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1 Introduction

Conformal blocks are theory independent building blocks of conformal field theories which

are fixed entirely from conformal invariance. Equipped with the CFT data (i.e. the spec-

trum and the OPE coefficients of any theory), the knowledge of conformal blocks permits

the construction of all correlators in the theory. Given their fundamental importance in

CFTs, it is important to understand and investigate the holographic duals of conformal

blocks in the context of AdS/CFT. Such a task was recently undertaken for four-point

global conformal blocks in any dimension with external scalar operators [1] (with further

generalizations in refs. [2–13]) and for Virasoro blocks in AdS3/CFT2 [14–24].

Nevertheless, the holographic interpretation of higher-point global conformal blocks

has remained unresolved so far, and fraught with various technical obstructions. With the

hope that new tools may provide new clues, in this paper, we appeal to the framework of

p-adic AdS/CFT [6, 25, 26] which offers a significantly less complicated setting for tackling

the same problem. Indeed, it turns out, the problem of various higher-point blocks is

relatively easily addressed over the p-adics [27], and owing to the close ties with the usual

AdS/CFT setup (see, e.g., refs. [6, 25, 26, 28–35]) we are able to extract key new insights

into the analogous calculation over reals. The p-adic results generalize the result of ref. [6],

and are discussed in ref. [27]. The p-adic five-point case, related to the subject of this

paper, is briefly summarized later in this section.

In this paper, inspired by the p-adic result, we establish the holographic dual of the

global five-point block with external scalar operators in the usual (real) AdSn+1/CFTn

setup, generalizing the result of ref. [1] to obtain a holographic object, expressed as a

weighted sum of five-point geodesic bulk diagrams, which directly computes the five-point

block. We present such an object in section 2, where we also provide a proof by conformal

Casimir equation in support of our claim, and close with further comments and future
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directions in section 3. In the remainder of this section we discuss the general strategy

utilized in this paper to obtain the holographic dual of the five-point block.

The four-point function of local scalar operators in any CFT is fixed from conformal

invariance up to an arbitrary function of conformal cross-ratios. Performing, for example,

an OPE in the s-channel, we may write

〈O1(x1) · · · O4(x4)〉 =
∑
O
C12OC34OW

∆1,...,∆4

∆,` (xi) , (1.1)

where Cijk are the OPE coefficients and W∆1,...,∆4

∆,` (xi) is the conformal partial wave which

represents the contribution from conformal families with highest weight representation

(∆, `).1 In the rest of this paper, we will suppress the angular momentum subscript `.2

As noted above, recently, ref. [1] advanced a holographic object which computes the

four-point conformal partial wave and in turn, provides an extremely efficient computa-

tional technique for holographically obtaining the conformal block decomposition of four-

point bulk (Witten) diagrams without having to do any explicit bulk integrals.

Turning this around, given the CFT data, i.e. the spectrum and the OPE coefficients,

one can hope to use the conformal block decomposition (1.1) to extract the universal,

theory independent conformal partial waves. Heuristically (see also figure 1):

• For a tree-level four-point bulk exchange diagram, one employs an AdS propagator

identity [1] (refer to (A.1)) which expresses a product of bulk-to-boundary propaga-

tors incident on a common bulk point as a series expansion in bulk solutions of the

Klein-Gordon equation sourced on a boundary anchored geodesic which is, in a sense,

the bulk dual of taking an OPE in the CFT [37–40].

1For instance, for ` = 0, the conformal partial wave is given by

W∆1,∆2,∆3,∆4
∆a

(xi) = W
(4)
0 (xi)G∆1,∆2,∆3,∆4

∆a
(ui)

W
(4)
0 (x1, x2, x3, x4) =

1

(x2
12)∆12,(x2

34)∆34,

(
x2

24

x2
14

)∆1,2
(
x2

14

x2
13

)∆3,4

, (1.2)

where G∆1,∆2,∆3,∆4
∆a

(ui) is the four-point conformal block, given in any spacetime dimension by [36]

G∆1,∆2,∆3,∆4
∆a

(u1, u2) = u
∆a/2
1

∞∑
m1,m2=0

um1
1 (1− u2)m2

m1!m2!

(∆a1,2)m1(∆a4,3)m1

(∆a − n/2 + 1)m1

(∆a2,1)m1+m2(∆a3,4)m1+m2

(∆a)2m1+m2

(1.3)

with the conformal cross-ratios

u1 =
x2

12x
2
34

x2
13x

2
24

u2 =
x2

14x
2
23

x2
13x

2
24

. (1.4)

Whenever we show multiple entries in the subscript of any conformal dimension, we are using the con-

vention (1.13) to write linear combinations of dimensions compactly. The Pochhammer symbol appearing

above and in many subsequent equations is defined as follows:

(a)m ≡ Γ(a+m)/Γ(a) . (1.5)

2For simplicity we set ` = 0, but many of the results presented below should admit a straightforward

generalization to account for the exchange of representations with non-zero `.
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O1

O2 O3

O4

∆
∼
∑
k1,k2

O1

O2 O3

O4

∆∆k1 ∆k2

∼ C12OC34O

O1

O2 O3

O4

∆
+ · · ·

Figure 1. Obtaining the conformal block decomposition of the four-point exchange diagram [1].

Green, disk-shaped bulk vertices are to be integrated over all of AdS. The remaining bulk vertices

are integrated over boundary anchored geodesics, shown as dashed, red curves. Just for this figure,

we have used the shorthand: ∆k1
= ∆1 + ∆2 + 2k1,∆k2

= ∆3 + ∆4 + 2k2. We used (A.1) to get

to the second step, and (A.2) to obtain the third step. The ellipsis in the third step corresponds to

contributions from double-trace exchanges.

