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1 Introduction

The gravitational memory effect was first reported by Zel’dovich and Polnarev [1] in lin-

earized gravity and further investigated by Christodoulou in full Einstein gravity [2] (see

also [3–7] for further development and [8–10] for the realization with gravitational wave

detectors). The memory effect is a relative displacement of nearby observers. It is therefore

called the displacement memory effect. Recently, memory effects have obtained renewed

interest from a purely theoretical point of view. A fundamental connection between the

displacement gravitational memory effect and Weinberg’s soft graviton theorem [11] was

discovered by Strominger and Zhiboedov [12].1 The gravitational memory formula and the

Fourier transformation of Weinberg’s soft graviton formula are mathematically equivalent.

A recent investigation on soft graviton theorems [21] shows that the universal property

goes beyond Weinberg’s pole formula and contains next-to-leading orders in the low-energy

expansion. Inspired by the sub-leading soft graviton theorem, a new gravitational memory

was proposed in [22]. This new gravitational memory effect is suggested to be a relative

time delay between different orbiting light rays induced by radiative angular momentum

flux. Accordingly it is called the spin memory.

The standard treatment of the memory effect [2, 7] is based on a special choice of the

topology of null infinity which is S2 × R. From the geometrical point of view, null infinity

is not part of space-time but can be added to it by conformal compactification [23, 24].

Hence, the topology of any asymptotically flat space-time can be always set to be the

1See also the analogue in gauge theory [13–20].
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standard S2 × R via changing the conformal factor during the compactification. How-

ever, asymptotically flat solutions may not be in their simplest form with the boundary

topology being unit 2 sphere but an arbitrary 2 surface. Relating those solutions to the

standard boundary topology will lose the simplicity both geometrically and algebraically.

For instance, the well-known Robinson-Trautman waves [25] will not be truncated in the 1
r

expansion with a unit 2 sphere boundary topology. It is extremely difficult, if not impossi-

ble, to see the geometrical property of this simple but very important exact solution with

gravitational radiation. Therefore, it is definitely meaningful to extend the formula of the

memory effect to the case of arbitrary 2 surface boundary topology. This is precisely what

we will show in following pages.

Another purpose of this paper is to provide a new observational effect of the spin

memory. In [22], it is proposed that light rays orbiting in different directions acquire a

relative delay which will induce a shift in the interference fringe. Alternatively, we propose

to examine the spin memory effect by time-like free falling observers who are very close to

null infinity. We find that a free falling observer, which is initially static, is forced to orbit

by the gravitational radiation (see also [26–33]). It receives a time delay due to massive

objects in the space-time, e.g massive stars or black holes, and gravitational radiation (see

also [34]). The former is the well-known Shapiro time delay [35] (see [36, 37] for recent

development) and was observationally verified almost 40 years ago [38], while the latter

is less stressed elsewhere. If a ring of freely falling observers who are initially static and

synchronized can be set, the changes of the proper time of every observer on this ring

will be different at later time. It can therefore memorize the waveform of the gravitational

waves. Though a stationary massive object can cause a time delay for a single observer, the

change in proper time of each observer is the same. Consequently, the ring of free falling

observers will detect two memory effects: the displacement memory that will squash and

stretch the shape of the ring and the time delay that will cause a difference in the proper

time of nearby observers.

The plan of this paper is quite simple. In the next section, we will derive the formula

of the displacement memory with arbitrary 2 surface boundary topology. Section 3 will

present the displacement memory of Robinson-Trautman waves as a precise example. In

section 4, we compute the time delay formula of free falling time-like observers. Then we

will prove that conjugate points on a time-like geodesic are very far from each other in

the asymptotic region in section 5. Some comments will be given in the discussion section.

There are also two appendices providing useful information for the main text.

