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ABSTRACT: We use entanglement entropy to define a central charge associated to a two-
dimensional defect or boundary in a conformal field theory (CFT). We present holographic
calculations of this central charge for several maximally supersymmetric CFTs dual to
eleven-dimensional supergravity in Anti-de Sitter space, namely the M5-brane theory with
a Wilson surface defect and three-dimensional CF'Ts related to the M2-brane theory with a
boundary. Our results for the central charge depend on a partition of N M2-branes ending
on M Mb5-branes. For the Wilson surface, the partition specifies a representation of the
gauge algebra, and we write our result for the central charge in a compact form in terms of
the algebra’s Weyl vector and the representation’s highest weight vector. We explore how
the central charge scales with N and M for some examples of partitions. In general the
central charge does not scale as M? or N3/2, the number of degrees of freedom of the M5-
or M2-brane theory at large M or N, respectively.
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1 Introduction

M-theory is currently the leading candidate for an ultra-violet (UV) complete theory of
quantum gravity. M-theory is defined as the (presumably unique) UV completion of 11d
supergravity (SUGRA), which is a remarkably simple theory [1, 2]: the only bosonic fields
are the metric and a three-form, C3. The stable BPS solitons of 11d SUGRA include M2-
and M5-branes charged under Cj electrically and magnetically, respectively. A complete
formulation of M-theory will necessarily entail understanding these M-branes and other
non-perturbative objects of 11d SUGRA more fully.

In a fashion similar to strings ending on D-branes or D-branes ending on other
D-branes [3], M2-branes can end on M2- or M5-branes, and M5-branes can end on other
M5-branes. When the distance between two parallel D-branes shrinks to zero, the strings
stretched between them become massless point particles and give rise to non-Abelian gauge



multiplets. The low-energy worldvolume theory of multiple coincident D-branes is thus a
maximally supersymmetric (SUSY) non-Abelian gauge theory [4]. However, when paral-
lel M2- or M5-branes become coincident, the M2- or Mb5-branes stretched between them
that become massless are extended objects, not point particles — making the low-energy
worldvolume theory more challenging to identify.

For M2-branes the low-energy theory turns out to be a conventional quantum field
theory (QFT), and in fact a conformal field theory (CFT): the low-energy theory of N
coincident M2-branes at a C*/Z;, singularity is a 3d N' = 6 SUSY U(N); x U(N)_y
Chern-Simons-matter theory, called the Aharony-Bergman-Jafferis-Maldacena (ABJM)
theory [5-9]. When the Chern-Simons level k& = 1 or 2 the SUSY is enhanced to N = 8.
When N > k® ABJM is holographically dual to 11d SUGRA on AdS; x S7 [10]. The CFT
and holographic descriptions have provided a wealth of information about M2-branes. For
example, at large N the number of worldvolume degrees of freedom scales as N3/2 [11, 12].

For M coincident M5-branes the low-energy worldvolume theory is less well-understood.
The 11d SUGRA soliton solution for M5-branes indicates that the worldvolume theory has
6d N = (2,0) SUSY and that the worldvolume fields should consist of five scalars, a chiral
two-form Ag, and their fermionic superpartners filling out a tensor multiplet [13]. The fields
in the tensor multiplet arise as Goldstone modes: the scalars from breaking translations in
the five normal directions, As from breaking the symmetry of shifting C3 by the exterior
derivative of a two-form, and the fermions from breaking half the SUSY. The N = (2,0)
SUSY has SO(5)r R-symmetry, which acts to rotate the five transverse directions, hence
the five scalars transform as a vector of SO(5) g. The existence of the chiral Ay in the tensor
multiplet means that the three-form field strength, F3 = dAs, is self-dual on the M5-brane
worldvolume, i.e. F3 = xgqF3. Furthermore the tensor multiplet fields are believed to be
valued in a worldvolume u(M) gauge algebra [3]. We will henceforth ignore the overall
u(1) C u(M) representing the center-of-mass motion of the coincident M5-branes.

The existence of As is also intuitive because an M2-brane ending on an Mb5-brane
produces in the M5-brane worldvolume a 2d 1/2-BPS soliton, i.e. a string, which naturally
couples to Ay [14]. Moreover, F3 = xgqF3 implies that this string has equal electric and
magnetic charges, and hence is called a “self-dual string.” When the distance between two
parallel M5-branes goes to zero and hence the M2-branes stretched between them become
massless, the result should be a 6d theory of massless self-dual strings [3].

Since strings are extended objects, such a perspective suggests that the M5-brane
theory might be non-local. However, compelling evidence has accumulated that in fact
the Mb5-brane theory is not only local, but is a conventional CFT. In particular, when
M — oo the 11d SUGRA soliton solution for M5-branes has a near-horizon AdS; x S%
geometry in the decoupling limit, suggesting that 11d SUGRA on AdS; x S* should be
holographically dual to the M5-brane theory [10]. The AdS; factor indicates that all 6d
field theory observables computed holographically are consistent with those of a local CF'T.
Additionally, non-trivial solutions to 6d conformal bootstrap equations have been found
that are consistent with A" = (2,0) SUSY and locality [15].

From the perspective of conventional, perturbative QF T, the existence of any unitary,
interacting QFT in d > 4 is surprising, since power counting rules out any local Lagrangian.



Two additional challenges arise in writing a local Lagrangian for the M5-brane theory.
First, imposing self-duality at the level of the Lagrangian in any dimension is difficult.
Second, generalizing u(M) gauge transformations to a higher-form gauge field, such as the
two-form As, is challenging. Remarkably, for the Abelian case, M = 1, a classical action for
the M5-brane worldvolume fields that has u(1) gauge invariance, N’ = (2, 0) superconformal
symmetry, and locality, as well as 6d self-duality of F3 enforced by auxiliary scalar field
(acting as a Lagrange multiplier), is known [16, 17]. However, whether a classical action
can be written for M > 1 remains unknown.

Despite the challenges, the Mb-brane theory is extremely important to study, not
only because Mb5-branes are key ingredients of M-theory, but also because the M5-brane
worldvolume theory holds a uniquely privileged place among QFTs. In 6d, N = (2,0)
is the maximal amount of SUSY possible, and 6d is the maximal dimension in which
superconformal symmetry is possible [18]. A 6d N' = (2,0) SUSY CFT cannot be reached
as the infra-red (IR) fixed point of a local renormalization group (RG) flow from a free
UV fixed point. The Mb-brane theory has no known dimensionless parameters besides
M that could be tuned to allow a perturbative expansion. In short, the dimensionality,
symmetries, and M determine the Mb5-brane theory completely. The Mb-brane theory is
thus an isolated, intrinsically strongly-interacting fixed point. Via compactification the
Mb5-brane theory can describe many lower-dimensional SUSY QFTs and dualities among
them, and could potentially be a “master theory” containing information about all lower-
dimensional QFTs.

In this paper, we will use holography to study the M5-brane theory with a 2d conformal
defect as well as 3d CFTs with boundaries (BCFTs) related to the ABJM BCFT, using
the following 1/4-BPS intersection of M-branes:

Lo | X1 | L2 | X3 | L4 | X5 | L | X7 | L8 | X9 | L10
N | M2 | X|X|X
M| M| X | X XX | X | X
M | My || X | X XX | X | X

Schematically, this table represents a stack of N coincident M2-branes, a stack of M
coincident M5-branes, and another stack of M’ coincident M5-branes that we label M5’ to
distinguish them from the first stack. Most importantly, the M2-branes end on the M5-
and M5’-branes at x5 = 0.

Consider first setting M’ = 0, that is, the intersection of N M2-branes ending on M
M5-branes, with no M5’-branes. Recall that the endpoint of a semi-infinite string ending
on a D-brane gives rise to an infinitely massive (s)quark in the D-brane’s worldvolume.
Integrating out the heavy (s)quark yields a Wilson line, i.e. the holonomy of the D-brane
worldvolume gauge field along the (s)quark worldline [19, 20]. Similarly, the end of a semi-
infinite M2-brane ending on an M5-brane produces a self-dual string with infinite tension,
which can be integrated out to yield a “Wilson surface” operator [21]. In the Abelian case,
M =1, a precise form is known for the 1/2-BPS Wilson surface operator, exp (z [ A+ .. .),
with the integral over the surface spanned by the self-dual string and the ellipsis denoting



terms required by SUSY, involving the M5-branes’ worldvolume scalars, see for example
ref. [22]. In the non-Abelian case, M > 1, a precise form is unknown but is believed to
be schematically trr exp (1 [ Ay + .. .), with the trace in representation R of su(M). The
representation R describes how the N M2-branes are partitioned among the M Mb-branes,
as we discuss in detail below.

We will consider only flat Wilson surfaces, i.e. Wilson surfaces extended along the
RY! spanned by zy and z1. From the M5-brane theory’s perspective the Wilson surface
is a 1/2-BPS 2d superconformal soliton. The M5-brane theory’s bosonic symmetry is
SO(6,2) x SO(5)r, where SO(6,2) is the 6d conformal group. The table above shows that
the Wilson surface preserves an SO(2,2) x SO(4)r x SO(4)r subgroup, where the global
2d conformal group SO(2,2) C SO(6,2) leaves invariant the Wilson surface, and the first
SO(4) R rotates (x3, x4, x5, x¢) while the second rotates (z7,xs, g, z19). The R subscripts
indicate that these act as R-symmetries on the supercharges preserved by the Wilson
surface, forming a 2d “large” N = (4,4) SUSY (“small” N’ = (4,4) has a single SO(4)R).

We will compute a central charge associated with the Wilson surface using holography.
The holographic description’s geometry is an AdS3 and two S®’s fibered over a Riemann
surface [23-26] and hence has the expected isometry SO(2,2) x SO(4)r x SO(4)r. The
holographic description represents a large M limit with arbitrary N. The geometry is
asymptotically locally AdS7 x S§* for all N, and becomes precisely AdS; x S* when N = 0.

As is well-known, 2d large N' = (4,4) super-groups actually come in a one-parameter
family called D(2,1;7) x D(2,1;7), where v is the free parameter [27, 28]. The most
general solutions of 11d SUGRA that have super-isometry D(2,1;7) x D(2,1;) and locally
asymptote to AdS7; x S* are known [26]. The bosonic subgroup of D(2,1;v) x D(2,1;7)
is SO(2,2) x SO(4) x SO(4), and hence these solutions all involve an AdS3 and two S%’s
fibered over a Riemann surface [29]. The solutions describing Wilson surfaces in the M5-
brane theory at large M and arbitrary N have v = —1/2.

Additionally, the most general solutions of 11d SUGRA with super-isometry
D(2,1;7) x D(2,1;7) are known that locally asymptote to “half” of AdS; x S7, in a
sense we explain below [26]. These solutions are holographically dual to 3d maximally
SUSY BCFTs. The exact BCFTs are not yet known, though some properties are clear
from the 11d SUGRA solutions. In particular, in these solutions generically both M and
M’ are non-zero. The solutions thus describe M2-branes ending on M5- and M5’-branes,
and hence the BCFTs must be cousins of the maximally SUSY ABJM BCFT.! Presumably
these BCFTs are obtained from the ABJM BCFET by couplings to 2d SUSY multiplets at
the boundary, and/or by sources or expectation values of scalar operators away from the
boundary, similar to the superconformal interfaces between ABJM theories in refs. [30, 31].
We will henceforth refer to these theories as “cousins of the ABJM BCFT.”

For k =1 or 2, ABJM’s bosonic symmetry is enhanced to SO(3,2) x SO(8)r, where
SO(3,2) is the 3d conformal group, and in the intersection above the SO(8)r acts on
(x3,...,210). Maximally superconformal boundary conditions at zo = 0 preserve the

1Solutions of 11d SUGRA that are candidates for the holographic dual of the maximally SUSY ABJM
BCFT appear in ref. [26], but have potentially dangerous singularities.



SO(2,2) € SO(3,2) that leaves the boundary invariant, and SO(4)g x SO(4)r C SO(8)r
R-symmetry. The maximally SUSY ABJM BCFT’s bosonic symmetry is thus SO(2,2) x
SO(4)r x SO(4) R, and the super-group of the theory is D(2,1;v) x D(2,1;v) with v = 1.
The cousins of the maximally SUSY ABJM BCFT that we will study have arbitrary v < 0,
and their holographic duals again involve an AdS3 and two S®’s fibered over a Riemann
surface [26]. These solutions correspond to a limit with large N and a large number of M5-
and M5'-branes. However the values of M and M’ are in fact undetermined, intuitively
because the M2-branes do not “know” how many M5- and M5’-branes have zero M2-
branes ending on them, and so cannot know the total numbers of M5- and M5’-branes.
Additionally, sending both M and M’ to zero produces a singular solution, presumably
because removing a BCFT’s boundary is a singular operation.

Using these 11d SUGRA solutions, we will compute a central charge associated with
the Wilson surface or 3d BCFT boundary. Crucially, the Wilson surface or 2d boundary is
not a 2d CF'T, but a 2d defect in, or boundary of, an ambient CFT that has d > 2, which
implies in general that the full Virasoro symmetry is not present. To be more precise, the
Wilson surface or boundary breaks the ambient SO(6,2) or SO(3,2) conformal symmetry
down to SO(2,2), i.e. the global part of the Virasoro symmetry, in which the usual central
charge does not appear. We must therefore define a central charge some other way.

We will use entanglement entropy (EE). Following refs. [32-34], we will compute
holographically the EE of a spherical region centered on the 2d defect or of a semi-circle
centered on the 2d boundary. This EE has UV divergences, as expected, so we introduce a
UV cutoff and subtract the EE of the ambient CF'T. What remains is a term logarithmic
in the cutoff, a constant term, and terms that vanish as the cutoff is removed. In analogy
with the EE of a single interval in a 2d CFT [35, 36], we identify the coefficient of that
logarithmic term as 1/3 times the central charge. In short, we compute the change in
the coefficient of the EE’s logarithmic term due to the 2d defect or boundary, and use
the result to define a central charge. We will denote the resulting Wilson surface or 2d
boundary central charge as bgg or bsq, respectively. Again in analogy with 2d CFT, we will
interpret these as counting massless degrees of freedom supported on the Wilson surface or
2d boundary.? Whether and how these central charges defined from EE are related to other
potential definitions, for example via the thermodynamic entropy, stress tensor correlators,
and so on, we leave as an important open question.

Our main result, for bgg, takes a remarkably simple form,

ba =2 160\, 0) — (A V)], (11)

where A is the highest weight vector of the Wilson surface’s representation R, ¢ is the
su(M) Weyl vector, and (-, -) is defined with the Killing form on the weight space. The

2In a 3d BCFT the boundary central charge defined from EE is proportional to a central charge that
appears in the trace anomaly [37, 38] and obeys a c-theorem, strictly decreasing in a boundary RG flow [39].
Our b3q thus counts massless degrees of freedom at the 2d boundary. However, a similar interpretation of
beq may not always be justified. In particular, examples of defects in higher-d CFTs are known in which
central charges defined from EE do not decrease along defect RG flows [40-42]. These examples include
certain RG flows on a Wilson surface in a totally symmetric representation R [43].



inner product (-, -) is invariant under the action of the Weyl group, hence so is bgg. In
particular, bgg is invariant under complex conjugation of a representation, R — R, which
acts as a Weyl reflection. Eq. (1.1) is also reminiscent of the results for the M5-brane
theory’s own central charges, a and ¢, which can similarly be written in terms of purely
group theoretic data [44, 45]. However, eq. (1.1) obscures bgy’s dependence on N and M.
In section 4 we present bgg for some specific R, such as the rank N totally symmetric and
anti-symmetric representations, to explore the dependence on N and M. Our results for
b3y cannot be written so neatly as eq. (1.1), largely because we do not know the total
number of M5- and M5'-branes and thus do not know su(M) or su(M’).