• To be able to extract the conformal partial wave, one still needs to evaluate the origi-

nal AdS integration over all bulk interaction vertices in the diagram. This is achieved

with the help of a propagator identity which expresses the integral over a product of

bulk-to-bulk propagators sharing a bulk point as an un-integrated linear combination

of bulk-to-bulk propagators (i.e. schematically,
∫
z Ĝ(a, z)Ĝ(b, z) ∼ Ĝ(a, b) − Ĝ(a, b),

see (A.2)) [1].

• At this point, one compares with the CFT expansion (1.1) and with prior knowledge

of the OPE coefficients, one can isolate a natural candidate for the universal confor-

mal partial wave, more precisely, the theory independent bulk object which directly

computes the conformal partial wave.

Importantly, we stress that the inverse problem of extracting conformal blocks from (1.1)

given the OPE coefficients and the four-point function as outlined here is genuinely non-

unique. It is used merely as a heuristic guide to obtain a natural candidate for the conformal

block, which must then be verified using an independent check. Luckily, it turns out for

the examples considered in this paper, this strategy leads to the best case scenario and

does indeed provide the desired holographic objects which compute the conformal partial

waves, as confirmed by a proof by Casimir equation.

Essentially, all we have described above is simply a holographic strategy to obtain

the projection of the four-point function, to the conformal family of the operator O of

dimension ∆:

W∆1,...,∆4

∆ (xi) =
1

C12OC34O
〈O1(x1)O2(x2)P∆O3(x3)O4(x4)〉 , (1.6)

where the projection operator is given by

P∆ =
∑
k

|P kO〉〈P kO| , (1.7)

where P k stands for k applications of the momentum generators Pµ to obtain the descen-

dants of O.
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W∆1,∆2,∆3,∆4

∆ (x1, x2, x3, x4) =

O1(x1)

O2(x2) O3(x3)

O4(x4)

∆

Figure 2. The geodesic integral of (1.8), represented diagrammatically as a geodesic bulk diagram.

The dashed, red curves represent the boundary anchored geodesics along which the respective bulk

interaction vertices are integrated. In the literature, this is often referred to as a (four-point)

geodesic Witten diagram [1]. In particular, the same diagram computes the p-adic four-point

conformal partial wave when evaluated on the Bruhat-Tits tree instead of AdS [6]. (In later figures,

locations of operator insertions will often be suppressed when no confusion is likely.)

The upshot of this exercise is that the following geodesic bulk integral,

W∆1,...,∆4

∆ (xi) ≡
∫∫

w∈γ12

w′∈γ34

K̂∆1(x1, w)K̂∆2(x2, w)Ĝ∆(w,w′)K̂∆3(x3, w
′)K̂∆4(x4, w

′) , (1.8)

where Ĝ, K̂ are bulk-to-bulk and bulk-to-boundary propagators respectively, computes the

conformal partial wave associated with the exchange of an operator of dimension ∆ between

external insertions O1,O2 and O3,O4 [1] (see figure 2). Here we are using the notation,∫
w∈γij

≡
∫ ∞
−∞

dλ , (1.9)

where the bulk point w = w(λ) is parametrized by λ running along the boundary anchored

geodesic γij between boundary points xi and xj . More precisely, it can be shown that [1]

W∆1,∆2,∆3,∆4

∆a
(xi) =

1

4
β∞(2∆a1,2, 2∆a2,1) β∞(2∆a3,4, 2∆a4,3)W∆1,∆2,∆3,∆4

∆a
(xi) , (1.10)

where W∆1,...,∆4

∆a
takes the explicit form given in (1.2)–(1.4), β∞(·, ·) is related to the usual

Euler Beta function and defined as

β∞(s, t) ≡ ζ∞(s)ζ∞(t)

ζ∞(s+ t)
=

Γ(s/2)Γ(t/2)

Γ((s+ t)/2)
, (1.11)

where the local zeta function ζ∞ is defined via

ζ∞(s) = π−s/2 Γ(s/2) , (1.12)

and we are employing the convention

∆i1...i`,i`+1...ik ≡
1

2

(
∆i1 + · · ·+ ∆i` −∆i`+1

− · · · −∆ik

)
. (1.13)
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O1

O2

O3

O4

O5

∆ ∆′
∼
∑
k1,k2

O1

O2

O3

O4

O5

∆ ∆′∆k1
∆k2

∼ C12OC45O′

O1

O2

O3

O4

O5

∆ ∆′
+ · · ·

Figure 3. Attempting a conformal block decomposition of a five-point bulk diagram. Just for

this figure, we have used the shorthand: ∆k1
= ∆1 + ∆2 + 2k1,∆k2

= ∆4 + ∆5 + 2k2. The figure

in the third step shows the unevaluated
∫
K̂ĜĜ AdS integral.

The procedure sketched above applies more generally to higher-point blocks as well. In

this paper, we focus on the five-point case. To obtain the holographic dual of the five-point

conformal partial wave defined via the projection,

W∆1,...,∆5

∆,∆′ (xi) =
1

C12OCO3O′C45O′
〈O1(x1)O2(x2)P∆O3(x3)P∆′O4(x4)O5(x5)〉 , (1.14)

we proceed as follows (see also figure 3):

• We start with a five-point bulk diagram with two single-trace exchanges in the in-

termediate channels, and once again apply the holographic OPE identity (A.1) to

operator insertions O1(x1)O2(x2) and O4(x4)O5(x5). This is expected to account for

two of the OPE coefficients in the denominator of (1.14). We will return to the final

OPE coefficient CO3O′ shortly.

• There are still three bulk interaction vertices to integrate over all of AdS, out of which

two integrations can be carried out using the previously mentioned
∫
ĜĜ ∼ Ĝ − Ĝ

identity (A.2). This leaves a final integral over a combination of two bulk-to-bulk

propagators and one bulk-to-boundary propagator sharing a common vertex, to be

integrated over all of AdS, i.e. an integral of the form
∫
z K̂∆3(x3, z)Ĝ∆(a, z)Ĝ∆′(b, z).

• In particular, we are interested in the contribution to the
∫
K̂ĜĜ integral which

is proportional to the final OPE coefficient CO3O′ , since this contribution iso-

lates precisely the holographic term which computes the theory independent partial

wave (1.14).

