4πT + k2e−2V

(0)
1 wk

)
E

+

[(
4πT + k2e−2V

(0)
1 wk

)2
θ
(0)
1 k2se

−2V (0)
1

+
k2

θ(0)
e−2V

(0)
1 w2

k

]
ζ (4.17)

wk ≡
∫ ∞
rh

θ dr =
1

2k
∂kw . (4.18)

From these expressions we obtain the transport coefficients

σ = τ (0) +
4πρ2

θ
(0)
1 k2s s

T α = T ᾱ =
4π ρ

θ
(0)
1 k2s

(
T + (4π)−1 k2e−2V

(0)
1 wk

)
T κ =

4π s

θ
(0)
1 k2s

(
T + (4π)−1 k2e−2V

(0)
1 wk

)2
+

k2w2
k

e2V
(0)
1 θ(0)

. (4.19)

where

ρ = e2V
(0)
1 τ (0)a(0) , s = 4π e2V

(0)
1 , (4.20)

are the charge and entropy density of the field theory respectively. These expressions are

to be contrasted with the ones we would find from the analysis with φs 6= 0

σ = τ (0) +
4πρ2

(θ
(0)
1 k2s + θ(0)k2) s

T α = T ᾱ =
4πT ρ

θ
(0)
1 k2s + θ(0)k2

T κ =
4πs T 2

θ
(0)
1 k2s + θ(0)k2

. (4.21)

In particular the expressions (4.21) are also valid for perturbative values of φs, where the

latter is parametrically smaller than any other scale in the system. An important point

to note is that the background fields, and therefore the horizon data, are continuous in

the φs → 0 limit. By directly comparing (4.19) and (4.21), it is then obvious that in this

regime the values of the DC transport coefficients without the pinning, (4.19), are larger

and thus the limit φs → 0 will not be smooth as long we are in the broken phase where

SV 6= 0 and k 6= 0. The resolution to this discontinuity comes from considering the AC

transport properties. It is natural to expect that for small values of φs there will be a

finite frequency ω ≈ φs at which the real parts of the transport coefficients will exhibit a

maximum that will be well approximated by (4.19) while the zero frequency limit ω ≈ 0

will be given by (4.21). As we take the deformation parameter φs to zero, that maximum

at ω ≈ φs will become the actual DC limit.

In the next section, we will carry out the numerical computation for the AC con-

ductivity and demonstrate the above points. We will also show the validity of our new

formulae (4.19) for the DC transport coefficients by taking the small frequency limit of our

AC computation.
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5 AC conductivity

In this section we will use numerical techniques to study the optical conductivity around

our thermal states. In section 5.1 we will consider the case where the density wave is freely

sliding and in section 5.2 we will examine transport after having introduced a pinning

parameter. As we will explain in detail, the difference between spontaneous and explicit

breaking has some technical implications associated to the appropriate fixing of boundary

conditions for the bulk perturbation.

It has been argued that weak momentum relaxation and the interplay between the

strength of the density wave pinning and temperature could have an interesting application

in the physics of transport in bad metals [38]. In the example we study in this section, and

in particular in subsection 5.2, the lack of a Drude peak in the thermal optical conductivity

in figure 2 shows that momentum relaxation is not small for that particular state. Despite

that, in figure 3 we show that a parametrically small pinning parameter transfers spectral

weight in a discontinuous way from ω = 0 to finite frequencies of the order of φs, as

expected from our general analysis of DC transport in section 4.

5.1 AC transport with gapless modes

In order to compute the electric and the thermal conductivities, we consider a perturbation

involving the functions {δgtx1 = U δHtx1 , δAx1 , δχ1, δσ1} which are all taken to be functions

of (t, r). Since our background admits a time translation killing vector, we can Fourier

decompose our perturbations as

f(t, r) = e−iωv(t,r)f(r) , (5.1)

where v is the Eddington-Finkelstein coordinate defined as

v(t, r) = t+

∫ r

∞

dy

U(y)
. (5.2)

Plugging this ansatz in the equations of motion, we obtain one first order equation and 3

second order ones. We now turn to the boundary conditions for these functions. In the IR

we impose in-falling boundary conditions at the horizon which is located at r = 0

δHtx1 = ctx1 + . . . ,

δAx1 = cx1 + . . . ,

δχ1 = cχ + . . . ,

δσ1 = cσ + . . . , (5.3)

where ctx1 is fixed in terms of the other constants. Thus, we see that the expansion is

fixed in terms of three constants, in addition to ω which we fix by hand since we imagine

introducing a time dependent source to the system at that frequency.