However, a key observation about our results for both bgg and bsq is that neither natu-
rally scales as IV 3/2_ characteristic of M2-branes at large N [11, 12], or as M3, characteristic
of M5-branes at large M (a oc ¢ o M3 at large M) [46-48]. In other words, in general for
the M-brane intersections we consider, the number of massless degrees of freedom on the
Wilson surface or 2d boundary does not scale, in any obvious way, with the total number
of degrees of freedom of the M2- or M5-brane theory.

This paper is organized as follows. In section 2 we review the 11d SUGRA solutions
describing M5-branes with Wilson surfaces or cousins of the ABJM BCFT with v < 0. In
section 3 we derive an integral for the holographic EE, and then evaluate the integral to
extract bgg and bsg. In section 4 we summarize our results, including for specific R, and
compare to existing results. (Readers interested only in our results can skip directly to
section 4.) We conclude in sec 5 with discussion and suggestions for future research.

The companion paper ref. [43] reproduces our results for bgg for the fundamental,
totally anti-symmetric, and totally symmetric representations, using probe branes in
AdS7 x S%, namely a probe M2-brane when N < M or M5-brane when N < M?2. Ref. [43]
also uses the probe Mb-branes to explore RG flows on Wilson surfaces.

Note added. After this paper appeared on the arxiv, ref. [49] clarified how our central
charge b obtained from the EE of a (hemi-)sphere is related to central charges in the defect’s
contribution to the Weyl anomaly. This clarifies the relationship between unitarity and
positivity of b discussed in section 4.1, among other things.

For a CFT in RM~1 with d > 3 and a 2d conformal defect, the trace of the stress
tensor splits into two terms, (T%) = (T} + 0% 2(2) (TH) qosect
CFT’s trace anomaly, which is 0 for odd d but may be non-zero for even d, §%2(x) is a
delta function that localizes to the 2d defect, and [50-52]

where (T",)p,x 1S the

1 > ~ ~
<T;L>dcfcct = _% <CR + dl HZbHZb - d2 gacgdeade) ) (12)

where g4 is the defect’s induced metric (a,b = 0, 1), R is the Ricci scalar built from Jabs
H;’“b is the defect’s traceless extrinsic curvature, Wy.q is the Weyl tensor pulled back to the
defect, and the dimensionless numbers ¢, di, and dy are the defect central charges. In a
3d BCFT the boundary’s contribution to the trace anomaly has the form of eq. (1.2), but
Wapbea = 0 identically, so do does not exist. All of ¢, di, and dy can depend on boundary
conditions imposed on CFT fields at the defect or boundary and on degrees of freedom



supported only at the defect or boundary. Indeed, ¢ obeys a c-theorem [39], and may thus
serve as a measure of the number of massless degrees of freedom at the defect or boundary.
However, unlike a 2d CFT’s central charge, unitarity does not require ¢ > 0, and in fact
even simple, unitary theories can have ¢ < 0, such as a 3d free, massless scalar BCFT with
Dirichlet boundary conditions [39, 53, 54]. Whether a lower bound exists on ¢ remains
unknown, though for 3d BCFTs ¢ > —%dl is conjectured [55], where unitarity requires
dy > 0 [55, 56]. Ref. [49] showed that if the average null energy condition is valid in a CFT
with a 2d conformal defect, then dy > 0 also.
Refs. [42, 49] showed that

b=c— d2. (1.3)

d—1
For d = 3, as is the case for the cousins of ABJM, this reproduces the result b = ¢ [37, 38].
For d > 3, eq. (1.3) implies that b may be negative even when ¢ and dy are both positive.
Indeed, for Wilson surfaces in the M5-brane theory, ref. [49] used eq. (1.3), our result for
bgq in eq. (1.1), and the result of ref. [34] for dy to calculate

c=24(\0) +3(\ ), dy =24(X,0)+6(\A), (1.4)

both of which are positive for any R. However, the linear combination b in eq. (1.3) can
be negative for some R, as we discuss in section 4.1. These results show that b < 0 does
not signal violation of unitarity.

2 Review: the SUGRA solutions

The solutions of 11d SUGRA in ref. [26] that holographically describe Wilson surfaces or
cousins of the ABJM BCFT (and which built upon the solutions in refs. [23-25]) are 1/2-
BPS, meaning they support 16 real supercharges, and have super-isometry D(2,1;7) X
D(2,1;v) with v € R. The super-group D(2,1;v) x D(2,1;v) has bosonic subgroup
SO(2,1) x SO(3) x SO(3), where the super-charges anti-commute into a linear combination
of the generators of these three bosonic factors. The parameter v determines the relative
weights of the coefficients in that linear combination. The super-group D(2,1;v)xD(2,1;7)
is invariant under the simultaneous operations 7 — 1/v and swapping the two SO(3)’s.
Without loss of generality we can thus restrict to v € [—1, 1], and in fact all the solutions
we consider below will have v € (—1,0). These symmetries of the 11d SUGRA solutions
match those of 2d large N' = (4,4) SUSY, which admits exactly the same one-parameter
family of Lie super-groups [27, 28].3 We leave the full details of these 11d SUGRA solutions
to refs. [23-26], and here review only features that we will need in subsequent sections. In
particular, we will consider the solutions of refs. [24, 26], using the conventions of ref. [26].4

The SO(2,2) x SO(4) x SO(4) isometry implies that the metric involves AdS3 and two
S3’s fibered over a Riemann surface, which we take to be the upper half plane,

ds® = ff dsigs, + [3 dsgs + f3 dsgs + 207 |dw|?, (2.1)

3Ref. [27] classifies and constructs the Virasoro extension of the super-group.
4To clarify, ref. [23] constructed solutions for three special values of v, ref. [25] constructed the solutions
for general ~, and refs. [24, 26] identified the specific solutions we consider in this paper.



where w and w are the coordinates of the upper half plane (so Im(w) > 0). The functions
f1, f2, f3, and Q depend only on w and w. We denote by dsfq3 the metric for a unit-radius
round S° and al52AdS3 the metric for a unit-radius AdSs, that is,

1
dskas, = 3 <du2 At dxﬁ) , (2.2)

where u € [0, 00), with AdS3 boundary at u =0, ¢ € (—00, ) is the time coordinate, and
|| € (—00,00) is the spatial coordinate parallel to the Wilson surface or 2d boundary.

The solutions in ref. [26] that we will use are completely determined by a triple of data
(h,G,~), where h is a harmonic function over the upper half plane, and G is a complex-
valued function that obeys

1 _
0wG = §(G + G)OyInh, (2.3)

although G is not completely determined by h. If we define the complex-valued functions
Wi =|G+i*>+ (GG - 1), W_=|G—-i*+~ GG - 1), (2.4)

where v is the constant parametrizing the supergroup, then in these solutions fi, fa, f3,
and () are given by

h2W, W h2(GG —1)W_ W2(GG — )W

6 + 6 6 +

_ W _ _ 25

h=Gee-e P~ —agaw ~» =gz - @
1|0wh|® —

00 == —1 _. 2.
g (0T W (2.5b)

The parameters c1, c2, and c3 are constants that obey c¢; + co 4+ ¢c3 = 0, so that only two
are independent. In fact, a simultaneous re-scaling of c¢1, ¢, and c3 can be absorbed by
re-scaling h without changing the solution, so only a single constant is independent. That
single constant must map to : the precise relation is v = ¢3/c3. As mentioned above, the
solutions that we will consider have v € (—1,0).

When v < 0, global regularity of these solutions requires that h and G obey h > 0
and |G| < 1 everywhere on the interior of the upper half w plane (all Im (w) > 0) and
that h = 0 and G = +i on the boundary of the upper half w plane (Im (w) = 0). All the
solutions that we consider below will obey these conditions.

The four-form F; = dCj5 of these solutions appears in ref. [26]. We will not present the
solution for Fj explicitly, but in section 2.3 we will discuss the M2- and M5-brane charges
determined by the solution for Fj.

The invariance of D(2,1;7) x D(2,1;~) under v — 1/ and swapping of SO(3) sub-
groups appears in these 11d SUGRA solutions as invariance under v — 1/ and exchange
of Wy <» W_. As clear from eq. (2.5), that leaves f; and 2 invariant but trades fa <> f3,
thus effectively interchanging the geometry’s two S® factors.



2.1 Asymptotically locally AdS7; x S* solutions

The 11d SUGRA solutions holographically describing Wilson surfaces in the Mb-brane
theory at large M are of the form in eq. (2.1) with

2n+2

h=—i(w-—w), G=—i 1+Z

=11 (2
where the integer n > 0 and the &; are 2n +2 real-valued constants determining G’s branch
points on the boundary of the upper half plane. More specifically, the {; are points on the
real line Im(w) = 0 where G changes sign from +i to Fi.

In general, the upper half plane is invariant under the SL(2,R) group of transforma-
tions, which is three-dimensional. Implicitly we fixed two SL(2,R) transformations with
our choice of h. The third transformation is translations, which we can use to fix one of
the ¢;. The remaining 2n + 1 values of the {; determine the M2- and M5-brane charges of
the solution, as we discuss in section 2.3. The solutions describing M2-branes ending on
Mb5-branes have v = —1/2, whereas v = —2 describes M2-branes ending on M5’-branes.
However the latter map to the former via v — 1/ and swapping the two S3’s, as described
above. In what follows, we will consider arbitrary v € (—1,0) in many intermediate steps
but will always set v = —1/2 in our final results.

Another form of the G in eq. (2.6) that will be useful for describing the geometry’s
asymptotics comes from using polar coordinates in the upper half plane, w = re? with
r € [0,00) and 0 € [0, 7]. If we expand G in Legendre polynomials, Py (cosf),

- " B cos 2n+42 '
» (1 N ka (e Py (cos G)Tk Py ( 9))) oy = Z 17 (&), @7
k=1

j=1
then the &; determine the expansion coefficients my,, where n is finite but k € [0, 00).

Though not immediately obvious, the solutions in eq. (2.6) are asymptotically locally
AdS7xS*. Indeed, asymptotically we can put the metric of these solutions in the Fefferman-
Graham (FG) form of AdS; x S*,

4L§4
22

1
ds® = (dz — dt? + daf + drf + (:”Hdssg> + L2, (d¢* +sin? ¢dsts) + ...,

(2.8)
where z € [0,00) is the FG holographic coordinate, with boundary at z = 0, r; € [0, 00)
is the distance to the defect, ¢ € [0, 7] is the zenith angle of the asymptotic S*, and the
ellipsis represents terms sub-leading in 1/r. The change of coordinates to FG form admits
the following asymptotic expansion,

()
(o(2)
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which determines the radius of curvature Lgs of the asymptotic S*,

1 (1+7)"
6 __ 2
L = PR mi.

(2.10)

The factor (1+7)? /42 in eq. (2.8) indicates that for generic v the dual M5-brane theory
lives on a space with a conical singularity at r; = 0. These 11d SUGRA solutions thus
suggest that deformations of the M5-brane theory with D(2,1;v) x D(2, 1;y) super-group
are only possible, for generic 7, on spaces with such a conical singularity. Only for v = —1/2
does the singularity disappear such that the theory lives on 6d Minkowski space.

Egs. (2.8) and (2.9) show clearly that in these solutions we can approach the asymptotic
AdS7 x §* boundary in two ways. First, if we fix u and send 7 — oo then z — 0 with fixed
r| = u, which means that we arrive at the boundary a distance u from the defect. Second,
if we fix r and send u — 0, then z — 0 but now r; — 0, and so we arrive at the boundary
precisely on the defect. Recall from eq. (2.2) that u — 0 is the boundary of the AdS3 factor.

The AdS; x S* solution is simply the ¥ = —1/2 and n = 0 case, which has two branch
points. Using the SL(2,R) translational symmetry we place these two branch points on
the real line Im(w) = 0 symmetrically, at Re(w) = £¢, such that the solution has only
one free parameter, £. In this case, in eq. (2.9) the higher-order powers of 1/r vanish, and
hence the ellipsis in eq. (2.8) vanishes. We will see below that ¢ determines m; = 2¢ and
hence Lga, the single free parameter of the AdS; x S* solution. The cases with v = —1/2
and n > 0 then describe Wilson surfaces in the M5-brane theory.

2.2 Asymptotically locally AdS, x S7 solutions

The 11d SUGRA solutions holographically describing cousins of the ABJM BCFT with
v < 0 are of the form in eq. (2.1) with

2n+1

h=—i(w-1w), ——zz "Iw” 2’ (2.11)

where the integer n > 0 and the &; are 2n +1 real-valued constants determining G’s branch
points on the boundary of the upper half plane, i.e. on the real line Im(w) = 0. As in
section 2.1, we have implicitly fixed two SL(2,R) transformations of the upper half plane
with our choice of h, and we can use translation symmetry to fix one of the §;. The
remaining 2n values of the §; then determine the solutions’ M2- and M5-brane charges, as
we discuss in section 2.3. We will consider solutions with v € (—1,0).

As in section 2.1, we can obtain another form of the G in eq. (2.11) that will be useful
for describing the asymptotics by introducing w = re? with » € [0,00) and 6 € [0, ).
Expanding G in Legendre polynomials then gives

% 2n+1
( ka (" Py (cos H)Tk Py (cos 9)))  omy = ZJF (—1)) (§j)k, (2.12)

j=1

where the {; determine the expansion coefficients mp.?

"We use the same symbol my, for the expansion coefficients in both eq. (2.7) and (2.12), though the
difference should always be clear from the context.
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The solutions in eq. (2.6) are in fact asymptotically locally “half” of AdS, x S7, in the
following sense. Asymptotically we can put the metric of these solutions in the FG form
of AdS, x S7,

12 (4,2 —dt?*+dz? + da?
ds? = 2197 (;2 + z2H = + L%q (dd)2 + cos? gbds%g + sin? (;Sds%g) +...,

(2.13)
where the ellipsis represents terms sub-leading in 1/7, and where the asymptotic S” radius,
Lg7, is given by

6
LS = gm(_m% —ms). (2.14)

The change of coordinates to FG form has the following asymptotic expansion,

2
z:“<1+’y\/m1+m2 +o<12>>, (2.15a)
T Nal 2 T

c-ufivo(L)) a5
¢ = g <1 +0 <r12>> : (2.15¢)

where 6 € [0, 7] implies ¢ € [0,7/2]. Eq. (2.15) shows that u € [0,00) implies the FG
holographic coordinate z € [0,00), with boundary at z = 0, but crucially z, € [0, 00).

The background geometry for the holographically dual field theory thus has coordinates
t € (-00,00), 7| € (—00,00), and z; € [0,00), i.e. half of 3d Minkowski space with a
boundary at z; = 0. In this sense, these solutions are locally asymptotic to “half” of
AdSy x S7, as advertised.

As a result, no continuous limit exists in which these solutions reduce to the exact
AdSs x S7 solution. In fact, the exact AdSy x S7 solution differs from these solutions
in several ways. For example, in these solutions the h in eq. (2.11) has a single pole at
r = o0, and v € (—1,0), whereas in the exact AdSs x S7 solution h has two poles and
v = 1. Since we cannot continuously send v — 1, the BCFTs holographically dual to our
solutions therefore appear to be cousins of, but not continuously connected to, the ABJM
BCFT. Identifying the dual BCFTs is an important question we leave for future research.

Eqgs. (2.13) and (2.15) also show that, as in section 2.1, we can approach the asymptotic
(half) AdS; x S7 boundary in two ways. First, if we fix u and send 7 — oo, then z — 0
with fixed z| = u, so that we arrive at the AdS; boundary a distance u from the BCFT’s
boundary. Second, if we fix r and send v — 0, then z — 0 but now x; — 0, and so we
arrive at the AdS4 boundary precisely on the BCFT’s 2d boundary.

2.3 Partitions and M-brane charges

The M-brane intersection of section 1 describes N coincident M2-branes ending on M
coincident M5-branes and M’ coincident M5'-branes. Such an intersection is characterized
by a partition of N describing which M5- or M5'-brane each M2-brane ends on. In this
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Figure 1. The three possible partitions p with N = 3 M2-branes and M = 4 Mb-branes. The
horizontal axis represents the x5 direction while the vertical axis represents one of the directions
(3,4, T5,26). The horizontal black lines represent M2-branes while the vertical blue lines represent
M5-branes. The Mb5-branes are ordered such that the number of M2-branes on each M5-brane
decreases from left to right. The three possible partitions are then p = {3} (left), p = {2,1}
(middle), and p = {1,1,1} (right).

p={3} p=12,1} p=1{111}

section we will briefly sketch how we extract this partition from the 11d SUGRA solutions
reviewed above, leaving the full details to ref. [26].