2 Displacement memory effect

By setting the boundary topology to be S2 × R, the null basis vector n in the standard

Newman-Penrose formalism [39] is tangent to null geodesics with affine parameter u on

null infinity. The displacement memory effect in such cases is controlled by the time

integration of the asymptotic shear of n, i.e. λ0. This is equivalent to the change of the

asymptotic shear of l, i.e. σ0, at early time ui and late time uf [7]. However, according

to Newman-Unti [40] (see also appendix A), the most general asymptotically flat solution
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is derived with the boundary topology being arbitrary 2 surface including the well-known

Robinson-Trautman metrics [25]. Actually, Robinson-Trautman is very special as it allows

a shear-free null geodesic congruence, namely σ = 0. From the standard formula, nothing

will be memorized, but it is indeed an exact solution representing spherical radiation.

Clearly, a general formula of displacement memory is of urgent need for answering this

type of question. This is what we will setup in this section.

We will first check the memory formula for the solutions with arbitrary 2 surface null

boundary topology by mapping them to the unit 2 sphere via Weyl transformations, as is

well studied very recently by Barnich and Troessaert [41]. In appendix B, relevant results

are presented and we will follow the convention of [41]. We use (u, z, z̄) coordinates and

unprimed quantities for the unit 2 sphere case with boundary metric ds2 = 4
(1+zz̄)2

dzdz̄

while (u′, z′, z̄′) coordinates2 and primed quantities are for the solution in its original form

with arbitrary 2 surface boundary metric ds2 = 2
P ′P̄ ′dz

′dz̄′. The two coordinates are

connected in the following way3

z′ = z, u′ =

∫ u

0
dv

Ps√
P ′P̄ ′

, Ps =
1 + zz̄√

2
. (2.1)

Under such a coordinate transformation, σ′0 is transformed as

σ0
s = PsP

′− 3
2 P̄ ′

1
2σ′0 − ∂z̄

(
Ps
√
P ′P̄ ′∂z̄u

′
)

+
√
P ′P̄ ′∂z̄u

′∂u

(√
P ′P̄ ′∂z̄u

′
)
. (2.2)

P ′, P̄ ′ and σ′0 are scalar fields, hence

P ′(u′, z′, z̄′) = P (u, z, z̄), P̄ ′(u′, z′, z̄′) = P̄ (u, z, z̄), σ′0(u′, z′, z̄′) = σ0(u, z, z̄). (2.3)

We can just drop the prime

σ0
s = PsP

− 3
2 P̄

1
2σ0 − ∂z̄

(
Ps
√
PP̄∂z̄u

′
)

+
√
PP̄∂z̄u

′∂u

(√
PP̄∂z̄u

′
)
. (2.4)

Since we have put the solution in (u, z, z̄) coordinates with S2×R boundary topology, the

standard displacement memory formula works. It is just the change of σ0
s at early time ui

and late time uf in this coordinates.

Alternatively, in (u′, z′, z̄′) coordinates, one can define

σ′
0
s = PsP

′(u′, z′, z̄′)−
3
2 P̄ ′(u′, z′, z̄′)

1
2σ′0(u′, z′, z̄′) + Ps∂

2
z̄′

[∫ u′

0
dv
√
P ′P̄ ′

]
. (2.5)

This is the Weyl invariant part of σ′0(u′, z′, z̄′) [41], namely it is unchanged as a function

of their variables under Weyl transformation. This σ′0s determines the memory effect in

2One should not confuse this with the notation in appendix A where (u, z, z̄) is used for a general solution

with arbitrary 2 surface boundary.
3The full coordinate transformation is given in the form of an asymptotic expansion, but only the leading

terms are involved in deriving the transformation law of the relevant fields.
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(u′, z′, z̄′) coordinates. The displacement memory can be derived from the change of σ′0s at

early time u′i and late time u′f and is given by

∆σ′
0
s |
u′f
u′i

= PsP
′(u′f , z

′, z̄′)−
3
2 P̄ ′(u′f , z

′, z̄′)
1
2σ′0(u′f , z

′, z̄′)

− PsP ′(u′i, z′, z̄′)−
3
2 P̄ ′(u′i, z

′, z̄′)
1
2σ′0(u′i, z

′, z̄′) + Ps∂
2
z̄′

[∫ u′f

u′i

dv
√
P ′P̄ ′

]
. (2.6)

We would like to comment more, from the geometric point of view, on the case of an

arbitrary 2 surface. From the geodesic equation

∇nn = −(γ + γ̄)nµ + ν̄m̄µ + νmµ, (2.7)

we find that n will not be tangent to a null geodesic on null infinity when P is u-dependent.