However, this procedure hits a roadblock in the third step, since an AdS propagator

identity of the form
∫
z K̂∆3(x3, z)Ĝ∆(a, z)Ĝ∆′(b, z) is not readily available. At this point,

we appeal to the p-adic formulation, where the analogous
∫
K̂ĜĜ identity is easily obtained

and was, in fact, already written down in ref. [6]. We reproduce it below in a mathematically

– 5 –
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W∆1,...,∆5

∆a,∆b
(xi) =

O1

O2

O3

O4

O5

∆3a,b ∆3b,a

∆ab,3

Figure 4. The five-point geodesic bulk diagram on the Bruhat-Tits tree dual to the five-point

p-adic conformal partial wave [27].

equivalent, but highly suggestive form [27]:3

∑
z∈Tpn

K̂∆3(x3, z)Ĝ∆a(a, z)Ĝ∆b
(b, z) = C3ab K̂∆3a,b

(x3, a)K̂∆3b,a
(x3, b)Ĝ∆ab,3

(a, b)

− 1

m2
2∆a3,

−m2
∆b

1

N∆b

Ĝ∆a(a, b)K̂∆3(x3, b)

− 1

m2
2∆b3,

−m2
∆a

1

N∆a

Ĝ∆b
(a, b)K̂∆3(x3, a) , (1.15)

where the discrete sum is over all vertices of the (pn + 1)-regular Bruhat-Tits tree Tpn (the

discrete, p-adic analog of AdS space). The coefficient Cijk is the OPE coefficient of the dual

generalized free-field theory, whose explicit form is unimportant. This is because we are

after only the theory independent conformal partial wave whose holographic representation

is dictated by the particular combination of bulk-to-bulk and bulk-to-boundary propagators

as they appear in the term proportional to the OPE coefficient C3ab above.

This motivates the five-point proposal [27] depicted in figure 4, which is a direct gener-

alization of the four-point geodesic bulk diagram in figure 2. Indeed, a direct computation

on the Bruhat-Tits tree confirms the five-point geodesic bulk diagram (figure 4) computes

the (p-adic) five-point conformal block up to an overall factor [27],

W∆1,...,∆5

∆a,∆b
(xi) = βp(2∆a1,2, 2∆a2,1) βp(2∆b4,5, 2∆b5,4)W∆1,...,∆5

∆a,∆b
(xi)

= βp(2∆a1,2, 2∆a2,1) βp(2∆b4,5, 2∆b5,4)W
(5)
0 (xi) u

∆a/2v∆b/2 (1.16)

3The identity (1.15) has been written in terms of an OPE coefficient, bulk scalar mass, and a normal-

ization factor since it turns out that real propagator identities may also be written in terms of the same

quantities. The details of the exact form these coefficients take is not important for our purposes so we only

make a brief comment: the p-adic analog of the mass-dimension relation [25] is m2
∆ = −1/(ζp(−∆)ζp(∆−n))

with the local zeta function ζp defined in (1.17). The coefficient N∆ = ζp(2∆)/p∆ is related to the choice

of normalization of the bulk-to-bulk propagator via its equation of motion on the Bruhat-Tits tree, similar

to (2.7) below for the AdS bulk-to-bulk propagator (see, e.g. ref. [31]).
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where

βp(s, t) ≡
ζp(s)ζp(t)

ζp(s+ t)
ζp(s) =

1

1− p−s
, (1.17)

and W
(5)
0 (xi) is the p-adic analog of the five-point “leg factor” defined below in (2.1) for

the real case. Since the dual (generalized free-field) p-adic CFT has only primary operators

in its spectrum with no descendants [6, 41], all conformal blocks are trivial, as instantiated

in the second line of (1.16) for the five-point block, where u, v are the two independent

conformal cross-ratios4

u ≡
∣∣∣∣x2

12x
2
34

x2
13x

2
24

∣∣∣∣
p

v ≡
∣∣∣∣x2

23x
2
45

x2
24x

2
35

∣∣∣∣
p

, (1.18)

with | · |p denoting the p-adic norm.

The p-adic propagator identity (1.15) and the geodesic bulk diagram in figure 4 an-

ticipate the corresponding candidates for the real analog. Indeed, the contribution to the

(real)
∫
K̂ĜĜ integral, proportional to the structure constant of the generalized free-field

theory, takes the form [27],∫
z∈AdS

K̂∆3(x3, z)Ĝ∆a(a, z)Ĝ∆b
(b, z)

∼ C3ab

∞∑
k1,k2,k3=0

ck1,k2,k3K̂∆3a,b−k1+k2(x3, a)K̂∆3b,a+k1−k2(x3, b)Ĝ∆ab,3+k1+k2+2k3(a, b)

+ · · · , (1.19)

where the ellipsis represents the remaining terms which are analogs of terms in the second

and third lines of (1.15), and the coefficient ck1,k2,k3 will be given later in (2.4). As is

often the case, the real analog of the p-adic AdS/CFT result uplifts the simpler p-adic

result to include more complicated sums. These sums essentially account for the full de-

scendant contribution to each conformal family, which are trivially absent over the p-adics.

With (1.19) in hand, we are able to easily write down the real analog of the holographic

dual shown in figure 4, which we describe in the next section.

2 Holographic dual of the five-point conformal block

The five-point conformal partial wave is proportional to the five-point conformal block

G∆1,...,∆5

∆a,∆b
(ui), up to an overall “leg factor” W

(5)
0 given by

W
(5)
0 (xi) ≡

1

(x2
12)∆12,(x2

34)∆3/2(x2
45)∆45,

(
x2

23

x2
13

)∆1,2
(
x2

24

x2
23

)∆3/2(x2
35

x2
34

)∆4,5

, (2.1)

4There are only two independent cross-ratios since the boundary of the Bruhat-Tits tree, given by the

projective line over the p-adic numbers, is one-dimensional. Recall that in a one-dimensional (real) CFT,

there is only one independent cross-ratio for the four-point block, and exactly two for the five-point block.