The asymptotically locally AdS7 x .S% solutions of section 2.1 describe M2-branes ending
only on Mb-branes, not on M5’-branes, and are fully characterized by a partition of N
M2-branes among the M Mb5-branes. The asymptotically locally AdS, x S” solutions of
section 2.2 describe M2-branes ending on both M5 and M5 -branes, but are still fully
characterized by a partition of N M2-branes among M Mb-branes. The special features
of both solutions will be discussed in more detail below. Our discussion of the partitions
will applies to both solutions, with one crucial exception: the partitions of the AdS7 x S4
solutions include cases in which some Mb-branes have no M2-branes ending on them,
whereas the AdSy x S7 solutions do not admit such partitions.

We will denote the partition as p, which we will order with entries decreasing from
left to right. To illustrate which M2-brane ends on which M5-brane, we will temporarily
imagine separating the M2-branes in one of the directions (z3, 24,5, z¢) and separating
the M5-branes in the xo direction, as shown in figures 1 and 2. Once p is specified we will
re-collapse the M2- and M5-branes back to the original intersection of coincident stacks.

We will use two parametrizations of p. In the first parametrization we label ¢, as the
number of M2-branes ending on the ¢ M5-brane and write the partition as p = {¢1, (o, ...}
with integers ¢1 > f5 > f3.... In this parametrization the total number M of Mb5-branes
is simply the upper limit of 1 < g < M, while the total number N of M2-branes is

M
N=> 4 (2.16)
q=1

We allow for some ¢, = 0, representing M5-branes with zero M2-branes ending on them.
However, when writing p = {¢1, {2, ...} we will omit all zero entries. As examples, figure 1
shows all p for the case with NV =3 and M = 4.
In the second parametrization we write the partition as
p={N1,Ni,...Ni,NyyNo,...No,....Np, Ny, ... Ny Npj1, N1, - - Npp1 b, (2.17)

~~

M, Mo My, Mp11
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Ny =1
Ny =2 Ny =1 Ny =3 Ny =10
p={2,1} p=1{3,3}
My =1 My=2 My=2 My=1
My = 1

Figure 2. Two partitions p parametrized as in eq. (2.17): p = {2,1} with M = 4 (left) and
p = {3,3} with M = 3 (right). The horizontal axis represents the x5 direction while the vertical
axis represents one of the directions (x3, x4, 5, z¢). The horizontal black lines represent M2-branes
while the vertical blue lines represent Mb5-branes. The N, are the distinct integers in p, each with
degeneracy M,. Put differently, M, is the number of M5-branes with N, M2-branes ending on them.

representing M; Mb5-branes each with N; M2-branes ending on them, My M5-branes each
with Ny M2-branes ending on them, and so on with N; > Ny > Ns.... In other words,
the N, are n distinct non-zero integers, each with degeneracy M,. The final entries in
p are Npp1 = 0, with degeneracy M,,41, representing the number of M5-branes with no
M2-branes ending on them. We thus specify p by specifying the set of integers {N,} and
the set of their degeneracies {M,}. The partition p has a total of 2n + 1 parameters, the n
distinct integers in {IV,} plus the n + 1 distinct integers in {M,}. In this parametrization
the total numbers N of M2-branes and M of M5-branes are

n+1 n+1
N=> MN,, M=) M, (2.18)
a=1 a=1

As in the first parametrization, when writing p we will omit all zero entries, that is, we
omit the entries N, ;1. As examples, figure 2 shows the sets {N,} and {M,} for p = {2,1}
with M = 4 (figure 2 left) and p = {3,3} with M = 3 (figure 2 right).

The ordered partition p determines a Young tableau, with the physical interpretation
that each box in the Young tableau represents an M2-brane and each row represents an
Mb5-brane. In the first parametrization, p = {¢1,02,¥3,...} with £; > ¢y > {3..., each {,
gives the number of boxes in the ¢ row of the Young tableau, as shown in figure 3(a). In
the second parametrization, eq. (2.17), M is the number of rows with N; boxes, Ms is the
number of rows with No < N; boxes, and so on, as shown in figure 3(b).

When the M2- and M5-branes re-collapse back to the original intersection of coincident
stacks, the gauge algebra on the M5-branes’ worldvolume is su(M) and the M2-branes’
boundary represents the Wilson surface. The partition p, or the corresponding Young
tableau, then determines the Wilson surface’s representation R of su(M). Complex conju-
gation of the representation, R — R, acts in the first parametrization as by — M — Ly
and in the second parametrization as

Ma — Mn+2—a7 Na — Ny — N2+n—a~ (219)
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Figure 3. Extracting the same Young tableau from our two different parametrizations of an ordered
partition p. (a) The parametrization p = {¢1, 2, s,...} with ¢; > ly > {5 ..., where each ¢, gives
the number of boxes in the ¢*" row of the Young tableau, with 1 < ¢ < M. In the figure we assumed
all the ¢, are non-zero. (b) The parametrization of eq. (2.17), where M is the number of rows with
N7 boxes, Ms is the number of rows with Ny < Nj boxes, and so on. In physical terms, in the
Young tableau each box represents an M2-brane and each row represents an Mb5-brane.

As mentioned above, the asymptotically locally AdS; x S7 solutions are also fully
characterized by a partition p of N. Crucially, however, the partition p will have only
non-zero entries, as we explain below. In particular, in the parametrization by {N,} and
{M,} we will not have a value for M,1;. Eq. (2.18) will thus give us N but not M. Of
course, generically the M, with a < n + 1 will be non-zero, so we know M must be non-
zero, but we will not be able to fix its value. In the parametrization p = {f1, 02, ¥¢3,...}
all the ¢, will be non-zero, and the total number N will still be a sum of the ¢, as in
eq. (2.16), though the upper limit of the sum will be > | M, < M. In a similar fashion,
the asymptotically locally AdS, x S7 solutions will have M’ # 0 whose value we will not
be able to fix. Without M or M’ we will not be able to identify gauge algebras u(M) or
u(M’). The partition p will still specify a Young tableau, as described above, but without
an algebra we will not be able to identify a representation R with the Young tableau.

2.3.1 Asymptotically locally AdS7; x S§* solutions

In the asymoptotically locally AdS; x S* solutions reviewed in section 2.1, no explicit
M2- or M5-brane sources appear in the 11d SUGRA equations. However, the solutions
have non-zero flux of the 11d SUGRA 4- or 7-form wrapping closed, non-contractible 4-
or 7-cycles, respectively. Presumably the M2- and M5-branes have been replaced by these
fluxes, or “dissolved into flux,” similar to how D3-branes are replaced by five-form flux in
the AdSs x S° solution of type IIB SUGRA (i.e. how open string degrees of freedom are
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21 5‘2 &3 5.4

Figure 4. Sketch of the upper-half complex w plane for the asymptotically locally AdS; x S*
solutions with metric in eq. (2.1) with the 2 and G of eq. (2.6). We show an example in which
G has four branch points on the Re (w) axis, &1, &2, €3, £&4. The geometry has two S3’s. On the
Re (w) axis, in each red segment one of these S3’s collapses to a point while the other does not,
while in each blue segment the behavior of the two S2’s is switched. The geometry thus has three
non-contractible 4-cycles, Cy, Cf, and Ca. The 4-cycle C3 = C; + C5 can be continuously deformed
to r — 0o, and indeed, in that region becomes the S* of the asymptotically locally AdS; x S*
region. Taking the product of a non-contractible 4-cycle in which one S collapses with the 3
that does not collapse defines a non-contractible 7-cycle. Each pair of branch points thus defines a
non-contractible 4- and 7-cycle.

replaced by closed string degrees of freedom). As explained in ref. [26], from these fluxes we
can recover an ordered partition p and hence a Wilson surface representation R, as follows.

How do we identify closed, non-contractible 4- and 7-cycles in the geometry eq. (2.1)
with the h and G of eq. (2.6)7 As an example, figure 4 shows the upper-half complex w
plane for n = 1, that is, with 2n + 2 = 4 branch points on the Re (w) axis, &1, &2, &3,
&4, Figure 4 also shows that geometry’s three independent non-contractible 4-cycles, the
curves Cy, C}, and Cq, and a single, non-independent 4-cycle, Cs, obeying C3 = C; + Ca.
However, unlike the other 4-cycles, Cs can be continuously deformed to r — co.

To see why the curves Cy, €}, and Cy determine closed, non-contractible 4-cycles, recall
from section 2 that the geometry has two S3’s, and that regularity requires h = 0 and
G = =i on the Re (w) axis. At each point on the Re (w) axis one of the two S®’s collapses
to a point, while the other does not. Specifically, from egs. (2.1), (2.4), and (2.5) we see
that h = 0 and G = +i implies f» = 0 while f3 # 0, and so one S3 collapses to a point while
the other does not. Conversely, h = 0 and G = —¢ implies fy # 0 and f3 = 0 interchanging
the behavior of the two S®’s. When we cross a branch point &;, G flips sign from G = +i
to G = T4, which implies that different S3’s collapse to a point on the two sides of §. Asa
result, any curve in the upper-half complex w plane that begins on the Re (w) axis, jumps
over two branch points, and then ends on the Re (w) axis, when combined with the S that
collapses at the curve’s endpoints, forms a closed, non-contractible 4-cycle. In contrast,
a curve jumping over an odd number of branch points does not define a closed 4-cycle.
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Each closed, non-contractible 4-cycle also defines a closed, non-contractible 7-cycle: given
a 4-cycle in which one S? collapses, simply take the product with the S that does not
collapse. In short, every consecutive pair of branch points defines a closed, non-contractible
4-cycle and 7-cycle.b

As mentioned above, in figure 4 the 4-cycle C3 can be decomposed as C3 = C1 + Ca,
and can be continuously deformed to r — oco. As mentioned below eq. (2.9), fixing u
and sending r — oo takes us to the asymptotic AdS; x S* boundary a distance u from the
defect, and so we identify the 4-cycle at r — oo as the S* of the asymptotic local AdS7 x S%.

The total number of non-contractible 4-cycles in these geometries is 2n + 1, i.e. the
number of branch points minus one. The number of non-contractible cycles thus matches
the number of free parameters in the solution: as mentioned in section 2.1, we can fix one
of the 2n 4 2 branch points using translations, leaving 2n + 1 free parameters.

Integrating F; over a non-contractible 4-cycle yields a charge that we interpret as a
number of dissolved M5- or M5’-branes. We will not write the explicit form for Fy, which
appears in ref. [26], but we will need the explicit forms for these charges in terms of the
locations of branch points {;. In the upper-half complex w plane and starting from the
left-most cycle, let C,, with @ = 1,2,...,n + 1, denote the independent non-contractible
4-cycles all involving the same collapsing S3. In the n = 1 example above these are the
4-cycles C1 and Cs. Anticipating their role in a partition p, we refer to the integrals of the
4-form flux over C, as M,, i.e.

1
My=— | R, 2.20
2(472Gy)1/3 /c 4 (2:20)

with Gn the 11d Newton’s constant. For v € (—1,0), M, turns out to be proportional to
(minus) the distance between two consecutive branch points [26]:”
1 (147)° @2m)*?

M, = —— €20 — Eaa1)- 2.21
ST (€20 — &2a-1) (2.21)

We have chosen an orientation so that for positive ¢; and v € (—1,0), the M, are positive.
In the upper-half complex w plane and starting from the left-most cycle, let C;, with
b=1,2,...,n, denote the independent non-contractible 4-cycles that all involve the same
collapsing S orthogonal to the S3 that collapses in the C, cycles. In the n = 1 example
above, this is the 4-cycle C}. Since the S that collapses in the C; is orthogonal to that of
the Cq, we refer to the integral of the 4-form flux over C; as M5'-brane charge, which we
denote M;. We define M| with the same conventions as eq. (2.20). For v € (—1,0), M] also
turns out to be proportional to the distance between two consecutive branch points [26],
1 (1+~)* (2n)*?

My = o e (€ab+1 — Eab) - (2.22)

6A word of caution: in ref. [26] the notation C, refers only to a curve in the upper-half w plane, while
in this paper it refers to a 4-cycle, i.e. the curve times the S* that collapses at the curve’s endpoints.
Correspondingly, in this paper a 7-cycle will be denoted Cq x S3.

"As mentioned below eq. (2.5), these solutions are invariant under simultaneous re-scaling of ¢; and
h = —i(w — w). Re-scaling h clearly means re-scaling w and hence the branch points &;. As a result, the
charges M,, Mj, and N, in eqgs. (2.21), (2.22), and (2.26), respectively, are invariant under the re-scaling.
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Again, we have chosen the orientation so that for positive ¢; and v € (—1,0), the M are
positive. Such Mb5’-brane charge presumably arises from brane polarization, a.k.a. the
Myers effect [57]: the M2-branes source C3 in a background with non-zero Fy from the M5-
branes, so that the Wess-Zumino (WZ) term o [ C5 A Fy A Fy in the 11d SUGRA action
produces non-trivial F; flux orthogonal to that of the M5-branes, i.e. M5'-brane flux.®
The 4-cycle at » — oo identified as the S* in the asymptotically locally AdS; x S*
region can be decomposed as 22;1 Cq. Correspondingly, the 4-form flux through that cycle
determines the total number of M5-branes, M = Zz;rll M,. Using eq. (2.21), we can relate

M to the coefficient m; defined in the Legendre polynomial expansion of eq. (2.7),

n+1 1/3
GN

B v
mi =Y (0 — &a1) = —} (L) (20)* M.

(2.23)

a=1

Plugging eq. (2.23) into eq. (2.10) we thus recover the usual relation between M and the
radius Lgs of the asymptotic S%,

1(1+7)3 Gi/®
L3 =—= my = —~_— M. 2.24
FTd T o' (224

In contrast to the 4-form flux, the integrated 7-form flux, which we interpret as the
number of dissolved M2-branes, is ambiguous: due to the WZ term o« [C3 A Fy A Fy
in the 11d SUGRA action, when Fy # 0 we cannot define 7-form flux that is simulta-
neously local, conserved, quantized, and invariant under large gauge transformations of
C3 [59]. At best we can define 7-form flux that has three of these properties but not the
fourth. Following ref. [26] we will use the 7-form flux that gives the Page charge, which
is local, conserved, and quantized, but not gauge invariant. Explicitly, we will integrate
*114F4 + %Cg A Fy over a closed, non-contractible 7-cycle, where the C3 A Fj; term comes
from the WZ term, and clearly produces a M2-brane charge that is not invariant under
large gauge transformations of Cj.

With that choice, to extract a fixed value of M2-brane charge we must fix a gauge of
(3, which we do as follows. In the solutions of ref. [26], C3 can be written as a sum of
three terms, one with legs along AdSs3, and two with legs along the two S%’s, respectively.
Let C} denote the term with legs along the S3 that collapses in a 4-cycle C; but not in a
4-cycle C,. To gauge-fix, we demand that C4 = 0 when the S collapses at one endpoint
of one of the Cj.? Since the geometry has n 4-cycles C;, each with two endpoints, we have
n + 1 choices of such endpoints, namely the left end-point of each 4-cycle plus the right
endpoint of the right-most 4-cycle. For any such choice, in the solutions of ref. [26] the
M2-brane charges are ordered from smallest to largest as we move from left to right in the
upper-half complex w plane, but generically include negative values. Of the n + 1 gauge

8The presence of M5'-branes is also related to the fact that totally anti-symmetric representations can
be described by a probe M5’-brane in AdS; x S*, wrapping AdSs; € AdS7 and S* € S7 [58].