µ0 and λ0 are the asymptotic expansion and shear of n respectively [39]. In the unit 2 sphere

case, n is tangent to null geodesics with affine parameter u. The Weyl tensor Ψ0
s3 and Ψ0

s4

are completely determined by the asymptotic shear of the null geodesic congruence. We call

them the news functions as they indicate the existence of gravitational waves. However,

in the case of arbitrary 2 surface, the asymptotic shear λ0 will not only be controlled by

gravitational waves, but will be also affected by the reference system. Nevertheless, we

can define

λ0
s = P 2

s

(
λ0

P̄ 2
+
∂2
z

√
PP̄√
PP̄

)
, (2.8)

so that λ0
s measures only the gravitational wave contribution, while the second piece in the

parentheses on the right hand side is purely the reference system effect.

The special choice of boundary topology in the standard treatment of the memory

effect represents physical space-times which contain isolated systems, with no geometrical

or topological information from outside world [42]. An arbitrary 2 surface boundary is

certainly compatible with the condition that no geometrical information is coming from

the outside world. However, topological information can not be avoided, for instance a

null geodesic on null infinity may not be complete. Hence the Weyl transformations are

usually singular in such case. Another interesting transformation that involves singularities

are the so-called super-rotations [43–45]. The physical status of finite super-rotations

and the transition between such states is related to the breaking of a cosmic string via

quantum black hole pair nucleation [46]. It is definitely of interest to investigate the

physical consequence of super-rotations in memory effects elsewhere.

3 Robinson-Trautman waves

In this short section, we are ready to clarify the puzzle about the memory effect of the

Robinson-Trautman waves via the generalized displacement memory formula developed

in the previous section. The Robinson-Trautman metric was originally derived in [25]

to demonstrate a very simple kind of spherical radiation. Adapted to our notation, the
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metric is4

ds2 = 2

(
−r∂u lnP + P 2∂z∂z̄ lnP +

Ψ0
2

r

)
du2 + 2dudr − 2

r2

P 2
dzdz̄, (3.1)

where Ψ0
2 is a real constant and P is a real arbitrary function of (u, z, z̄) satisfying

3Ψ0
2∂uP + P 3∂2

z̄P∂
2
zP − P 4∂2

z∂
2
z̄P = 0. (3.2)

In the NP formalism, the solution is given by

Ψ0 = Ψ1 = σ = λ = τ = XA = ω = 0,

Ψ2 =
Ψ0

2

r3
, µ0 = −P 2∂∂ lnP

Ψ3 =
P∂zµ

0

r2
, Ψ4 =

−∂z(P 2∂z∂u lnP )

r
− P 2∂z∂z̄µ

0

r2
,

ρ = −1

r
, α =

∂zP

2r
, β = −∂z̄P

2r
, µ =

µ0

r
− Ψ0

2

r2
, (3.3)

γ = −1

2
∂u lnP − Ψ0

2

r2
, ν = −P∂z∂u lnP − P∂zµ

0

r
,

U = r∂u lnP + µ0 − Ψ0
2

r
, Lz = 0, Lz̄ =

P

r
,

where Ψ0
2 is a real constant. As explained in the previous section, n is not tangent to

a null geodesic on null infinity in this case. Both gravitational radiation and the effect

of the reference system will contribute to the asymptotic shear of the null congruence λ0

that n is tangent to. Their contributions happen to cancel, namely λ0 = 0. The standard

displacement memory formula does not apply in this situation. To eliminate the reference

effect, one needs to use a “good” reference system with time coordinate ũ =
∫ u

0 dv
P
Ps

.