– 7 –



J
H
E
P
0
5
(
2
0
1
9
)
0
5
1

such that

W∆1,...,∆5

∆a,∆b
(xi) = W

(5)
0 (xi) G∆1,...,∆5

∆a,∆b
(ui) , (2.2)

with the block simply a function of conformal cross-ratios.

The five-point global block in any spacetime dimension was recently explicitly com-

puted in ref. [42] (see also ref. [20]). We claim the following “geodesic bulk diagram”,

W∆1,...,∆5

∆a,∆b
(xi) ≡

∞∑
k1,k2,k3=0

ck1,k2,k3

O1

O2

O3

O4

O5

∆3a,b

−k1 + k2

∆3b,a

+k1 − k2

∆ab,3+k1+k2+2k3

, (2.3)

with the coefficients, the same as those which appear in (1.19), given by

ck1,k2,k3 ≡
(−1)k1+k2+k3

k1!k2!k3!

(1−∆3a,b)k1
(1−∆3b,a)k2

(∆b−n/2+1)k1
(∆a−n/2+1)k2

(∆ab,3−n/2+k1+k2+k3)k3

×(∆3a,b)−k1+k2
(∆ab,3)k1+k2+2k3

(∆3b,a)k1−k2
3F2

[
−k1, −k2, ∆ab3, −n/2
∆3a, b−k1, ∆3b, a−k2

;1

]
,

(2.4)

and the geodesic integral defined as,

O1

O2

O3

O4

O5

∆L ∆R

∆C

≡

∫∫
w∈γ12

w′∈γ45

K̂∆1(x1, w)K̂∆2(x2, w)K̂∆4(x4, w
′)K̂∆5(x5, w

′)

×K̂∆L
(x3, w)Ĝ∆C

(w,w′)K̂∆R
(x3, w

′)

,

(2.5)

computes the five-point conformal partial wave (and hence the conformal block) up to an

overall constant factor, i.e.

W∆1,...,∆5

∆a,∆b
(xi) =

1

4
β∞(2∆a1,2, 2∆a2,1) β∞(2∆b4,5, 2∆b5,4)W∆1,...,∆5

∆a,∆b
(xi) , (2.6)

where β∞(·, ·) is defined in (1.11). Note that setting k1 = k2 = k3 = 0 in (2.3) recovers the

p-adic form of the geodesic bulk diagram given in figure 4.
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The standard scalar bulk-to-bulk propagator utilized above takes the form5

Ĝ∆(w,w′) =

(
ξ(w,w′)

2

)∆

2F1

[ ∆
2 ,

∆+1
2

∆− n/2 + 1
; ξ(w, w′)2

]
=

∞∑
k=0

1

k!

(∆)2k

(∆− n/2 + 1)k

(
ξ(w,w′)

2

)∆+2k

, (2.8)

where ξ(w,w′) is related to the geodesic distance σ between bulk points w,w′ via

ξ(w,w′)−1 = coshσ(w,w′) . (2.9)

The bulk-to-boundary propagator is given by

K̂∆(x, z) =
z∆

0

(z2
0 + |~z − ~x|2)∆

, (2.10)

where z = (z0, ~z) is a bulk Poincaré coordinate in (Euclidean) AdSn+1. The relation (2.8)

can be inverted to give,6

(
ξ(z, z′)

2

)∆

=

∞∑
k=0

(−1)k

k!

(∆)2k

(∆− n/2 + k)k
Ĝ∆+2k(z, z

′) . (2.11)

Using the inverse relation, one can perform the k3 sum in (2.3) to get

W∆1,...,∆5

∆a,∆b
(xi) =

∞∑
k1,k2=0

ck1,k2

O1

O2

O3

O4

O5

∆3a,b

−k1 + k2

∆3b,a

+k1 − k2

∆ab,3 + k1 + k2

, (2.12)

5In this paper we have chosen to normalize the bulk-to-bulk propagator according to

(
−∇2

AdS +m2
∆

)
Ĝ∆(z, z′) = − 1

N∆
δn+1(z − z′) N∆ = − ζ∞(2∆)

2ν∆ζ∞(2∆− n)
, (2.7)

where 2ν∆ = 2∆ − n, ζ∞ is defined in (1.12) and z, z′ are (n + 1)-dimensional bulk coordinates. The

overall constant on the right hand side is merely a repackaging of the familiar normalization factor of

the scalar bulk-to-bulk propagator found in the literature, in terms of the local zeta function (1.12). We

have included it explicitly in (2.7) for the convenience of working with an “unnormalized” bulk-to-bulk

propagator as written in (2.8).
6The inverse relation (2.11) is easy to check analytically for n = 2. For other values of n, we provide an

indirect proof in appendix A.
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where the bulk diagram featuring above is defined using the following geodesic integral,

O1

O2

O3

O4

O5

∆L ∆R

∆C

≡

∫∫
w∈γ12

w′∈γ45

K̂∆1(x1, w)K̂∆2(x2, w)K̂∆4(x4, w
′)K̂∆5(x5, w

′)

×K̂∆L
(x3, w)

(
ξ(w,w′)

2

)∆C

K̂∆R
(x3, w

′)

,

(2.13)

with the coefficients now taking the form,

ck1,k2 ≡
(−1)k1+k2

k1!k2!

(1−∆3a,b)k1
(1−∆3b,a)k2

(∆b−n/2+1)k1
(∆a−n/2+1)k2

(∆3a,b)−k1+k2
(∆ab,3)k1+k2

(∆3b,a)k1−k2

×3F2

[
−k1, −k2, ∆ab3, −n/2
∆3a, b−k1, ∆3b, a−k2

;1

]
. (2.14)

As emphasized using the black dotted lines joining bulk points in (2.12) and (2.13), the

bulk-to-bulk propagator gets replaced by the simpler power-law factor ξ(w,w′)∆.