For the backgrounds with φs = 0 near the UV (2.6), we have the following expansion

δHtx1 = δH
(s)
tx1

+ · · ·+
δH

(v)
tx1

r3
+ . . . ,

δAx1 = A
(s)
1 +

a
(v)
1

r
+ . . . ,
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δχ1 = δχ(v) + . . . ,

δσ1 = δσ(s) + · · ·+ δσ(v)

r3
+ . . . . (5.4)

together with the constraint

12ωδH
(v)
tx1

=− ωδH(s)
tx1

(12W + 8ik2sψ
2
sω − 2iω3) + ksωδσ

(s)ψ2
s(2k

2
sψ

2
s − 2ω2)

− 12iksδσ
(v)ψ2

s − 4A
(s)
1 Qω (5.5)

After naively fixing the sources {δH(s)
tx1
, A

(s)
1 , δσ(s)} in the UV expansion (5.4), we see that

we are left with six constants of integration e.g. {cx1 , cχ, cσ, a
(v)
1 , δχ(v), δσ(v)}. However, in

order to find a solution to our system of ODE’s we would need a total of seven constants

of integration. That extra constant will come from a particular combination of δH
(s)
tx1

and

δσ(s) which can be removed by a boundary coordinate transformation of the form

x1 → x1 + δg e−iωt . (5.6)

Under (5.6), the sources transform as δH
(s)
tx1
→ δH

(s)
tx1
− iωδg and δσ(s) → δσ(s) + ksδg.

Therefore, we see that if instead of naively fixing the sources in terms of the electric field

and temperature gradient sources E and ζ, we set

δH
(s)
tx1

=
1

iω
ζ + iω δg

δσ(s) = −ks δg

δA
(s)
1 =

1

iω
E − 1

iω
µ ζ (5.7)

then we gain the extra constant of integration δg we are after, since it can be removed by

a coordinate transformation. After performing the above change of coordinates in order to

set δg = 0, the boundary electric and heat currents are given by

δJ∞ = lim
r→∞

√
−gτF x1 r = E −

(
µ+

iQ

ω

)
ζ + a

(v)
1 ,

δQ∞ = −T x1 t − µ δJ∞ = −µa(v)1 + 3i
ks ψ

2
s

ω
δσ(v) − E

(
µ+

iQ

ω

)
− i ζ

ω

(
3W +

3

2
ik2sψ

2
sω − 2µQ+ iµ2ω

)
+ δg

k2sψ
2
s

2
(k2sψ

2
s − ω2) (5.8)

The transport coefficients can be easily read off after writing

δJ∞ = σ E + Tα ζ

δQ∞ = T ᾱE + T κ̄ ζ . (5.9)

In our numerics we can then set either E = 0 or ζ = 0 and compute δJ∞ and δQ∞

from (5.8).

In figure 2, we show the plots of the AC conductivities as functions of the frequency ω

for a background black hole specified by {k/µ, ks/µ, ψs, γ, δ, T/µ} = { 15
100 ,

3
10 , 4, 3,

1
2 ,

1
100}.
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Figure 2. Plot of the conductivity matrix as a function of the frequency for φs = 0 and T/µ = 1/100

(blue) and T/µ = 4/100 (green). The dots at zero frequency represent the DC conductivities given

in 4.19.

The green line corresponds to T/µ = 4/100 and the blue to T/µ = 1/100. The two

dots in cyan and green at zero frequency represent the analytic result 4.19 for the DC

thermoelectric conductivity. From these plots we establish that the DC formulas derived

in section 4, correctly capture the zero frequency limit of the optical conductivities.

Regardless of the apparently strong momentum relaxation, the electric conductivity in

figure 2 displays the characteristics of a Lorentzian distribution at low frequencies with a

large DC value which is very similar to Drude physics. This suggests that the incoherent

current gives a large contribution in the ground state of the broken phase. Such a behaviour

has been identified before in holographic ground states [39, 40], where thermal insulators

can have metallic characteristics as far as electric transport is concerned.

5.2 AC transport with pinning

In this section we will carry out the computation for the AC conductivity with the pinning

parameter φs turned on. The only difference to the subsection 5.1 will be the expansion of

the perturbation towards the UV part of the geometry. In this case we find that

δH
(s)
tx1

= δH
(s)
tx1

+ · · ·+
δH

(v)
tx1

r3
+ · · · ,

δAx1 = A
(s)
1 +

a
(v)
1

r
+ · · · ,
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δχ1 = δχ(s) + · · ·+ δχ(v)

r
+ · · · ,

δσ1 = δσ(s) + · · ·+ δσ(v)

r3
+ · · · , (5.10)

together with the constraint

12ωδH
(v)
tx1

= − ωδH(s)
tx1

(12W + 12SV φs + 3iωφ2s + 8ik2sψ
2
sω − 2iω3)− 48 i k δ2δχ(v)φ2s

+ ksωδσ
(s)ψ2

s(+3φ2s + 2k2sψ
2
s − 2ω2)− 12iksδσ

(v)ψ2
s

− 4A
(s)
1 Qω + 48 k δ2δχ(s)φ2sω (5.11)

This time, the constant term in the expansion of δχ1 is part of the source instead of

the VEV which is now given by the term falling off like 1/r.