However, according to (2.6), the displacement memory effect from gravitational radiation

can be obtained directly in the original coordinates. It is just

Ps∂
2
z̄

(∫ uf

ui

dv P

)
. (3.4)

To the best of our knowledge, non-trivial explicit solutions of equation (3.2) rarely exist.

One may need to turn to numerical methods to find the exact value of displacement memory.

4 Spin memory effect

Recently, Pasterski, Strominger, and Zhiboedov discovered a new type of gravitational

memory, the so-called spin memory effect [22]. They proposed that the observational effect

of spin memory is the relative time delay of different light rays at very large radial distance

r0. In this section, we will provide a new observational effect by looking at time-like

geodesics with affine parameter very close to null infinity.

4To compare with the solution in [47], P should be multiplied by a factor of 1
2
.
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The observer will be constrained to a fixed radial distance r0 which is very far from the

gravitational source, e.g. on the earth. The r = r0 hypersurface is time-like, its induced

metric can be derived easily from the most general NU solutions in appendix A. Up to

relevant orders, the induced metric is given by

ds2 =

[
1 +

Ψ0
2 + Ψ

0
2

r
− ðΨ0

1 + ðΨ
0
1

r2
+O(r−3)

]
du2

− 2

[
ðσ0

Ps
− 2Ψ

0
1

3Psr
+O(r−2)

]
dudz − 2

[
ðσ0

Ps
− 2Ψ0

1

3Psr
+O(r−2)

]
dudz̄

−

[
2
σ0r

P 2
s

− Ψ
0
0

3Psr
+O(r−2)

]
dz2 −

[
2
σ0r

P 2
s

− Ψ0
0

3Psr
+O(r−2)

]
dz̄2

− 2

[
r2

P 2
s

+
σ0σ0

P 2
s

+O(r−2)

]
dzdz̄. (4.1)

We will work in the unit 2 sphere case. An arbitrary 2 surface can be mapped onto the unit

2 sphere by a Weyl transformation as discussed in previous section (see more details in [41]).

Free falling observers on this hypersurface will travel along time-like geodesics.

Supposing that the vector V is tangent to a time-like geodesic, it should satisfy the

geodesic equation

∇V V = 0, (4.2)

where ∇ is the covariant derivative on this 3 dimensional hypersurface. Actually, V is

induced from a 4 dimensional vector Ṽ . When r →∞, a 4 dimensional time-like vector Ṽ

will either vanish or be proportional to the null basis n (in the Newman-Penrose formalism)

which is the generator of null infinity, because the light-cone will be squashed to a line on

null infinity. Hence V should have the following asymptotic behavior:

V u = 1 +

∞∑
a=1

V u
a

ra
, V z =

∞∑
a=2

V z
a

ra
. (4.3)

Then we need to solve the geodesic equation order by order. The solution is (up to rele-

vant order):

V u
1 = −Ψ0

2 + Ψ
0
2

2
+ V u

1I (z, z̄)

V u
2 =

1

6

(
ðΨ0

1 + ðΨ
0
1

)
− ðσ0ðσ0 +

3

8

(
Ψ0

2 + Ψ
0
2

)2
− 1

2
V u

1I

(
Ψ0

2 + Ψ
0
2

)
+ V u

2I (z, z̄)

V z
2 = −Psðσ0 + V z

2I (z, z̄) ,

V z
3 = Ps

[
2ðσ0σ0 +

2

3
Ψ0

1 +
1

2
ðσ0

(
Ψ0

2 + Ψ
0
2

)]
− Ps

∫
dv

ð
(

Ψ0
2 + Ψ

0
2

)
2

− Psðσ0V u
1I − 2σ0V z̄

2I + V z
3I (z, z̄) ,

where V u
1I , V u

2I , V z
2I , V z

3I are integration constants that indicate the initial velocity of

the observer. We will now set all of them to be zero as we require the observer is static