We make four remarks:

• Technically (2.3) represents a sum over geodesic bulk diagrams; by abuse of termi-

nology we often refer to it (and thus (2.12)) simply as a geodesic bulk diagram.

• Second, for calculational convenience, from now on we will mostly be using the rep-

resentation given in (2.12).

• Third, it is easily checked that (2.12) reduces to the four-point geodesic bulk di-

agram [1] in the limit ∆3 → 0,∆b → ∆a, whereupon the double sum in (2.12)

collapses to a single sum over the variable k1 = k2 since the coefficients ck1,k2 vanish

otherwise. The hypergeometric function reduces to (∆a − n/2 + 1)k1/k1!, and (2.12)

simplifies to

W∆1,...,∆5

∆a,∆b
(xi)

∆3→0
∆b→∆a

=
∞∑
k1=0

1

k1!

(∆a)2k1

(∆a − n/2 + 1)k1

O1

O2 O4

O5

∆a + 2k1

. (2.15)
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Recognizing the remaining sum with the one shown in (2.8), we are led directly to

the four-point geodesic bulk diagram of ref. [1] defined above in (1.8),

W∆1,∆2,∆3,∆4,∆5

∆a,∆b
(x1, x2, x3, x4, x5)

∆3→0
∆b→∆a

= W∆1,∆2,∆4,∆5

∆a
(x1, x2, x4, x5) . (2.16)

• Finally, the proposed relation (2.6) between the five-point geodesic diagram and

conformal partial wave is recognized as a simple generalization of the four-point

relation (1.10), thus providing further evidence in support of the claim that (2.3) is

an appropriate five-point generalization of the four-point geodesic bulk diagram.

We will now prove (2.6) in the next two subsections. In section 2.2 we show that

the five-point geodesic bulk diagram is an eigenfunction of the conformal Casimir with

the correct eigenvalues. Before proceeding with that, we first show that the conformal

partial wave as defined via the geodesic bulk diagram in (2.6) has the correct boundary

conditions, by investigating the OPE limit. Together, these checks constitute a complete

proof of (2.6) [43].

2.1 OPE limit

In the limit when the boundary point x5 → x4, we expect the five-point conformal partial

wave to reduce, to leading order, to the four-point conformal partial wave, upto an overall

scaling factor as follows (see, e.g., ref. [42])

W∆1,∆2,∆3,∆4,∆5

∆a,∆b
(x1, x2, x3, x4, x5)

x5→x4−→ (x2
45)∆b,45 W∆1,∆2,∆3,∆b

∆a
(x1, x2, x3, x4) . (2.17)

We will now reproduce this limit starting from the geodesic bulk diagram in (2.12). Us-

ing (2.6) to obtain the conformal partial wave, sending x5 → x4 and simultaneously eval-

uating the limiting geodesic integral over y′ ∈ γ45 in (2.13), we obtain a double-sum over

a summand which is proportional to (x2
45)∆b,45+k1 . The leading contribution comes from

collapsing the sum over k1 to the leading term at k1 = 0, which corresponds to the contri-

bution coming solely from a primary operator. Simplifying a bit, we obtain

W∆1,∆2,∆3,∆4,∆5

∆a,∆b
(x1, x2, x3, x4, x5) =

4W∆1,∆2,∆3,∆4,∆5

∆a,∆b
(x1, x2, x3, x4, x5)

β∞(2∆a1,2, 2∆a2,1) β∞(2∆b4,5, 2∆b5,4)
(2.18)

x5→x4−→ 2 (x2
45)∆b,45

β∞(2∆a1,2, 2∆a2,1)

∞∑
k2=0

(∆a3,b)k2(∆ab,3)k2

k2!(∆a − n/2 + 1)k2

1

(x2
34)∆b3,a−k2

O1(x1)

O2(x2) O3(x3)

O4(x4)

∆3a,b+k2

∆ab,3 +k2

.

– 11 –



J
H
E
P
0
5
(
2
0
1
9
)
0
5
1

Using the propagator identity (A.3), we can trade the sum over k2 for a geodesic integral,

to arrive at

W∆1,∆2,∆3,∆4,∆5

∆a,∆b
(x1, x2, x3, x4, x5)

x5→x4−→ 4 (x2
45)∆b,45

β∞(2∆a1,2, 2∆a2,1)β∞(2∆a3,b, 2∆ab,3)

O1(x1)

O2(x2) O3(x3)

Ob(x4)

∆a

= (x2
45)∆b,45

4W∆1,∆2,∆3,∆b
∆a

(x1, x2, x3, x4)

β∞(2∆a1,2, 2∆a2,1)β∞(2∆a3,b, 2∆ab,3)

= (x2
45)∆b,45 W∆1,∆2,∆3,∆b

∆a
(x1, x2, x3, x4) , (2.19)

where we used (1.10) in the final step. This establishes the OPE limit (2.17). An identical

analysis in the limit x2 → x1 leads once again to the expected behaviour. Thus we have

demonstrated that the geodesic bulk diagram (2.12) (and the conformal partial wave as

defined by (2.6)) has the right boundary conditions. Next we show that the five-point

geodesic bulk diagram is an eigenfunction of the conformal Casimir with the correct eigen-

values, which completes the proof of the claim that (2.12) is proportional to the five-point

conformal partial wave precisely as proposed in (2.6).