9Regularity demands that Cs vanish whenever it wraps a vanishing cycle, so our gauge choice simply
enforces regularity. However, due to the presence of M5-branes we can make Cs well defined only on a
patch. The entire geometry can be covered with n + 1 patches corresponding to n + 1 gauge choices.
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choices for C%, only one allows for the M2-brane charges to be all positive: choosing C4§ =
at the right endpoint of C/, produces all positive M2-brane charges, with the right-most
M2-brane charge vanishing. To see why, deform all the C, to lie along the real axis and
note that *114F4 vanishes along the real axis since it wraps a vanishing 7-cycle. The only
contribution then comes from the WZ contribution C3 A Fy. Since we have set C; = 0
along the cycle C,11, the WZ contribution also vanishes along this cycle.

With C5 gauge-fixed, and anticipating their role in a partition p, we denote the integrals
of 7-form flux through C, as M,N,, which we interpret as the total number of M2-branes
ending on the M5-branes associated with Cq,°

1

MyNy = ————
4(4m2GN)2/3

L W%AH. (2.25)
a X

For the solutions in ref. [26], and using eq. (2.22), N, turns out to be the sum of M5'-brane
fluxes on all 4-cycles from C), to CJ,,

1 (1+7)°@2r 43
Ny = ZMI; - 03( 72 ) ( 1)/3 (§2b+1 - £2b) ) (226)
b=a 1 GN b=a

and where the vanishing of the right-most 7-form flux implies N1 = 0.

Validity of the SUGRA approximation requires curvatures to be small compared to
the Planck scale. This requires the branch points (§2p,&2p+1) to be far apart for all b, and
therefore N, > Ng4q for all a, and also N, > 1 (recall the N, are ordered). However,
with AdS; x S* asymptotics, when the N, are of order unity the system should be well-
described by probe branes. Taking the probe limit in our results for bgy indeed reproduces
calculations using probe branes, so our results seem to apply over a wider regime than
might be expected. Similar statements about the range of validity of our results apply to
what follows (i.e. the N} in eq. (2.31)).

The total number of dissolved M2-branes is the sum of 7-form fluxes of all the C,,
N =37 MyN,. Eq. (2.26) shows that the 7-form fluxes through the non-contractible
T-cycles is fixed by 4-form fluxes, and hence are not independent parameters. The total
number of free parameters thus remains 2n + 1, though we have a choice to package some
of them as either the Ml; or the N,. In what follows we will choose the latter.

In short, egs. (2.21) and (2.26) allow us to extract the 2n + 1 free parameters of a
partition p, namely the sets of n distinct non-zero integers {N,} and the n + 1 distinct
degeneracies {M,}, from the 2n + 1 free parameters, i.e. the branch points ¢;, of the
asymptotically locally AdS; x S* solutions. We therefore identify the same partition p
determining the brane intersection, the 11d SUGRA solution, and the Wilson surface’s
representation K.

For a Wilson line in Yang-Mills theory all observables are invariant under the combined
operations of complex conjugation of the representation, R — R, and orientation reversal
of the Wilson line. We expect the same to be true for a Wilson surface in the Mb5-brane
theory. Indeed, we can demonstrate that these combined operations can be realized in

YOur M, N, in eq. (2.25) was defined as N, in ref. [26].
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these 11d SUGRA solutions by the combined operations of a gauge transformation of Cs,
which produces all negative M2-brane charges, followed by an orientation reversal of the
7-cycles, which flips the M2-brane charges back to being positive.

To implement these combined operations in the geometry, we start with a geometry
parametrized by a partition p corresponding to a representation R. We perform the unique
gauge transformation of C% that makes all the M2-brane charges negative, namely requiring
C% = 0 at the left endpoint of C;. Under this gauge transformation, the N, are all shifted as
N, = N, — Njp. The shifted N, are thus all negative, and of course the shifted N; vanishes.
To obtain positive M2-brane charges we reverse the orientation of the 7-cycles, thereby
flipping the signs of the shifted N,. We can do so for example by reversing the orientation
of the two $%’s and the direction of integration in the upper-half w plane (reversing the
arrows in figure 4). Finally, it is convenient, but not necessary, to make the coordinate
transformation Re (w) — —Re (w). This yields a geometry parametrized by a set of branch
points & = §an43—; in the same gauge we defined above eq. (2.26). Computing the M5-
and M2-brane charges via eqgs. (2.21) and (2.26), respectively, then reveals that the charges
have been shifted as M, — M, 12—, and N, — N1 — Najp,—. From eq. (2.19) we recognize
this shift as complex conjugation of the representation, R — R.

Crucially, the geometry is invariant under these combined operations. As we review in
section 3, the CFT’s EE is proportional to the area of a minimal surface in the dual geom-
etry [60-62] (eq. (3.1) below). That surface only “knows” about the geometry, and hence
is invariant under any operations that leave the geometry invariant. Indeed, our results for
EE, and in particular bgg, are invariant under R — R, as mentioned below eq. (1.1).

The operations leading to complex conjugation in these 11d SUGRA solutions have a
simple interpretation in the corresponding brane intersection, as Hanany-Witten moves [63].
As a simple example, consider a brane intersection of the type in figures 1 and 2, with N
M2-branes ending on N distinct M5-branes (out of the M total number of M5-branes), pro-
ducing a totally anti-symmetric representation of rank N. Imagine we move an M5'-brane
from infinity on the left to a finite value of x2, to the left of the M5-branes. If we send this
MS5/-brane to infinity on the right, then when the M5’-brane passes through the stack of
Mb5-branes the N M2-branes will be destroyed and M — N anti-M2-branes will be created
between the M5'-brane and each M5-brane that did not have an M2-brane ending on it. An
orientation reversal r9 — —xy then maps the anti-M2-branes to M2-branes, while the M5-
and M5'-branes are not mapped to anti-branes. Clearly the total number of M2-branes
is ambiguous, as in the 11d SUGRA solutions above. Moreover, such a Hanany-Witten
move clearly corresponds to complex conjugation of the representation, which for a totally
anti-symmetric representation of rank N indeed acts as N — M — N.

2.3.2 Asymptotically locally AdS; X S7 solutions

Similar to the asymptotically locally AdS; x S* solutions, in the asymptotically locally
AdSs x S7 solutions reviewed in section 2.2 no explicit M2- or M5-brane sources appear.
However the solution does have non-zero 4- and 7-form fluxes supported on non-contractible
4- and 7-cycles, respectively, representing dissolved M2-, M5-, and M5’-branes. We can ex-
tract an ordered partition p from these fluxes in a fashion very similar to the asymptotically
locally AdS7 x S* solutions in section 2.3.1.
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Figure 5. Sketch of the upper-half complex w plane for the asymptotically locally AdS, x S7
solutions with metric in eq. (2.1) with the h and G of eq. (2.11). We show an example in which
G has five branch points on the Re (w) axis, £1,...,&5. Like the asymptotically locally AdS; x S*
solutions (i.e. the example in figure 4), each pair of branch points defines a non-contractible 4- and
7-cycle. In this example we labeled the four independent non-contractible 4-cycles Cy, Cy, Cq, and
C,. However, unlike the asymptotically locally AdS; x S* solutions, in these solutions at 7 — oo
the geometry is asymptotically locally AdS, x S7, which has the non-contractible 7-cycle S7 and
no non-contractible 4-cycle except AdSy.

The procedure to identify closed, non-contractible 4- and 7-cycles in the asymptotically
locally AdS; x S7 solutions is nearly identical to the asymptotically locally AdS7 x S4
solutions in section 2.3.1, with one crucial difference: where the latter solutions had an
even number of branch points, the asymptotically locally AdS, x S7 solutions have an odd
number. Explicitly, the G in eq. (2.6) involves a sum over 2n + 2 of the branch points ¢;,
while the G in eq. (2.11) is a sum over 2n + 1 of the &;. As an example, figure 5 shows the
upper-half complex w plane for n = 2, meaning 2n+1 = 5 branch points on the Re (w) axis,
&1,...,&5. Figure 5 also shows the geometry’s four independent closed, non-contractible
4-cycles, namely Ci, C{, C2, and C. By exactly the same arguments as in section 2.3.1,
each consecutive pair of branch points defines a closed, non-contractible 4- and 7-cycle.

Another key difference with the asymptotically locally AdS7 x S* solutions is that none
of the non-contractible 4-cycles can be continuously deformed to » — 0o, as obvious in the
example of figure 5. Indeed, as 7 — oo these solutions are asymptotically locally AdS, xS,
which has no non-contractible 4-cycles (besides AdS,) and one non-contractible 7-cycle, S7.
The latter cannot be decomposed into the other 7-cycles, C, x S% and C, 53, which have
the topology of S* x S3 and hence have non-contractible 4- and 3-cycles, unlike S7.

We define the closed, non-contractible 4-cycles as in section 2.3.1 by the collapse of
one or the other S2, denoted C, and C, with a,b = 1,2,...,n. The total number of such
Cq and Cj in these geometries is 2n. The number of non-contractible 4-cycles thus matches
the number of free parameters in the solution: as mentioned in section 2.2, we can fix one
of the 2n 4 1 branch points using translations, leaving 2n free parameters.
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Integrating Fy over a non-contractible 4-cycle gives us 4-form charge, which we again
interpret as a number of dissolved M5- or M5’-branes. As in section 2.3.1, M, is defined as
the integral of the 4-form flux over C, in egs. (2.20), and similarly for My and C;. In these
solutions the expressions for M, and M in terms of the ; are in fact identical to those in
egs. (2.21) and (2.22), respectively.

As in section 2.3.1, and again following ref. [26], we will use the 7-form that gives the
Page charge, *114F + %Cg A Fy. We thus need to fix a gauge for C5. Following ref. [26] we
make the unique gauge choice in which the gauge potential Cs vanishes in the asymptotic
region and produces regular 7-form flux through the S” at r — 0o, whose integral represents
the total number of dissolved M2-branes, N. Specifically, with C% defined in section 2.3.1,
we demand that C4 = 0 at the left end-point of Cj, and that the part of C'3 with legs along
the S that collapses in a 4-cycle C, vanishes at the right endpoint of C,,. With these gauge
choices the WZ contribution vanishes and

1
- ST /S snaF. (2.27)
Additionally, with these gauge choices the expression for N,, the 7-form flux through a
7-cycle C, x S3, is identical to eq. (2.26). We interpret N, as the number of M2-branes
that end on the Mb5-brane associated with C,. A crucial difference from section 2.3.1,
however, is that now all of these 7-form charges are non-zero, and in particular there are
only n independent charge N,, as opposed to the n+1 independent charges of section 2.3.1.
Although the S7 is not a sum of the 7-cycles C, x S3, the total number N of M2-branes
nevertheless turns out to be the sum of 7-form charges, N =Y """ | M,N, [26].

Using egs. (2.21), (2.22), and (2.26) for M,, M}, and N,, respectively, we can relate
N to the radius Lgr of the » — oo asymptotic S” in eq. (2.14). In particular, we need
—m? —mg, with the coefficients m; and my defined via the Legendre polynomial expansion

of G in eq. (2.12),

3 2/3 n
m2—222 €2a—E&2a-1) (§av+1—E&2p) = 5 (27) 8/3 ZM Na.  (2.28)

a=1b=a (1+7

Plugging eq. (2.28) into eq. (2.14) and using N = >""_| M,N,, we recover the usual relation
between N and the radius Lgr of the asymptotic S7,

(;2/3

(—=m? —mg) =32 —2__N. (2.29)

7o _ 16 (14 7)8
(2 )8/3

7=
A (=)

In short, egs. (2.21) and (2.26) allow us to extract the 2n free parameters of a partition
p, the sets of n distinct non-zero integers { /N, } and n degeneracies {M,}, from the 2n free
parameters of the asymptotically locally AdSy x S7 solutions, the branch points ;.

In contrast to section 2.3.1, only n degeneracies {M,} appear because the geometry
has only n 4-cycles C,. In particular, as mentioned below eq. (2.19), we cannot determine a

n+1

value for M, ;1 from these solutions, and hence cannot determine M = > """, M,. However,

>on_y My < M will be non-zero, implying M # 0. Analogous statements apply for the M,
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and M’. In 11d SUGRA terms, these solutions have no asymptotically AdS7 x S* regions
that would allow us to fix M, 1 or M ;. As a result, we will not be able to identify
su(M) or su(M'), so while we will have a partition p and corresponding Young tableau, we
will not be able to identify a representation R.

Also in contrast to section 2.3.1, the M5-branes and M5'-branes appear here on equal
footing: no 4-cycle in the asymptotic r — oo region selects one over the other. As a
result, instead of labelling the solutions by the partition p defined by the charges N, and
M, coming from the C, cycles, we could have labeled the solutions by another partition p
defined by the charges M] and N] coming from the C; cycles,

M), MTIL

’
1 Ml

The M] are defined as in eq. (2.22) and the N} are defined by an analogue of eq. (2.26),

3 4/3 b
Z M, = i3 L) (27?/3 Z (620 — &2a-1) - (2.31)
" GN a=1

Requiring the branch points to be well separated so that the SUGRA approximation is
reliable, we find the condition N} > Nj for all b. The 2n free parameters of these
solutions are fully determined by either p or p, hence the two must be related. To see how,
we use the fact that we can fix any 2n free parameters we like, and hence can determine p
using {M,} and {M}}. In that parametrization, the M; are the degeneracies of columns,
as shown on the left in figure 6. In the transposed partition, p’, the M} become the
degeneracies of rows, as in p, so we immediately identify p? = p.

Indeed, we can show that the solution determined by p and + is identical, up to a

choice of orientation, to the solution determined by p = p? and 7!

, as follows. As
mentioned above, taking v — 1/ leaves f; and  invariant but maps fo <> f3, effectively
interchanging the geometry’s two S%’s and hence swapping the M5- and M5'-branes. (The

transformation of the 4-form fluxes under v — 7!

is consistent with this statement.)
Performing two operations, namely v — ~~! followed by trading the two S%’s, and hence
the M5- and M5-branes, is thus a symmetry of the solution. However, the orientation of
the 7-cycles, and hence the sign of the M2-brane fluxes, is reversed in the process. The sign
can be reversed by an overall orientation reversal, as in the AdS7 x S§* case. The effect on
p is to map p — p’, which because the M5- and M5’ were swapped, we identify as p. In
short, the solution determined by p and ~ is identical to the solution determined by p = p”

1

and 77+, up to an overall orientation reversal, as advertised. We will see in section 4.2

that our result for EE, and in particular for bsg, is indeed invariant, up to an overall sign,

~Land p — p! = .

under the simultaneous operations v — «

This symmetry should appear in the holographically dual BCFT. Of course, as men-
tioned in section 1, the exact BCFTs dual to these 11d SUGRA solutions remain unknown.
However, the symmetry relating solutions determined by p or p suggests that the BCFTs
arise from M2-branes ending on both M5- and M5’-branes, as in the brane intersection of

section 1. If we separate the M5-branes from one another (the Coulomb branch), then a

- 29 —



M, M}
M:
| v
: M{
. |

> > > M, M M,

p p=p"

Figure 6. The asymptotically AdS; x S7 solutions are fully characterized by a partition p that
can be specified by the sets of M2- and M5-brane charges {N,} and {M,}, respectively, with
a=1,2,...,n, as shown on the left in figure 3. However, p can also be specified by the sets of Mb5-
and M5'-brane charges {M,} and {M]}, with b = 1,2,...,n, as shown on the left above. In that
parametrization, the M are degeneracies of columns. In the transposed partition pT . shown on the
right above, the M/ are degeneracies of rows, as they are in p in eq. (2.30), hence we identify p = pT.

partition p will determine which M5-brane each M2-brane ends on. Alternatively, if we
separate the M5/-branes from one another (the Higgs branch), then the partition p = p’
will determine which M5’-brane each M2-brane ends on. Simultaneously separating both
M5- and M5-branes (moving onto the Coulomb and Higgs branches simultaneously) should
not be possible. The BCF'T should have a duality that simultaneously swaps the separated

1

M5-branes with separated M5'-branes, sends v — !, and sends p — p? = p.