– 6 –
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initially. At r−2
0 order, V has angular components due to the presence of gravitational

waves characterized by σ0. In other words, gravitational radiation forces free falling time-

like particles to rotate. Since V is time-like, the infinitesimal change of the proper time of

the observer can be derived from the co-vector. It is just:

dχ= du+
1

2r0

(Ψ0
2+Ψ

0
2

)
du+

∫
ð
(

Ψ0
2+Ψ

0
2

)
dv

Ps
dz+

∫
ð
(

Ψ0
2+Ψ

0
2

)
dv

Ps
dz̄

+O
(
r−2

0

)
= d

(
u+

1

2r0

∫ (
Ψ0

2+Ψ
0
2

)
dv

)
+O

(
r−2

0

)
, (4.4)

where χ is the proper time. Defining

M =
1

2

∫
(Ψ0

2 + Ψ
0
2) dv, (4.5)

between two space-time points (ui, zi, z̄i) and (uf , zf , z̄f ) on this geodesic, the change in

proper time is

∆χ = ∆u+
1

r0
∆M+O(r−2

0 ). (4.6)

Clearly, the observer receives a time delay at order 1
r . We want to emphasize that ∆M is

angle dependent. Thus, both the Bondi mass aspect of a massive object and gravitational

radiation contribute to the time delay. ∆M is constrained by the time evolution equation

∂uΨ0
1 = ðΨ0

2 − 2σ0∂uðσ0, (4.7)

and it is completely fixed by the change of the angular momentum aspect as5

ðð∆M = ∆

(
1

2
ðΨ0

1 +
1

2
ðΨ

0
1 + ðσ0ðσ0

)
+

∫
(σ0ðσ̇0 + σ0ððσ̇0) dv, (4.8)

up to a real constant. This is very similar to the displacement memory [2, 7] in the sense

that it includes the linear piece

∆

(
1

2
ðΨ0

1 +
1

2
ðΨ

0
1 + ðσ0ðσ0

)
, (4.9)

and the non-linear piece ∫
(σ0ðσ̇0 + σ0ððσ̇0) dv. (4.10)

The effect of the integration constant in (4.8) can be eliminated by choosing a ring of

freely falling observers who are initially static and synchronized.6 The difference in the

5See also [22] for the relation of the angular momentum flux to the spin memory.
6It is meaningful to point out that displacement memory and spin memory happen at the same time

when ∆M is angle dependent. There is only displacement memory no spin memory when ∆M has no

angular dependence. In such case, the changes in proper time of a ring of freely falling observers are the

same. In this sense, we say displacement memory does not contribute to a relative time delay for a ring of

free falling observers (see also appendix A of [12]).

– 7 –
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proper time of every observer on this ring at a later time can memorize the waveform of

the gravitational waves. This is another observational effect of the spin memory.

Since we have V = n when r → ∞, the leading piece of the shear of the time-like

geodesic congruence is just λ0

r . The ring of free falling observers will observe two memory

effects: the displacement memory that will squash and stretch the ring and the time delay

that will cause the difference of the proper time of nearby observers.

5 Conjugate points

To measure the time delay effect, one may expect an even simpler ideal experiment if there

are conjugate points on the time-like geodesics, which is possible in curved space-time.

Two free falling observers are launched with certain initial velocities at the same point.

Then they will meet again at the conjugate point where they can compare their proper

time. However, such an experiment is extremely hard to arrange. Because conjugate points

on a time-like geodesic are very very far from each other in the asymptotic region in our

set-up, though a time-like geodesic does have conjugate points [48] in such cases. In order

to show that, we will consider part of a time-like geodesic, namely the length of this part

of the geodesic is much smaller than r0. Then the 1
r expansion can be applied. In the end,

we will prove that there are no conjugate points on this part of the geodesic.