2.2 Proof by conformal Casimir equation

Let LAB denote the generators of SO(n + 1, 1), the n-dimensional conformal group of a

Euclidean CFT. Then, the Casimir of the conformal group is the quadratic combination

L2 ≡ 1
2LABL

AB. Conformal partial waves are eigenfunctions of the quadratic Casimir

acting on multiple points. For instance, for the four-point scalar conformal partial wave [44],(
L(1) + L(2)

)2
W∆1,...,∆4

∆a
(x1, x2, x3, x4) = C2(∆a)W

∆1,...,∆4

∆a
(x1, x2, x3, x4) , (2.20)

where we have defined(
L(i1) + · · ·+ L(ik)

)2
≡ 1

2

(
L(i1)
AB + · · ·+ L(ik)

AB

)(
L(i1)AB + · · ·+ L(ik)AB

)
, (2.21)

where L(i)
AB is a differential operator acting on and built from the position coordinate

xi, and7

C2(∆) = m2
∆ = ∆(∆− n) . (2.22)

For the five-point scalar conformal partial wave (1.14) [20, 42](
L(1) + L(2)

)2
W∆1,...,∆5

∆a,∆b
(x1, x2, x3, x4, x5) = C2(∆a)W

∆1,...,∆5

∆a,∆b
(x1, x2, x3, x4, x5)(

L(4) + L(5)
)2
W∆1,...,∆5

∆a,∆b
(x1, x2, x3, x4, x5) = C2(∆b)W

∆1,...,∆5

∆a,∆b
(x1, x2, x3, x4, x5) . (2.23)

7As previously noted, for simplicity we are focusing only on scalar exchanges. The equations presented

here generalize easily to the case of symmetric-traceless exchanges of spin `.
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We note that for the five-point block, the action of
(
L(1) + L(2)

)2
is the same as the action of(

L(3) + L(4) + L(5)
)2

, and similarly for
(
L(4) + L(5)

)2
. We will now explicitly demonstrate

that the geodesic bulk diagram in (2.12) satisfies the second equation above, i.e.(
L(1) + L(2) + L(3)

)2
W∆1,...,∆5

∆a,∆b
(x1, x2, x3, x4, x5) = C2(∆b)W∆1,...,∆5

∆a,∆b
(x1, x2, x3, x4, x5) .

(2.24)

The geodesic diagram (2.12) is manifestly symmetric under the exchange (1, 2, 3, 4, 5) ↔
(5, 4, 3, 2, 1) and (∆a,∆b) ↔ (∆b,∆a). Thus the first equation of (2.23) follows trivially

once (2.24) is established.

To show (2.24), it is convenient to appeal to the embedding space formalism by passing

to the (n + 2)-dimensional Minkowski space, Rn+1,1. The AdS boundary coordinates are

identified with coordinates P ∈ Rn+1,1 on the null cone, satisfying P 2 ≡ P · P = 0, while

Euclidean AdSn+1 is given by the hyperboloid Z2 = −1. The bulk-to-bulk and bulk-to-

boundary propagators take the form

Ĝ∆(W,Z) =

(
ξ(W,Z)

2

)∆

2F1

[ ∆
2 ,

∆+1
2

∆− n/2 + 1
; ξ(W,Z)2

]
K̂∆(P,Z) =

1

(−2P · Z)∆
,

(2.25)

where Z2 = W 2 = −1, P 2 = 0, and

ξ(W,Z) =
1

(−W · Z)
. (2.26)

In embedding space, the conformal group SO(n + 1, 1) acts linearly as the Lorentz

group of Rn+1,1. The generators L take the form of Lorentz generators in n+2 dimensions,

L(X)
AB = −i

(
XA

∂

∂XB
−XB

∂

∂XA

)
, (2.27)

and thus the Casimir acts as(
L(Z)

)2
φ(Z) =

(
−Z2∂2

Z + Z · ∂Z(n+ Z · ∂Z)
)
φ(Z) = ∇2

AdSφ(Z) (2.28)

on arbitrary scalar functions on the AdS hypersurface Z2 = −1. For instance,(
L(Z)

)2
K̂∆(P,Z) = m2

∆K̂∆(P,Z)
(
L(Z)

)2
Ĝ∆(W,Z) = m2

∆Ĝ∆(W,Z) W 6= Z ,

(2.29)

which follows from the equations of motion of the propagators. To demonstrate (2.24) we

will also need the following identities, which can be easily checked starting from (2.27):

(
L(Z)

)2
(
ξ(W,Z)

2

)∆

= m2
∆

(
ξ(W,Z)

2

)∆

− 4∆(∆ + 1)

(
ξ(W,Z)

2

)∆+2

, (2.30)
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and

(
L(Z)
ABK̂∆1(P,Z)

)(
L(Z)AB

(
ξ(W,Z)

2

)∆2
)

= 2∆1∆2K̂∆1(P,Z)

(
ξ(W,Z)

2

)∆2

(2.31)

− 4∆1∆2K̂∆1+1(P,Z)K̂−1(P,W )

(
ξ(W,Z)

2

)∆2+1

,

where K̂−1(P,W ) should be understood formally as (−2P ·W ).

Next, we work out the action of the conformal Casimir
(
L(1) + L(2) + L(3)

)2
on the

generic geodesic integral defined in (2.13), where now the superscripts (1), (2) and (3)

stand for generators built from the null coordinates P1, P2 and P3 respectively. Following

the technique of refs. [1, 45], we isolate the part of (2.13) which depends on P1, P2 and P3:

F∆L,∆C ,∆R
(P1, P2, P3, Z

′) ≡
∫
Z∈γ12

K̂∆1(P1, Z)K̂∆2(P2, Z)K̂∆L
(P3, Z)

(
ξ(Z,Z ′)

2

)∆C

K̂∆R
(P3, Z

′) ,

(2.32)

and use its invariance under simultaneous SO(n + 1, 1) rotations of P1, P2, P3 and Z ′ to

conclude(
L(1)
AB + L(2)

AB + L(3)
AB

)
F∆L,∆C ,∆R

(P1, P2, P3, Z
′) = −L(Z′)

AB F∆L,∆C ,∆R
(P1, P2, P3, Z

′) ,

(2.33)

which immediately leads to(
L(1) + L(2) + L(3)

)2
F∆L,∆C ,∆R

(P1, P2, P3, Z
′) =

(
L(Z′)

)2
F∆L,∆C ,∆R

(P1, P2, P3, Z
′) .