The near horizon expansion remains as in (5.3). Consequently the counting argument

of constants of integration remains in this case. After naively fixing the constants which

determine the boundary sources we would be left with cx1 , cχ, cσ, a
(v)
1 , δχ(v) and δσ(v), which

is again one constant less than what we actually need. By performing the boundary change

of coordinates (5.6) we see that the sources transform according to

δH
(s)
tx1
→ δH

(s)
tx1
− iωδg

δσ(s) → δσ(s) + ksδg

δχ(s) → δχ(s) + k δg . (5.12)

The above suggest that after fixing our sources as

δH
(s)
tx1

=
1

iω
ζ + iω δg

δσ(s) = −ks δg

δχ(s) = −k δg

δA
(s)
1 =

1

iω
E − 1

iω
µ ζ , (5.13)

the extra constant δg will once again play the role of the integration constant we are

after. After performing the change of coordinates in order to set δg = 0, the boundary

currents read

δJ∞ = E −
(
µ+

iQ

ω

)
ζ + a

(v)
1 ,

δQ∞ = − µa(v)1 + 3i
ks ψ

2
s

ω
δσ(v) + 12iδ2

kφ2s
ω
δχ(v) − E

(
µ+

iQ

ω

)
− i ζ

ω

(
3W + 3SV φs +

3

2
ik2sψ

2
sω − 2µQ+ iµ2ω

)
+

1

4
δg (48 δ2 k2 φ2s + 3k2sφ

2
sψ

2
s + 2k4sψ

4
s − 2k2sψ

2
sω

2) , (5.14)

which reduce to (5.8) after naively setting φs = 0.
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Figure 3. Plot of the electric conductivity as a function of the frequency for T/µ = 1/100 and

for φs = 0 (blue), φs/µ = 10−2 (magenta), φs/µ = 10−3 (red) and φs/µ = 10−4 (brown) and

φs/µ = 10−5 (orange).

Having set up the problem for the fully explicitly broken case, we will now study the

discontinuity in the DC conductivity when taking the limit φs → 0 that we predicted in

section 4. For this reason we will study the transport at finite frequency as we take the

limit of φs → 0. This will demonstrate the expected peak in the AC conductivity as a

result of the almost gapless mode which couples to the heat current.

In particular, we will consider once again the broken phase black holes with

{k/µ, ks/µ, ψs, γ, δ, T/µ} = { 15
100 ,

3
10 , 4, 3,

1
2 ,

1
100} which we considered also in section 5.1.

This time, our aim is to compute the AC transport coefficients after having perturbatively

deformed away from φs = 0. The result of this limiting process is shown in figure 3 where

we demonstrate that the optical conductivity converges to the result of the blue curve of

figure 2 everywhere except for zero frequency. The values in the DC limit are also shown

to agree with (4.21) for all non-zero values of φs.

6 Discussion and future directions

In section 2 we have constructed phases of holographic matter in which a spontaneous

density wave coexists with a holographic lattice which breaks translations explicitly. The

order parameter is characterised by a wavenumber k which is in general incommensurate

to the holographic lattice associated to wavenumber ks. We note that the wavenumber k

is in general fixed by the fact that it has to minimise the free energy. For the particular
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model in equation (2.1), the thermodynamically preferred branch of black holes has k = 0

but one can write more complicated models which will have a preferred k away from zero.

The main content of the paper is the effect of a finite k density wave on transport which

will remain unchanged.

In [35], building on [34], it was shown that in the DC limit, the thermoelectric transport

coefficients are completely fixed after solving for a Stokes flow of a charged fluid which lives

on the curved black hole horizon. In section 4 we significantly generalised the formalism

of [34] in order to properly account for the sliding mode that couples to the heat current.

As we saw, the contribution of the gapless mode modifies the naive expression of the DC

conductivities in a discontinuous way in the limit where the pinning parameter of the

density wave becomes infinitesimally small. In this paper we have used a particular class

of models; an interesting question is the generalisation of our treatment to larger classes of

holographic lattices and higher derivative theories as in [41].

By directly comparing (4.19) and (4.21), we saw that a parametrically small pinning

parameter leads to a sudden drop in the DC conductivity. As we demonstrated in section 5

this effect is accompanied by a transfer of spectral weight from the origin to a frequency

which is set by the strength of pinning. An interesting question which we leave to future

work is the interplay between temperature and the pinning parameter within the class of

models (2.1).

Another direction we are working on [42] is the inclusion of a constant magnetic field

on the boundary. The resulting Hall angle from the response electric currents is a topic

of interest in the literature of the cuprate superconductors. As noted in [43], for small

magnetic fields, strong explicit breaking of translations leads to a scaling of the Hall angle

with temperature which is in general different from the scaling of the electric conductivity

at zero magnetic field. The inclusion of a sliding mode is then a natural question, given

the IR nature of the effect observed in [43]. From a technical point of view, the question

would be a natural extension of [44, 45].
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