3 Holographic entanglement entropy

In this section we calculate bgg; and b3y holographically from EE, following Ryu and
Takayanagi’s (RT’s) prescription [60-62]. A very similar calculation for the asymptoti-
cally locally AdS7 x S* solutions appears in ref. [34]. In this section we will follow ref. [34]
very closely.

To compute EE in a QFT vacuum we fix time ¢, separate space into two regions by an
“entangling surface,” and trace out states outside the entangling surface, thus obtaining
a reduced density matrix for the region inside. The EE is this reduced density matrix’s
von Neumann entropy. Generically EE diverges due to strong UV correlations near the
entangling surface, so to extract physical information we must introduce a UV regulator.

Holographically, in an asymptotically AdS geometry, RT’s prescription for the EE for

a sub-region of the CFT is
A

— 1
e (3.1)

SEE =
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where A is the area of the minimal surface in the holographically dual geometry that
approaches the entangling surface at the AdS boundary. Computing Sgg is thus a two-
step process. First, determine the minimal area surface by writing the area functional
and solving the associated Euler-Lagrange equations. Second, plug that solution back into
the area functional and integrate to obtain A. The UV divergences of Sgg appear as
divergences in A near the AdS boundary. In AdS spacetime, the standard regulator is thus
a cutoff on the FG holographic coordinate: rather than integrating to the AdS boundary
z = 0 we integrate only to z = ¢ > 0.

In AdSs eq. (3.1) reproduces known results for 2d CFTs [35, 36, 60-62]. For example,
when the entangling surface consists of two points a distance ¢ apart, the minimal surface
in AdSj3 is a semi-circle at fixed ¢t with diameter £ centered on the AdS3 boundary. In that

case eq. (3.1) gives

14

524 — gln (E> +0 (9, (3.2)

with CFT central charge c. Henceforth, we will use a superscript to distinguish Sgg in
different dimensions, such as the superscript 2d on S%dE. Crucially, re-scaling the cutoff
changes the O (50) terms, while the coefficient of In (f), namely ¢/3, is cutoff-independent
and hence physical. In AdSy4 eq. (3.1) produces the form expected for a 3d CFT [60-62].
For example when the entangling surface is a circle of radius ¢, the minimal surface in
AdS, is a hemisphere at fixed ¢ with radius ¢ centered on the AdS4 boundary. In that case
eq. (3.1) gives

¢
Sip=c1_+a+0(), (3.3)

where ¢; and ¢y are constants. Re-scalings of the cutoff change ¢; but not c¢g, so only
the latter is physical. Indeed c¢g is proportional to minus the logarithm of the Euclidean
CFT partition function on S3 [64]. The AdSy x S7 solution of 11d SUGRA gives ¢y o
—N3/2[11, 12]. In AdS7 eq. (3.1) produces the form expected for a 6d CFT [60-62]. For
example, when the entangling surface is an S* of radius ¢, the minimal surface in AdSy is
a five-dimensional hemisphere at fixed ¢ with radius ¢ centered on the AdS7 boundary. In
that case eq. (3.1) gives

6d ¢ & ¢ 0
SEE:C4€—4+026—2—|—0L1I1 B +(’)(5), (3.4)

where ¢4, ¢o and ¢y, are constants. Only ¢y is invariant under re-scalings of the cutoff,
hence only ¢y, is physical. Indeed, ¢f, o< —a, where a is a central charge of the 6d CFT [64].
The AdS7 x S* solution of 11d SUGRA gives cf, o« —a oc —M?3 [46-48].

Following refs. [32-34], in our (B)CFTs we choose (hemi-)spherical entangling surfaces
centered on the 2d defect or boundary, as follows. For the 11d SUGRA solutions reviewed
in section 2.1, dual to the M5-brane theory with a Wilson surface, our entangling surface
will be an S* of radius ¢ centered on the Wilson surface, as shown in figure 7(a). For
the 11d SUGRA solutions reviewed in section 2.2, dual to cousins of the ABJM BCFT,
our entangling surface will be a semi-circle centered on the CFT’s boundary, as shown in
figure 7(b).
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(a) (b)

Figure 7. Schematics of our entangling surfaces. (a) For the Mb5-brane theory with a Wilson
surface, the blue square represents R® at fixed t, the vertical black line represents the Wilson
surface, and the black circle represents our entangling surface, an S* of radius £ centered on the
Wilson surface. (b) In cousins of the ABJM BCFT, the blue rectangle represents half of R? at fixed
t, denoted Rﬁ_, with the boundary at left, and our entangling surface is the semi-circle of radius ¢
centered on the boundary.

As mentioned above, the first step in the holographic calculation of Sgg is to find
the minimal surface in the holographically dual geometry at fixed ¢ that approaches our
entangling surface at the asymptotic boundary. Luckily, this first step has already been
done for us in refs. [32, 33]. Actually refs. [32, 33]’s results are much more general: for any
holographic dual of a CFT with conformal defect or boundary, and for a (hemi-)spherical
entangling surface centered on the defect or boundary, refs. [32, 33] found the solution for
the global minimum of the area functional.

We can immediately adapt the solution of refs. [32, 33] to our case: the minimal surface
at fixed ¢t wraps both S3’s and the upper-half complex w plane, and in the AdSs subspace
is given by xﬁ +u? = 2. A quick check of this solution is that for » — oo and fixed w,
which takes us to the asymptotic boundary at = | = u, the surface becomes 2 + wi =/,
which is indeed the equation for an S* in R or semi-circle in half of R2. For fixed r and
u — 0, which takes us to the AdSs boundary, the surface reduces to x| = +/, representing
the endpoints of an interval of length ¢ on the 2d defect or boundary.

As mentioned above, the second step in the holographic calculation of Sgg is to plug
the solution for the minimal surface into the area functional and then integrate to obtain
the minimal area and hence Sgg. In our cases, plugging the solution for the minimal surface
into the area functional produces

2 Vol (5’3)2 02 dul
_ d 3 £33 .
SEE = TN / w dw (—12 f1f2f3> TR (3.5)

where Vol (53) = 272 is the volume of a unit-radius S, and the integrals are over the
upper-half complex w plane and u € [0, ¢], resdpectively. The latter integration only covers
one branch of the minimal surface x| = v/ 02 — 2, hence the overall factor of 2.

If we switch to the FG coordinates of eq. (2.8) or (2.13) and introduce an FG cutoff
z = €, then the Sgg in eq. (3.5) exhibits € — 0 divergences, as expected. In particular, Sgg
for the asymptotically locally AdS7 x S* solutions looks like the EE of the 6d CFT, of the
form of S8 in eq. (3.4), plus a contribution from the 2d defect that has the form of SZ in
eq. (3.2). This structure is common in holographic calculations of EE for CFTs with defects
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or boundaries [32-34]. As mentioned in section 1, following refs. [33, 34] we will subtract
the 6d CFT’s contribution (using the same cutoff) and then extract the coefficient of any
remaining logarithmic term. In other words, we will extract the change in the coefficient
of the logarithmic term due to the Wilson surface. In SUGRA terms, we will subtract the
area of the minimal surface in AdS; x S* bounded by a sphere of radius ¢ on the boundary
of AdS7, described above. Stated precisely, we will compute

d
boa =30 (SEE — Sng) , (3.6)

where because Sgg — S% is of the form of S2& in eq. (3.2), ¢ d% extracts the coefficient
of the logarithmic term, and the factor of 3 simply accounts for the normalization of the
central charge in eq. (3.2).

For the asymptotically locally AdSs x S7 solutions our result for Sgg looks like half
the EE of a 3d CFT, meaning 1/2 times the Sp% in eq. (3.3), plus a contribution from
the CFT’s 2d boundary of the form of S%% in eq. (3.2). Intuitively, in CFT terms the
1/2 factor appears because introducing the boundary “cuts off” half of the 3d CFT, or in
SUGRA terms because these solutions are only asymptotic locally to “half of” AdS4x S, as
discussed in section 2.2. Again following refs. [33, 34], we will subtract the 3d contribution
(using the same cutoff), and then extract the coefficient of the logarithmic term. In other
words, we will extract the change in the coefficient of the logarithmic term due to the
CFT’s 2d boundary — which of course comes entirely from the 2d boundary, since S%%
has no logarithmic term. In SUGRA terms, we will subtract 1/2 the area of the minimal
surface in AdSy x S7 that approaches a circle of radius ¢ at the boundary, described above.
Stated precisely, we will compute

d 1
bsa = 3L (SEE - 25%%) . (3.7)

The FG cutoff z = ¢ preserves the symmetry of a Minkowski slice at fixed z, dual to
the CFT’s Poincaré symmetry. However in our CFTs the 2d defect or boundary breaks
Poincaré symmetry to the subgroup that leaves the defect or boundary invariant. In what
follows we will thus not use the FG cutoff z = ¢, rather we will use the cutoff prescription
of refs. [33, 34] for the u and w coordinates, which preserves the reduced symmetry.

The prescription of refs. [33, 34] actually involves two cutoffs. First is an FG cutoff in
AdSs, that is, in eq. (3.5) we perform the u integration from a cutoff u =¢, > 0 to u = ¢,

¢ ¢ 20
dy——— —In[Z 2 )
Eu UU\/ 02 — 2 " <5u> © (SU) ’ (3 8)

so that the integral for Sgg in eq. (3.5) becomes

2 Vol ($°) o 2
Spp = 4G(N)/dw dw <f12 f§f§f§> [m <5u> O (ai)} . (3.9)
We define 7 as the remaining integral,
2 Vol (%) 0?
I="— " [dwdw | — fif3f5 ). .10
AGN / w w<f12 f1f2f3> (3.10)

— 96 —



To write Z explicitly we plug in Vol (53) =272,

Qr 1i\(9wh|2

ff _-51303 h?2

h

616263’

(GG -1), fifefs == (3.11)
and in the second equation of eq. (3.11) we choose the sign to guarantee a positive integrand,
given that |G| < 1 as mentioned below eq. (2.4). Eq. (3.10) then becomes

2272)2 1 1

I= -
4G N clcgcg 2

/dw dw |0yh|* h (1 — GG) . (3.12)

Using h = —i (w — w) from egs. (2.6) and (2.11), we have |0,,h|?> = 1. Introducing polar

coordinates w = re?, so that dw dw = 2d0drr and h = —i(w — w) = 2rsinf, we find
2(9 2\2 9 ™ Te o
7 2er) - 4/ desine/ drr?(1 — GG), (3.13)
4GN  cicses o 0

where we have made the endpoints of integration explicit, including a large-r cutoff, r..
The prescription of refs. [33, 34] is to choose 7. in a way that preserves the subgroup of the
Poincaré group that leaves the 2d defect or boundary invariant. Crucially, a constant 7
does not preserve those symmetries, rather r. must be a more complicated function whose
form depends on the details of the 11d SUGRA solution. In the next two subsections we
will compute r. and then extract Z in eq. (3.13).

As mentioned above, in principle we would like to extract bgq or b3q from a term in Sgg
that is o< In(¢/¢), with FG cutoff e. However, how do we do so using the cutoffs ¢, and r.?
The result for the integral Z will be a sum of terms, including terms with positive powers
of r, a term independent of r., and terms with negative powers of r.. In eq. (3.9) these all
multiply In(¢/e,). The terms with positive powers of 7., which are clearly cutoff-dependent
and hence unphysical, will turn out to be identical to those of the undeformed AdS7 x S* or
(half of) AdS, x ST solutions, and so will cancel in the background subtraction Sgg — Sg%
or SEg — %5’%‘{3. The terms with negative powers of 7. clearly vanish as r. — oo and so can
be safely ignored. We will thus be left with the term independent of r., or more precisely
what remains of that term after the background subtraction, which still multiplies In(¢/e,,).
Applying 3€%, as in egs. (3.6) and (3.7), then extracts this coefficient of In(¢/e,,), which is
thus our bgg or bgg. In short, we will apply egs. (3.6) and (3.7) as advertised, though the
form of divergences will look very different in terms of ¢, and r. as compared to the usual
FG cutoff e. For a more detailed comparison of these cutoffs, see ref. [34].

3.1 Asymptotically locally AdS; x S* solutions

For the asymptotically locally AdS7 x S* solutions reviewed in section 2.1 we follow ref. [34]
very closely, but with three major differences. First, where ref. [34] set v = —1/2 we will
leave ~y arbitrary as long as practicable. Second, where ref. [34] set m; = 2, we will leave
my arbitrary. Third and most importantly, we will translate our result into the data {N,}
and {M,} of a partition/Young tableau, as described in section 2.3.
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As discussed above, we implement the double cutoff of refs. [33, 34]. First, in the
asymptotic large-r region we put the metric in a form that makes manifest the symmetries
of the 2d defect,

(1+7) ds

dv2 ds> + A : )
v AdS; 2 + I <d92 n Sln2(9)d5%3) +...,  (314)

2

ds® = 4L
S g4 .

where asymptotically at large r,

Iy v2my <1 N (14 27)(—3 + cos(20))m? + 12ymsy cosf 1 Lo <12>)  (3.150)
r

/=y VT 48ymy r
~ 2 1
i ( + 2y )mﬁl,;::e + 3yma 5126 Lo <r12> (3.15b)
1

where v € [0,00), 8 € [0, 7], and the ellipsis represent terms orthogonal to v and sub-leading
in 1/r. In these coordinates, we can approach the asymptotic local AdS; x S* boundary
in two ways. First is to fix u and send v — 0, where the latter is equivalent via eq. (3.15a)
to r — oo, which takes us to the asymptotically local AdS; x S* boundary at a point away
from the 2d defect. For v = —1/2 the dual field theory’s metric is that of AdS3 x S3, which
is conformal to 6d Minkowski space, while for v # —1/2 a conical singularity appears, as
in eq. (2.8). Second is to fix v and send u — 0, which takes us to the AdSs; boundary, i.e.
to a point on the 2d defect.