(2.34)

At this stage, the proof by conformal Casimir equation employed in the case of the four-

point geodesic bulk diagram [1] is essentially complete, since the Z ′ dependence on the

analogously defined scalar function F is contained entirely in a bulk-to-bulk propagator, so

that one can use (2.29) to immediately conclude that the appropriately defined F (and as a

consequence the full four-point geodesic bulk diagram) is an eigenfunction of the quadratic

Casimir with the correct eigenvalue. However, for the five-point geodesic bulk diagram, the

Z ′ dependence in F enters via a product of a bulk-to-boundary propagator and a factor of

ξ(Z,Z ′)∆, such that F in (2.32) is not an eigenfunction of the conformal Casimir. (This

in turn is the reason the holographic dual is a sum over geodesic bulk diagrams, rather

than a single geodesic bulk diagram — the combination of geodesic bulk diagrams turns

out to be an eigenfunction even though no individual diagram is one.) Using the chain rule

and (2.29)–(2.31), we obtain instead (suppressing the arguments of F )(
L(Z′)

)2
F∆L,∆C ,∆R

= m2
∆C+∆R

F∆L,∆C ,∆R
− 4∆C(∆C + 1)F∆L,∆C+2,∆R

− 4∆C∆RF∆L−1,∆C+1,∆R+1 . (2.35)
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From this we obtain the action of the conformal Casimir on the generic geodesic inte-

gral (2.13):

(
L(1) + L(2) + L(3)

)2

O1

O2

O3

O4

O5

∆L ∆R

∆C

= m2
∆C+∆R

O1

O2

O3

O4

O5

∆L ∆R

∆C

− 4∆C(∆C + 1)

O1

O2

O3

O4

O5

∆L ∆R

∆C + 2

− 4∆C∆R

O1

O2

O3

O4

O5

∆L − 1 ∆R + 1

∆C + 1

. (2.36)

We are now ready to evaluate the action of the conformal Casimir on the “geodesic bulk

diagram” W∆a,∆b
(xi) in (2.12). Our claim is that the weighted sum over geodesic dia-

grams (2.12) is in fact an eigenfunction of the Casimir with eigenvalue C2(∆b) = m2
∆b

as

we now demonstrate. Acting with the quadratic Casimir as shown in the left hand side

of (2.24) and using (2.36), we obtain, analogous to (2.36), a combination of three terms,

each of which is a double-sum over dummy integers k1, k2. By a few simple integer shifts of

the dummy variables, we can bring each term to the same geodesic integral form, producing,

(
L(1) + L(2) + L(3)

)2
∞∑

k1,k2=0

ck1,k2

O1

O2

O3

O4

O5

∆3a,b

−k1 + k2

∆3b,a

+k1 − k2

∆ab,3 + k1 + k2

=

∞∑
k1,k2=0̃

ck1,k2

O1

O2

O3

O4

O5

∆3a,b

−k1 + k2

∆3b,a

+k1 − k2

∆ab,3 + k1 + k2

,

(2.37)

where we have

c̃k1,k2 ≡
(
m2

∆b+2k1
ck1,k2 − 4(∆ab,3 + k1 + k2 − 2)(∆ab,3 + k1 + k2 − 1) ck1−1,k2−1

− 4(∆b3,a + k1 − k2 − 1)(∆ab,3 + k1 + k2 − 1) ck1−1,k2

)
. (2.38)

So to prove (2.24) all that remains to be shown is that

c̃k1,k2

!
= m2

∆b
ck1,k2 ∀ k1, k2 = 0, 1, 2, . . . . (2.39)
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Substituting the ck1,k2 coefficients from (2.14) in the combination c̃k1,k2 − m2
∆b
ck1,k2 , we

find that the demonstration of (2.39) hinges on showing the following non-trivial identity

between hypergeometric 3F2 functions:

E(D −B) 3F2

[
A+1, B, C
D+1, E ; 1

]
+B(E − C) 3F2

[
A+1, B+1, C
D+1, E+1 ; 1

]
−DE 3F2

[
A, B, C
D, E ; 1

]
!

= 0,

(2.40)

where

A = −k1 B = −k2 C = ∆ab3, − n/2
D = −k1 + ∆a3,b E = −k2 + ∆b3,a . (2.41)

Indeed with the help of hypergeometric identities [46]

DE(D+1)
(

3F2

[
A, B, C
D, E ;z

]
−3F2

[
A+1, B, C
D+1, E ;z

])
+zBC(D−A)3F2

[
A+1, B+1, C+1

D+2, E+1 ;z
]

= 0 ,

(2.42)

and [47, eq. 3.7.14]

E3F2

[
A, B, C
D, E ;1

]
−(E−A)3F2

[
A, B+1, C+1
D+1, E+1 ;1

]
−A(D−B)(D−C)

D(D+1) 3F2

[
A+1, B+1, C+1

D+2, E+1 ;1
]

= 0 ,

(2.43)

we conclude that the left hand side of (2.40) vanishes identically.

This completes the proof of (2.6), that the geodesic bulk diagram (2.12) (and thus (2.3))

is proportional to the five-point global conformal block with external scalars.

3 Discussion

In this paper, we have proposed the holographic object which computes the global five-

point conformal block (for external scalar operators) in any spacetime dimension. It is given

by a sum over geodesic bulk diagrams as described in (2.3)–(2.5) (equivalently by (2.12)–

(2.14)). Explicit expressions for the global five-point conformal block are already known in

the literature, obtained via the monodromy method [20] and the shadow formalism [42], so

it is natural to ask how our results line up against previous results. While we have provided

conclusive proof by Casimir equation that our proposed five-point geodesic bulk diagram

is the holographic object which computes the precise block (as explained in (2.6)), we

haven’t attempted an explicit match of our results against those of refs. [20, 42]. However,

we expect them to agree. We do note that the coefficients (2.4) appearing in the geodesic

diagram (2.3) look curiously similar to the analytic expression for the five-point global

conformal block in arbitrary dimension computed in ref. [42], and in fact, a factor of the

hypergeometric 3F2 function with similar arguments appears in both places. Moreover,

we have performed numerical checks for n = 1, 2 to confirm that the holographic dual of

the conformal block proposed in this paper does indeed reproduce the low dimensional

five-point conformal blocks of ref. [42] to the numerical precision of choice.8

8We note that in ref. [42], what we call a conformal partial wave is referred to as a conformal block, and

what we call a conformal block is referred to as a bare conformal block.
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It would be interesting to generalize the geodesic bulk diagram of this paper to the

setting of blocks with external spins and symmetric-traceless exchanges in the intermedi-

ate channels, as has been possible for the case of the four-point block [1–4, 8, 9], as well

as extend the methods of this paper to obtain holographic duals of higher-point blocks.