A solution T c of the geodesic deviation equation

∇V (∇V T c) = −Rabdc T bV aV d, (5.1)

is called a Jacobi field on the geodesic that V is tangent to. Two points p and q are conjugate

points along the geodesic if there exists a non-zero Jacobi field T c along the geodesic that

vanishes at p and q [48]. According to the induced metric (4.1), Rabd
c V aV d = O(r−1), so

the leading piece of the Geodesic deviation equation is

∂2
uT

a
0 (u, z, z̄) = 0, (5.2)

where T a0 (u, z, z̄) is the leading term of T a in the 1
r expansion. Then T a0 is given by

T a0 = uT a01(z, z̄) + T a02(z, z̄). (5.3)

Naively, one can find an infinite number of possible choices of T a0 that allow two points

(ui, zi, z̄i) and (uf , zf , z̄f ) from the geodesic to be conjugate points, namely

ui T
a
01(zi, z̄i) + T a02(zi, z̄i) = 0,

uf T
a
01(zf , z̄f ) + T a02(zf , z̄f ) = 0.

(5.4)

However, the change of the angular coordinates on this geodesic is very tiny and propor-

tional to 1
r . Then the second equation uf T

a
01(zf , z̄f ) + T a02(zf , z̄f ) = 0 becomes

uf T
a
01(zi, z̄i) + T a02(zi, z̄i) +O(r−1) = 0. (5.5)

– 8 –
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Hence the condition of having (ui, zi, z̄i) and (uf , zf , z̄f ) be conjugate points is reduced to

ui T
a
01(zi, z̄i) + T a02(zi, z̄i) = 0,

uf T
a
01(zi, z̄i) + T a02(zi, z̄i) = 0,

(5.6)

but ui 6= uf . Obviously, there is no such solution.

Thus we can never find two points that are not very far from each other on one

geodesic where T a = 0 at leading order. Conceptually, this is expected since geodesics in

flat (Minkowski) space-times do not have conjugate points. Now we have just shown that

conjugate points are not “close” to each other in the asymptotic region in asymptotically

flat space-times though they do exist.

6 Discussions

In this work, we first derived the formula for the displacement memory effect for the case

with an arbitrary 2 surface boundary topology. Via a Weyl transformation, it can be

mapped into the unit 2 sphere. Then the standard formula for the displacement memory

applies. This leads us to a direct derivation of the displacement memory formula in the

original form of the solutions. Secondly, we proposed a new observational effect of the spin

memory. It is a time delay of time-like free falling observers.

The discovery of spin memory was originally inspired by the connection between the

gravitational memory effect and Weinberg’s soft graviton theorem. The displacement mem-

ory and spin memory correspond to the leading and sub-leading soft graviton theorem,

respectively. The novel results in [21] show that soft graviton theorems exist even at third

order in the low-energy expansion. There are indeed some positive signs indicating a third

gravitational memory effect. On the one hand, the two known memory formulas are com-

pletely controlled by the time evolution equations of the Weyl tensors:

∂uΨ0
2 = −∂uð2σ0 − σ0∂2

uσ
0, (6.1)

and

∂uΨ0
1 = ðΨ0

2 − 2σ0∂uðσ0, (6.2)

in unit 2 sphere case. There is indeed a third time evolution equation

∂uΨ0
0 = ðΨ0

1 + 3σ0Ψ0
2. (6.3)

The asymptotic shear σ0 is constrained by the imaginary part of this equation through some

tedious but not difficult calculations (it is more clear in the linearized gravity case [49]). On

the other hand, displacement and spin memories are related to the energy flux and the an-

gular momentum flux through null infinity. Newman and Penrose [50, 51] discovered more

gravitationally-conserved quantities that may account for the possible third gravitational

memory (see also recent relevant developments [52–55]).

We have shown the power of Weyl transformations with a precise example in this work.