The prescription of refs. [33, 34] is to introduce an FG cutoff for v, that is a cutoff
v = &, > 0, which translates to a cutoff r. that depends on ¢, and 0. Explicitly, in
eq. (3.15a) we set v = €, and then invert to find r.(g,, ) in a small €, expansion,

2(14+79)%my 1 | (14+2y)m1 | mo (1+27)m
9) — o 0— 20
re(€y,0) - E%—i- "8y +2m1 CoS mCY™ 0s(20)
89mi+212+(1 447297%m3 — 576> 1+2
+{ i+ 212y (140 md 47297 Pl 576y mmg | (L427)ma_ g 2
92167(1—1—7) m$ 24(1+7%)m
14-27)?
3m1+87m1+87 mi—367*m3+80y*mims 5(29)+MCOS(4G) g2
7687 (1+7)2m3 3072y(147)?
+0(ed), (3.16)

where we have kept an additional order as compared to eq. (3.15a), which will be necessary
to extract bgg from Sgg. When v = —1/2, eq. (3.16) simplifies considerably,

re(€v,0) = +

m dmimz—mi—5m3  20mymz—9m3+m] 08(29)) 9
£y m1

20
S cos(20)+ < 32m3 96m3

+0(eh). (3.17)
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Plugging the expression for G in eq. (2.6) into eq. (3.13) gives

2(272)2 9 o (€v,0) ) 0)—&.
P (—1)J/ dasine/ dry2— 2reos®) =)
4GN  cieycs p= 0 0 \/r2+£2.—2r§j cos(6)

1
re(ev,0) 0 é— 7‘6_7'9 é-
J“f/ desine/ drr2 1 ko (318
) g e g 1Y)

2n+2

2( 2n+2

14
4GN C165¢3 4= 1

where 7.(gy,60) is the cutoff in eq. (3.16). The integrals in eq. (3.18) are performed in
ref. [34],'' and are very similar to those in the asymptotically locally AdS; x S7 case
performed in the appendix, so here we only quote the result:

8(2m2)2LY, (8(1 +9)' 1 N 2(1+17)°3+16y) 1 85 —8y(52 + 1157)

- AGNY(1+7) 3?2 el 1542 g2 5040~2
2
ms 2ms3 1 ek 3
1Om411 - 15m§) - 3m§, Z (_1)J |§J - ‘fk” ) (319)
]7k:1

i<k
where we dropped terms that vanish as ¢, — 0. We will continue to do so in what follows.
If we set v = —1/2 then eq. (3.19) becomes

Prly | L1 3 dmp—dmymy 1 2§2( D7RE =& | (3.20)
T 3Gy et 2 a0 20m? 2m} 2= JUSKL

i<k

As expected, eq. (3.20) contains terms that diverge as €, — 0. To extract bgg using
eq. (3.6), we will need the result for Z for the exact AdS7 x S* solution, which we denote
Tsq. As mentioned at the end of section 2.1, the AdS; x S* solution has two branch points
at Re (w) = ££. These can be eliminated by conformally mapping the upper half plane to
a semi-infinite strip via w = { cosh Z, where Z = X + 1Y with X € [0,00] and Y € [0, 7].
In the semi-infinite strip coordinates,

) — , sinh(£5% Z)
h = —i& (cosh Z — cosh Z) , G=—i|1+2 smT . (3.21)
In semi-infinite strip coordinates the metric takes the form
X X dX?
dS2 = 4L?94 <COSh2 5 dSQAdS3 + Sinh2 5 dSLQSvg + 4) + L§4 dS§v4. (322)

Mapping eq. (3.22) to the asymptotic form in eq. (3.14) gives at leading order v = 2e~%/2,

As a result, the cutoff €, maps to a cutoff X, = —2log(e,/2). Plugging eq. (3.22) into
eq. (3.10) and performing the integration with the cutoff X, we find

27L% (1 1 3
Teg= ——2 [ = — =+ 2. 3.23
= e (G- ats) 329

"1n ref. [34] the first and second lines of eq. (3.18) are denoted Ji and Jo, respectively.
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Comparing egs. (3.20) and (3.23), we see that all divergent terms cancel in Z — Zg4, as
advertised. Extracting bgq via eq. (3.6) then gives

267T4L94 9 3 m2 —Amim 1 2n+2 '
[ b S 2 1ms Cyitkge _ey3 b -
6d Gn 20 + 20m‘1L + Qm? j;l( YT — k) ( )
i<k

If we use the scaling symmetry to set mj = 2, then eq. (3.24) reproduces the result of
ref. [34]. However, we can go farther, and write bgq of eq. (3.24) in terms of the partition
data {N,} and {M,}, as follows. On the right-hand-side of eq. (3.24), we use eq. (2.23)
to replace the factors of my in the denominators with factors of M. Next we consider the
combination 3m3 — 4mymsg in the second term on the right-hand side of eq. (3.24). While
mg and m3 are not individually invariant under translations of the ¢;, the combination
3m%—4m1m3 is invariant. That is important, since such shifts are equivalent to a coordinate
transformation, under which our final expression must be invariant. Using the definition

of the my, in terms of the §; in eq. (2.7), we can write

n+1 4
3m3—4mimgz = — (Z §2a—§2a—1>

a=1

n+1
_12< 52(1 €2a 1>
a=1

n n+l n
(ZZ §2b_£2b1)(§2a_§2a—1)Z(€2c+1_§2c)>
n+1 n n
(Z&a §2a— 1> (Z §2b—52b—1)(52a—§2a1)Z(€2c+1—§2c)>

a=1 b=a c=a

S]

a=1 b= c=a

2
+12 <Z(§2a §2a-1) ) (Eavr1 —§2b)>

a=1 b=a
n+1 n n 2

12 (Z&a—&al) Z §2a—&2a—1 (Z(ﬁzbﬂ-&b)) ; (3.25)
a=1 a=1 b=a

which can be proven using recursion. Using egs. (2.21) and (2.22) to replace the &; with
M, and M, and then using eq. (2.26) to replace the M; with the N, we find

a3 A n n+l
3m2—4mymg = ci2—=X —M*+129M MyM,N, 3.26
’ b @m) (14) " g bg 520
n a n 2 n
—12vM (ZZMbMaNa> +12+2 (Z MaNa> —1272MZMQN3] .
a=1b=1 a=1 a=1
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All that remains in eq. (3.24) is the sum over (§; — &)3. We decompose this sum as

2n+2 ‘ n+1 3
(1R — &) = [ <Z(€2a - §2a—1)> (3.27)

J,k=1 a=1
i<k

n n n+1
+6 (Z(§2b —&p-1) > (E2at1 — &20) D _(G2c — §2c—1)>

b=1 a=b =b
n n b
—6 (Z(fzb —&p-1) ) _(b2at1 — &20) D (S2c — §2c—1)> ] ;
b=1 a=b c=1

which can be proven using recursion. Again using eqgs. (2.21) and (2.22) to replace the &;
with M, and M], and then using eq. (2.26) to replace the M} with the N,, we find

2n+2 ' GN 73 n n+l
(_1)]+k(£‘ - fk)g = _Cgl) PRV M3 — 6y < NaMaMb>

j;l ’ (2m)" (1+7)° ;bz;z

i<k

+ 67 (zn: za: NaMaMb> ] . (3.28)

a=1 b=1

Plugging eqgs. (3.26) and (3.28) into eq. (3.24), using eq. (2.18), and setting N, +; = 0 and
v = —1/2 then gives

3 N2 n+1 n+1 a
_— —_ 2 _—
boa = [ 7 Z::l <MaNa 8 bz M,N,M, + 8 ; MaNaMb>] : (3.29)

which can be simplified by rearranging the summations to give our main result,

3 N2 & ) ) >
boa = ¢ [8MN +57 + > <8Ma No— MyNZ =16 MbMaNa)] . (3.30)

a=1 b=1

3.2 Asymptotically locally AdS, x S solutions

As in the previous case, in the asymptotic large-r region we put the metric in a form that
makes manifest the symmetries of the 2d boundary,

L% <dv2 ds3 s,

ds® = T\ 2 ) + L%, (d9~2 + sin? éds%@ + cos? édség) +..., (3.31)

where asymptotically at large r

(14+7)y/—m? —ma 1 —m3 + ms 1 1
= N1+ 0—-+0| = 3.32
Y 2\/—v Ut 3(m2 + ma) cosg 72 (3:32a)
~ 0 —m3 + ms 1 1
f=_ 4 LT g - 32b
2+6(m%+m2)sm r+0<r2>’ (3.32D)
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where v € [0, 00), 6 e [0,7/2], and the ellipsis represent terms orthogonal to v and sub-
leading in 1/7. In these coordinates, we can approach the asymptotic local (half) AdSs x S”
boundary in two ways. First is to fix v and send v — 0, where the latter is equivalent via
eq. (3.32a) to 7 — oo, which takes us to the asymptotically local AdSs x S” boundary at
a point away from the 2d boundary. Second is to fix v and send u — 0, which takes us to
the AdSs boundary, i.e. to a point on the 2d boundary.

We introduce an FG cutoff ¢,, which we plug into eq. (3.32a) and invert to find

(14+7)y/—m2 —ma 1 —m3 +mg
c(ev,0) = — = 0+ 0O (ey). 3.33
relee?) 2v/—y eo 3(mtma) TO(E) (3:33)

Plugging the expression for G given in eq. (2.11) into eq. (3.13) we obtain

2n+1

2m2)2 4 T rc(€v,0) ) 0 _ ¢, —i6 __
7- %) / desine/ drr? (1= 3 (-1t § ¢ T8k ) (530
0 0

4GN c1c5cs e rei® —¢&;| [re® — &

These integrals are very similar to those in the asymptotically local AdS; x S* case. We
perform the integrals in the appendix, with the result

21\2 79 2n+1
g @) Le 1 () 1)+ — &)°. (3.35)
4GN 24 &, 4GN 3clc§c§
dk=1
]<k

As expected, eq. (3.35) diverges as €, — 0. To extract bsq using eq. (3.7), we will need
the result for Z for the exact AdS, x S7 solution, which we denote Zsq. In AdSs slicing,
the AdS, x S7 metric takes the form

ds* = L% (d:L"2 + cosh?(2x) ds2Ads3 + dy* + sin® y dss + cos?y dsiwg) , (3.36)
where € (—o0,00) and y € [0,7/2]. By matching the large-|x| asymptotics of this

AdSs x ST metric to that of eq. (3.31), we find z € (—z¢,z.) with cutoff z, = —3 Ine,.
Plugging eq. (3.36) into eq. (3.10) and performing the integration with that cutoff, we find

2(2m%)2 LY 1
- 4GN 24 &,

(3.37)

Comparing eqs. (3.35) and (3.37), we see that the divergence cancels in Z — Z34, as
advertised. Extracting bsq via eq. (3.7) then gives

( 2n+1

+k
GN cwéc% by gk) ' (3.38)
7.k= 1

bsa = —

]<k
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To rewrite this expression in terms of the partition data {N,} and {M,}, we decompose
the sum in eq. (3.38) as

2n+1 n b n
Y (—1RgG —&)? = 3[ < > (Gae — &2e-1) (6o — Ep-1) D> (G201 — fza)>
j7'k<:kl b=1 c=1 a=b

3
3

n n 2
+ (Z(E% —&1)* ) (C2as1 — €2a)) = (& —Emp1) (Z(§2a+1 - §2a)> ] ;

b=1 a=b b=1 a=b
(3.39)

which can be proven using recursion. Using egs. (2.21) and (2.22) to replace the &; with
M, and M, and then using eq. (2.26) to replace the M} with the N,, we find

2n+1

1)tk _ 300 ON My M, N, 3.40
j%;l( R — &) 1(2)(1+7 <;b§:1 b ) (3.40)

(ZM2 > +’yZM N2]

a=1

Plugging eq. (3.40) into eq. (3.38) then gives

by = > o ZMQ ZM N2+2ZZMbMN] (3.41)

2 e ( 1+’V a=1b=1

Using ¢; + co + ¢3 = 0 and ¢co = yc3, we find

Al 9~ 48 1 97 14~ ‘
2¢3 (1 +7) Yl (1+7) v
and hence we obtain our main result for b3q,
31 -
bgd:§m — > MZN, - 7ZMN2+QZZMbMN (3.43)
a=1 a=1 b=1

4 The central charge

In this section, we explore our results for bgy and bsggq in several ways. In section 4.1 we
show that our result for bgq in eq. (3.30) can be written in the compact form of eq. (1.1),
that is, in terms of A, the highest weight vector of the representation R, and o, the Weyl
vector of su(M). We also determine how bgg scales with M and N for some specific choices
of R. Similarly, in section 4.2 we determine how by scales with IV for some specific choices
of partition p. In section 4.3 we briefly survey some previous calculations of self-dual string
central charges, and discuss how and why these results differ from ours.
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4.1 Wilson surface

Our first goal is to show that our result for bgg in eq. (3.30),

]VQ n+1 ) )
beq = - [8MN+M+2<8MN MN—leZ;MbMN (4.1)

can we re-written in the form of eq. (1.1),

baa = 2 (1601, 0) = (A V)], @2)

where ) is the highest weight vector of the representation R, g is the Weyl vector of su(M),
and (-, -) is the inner product on the weight space. To show the equivalence between the
two expressions for bgg we will actually work backwards: starting from eq. (4.2) we will
re-write various sums until we reach eq. (4.1).

We start with the parametrization of the partition p = {¢1,¢s,...}, with integers
by > 4y > U3..., where ¢, with 1 < ¢ < M is the number of M2-branes ending on the g
M5-brane, as illustrated on the left in figure 3. In this parametrization the inner products
in eq. (4.2) are simple to write in terms of the Dynkin indices of the representation R,
Ag = by = Lg+1,

1 M 1 M q
(A o) 52 — 4)qAq; (A, A) MZ Aq _q)‘q"'QZp)\p . (43)

q=1 q=1 p=1

As is clear from the definition of \;, non-zero contributions to the sums in eq. (4.3) only
come from cases where the number of boxes in the Young tableau changes from one row
to the next. The non-zero contributions are thus more conveniently described using the
parametrization of the partition p in eq. (2.17), in terms of the set of distinct integers { N, }
with degeneracies {M,} for a = 1,2,...,n+ 1 and N,4+1 = 0. In this parametrization, the
non-zero contributions to the sums in eq. (4.3) come from A\, = N, — Ny11, and the row
number can be written as ¢ = > ;_; M. Plugging these expressions into eq. (4.3) gives

n+1 a
ZZ (M ZM ) My (Ny—Ngi1), (4.4a)
20D
n+l a b
=7 ZZ < ZMC> (Na—Nas1) [22Md(Nb—NbH)—Mb<Na—Na+1)].
a=1b=1 c=1 d=1
(4.4b)
Expanding the sums in eq. (4.4) then leads to
1n+1
(A, o) = 5 Z (MM N, + M2N, QZMbM N, ) (4.5a)
a=1 bl

n+1 n+1
A=) MN; - (ZM N, ) , (4.5b)
a=1
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which we simplify using the fact that the total number of M2-branes is N = ZZill MyNyg:

n+1 n+1l a
(A o) = fMN + = Z MZNg =Y ) " MyMyN,, (4.6a)
a=1 b=1
n+1
§2A4]V2———7 (4.6b)

Plugging eq. (4.6) into eq. (4.2) we find

n+1 n+l a n+1
3
N6\, 0) — (M, A MN M?N, —1 My M,N, M,N? +
5[6( aQ) ( ) )] [8 +8; 6;; b Z
3 N2 ) )
58MN+—+28MN MN—m;MMN
= b6d7 (47)

as advertised. We can alternatively express bgg in terms of the quadratic Casimir of the
representation, Q\ = 2(\, o) + (A, A),

by = % (QA - %(/\, A)) . (4.8)

The inner product (-, -) is invariant under the action of the Weyl group. These compact
forms of bgy thus make manifest that bgy is invariant under the action of the Weyl group on A
and g, including in particular the Weyl reflection affected by the complex conjugation of the
representation, R — R. Such invariance is expected, given that the 11d SUGRA solutions
are invariant under R — R, as explained at the end of section 2.3.1. Such invariance is
also expected in the field theory: R — R combined with orientation reversal of the Wilson
surface must leave all observables invariant. The EE of our spherical region is invariant
under the orientation reversal alone, and hence must also be invariant under R — R alone,
not just under the combined operation. As a result, bgg is invariant under R — R.

These compact forms of bgy; do not make immediately obvious how bgg scales with
the total numbers M of Mb-branes or N of M2-branes. To see such scaling explicitly,
we consider two relatively simple examples of R. First, consider a totally symmetric
representation of rank N, which corresponds to a Young tableau with a single row of N
boxes. In terms of the partition data, My =1, Ny = N, and N, =0 for 2 < a <n+1,
which describes all N M2-branes ending on a single M5-brane. In this case we find'?

N2
bed = § SMN + ST N% — 8N (symmetric) (4.9)
3N
-— 8M—-N)(M -1

2Note added. A natural question is whether the value N = 8 M at which beq in eq. (4.9) vanishes
has any physical significance. In particular, does bgq = 0 imply that the symmetric-representation Wilson
surface with N = 8 M is somehow equivalent to a trivial-representation object, like a “baryon vertex”? We
suspect not, because as shown in eq. (1.3), bsg = ¢ — %dz with ¢ and ds defined as coefficients in the defect
trace anomaly eq. (1.2), and taking the values in eq. (1.4). In particular, both ¢ and d2 are positive for the
symmetric representation with N = 8 M, and bgq vanishes because of a cancellation between them, whereas
we would expect both of them to vanish independently for a trivial-representation object.
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where the second line helps facilitate probe limits. For example, the limit N < M? gives
bgq ~ %N (M — N/8). As shown in ref. [43], this probe limit result agrees with a calcula-
tion of EE using probe M5-branes in AdS7 x S wrapping an AdS3 x S submanifold inside
AdS; and sitting at a point on the S%. This is true even when N ~ O(1), in which case
we would expect the SUGRA approximation to break down, as discussed below eq. (2.26).