For six-point blocks and higher, conformal blocks exist in multiple independent channels.

Ref. [42] computed arbitrary-point global conformal blocks in the comb channel in dimen-

sions n = 1, 2, and they were found to be expressible in terms of generalized hypergeometric

functions. The method presented here, however, does not rely on simplifications associated

with low dimensional CFTs. Thus a natural next step is to leverage the strengths of this

method to obtain higher-point geodesic bulk diagrams in the comb channel in arbitrary

dimensions, as well as global conformal blocks in other channels, which have remained in-

accessible so far. The higher-point geodesic bulk diagrams may also be useful in the setup

of a potentially higher-point conformal bootstrap [42, 48–53]. It would also be interesting

to investigate the connection between the higher-point geodesic bulk diagrams, such as

the one presented in this paper, and the holographic interpretation of higher-point large-c

conformal blocks in AdS3/CFT2 as Steiner trees [24].

The construction of the holographic dual of the five-point block relied on the knowl-

edge of a novel propagator identity — one involving a bulk integral over a product of

two bulk-to-bulk propagators and a bulk-to-boundary propagator [27]. This identity (and

its generalizations) further enables the conformal block decomposition of five-point bulk

diagrams, as well as the direct evaluation of various AdS one-loop diagrams in position

space [27]. It would be interesting to see how these propagator identities supplement the

discussion of higher-loop diagrammatics in AdS [54–63].

As demonstrated in section 1, the p-adic formulation was particularly useful in inform-

ing the discussion of the hitherto unknown five-point geodesic diagram over reals, and we

expect this to continue to hold true for higher-point geodesic diagrams as well [27]. In

fact, the lack of descendants in p-adic CFTs is the main simplification which allowed us

to do the p-adic computations fairly easily and grants the p-adic framework its practical

utility as a powerful computational device. As commonly witnessed in p-adic holography

(and seen above in the context of the five-point conformal partial wave), the p-adic answers

essentially capture the information regarding the leading primary contribution in the real

framework; the derivative contribution can in principle be subsequently fixed from confor-

mal symmetry. We hope to apply the unique power of the p-adic setup to other settings

in the future.
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A Propagator identities

Two propagator identities mentioned in section 1 are [1]:

K̂∆1(x1, z)K̂∆2(x2, z) =
∞∑
k=0

2

β∞(2∆1 + 2k, 2∆2 + 2k)

(−1)k

k!

(∆1)k(∆2)k
(2∆12, + k − n/2)k

×
∫
w∈γ12

K̂∆1(x1, w)K̂∆2(x2, w)Ĝ2∆12,+2k(z, w)

=
2

β∞(2∆1, 2∆2)

∫
w∈γ12

K̂∆1(x1, w)K̂∆2(x2, w)

(
ξ(z, w)

2

)2∆12,

,

(A.1)

where we made use of (2.11) to obtain the final equality, and∫
z∈AdS

Ĝ∆a(a, z)Ĝ∆b
(b, z) =

1
N∆b

Ĝ∆a(a, b)− 1
N∆a

Ĝ∆b
(a, b)

m2
∆a
−m2

∆b

, (A.2)

where N∆ was defined in (2.7).

A useful, new propagator identity we made use of in section 2.1 is:∫
w∈γ12

K̂∆1(x1, w)K̂∆2(x2, w)Ĝ∆a(z, w) =
1

2
β∞(2∆a1,2, 2∆a2,1)

∞∑
k=0

(∆a1,2)k(∆a2,1)k
k!(∆a − n/2 + 1)k

×
K̂∆a1,2+k(x1, z)K̂∆a2,1+k(x2, z)

(x2
12)∆12,a−k , (A.3)

where the bulk geodesic γ12 joins boundary points x1, x2 ∈ ∂AdSn+1, z ∈AdSn+1. To prove

this, we just need to show that∫
w∈γ12

K̂∆1(x1,w)K̂∆2(x2,w)

(
ξ(z,w)

2

)∆0

=
1

2
β∞(2∆01,2,2∆02,1)

K̂∆01,2(x1,z)K̂∆02,1(x2,z)

(x2
12)∆12,0

,

(A.4)

since setting ∆0 = ∆a + 2k, multiplying the left- and right-hand sides of (A.4) by a factor

of 1
k!

(∆a)2k

(∆a−n/2+1)k
, and summing over all k, we recover (A.3). Moreover, we note that (A.4)

is more general than (A.1); thus proving (A.4) indirectly furnishes a proof for the inverse

relation (2.11) for arbitrary n.

To prove (A.4), use conformal transformations to put x1, x2, z on a common hyperbolic

plane (s.t. z = (uz, xz) ∈ H2 with x1, x2 located on ∂H2). Using the parameter θ ∈ [0, π] to

describe the location on the semi-circular geodesic joining x1 and x2, the integral reduces

to (assuming x1 > x2),

u∆0
z

(x2
12)∆12,0

∫ π

0

dθ

sin θ

1

(tan θ
2)∆1(cot θ2)∆2

(
sin θ

λ1 + λ2 cos θ

)∆0

(A.5)

with λ1 = 2u2
z + 1

2(x2
12 + (x1z + x2z)

2) and λ2 = (x1z + x2z)x12, which can be readily

evaluated to give the right-hand side of (A.4).
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