Actually, the action of the full BMS4 group combined with Weyl transformations on the

Newman-Unti solution space was given in [41]. It would be very meaningful to compute

the transformation law of the BMS4 current, especially the action of a Weyl transformation

elsewhere [56].
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A Newman-Unti solution in the Newman-Penrose formalism

The Newman-Penrose formalism [39] is a tetrad formalism with a special choice of four null

basis vectors e1 = l, e2 = n, e3 = m, e4 = m̄, where l and n are real while m and m̄ are

complex conjugates of each other. The null basis vectors satisfy orthogonality conditions

l ·m = l · m̄ = n ·m = n · m̄ = 0 and normalization conditions l · n = 1,m · m̄ = −1. The

connection coefficients are called spin coefficients in the NP formalism with special Greek

symbols (we will follow the convention of [57]). The metric is constructed from

gµν = nµlν + lµnν −mµm̄ν −mνm̄µ. (A.1)

In the NP formalism, it is always possible to impose

π = κ = ε = 0, ρ = ρ̄, τ = ᾱ+ β,

which means that l is tangent to a null geodesic with affine parameter and the congruence

of the null geodesic is hypersurface orthogonal, i.e. l will be proportional to the gradient

of a scalar field. It is convenient to take this scalar field as coordinate u = x1 and set

the affine parameter as coordinate r = x2. To satisfy the orthogonality and normalization

conditions, the basis vectors and the cotetrad must have the form

n =
∂

∂u
+ U

∂

∂r
+XA ∂

∂xA
, l =

∂

∂r
, m = ω

∂

∂r
+ LA

∂

∂xA
,

n=
[
− U −XA(ωLA + ωL̄A)

]
du+ dr + (ωL̄A + ωLA)dxA,

l = du, m = −XALAdu+ LAdx
A,

where LAL
A = 0, LAL̄

A = −1. The main condition of approaching flatness at infinity

is Ψ0 =
Ψ0

0
r5

+ O(r−6). Newman and Unti [40] derived the most general solutions of the

NP system that preserve the conditions listed above. The asymptotic expansion of all

components in stereographic coordinates (z, z̄) is given by:

Ψ0 =
Ψ0

0 (u, z, z̄)

r5
+O

(
r−6
)
,

Ψ1 =
Ψ0

1 (u, z, z̄)

r4
− ðΨ0

0

r5
+O

(
r−6
)
,

Ψ2 =
Ψ0

2 (u, z, z̄)

r3
− ðΨ0

1

r4
+O

(
r−5
)
,

Ψ3 =
Ψ0

3

r2
− ðΨ0

2

r3
+O

(
r−4
)
,

– 10 –
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Ψ4 =
Ψ0

4

r
− ðΨ0

3

r2
+O

(
r−3
)
,

ρ = −1

r
− σ0σ0

r3
+O

(
r−5
)
,

τ = −Ψ0
1

r3
+O

(
r−4
)
,

σ =
σ0 (u, z, z̄)

r2
+

(
σ0σ0σ0 − 1

2
Ψ0

0

)
r−4 +O

(
r−5
)
,

α =
α0

r
+
σ0α0

r2
+
σ0σ0α0

r3
+O

(
r−4
)
,

β = −α
0

r
− σ0α0

r2
−
σ0σ0α0 + 1

2Ψ0
1

r3
+O

(
r−4
)
,

µ =
µ0

r
− σ0λ0 + Ψ0

2

r2
+

(
σ0σ0µ0 +

1

2
ðΨ0

1

)
r−3 +O

(
r−4
)
,

λ =
λ0

r
− σ0µ0

r2
+

(
σ0σ0λ0 +

1

2
σ0Ψ0

2

)
r−3 +O

(
r−4
)
,

γ = γ0 − Ψ0
2

r2
+

1

6

(
2ðΨ0

1 + α0Ψ0
1 − α0Ψ

0
1

)
r−3 +O

(
r−4
)
,

ν = ν0 − Ψ0
3

r
+

ðΨ0
2

2r2
+O

(
r−3
)
,

Xz =
P̄Ψ0

1

6r3
+O

(
r−4
)
,

ω =
ðσ0

r
−
σ0ðσ0 + 1

2Ψ0
1

r2
+O

(
r−3
)
,

U = −r
(
γ0 + γ0

)
+ µ0 − Ψ0

2 + Ψ
0
2

2r
+

1

6

(
ðΨ0

1 + ðΨ
0
1

)
r−2 +O

(
r−3
)
,

Lz = −σ
0P̄ (u, z, z̄)