Our second example is a totally anti-symmetric representation of rank N, which corre-
sponds to a Young tableau with a single column of N boxes. In terms of the partition data,
M; = N and N; = 1, which describes N Mb-branes each having one M2-brane ending on
them. In this case we find

2
bea = % 8MN + Nﬁ ~8N? - N (anti-symmetric) (4.10)
3N
= 5M(M — N)(8M —1),

where again the second line helps facilitate probe limits. For example, the limit N < M?
gives bgg ~ 2N (M — N). As shown in ref. [43], this limit agrees with a calculation of
EE using probe M5-branes in AdS7 x S* wrapping an AdS3 submanifold of AdS; and S®
submanifold of S*, again for all values of N. For a totally anti-symmetric representation
R, complex conjugation R — R acts as N <> M — N. Our result for bgg in eq. (4.10) is
clearly invariant under N <> M — N, as expected. Furthermore, a totally anti-symmetric
representation of rank M, meaning N = M, is equivalent to a trivial representation, and
indeed plugging N = M into eq. (4.10) gives bgg = 0.3

Assuming that bgg counts degrees of freedom localized to the Wilson surface, a naive
expectation is that in the large-M and/or N limit bgy should scale with the number of
degrees of freedom of the M5- or M2-brane theory, M? or N3/2, respectively [65]. We can
force our result for bgg to scale as M3 or N3/2 by choosing a representation such that N
scales as a certain power of M. For example, for a totally symmetric representation of
rank N oc M3/2 in eq. (4.9) at large M the term —8N? o —8M?* with all other terms
sub-leading. However, in general none of our results for bgg naturally scale as M3 or N3/2.
Instead, in our results for bgg most terms scale linearly or quadratically with M or .

As displayed above, our result for bgg can become negative. For example, for a totally
symmetric representation of rank N > 8M, eq. (4.9) clearly shows that bgg < 0. In a
standard 2d CFT, unitarity and normalizability of the ground state require the central
charge to be non-negative. However, whether unitarity imposes a lower bound on bg, is
currently unknown. In similar cases, such as 3d BCFTs, unitarity allows negative values
of the boundary central charge. For example, in the free massless scalar 3d BCFT with a
Dirichlet boundary condition — a perfectly unitary theory — the boundary central charge
is negative [38, 39, 53]. More generally, for unitary 3d BCFTs ref. [55] conjectured a lower
bound on the boundary central charge that was negative. The fact that Wilson surfaces in
the M5-brane theory and their holographic duals have no other known violations of unitarity
leads us to suspect strongly that bgy < 0 does not necessarily signal unitarity violation.

""Note added. In terms of the trace anomaly coefficients ¢ and dz defined in eq. (1.2), bea = ¢ — 2d>
vanishes for an antisymmetric representation with N = M because ¢ and dz each individually vanish in
that case, as expected for a trivial representation.
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4.2 Cousins of the ABJM BCFT

As discussed in section 2.3.2, in the asymptotically locally AdS, x S” solutions we cannot
identify M, so while we can identify a partition p and corresponding Young tableau, we
cannot identify su(M) or a representation R. We can thus write our result for b3y in
eq. (3.43),
31 & 5 5 -
by = 2T (—Ma No = yMoNZ +2) MbMaNa> , (4.11)
a= b=1
only in terms of N, and not M. As mentioned below eq. (2.11), we consider asymptotically
locally AdSy x S7 solutions with v € (—1,0).
As explained at the end of section 2.3.2, the asymptotically locally AdSy x S7 solutions

1

are invariant, up to an orientation reversal, under the combined operations v — v~" and

p — p=p’. To see how these operations act on bsg, we re-write eq. (4.11) in terms of the
sets {N;} and {M]},

et () ()

3 1
- [ZM&NA? 3 mang) (4.12)
21+ v b=1 a=1

which can be proven using recursion. Eq. (4.12) makes clear that the combined operations

of y =y tand p — p = p’, which acts as M, — M/,_, and N, —> N/ _,, sends bzg — —bsgq.
Equivalently, in the parametrization p = {f1,0s,...} and p = p* = {¢},45,...},

e 2 /2
by = 21+7 WZE +Z£ . (4.13)

In this parametrization, p — p = p! acts as Ly < %, which when combined with v — ~~!

clearly sends bgg — —bsq.

To see how b3y in eq. (4.11) scales with N we consider two examples of partitions
analogous to our two examples for bgqs in eqgs. (4.9) and (4.10). First, we consider the
analogue of the rank N totally symmetric representation, which corresponds to a Young
tableau with a single row of N boxes. In terms of partition data, this example has M; =1,
N; = N, and N, = 0 for a > 2, which gives

3
bsgg= —<N(1—~vN). “symmetric” 4.14
= gV =) (s ) (4.14)
The large-N limit of eq. (4.14) gives bgq ~ _iﬁN 2. As a second example, we consider

the analogue of a rank N the totally anti-symmetric representation, which corresponds to
a Young tableau with a single column of N boxes. In terms of partition data, this example
has N1 =1 and M; = N, which gives

3

— N (N —~). “anti-symmetric” 4.15
ST NV =), Cantiosy ) (115)

b3q =
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The large-N limit of eq. (4.15) gives bzq ~ %ﬁN 2. Clearly in both cases at large N we
find that bsy scales as N2 rather than N3/2. Of course, as discussed in section 1, in these
cases the 3d BCF'Ts are only cousins of the ABJM BCFT, and in particular have a different
supergroup from that of the maximally SUSY ABJM BCFT. We therefore have no reason
a priori to expect bsg to scale as N3/2 at large N.

As with bgg in section 4.1, the bsg in eq. (4.11) can become negative. The examples in
egs. (4.14) and (4.15) never are, because v € (—1,0). However, as we saw that v — 71
combined with p — p = p’ sends bsy — —bsg, so any partition p giving bsg has a correspond-
ing p! giving —bsy within the same D(2,1;7) x D(2,1;7) super-group. For the reasons
discussed at the end of section 4.1, even if some choices of M, and N, make eq. (4.11)
negative, we strongly suspect that b3y < 0 does not necessarily signal unitarity violation.

4.3 Comparisons to other calculations

In this sub-section we will review two previous calculations of the self-dual string central
charge, one by Berman and Harvey (BH) [66] in section 4.3.1 and one by Niarchos and
Siampos (NS) [67] in section 4.3.2. We will denote these as bpy and byg, respectively. In
section 4.3.3 we will compute the central charge in the maximally SUSY ABJM BCFT in
the free limit, which we will denote as bgee.

Put simply, we find that none of the calculations of the central charge of the self-dual
string or Wilson surface—bgq and b3q, BH, NS, and free ABJM — agree perfectly with any
of the others, though some share certain features. Indeed, all of these calculations extract a
central charge from different quantities (EE, anomalies, and thermodynamic entropy), and
use different limits of M and N, and so we have little reason a priori to expect agreement.
Nevertheless, aside from the M3 and N3/2 scalings of the ambient CFTs, these are some
of the few readily available results that we have for comparison.

4.3.1 R-symmetry anomaly

In ref. [66] BH considered N M2-branes ending on M M5-branes and performed an anomaly
inflow analysis. In particular, BH demanded that the total R-symmetry chiral anomaly on
the self-dual string’s 2d worldsheet vanishes. Let us briefly review their arguments.

The 2d R-symmetry is SO(4) g, X SO(4)r, , where SO(4)r,. acts on the directions tan-
gent to the M5-brane, (3, x4, 25, z6), and SO(4) g, acts on the directions normal to the M5-
brane, (7, xs, 9, x10). If we gauge each SO(4) ~ SU(2)4 x SU(2)_, where the + subscripts
indicate 2d chirality, with corresponding field strengths F = dA4, then the Euler class of
the gauge bundle over the 2d self-dual string worldsheet is y = ﬁ (TrFJQr - TrFE). Writ-
ten as an exact 4-form, y = d® where the 3-form ® has the gauge transformation §d® = d¢
for some 2-form, ¢. The 2d chiral R-symmetry has an anomaly that receives contributions
from both 2d and 6d degrees of freedom, the latter via anomaly inflow. An anomaly de-
scent calculation shows that the 2d contribution to the anomaly is 2wbpy [(¢(AN)—¢(ArT)),
where A and Ay are the SO(4)r, and SO(4)r, connections, respectively, on the normal
bundle to the self-dual string. BH define a central charge as the coefficient bgy. They
determine bpy by demanding that the total 2d chiral R-symmetry anomaly vanishes, i.e.
that the 6d anomaly inflow contribution cancels the 2d contribution.
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With a single M5-brane, M = 1, the 2d R-symmetry chiral anomaly is 7N [(¢(An) —
#(Ar)), and so bgy = N/2. The SO(4)g, anomaly, 7N [ #(Ay), is cancelled by a local
counterterm on the M5-brane’s wordvolume, — [ dAs A ¢(Ay), where as in section 1, Ay
is the M5-brane’s worldvolume 2-form gauge field. The SO(4) g, anomaly, —7N [ ¢(Ar),
is cancelled by the gauge variation of the self-dual string’s minimal coupling to As.

With multiple M5-branes, M > 1, BH move onto the Coulomb branch, separating
some Mb-branes out of the stack of M coincident M5-branes. In that case, the M5-branes’
effective action includes the Ganor-Intriligator-Motl term [68, 69], « [ dAs A ¢(Ar), where
« is known. Starting from a stack of M5-branes with ADE Lie algebra g and breaking to a
subgroup with ADE Lie algebra b times u(1), o = %(dimg —dim h—1). The pullback of the
Ganor-Intriligator-Motl term to the 2d self-dual string worldsheet produces a term with
an SO(4)r, anomaly that must cancel the 2d contribution, which allows BH to identify

1

If we separate a single M5-brane from the stack then g = su(M) and b = su(M —1) (as men-

tioned in section 1, we ignore the overall center-of-mass u(1)), so a = 3 (M — 1) and hence

b = iN (M—=1)  for su(M)— su(M —1) x u(1). (4.17)

If we separate all M Mb5-branes from each other such that g = su(M) and b = u(1)M~1,
then o = i (M2 - M — 1) and hence

1
bpy = §N (M2 - M - 1) for su(M) — u(l)Mﬁl. (4.18)

If we compare bpy in egs. (4.17) and (4.18) to bgq of the totally symmetric or anti-
symmetric representations in eq. (4.9) or (4.10), respectively, then the only obvious sim-
ilarities are terms scaling as M N and N, with different numerical coefficients. However,
we can identify at least four reasons why bgg and bpyg need not agree. First, whether bgy
and bpy are the same quantity is unclear. In a 2d CFT the chiral R-symmetry anomaly
coefficient is proportional to the central charge ¢ [70], and BH assume the same remains
true for a 2d defect in a higher-d CFT. However, that has not been demonstrated, and
moreover, whether and how either quantity is related to the defect’s EE is unclear. Second,
we calculated bgg for any representation R. However, bgy seems to involve no data about
a representation. Which representation(s) are appropriate in comparing bgg and bpy (if
any) is unclear. Third, our bgg was computed at the conformal point where all M5-branes
are coincident, whereas bgyg was computed on the Coulomb branch. Fourth, we computed
begq in the SUGRA limit of large M, whereas the calculation of bpy is in principle valid
for any M. At best we might expect agreement between bgg and bpy’s large-M limit, and
indeed, both our results for bgq in egs. (4.9) and (4.10) and the results for by in egs. (4.17)
and (4.18) scale as M'N at large M but with different numerical coefficients.

If we compare b3y of the totally “symmetric” or “anti-symmetric” partitions in
eqs. (4.14) or (4.15), then the only obvious similarities are terms scaling as N, with dif-
ferent numerical coefficients. However, as before, BH compute a different quantity, which
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appears to involve no information about a partition. We can also identify two further
reasons why b3y and bppy need not agree. First, as discussed in sections 1 and 2.3.2, bsq
arises from a case with both M5- and M5’-branes, while by arises from a case with no
M5’-branes. Second, as discussed in section 1 and 2.2, b3y arises in a case with super-group
D(2,1;7) x D(2,1;7) with v € (—1,0), while BH presumably have v = 1.

4.3.2 Blackfolds

In refs. [67, 71] NS found a blackfold description [72-74] of a fully localized intersection
of M2- and Mb5-branes. Specifically, in ref. [71] in an effective M5-brane theory they
found a 1/4-BPS “spike” solution representing N M2-branes ending on the M Mb5-branes.
In ref. [67] they generalized the spike solution to non-zero temperature 7', in the limit
N < M?, and computed the thermal entropy density S. In the low-7" limit, relative to the
system’s spatial size, they found

8 I(H)r(d) v N2

135 CB M

where the constant C' =~ 1.2 arises as a matching parameter when “gluing” the spike to the

T +0O(T"), (4.19)

Mb5-branes. NS then compare the term o 7" in eq. (4.19) with the Cardy entropy density
of a 2d CFT, g ¢T [75], and hence identify a central charge,

1 1
NS = 8 I N ~ 0.35 N—2. (4.20)
45 C8\/mr M M

Our result for bgg shares at least one superficial similarity with byg, namely bgg in
eq. (4.1) includes a term %%2 ~ O.GNW{Z, similar to byg. However, whether a limit exists
— including in particular NS’s limit N < M? — in which that term dominates over the
others in bgg is unclear. Moreover, we can identify at least three reasons why bgg and byg
need not agree. First, whether bgy and bng are the same quantity is unclear. Specifically,
for a 2d defect there appears to be no universal relation between the defect central charge
defined from EE and any Cardy-like contribution to S [49]. Second, whether NS’s result for
S should be interpreted as a Cardy entropy is highly suspect: NS’s result is a low-T' limit,
relative to the system’s spatial size, whereas Cardy’s result is the high-T limit. In a 2d
CFT modular invariance relates the high- and low-T limits of S, so that ¢ determines both
limits. Whether that remain true for a 2d defect is unclear — especially since modular
invariance is generically absent for a 2d defect. Lastly, bng seems to involve no data about
a representation, which again leaves open which representation(s) to choose in order to
compare bgg and byg, if any.

The b3q of the totally “symmetric” or “anti-symmetric” partitions in eqs. (4.14)
or (4.15) does not appear to have any similarities with bnyg. As in the comparison to
BH in section 4.3.1, b3y and bgy need not agree: they are different quantities, byg involves
no information about a partition, NS’s solution has no M5’-branes, and NS’s solution at
T = 0 presumably has v = 1 rather than v € (—1,0).

Ref. [67] pointed out that if we define the combination
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then the central charge (4.20) can be written

N3/2 M3
brs ~ 0.35 T~ 035 (4.22)

depending on whether A is substituted for M or NN, respectively. Hence, for fixed A, bng

scales both as N3/2, characteristic of M2-branes, and M3, characteristic of M5-branes.
However, the same is not true for our results, in general. For example, making the same
substitution in result eq. (4.10) for the central charge of a Wilson surface in an antisym-
metric representation, we find (using M > 1)

_3 a2 _ N2y 3 (M M!
bﬁd_5(\/KN N>_5 — -7 ) (4.23)

which includes a term scaling as N3/2 or M3, but also another term scaling with a power
of N or M that is not necessarily subleading in the SUGRA approximation. Indeed these
terms are required to ensure that bgg = 0 for the antisymmetric representation with N = M,
corresponding to a trivial representation.

4.3.3 Free limit of the ABJM BCFT

A Wilson surface has two equivalent descriptions. The first is from the M5-brane theory
perspective, as a non-local operator in the 6d N' = (2,0) SUSY CFT. The second is from
the M2-brane perspective, as the boundary of the ABJM BCFT with maximally SUSY
boundary conditions [76], and possibly coupled to 2d SUSY multiplets [77]. In this section
we will compute the boundary central charge for the maximally SUSY ABJM BCFT in
the free limit, which we denote bg.eo. We will assume no 2d SUSY multiplets are present,
that is, we will calculate the contributions to bgee only from the fields of ABJM.

As mentioned in section 1, the ABJM theory [9] is a 3d N/ = 6 SUSY U(N), x U(N)_g
Chern-Simons matter CFT, and is the low-energy description of N M2-branes at a C*/7Z;,
singularity. When k = 1,2 the SUSY is enhanced to A/ = 8. The field content is two N' = 2
vector multiplets, two N' = 2 adjoint hypermultiplets, and two A = 2 bi-fundamental
hypermultiplets in complex conjugate representations of the gauge group. The on-shell
degrees of freedom include, from the adjoint multiplets, the Chern-Simons gauge fields and
their fermionic super-partners, and from the bi-fundemental hypermultiplets, eight real
scalar fields describing the positions of the M2-branes in the eight transverse directions,
and their fermionic super-partners. The theory’s 't Hooft coupling is N/k, hence the theory
becomes weakly-coupled when k£ > N and free when & — co with N fixed.

The maximally SUSY boundary conditions on the ABJM fields that describe M2-
branes ending on M5-branes appear for example in ref. [76], which we now briefly review.
Four of the scalars have Dirichlet boundary conditions, representing the fact that the M2-
branes cannot move away from the M5-branes in the directions (x7, zs, x9, x19). The other
four scalars obey a Basu-Harvey-type equation [78], which in the free limit & — oo with N
fixed reduces to a Neumann boundary condition, representing the fact that the M2-branes
can move freely along the M5-branes in the directions (z3, x4, x5, z¢). The bi-fundamental
gauge indices on the scalars must also encode the partition p describing which M5-brane
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each M2-brane ends on. The boundary conditions on the Chern-Simons gauge fields and
fermionic super-partners follow from SUSY.

We also want the boundary conditions to preserve conformal symmetry. In the free
limit, for scalar fields Dirichlet and Neumann boundary conditions each preserve conformal
symmetry. For Chern-Simons gauge fields conformal invariance requires a boundary term
producing a Wess-Zumino-Witten (WZW) model at the 2d boundary. For Dirac fermions
conformal symmetry requires acting with a projector that produces a single chiral fermionic
mode at the 2d boundary. The maximally superconformal boundary conditions ensure that
the WZW and 2d chiral fermion degrees of freedom together preserve parity. For what
follows we will need no further details about the boundary conditions.

For 3d BCFTs the central charge defined from EE appears also as a central charge
in the trace anomaly [37, 38|, in essentially the same way as a 2d CFT. To be precise,
in a 3d BCFT the only non-zero contribution to the trace anomaly comes from the 2d
boundary [52], and includes a term ﬁ J R localized at the boundary, where R is the Ricci
scalar of the boundary’s induced metric. The coefficient of that Ricci scalar term obeys a
c-theorem for boundary RG flows, and hence serves as a measure of the number of degrees
of freedom localized at the boundary [39]. In 3d the contribution to the trace anomaly’s
2d Ricci scalar term is known for Chern-Simons gauge fields, free Dirac fermions, and
free scalars with Dirichlet and Neumann boundary conditions [38, 39, 53]. We can thus
calculate b for the maximally SUSY ABJM BCFT in the free limit simply by summing the
known results for the on-shell fields in the SUSY multiplets mentioned above.

Crucially, for a free Dirac fermion in 3d, b = 0, so in the maximally SUSY ABJM
BCEFT in the free limit the fermion’s contribution to bg.ee is zero. For a free real scalar in
3d the values of b for Dirichlet and Neumann boundary conditions are equal and opposite.
In the maximally SUSY ABJM BCFT in the free limit, four scalars have Dirichlet boundary
conditions and the other four have Neumann, so the scalars’ net contribution to bg.ee is also
zero. As a result, bpee Will be blind to the partition p describing which Mb5-brane each
M2-brane ends on. We are left with only the U(N); x U(N)_j Chern-Simons gauge fields,
whose contribution to bgee is two copies of the WZW central charge with the same N but
levels k and —k. Starting from a Chern-Simons theory with gauge Lie algebra g at level k,
the central charge of the corresponding WZW model is

S a2
where ¢V is g’s dual Coxeter number. For g = u(N), we have dim g = N2 and g¥ = N. The
maximally SUSY ABJM BCFT in the free limit therefore has a boundary central charge

N2 —k) N2 2k2 N2
bfree = lim i (k) I i

= lim ——— = 2N? 4.2
e E AN T ) 1N T e N2 ’ (4.25)

which indeed contains no information about a partition.

The only similarity between bgg and bgee is that bgg contains terms scaling as N2
at large N, though generically with different coefficients, as obvious in the examples of
egs. (4.9) and (4.10). In some cases the N2 term in bgg dominates. For example, a totally
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symmetric representation in the large-M and N > M limits has bgq ~ —%N 2 which
however clearly disagrees with bgee, €ven in sign.

Superficially, b4 is more similar to bgee than bgg is. Indeed, the examples in egs. (4.14)
and (4.15) clearly scale as N2 at large N. In fact, the coefficient even agrees in one case,
namely b3y for the “anti-symmetric” partition in eq. (4.15), with v = —1/4.

However, we can identify at least two reasons why bggq or bsg and bg..e need not agree.
First, similar to the previous comparisons, for bgg the 3d BCFT has a different super-group
from the maximally SUSY ABJM BCFT. Second, we calculated bgg and bzgq via holography,
and thus in the limit of large 't Hooft coupling A = N/k > 1 and hence N > 1, whereas
obviously we calculated bgee in the free limit. As a result, any agreement between bgg or
b3q and by is likely just a coincidence, and should probably be treated with skepticism.

5 Discussion and outlook

We used the 11d SUGRA solutions of refs. [23-26] to compute holographically the EE in two
cases. First was a spherical region centered on a Wilson surface in the M5-brane theory,
describing N M2-branes ending on M Mb5-branes at large M. Second was the EE of a
semi-circular region centered on the 2d boundary in cousins of the maximally SUSY ABJM
BCFT, also at large N. The Wilson surface or 2d boundary is characterized by a partition
p of N, which for the Wilson surface determines a representation R of the M5-branes’
worldvolume su(M) gauge algebra. From our result for EE we extracted a central charge,
beq or bsq, as a contribution from the Wilson surface or 2d boundary to the coefficient of
the term logarithmic in the cutoff. Presumably bgy or bsy provides one measure of the
number of massless degrees of freedom on the Wilson surface or 2d boundary, respectively.

Our main result for bgg in eq. (1.1) is written compactly in terms of R’s highest weight
vector, A, and the su(M) Weyl vector, o, and is manifestly invariant under the action of
the Weyl group, including complex conjugation, R — R. We found that neither bgg nor bsg
naturally scales with the number of degrees of freedom of the M5- or M2-brane theories at
large M or N, namely M3 or N3/2, respectively. Instead, for several examples of p we found
that bgg and by typically scale as M? or N2. Our results also do not meaningfully agree
with previous calculations of self-dual string central charges by Berman and Harvey [66]
and Niarchos and Siampos [67] (nor do the results in those two references agree with each
other), and indeed we provided a long list of reasons why. For example, a chiral anomaly
was calculated in ref. [66] while ref. [67] computed thermodynamic entropy. The relation of
either of these quantities to EE for a 2d defect or boundary is unclear. Moreover, neither
of the previous putative central charges contain any information about the partition of NV,
and so it is unclear which p to chose for our comparisons.

Indeed, we know of several more promising possible comparisons, which could provide
more details about the origin and implications of our results. Examples include holographic
EE in the asymptotically locally AdSy x S7 solutions dual to M2-branes ending on M5-
branes [26] (which have potentially dangerous singularities), elliptic genera of M2-branes
suspended between Mb5-branes [79], or the superconformal index of the M5-brane theory
compactified on S' x S — where upon dimensional reduction along the S' the Wilson
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surface reduces to a Wilson line of the effective 5d maximally SUSY Yang-Mills (SYM)
theory on S° [22]. In some sense all of these should be counting the same massless degrees
of freedom that contribute to our bgg, though perhaps in different limits.

Our result for bgg in eq. (1.1) also suggests a tantalizing potential connection to Toda
CFTs. In particular, an Ap;_1 Toda CFT has primaries labeled by representations R
which have scaling dimensions % [2Q (A, 0) — (A, A)], with background charge Q. Our bgy is
functionally similar to that with @@ = 8, but with an overall 3/5 factor instead of 1/2.

A natural question is thus whether we can reproduce our result for bgy via the AGT
correspondence [80]. Imagine compactifying Mb5-branes on a Riemann surface times a
squashed S*. The low-energy effective theory on the squashed S* will be an N' =2 SYM
theory whose field content depends on the Riemann surface’s genus and punctures. The
AGT correspondence is the statement that the 4d SYM theory’s partition function on
the squashed S*, which can be computed via SUSY localization [81, 82], is equivalent to
a certain correlator in a Toda CFT on the Riemann surface, with background charge @)
determined by the S*’s squashing parameters. A 2d defect in the M5-brane theory that
descends to a 2d defect in the 4d SYM theory appears in the Toda theory as a degenerate
operator [83, 84]. A key question is thus whether and how the dimension of that degenerate
operator determines our bgy. In other words, can we reproduce our result for bgq, in whole
or in part, from a calculation either in the Toda CFT with degenerate operator or in the
4d SYM theory with 2d defect [85-87]7 In particular, does the dimension of the degenerate
operator in the Toda CFT determine the EE of the 2d defect in the 4d N'= 2 SYM? Or
is the similarity we found merely a coincidence?

We are currently investigating all of the above possible comparisons. However, more
generally we hope our results may help shed light on the mysterious degrees of freedom of
self-dual strings, the 6d N/ = (2,0) CFT, and most of all, M-theory.
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A Integrals for the entanglement entropy

In this appendix we perform the integrals for Z in the asymptotically locally AdS, x S7
case, eq. (3.34), obatining the result in eq. (3.35). The integrals in eq. (3.34) are

(£0,0) 2n+1 , 0 ¢, .—if
I: / d@sm@/ drr® | 1— Z (—1)7+k 1"619 & re 5 S ,
4GN c1c3¢h Pyt [ret? — & |ret? — &

(A1)
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with the cutoff r.(g,,0) in eq. (3.33). We re-write the sums in eq. (A.1) as

41 ~ 4 241 ;
i (—1)itk re =g re =g oo N~ DT (PG —reosH(E+E5))
i0 . 10 __ - .
k=1 [ret? =& |ret® =&kl k=1 \/r2+§]2—2r§j cos4/r2+&2 —2r&, cosb
i<k

(A.2)

After substituting, the integral eq. (3.34) becomes

2722 8 ™ re(Ev,0) 2n+1 ‘ 0 . —i0 _
y S L 4/ d9sin¢9/ dri? | 3 (mpyre O b re T
AGN aicyes Jo 0 e ret® = & [re?? — &l
i<k
(A.3)
We decompose the integral into the following pieces
7 (@m) 8 (Ko + K1 + Ko + K3) (A.4)
4Gy clcgcg 0 ! 2 3 '
where
i re ™ 7,3
Kozn/ df sin 0 drr2:n/ dfsin =, (A.5)
0 0 0 3

and we will not need to perform the 6 integration because Ky will cancel against a term
in K1 + Ko + K3 (specifically a term in Kj: see eq. (A.13)), where we define K7, K5, and
K3 as follows.

If we plug eq. (A.2) into eq. (A.1) then we obtain integrals nearly identical to those of
ref. [34]. In fact, our results will differ from those of ref. [34] only because we have 2n + 1
branch points §; rather than 2n + 2, we will leave m; arbitrary rather than restricting
to m1 = 2, and our cutoff r.(e,,0) will be different. Explicitly, if we plug eq. (A.2) into
eq. (A.1) then from the terms involving the sums over &; and ¢, we obtain the integrals

2n+1 i
™ Te —1)ITE (2 £ 50 )
/ dGSine/ drr? Z (=1 (T &k — 7 eos (€k+£j)) =K1+ Ky + K3,
0 k=1 \/7“2 + &5 — 2r¢; cos 0\/r2 + &2 — 2r&j cos O
i<k

(A.6)
where we define K, K», and K3 by expansions in Legendre polynomials, Py (cos) = Py,
play (1) 2 (r2 4 €€, — 7 cosO(Ex+E;)) 3
K= Z/dasme dr . : ZPP( >< ) :
r

7,k=1 13 I,m=0

i<k

241 léxl 1)it+h,2 ! m
Ky, = Z/ dfsin 6 dr( ) G &8k —reoshlE+ey)) Z PP, ( )( ) )

7,k=1 7’|§]| 1,m=0 fk

i<k

2n+1 &1 _1)i+kp2 l m
K3= Z/ dHSine/ ’ d?"( [+ 66— rosH(G+E5)) Z PP, < )( > .

= 0 €51 1€k ] fl &k

i<k
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The integrals K; and K are identical in form to those in ref. [34], though with sums up
to 2n + 1 rather than 2n 4 2, while in K3 we correct a few typos in ref. [34], although we
still reproduce the subsequent equations of ref. [34]. Performing the integrals over r and 6
in Ky and K3, we find

2n+1 L ; H
g (¢ 5 I+1 £
Ko=— (- ]+k22l+1 () &t < k4 k ]§]§k> [ 2l+3< +§2>]

gk=1
i<k
(A.7)
2n+1 ! 4 3
K= 3 Y s s s (e e ) Fava |
— 2l+1 5 &k(5+20) 20143 & & 3421
g
(A.8)
Performing the integral over r in K7, we find
2n+1 00 3—l—-m
i [T PPygierr
_ +k -
Kl—'z (—1) /()d@sm@ Z i —
7,k=1 I,m=0
j<k I+m#£3
lpmglmZIm lpmfémllm
_0059(§j+5k)12_0 5 1—m fjszlz_o —l—m
Cm2 1
3 2 1
> PP —cos0(&+&) Y PPnEiET+6i& Y PPntiEr [ logr
1,m=0 1l,m=0 l,m=0
+m=3 I+m=2 tm=1 139
(A.9)

Let Kj = KoV + KPP, with Ko and KPP" representing the contributions from the
lower and upper endpoints of the r integration in eq. (A.9), respectively. The lower limit is
independent of the cutoff r.(¢,, #), hence upon performing the integration over 6 our result
for K]°Ve' is nearly identical to that of ref. [34],

antl grog ¢ G+ &)21+1)
lower __ k ] k kS)
T jgl HZQlJrl )g?k <3—2z+1—zz @312 >

(A.10)

As in ref. [34], miraculous cancellations occur, leading to a very simple expression for

2n+1
Klower + Ky + K5 = g Z (_1)j+k|§j — é’k’?’ (All)

jk=1
i<k
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For K|"P*" we find

2n+1 T
KPP = Z(—l)j+k/ df sin 6
. 0
Ha!
3 ,sin? 6 9 . 9
(% - (6 - 8P re— (6 - 6P( + @ costsin®Ologre ). (412

The term involving 3 is independent of j and k. Using the fact that Z?T;;ll(—l)] th = _n,
i<k

we find that the term in K involving r2 exactly cancels against Ky. In the remaining

terms of KPP, we plug in r.(¢y,0) from eq. (3.33) and perform the 6 integration, with

the result

114 In+1 1

Ko 4 Jwper — = \/T —1)itR e —g)2 . A.13

R+ TR SR e e
<k

We perform the sums over j and k using the definition of the my in eq. (2.12),

2n+1
Z (1&g — &)% = —mi —ma. (A.14)
J.k=1
i<k
We thus find
upper 11+ Y 1
Ko + KPP = —giq(—m%—mﬂgﬂg- (A.15)

Using eq. (2.29) to replace —m? — mg with Lg7 we find

1 v L1
K Jupper _ -9 T ST 4 A.16
0+ 30 (1447 20 &, (410

Plugging Ko + K1 + K3 + K3 into eq. (A.4), we thus find

on+1
I_(2w2)2 & A L1 (272?21 8% N, 5 ALT
= r S e > (CITREG —g)d (AT)
4GN ey (1+7) 24 &, 4GN 0102033jk:1
i<k

Using eq. (3.42) to eliminate c1, c2, and c¢3 in the first term, we find

2n+1
(27r2)2 L%7 1 (2%2)2 1 8 - \
T UGy 24 e, 3 2 (C7REG = &) A8
AGn 24 &y, 4GN cichel 3%::1( YT &) (A.18)
i<k

which we quote in eq. (3.35).
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