r2
− P̄

r4

(
σ02

σ0 − 1

6
Ψ0

0

)
+O

(
r−5
)
,

Lz̄ =
P (u, z, z̄)

r
+
σ0σ0P

r3
+O

(
r−5
)
,

Lz = − r
P̄

+O
(
r−3
)
,

Lz̄ = −σ
0

P
+

Ψ0
0

6Pr2
+O

(
r−3
)
,

where

α0 =
1

2
P̄ ∂z lnP, µ0 = −1

2
PP̄∂z∂z̄ lnPP̄ ,

λ0 = ∂uσ
0 + σ0(3γ0 − γ0),

γ0 = −1

2
∂u ln P̄ , ν0 = ð(γ0 + γ0),

Ψ0
2 −Ψ

0
2 = ð2

σ0 − ð2σ0 + σ0λ
0 − σ0λ0,

Ψ0
3 = ðµ0 − ðλ0, Ψ0

4 = ðν0 − ∂uλ0 − 4γ0λ0,
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ð ∂u γ0 ν0 µ0 σ0 λ0 Ψ0
4 Ψ0

3 Ψ0
2 Ψ0

1 Ψ0
0

s 1 0 0 −1 0 2 −2 −2 −1 0 1 2

Table 1. Spin weights.

∂uΨ0
0 + (γ0 + 5γ0)Ψ0

0 = ðΨ0
1 + 3σ0Ψ0

2,

∂uΨ0
1 + 2(γ0 + 2γ0)Ψ0

1 = ðΨ0
2 + 2σ0Ψ0

3,

∂uΨ0
2 + 3(γ0 + γ0)Ψ0

2 = ðΨ0
3 + σ0Ψ0

4,

∂uΨ0
3 + 2(2γ0 + γ0)Ψ0

3 = ðΨ0
4.

The “ð” operator is defined by

ðηs = PP̄−s∂z̄(P̄
sηs) = P∂z̄η

s + 2sα0ηs,

ðηs = P̄P s∂z(P
−sηs) = P̄ ∂zη

s − 2sα0ηs,

where s is the spin weight of the field η. The spin weights of relevant fields are listed below

in table 1.

B Weyl transformation of solutions

In the Newman-Penrose formalism, a gauge transformation is a combination of a change

of coordinates and a local Lorentz transformation which is described in the standard three

classes of rotations [57]. The residual gauge transformations preserving the gauge con-

dition and asymptotic behaviors of Newman-Unti solutions were derived by Barnich and

Troessaert [41] recently. A pure Weyl transformation is characterized by

z′ = z, u′ =

∫ u

0
dveER , P ′ = Pe−ER .

The transformation law of the data that characterizes the asymptotic solution is given by

σ′0 = e−ER
[
σ0 + ð(e−ERðu′)− (e−ERðu′)(∂u + γ0 − γ0)(e−ERðu′)

]
,

λ′0 = e−2ER
[
λ0 + (∂u + 3γ0 − γ0)[ð(e−ERðu′)− (e−ERðu′)(∂u + γ0 − γ0)(e−ERðu′)]

]
,

Ψ′04 = e−3ER
[
Ψ0

4

]
,

Ψ′03 = e−3ER
[
Ψ0

3 − e−ERðu′Ψ0
4

]
,

Ψ′02 = e−3ER
[
Ψ0

2 − 2e−ERðu′Ψ0
3 + (e−ERðu′)2Ψ0

4

]
,

Ψ′01 = e−3ER
[
Ψ0

1 − 3e−ERðu′Ψ0
2 + 3(e−ERðu′)2Ψ0

3 − (e−ERðu′)3Ψ0
4

]
,

Ψ′00 = e−3ER
[
Ψ0

0 − 4e−ERðu′Ψ0
1 + 6(e−ERðu′)2Ψ0

2 − 4(e−ERðu′)3Ψ0
3 + (e−ERðu′)4Ψ0

4

]
.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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