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Département de Physique Théorique et Section de Mathématiques, Université de Genève,
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1 Introduction

There is by now strong evidence that topological strings on toric Calabi-Yau (CY) mani-

folds are closely related to spectral problems in one dimension, obtained by an appropriate

quantization of the mirror curve. Building on previous insights in topological string the-

ory [1–4], supersymmetric gauge theory [5, 6], and on developments in ABJM theory [7–13],

a precise formulation of this correspondence was put forward in [14, 15] (see [16] for a re-

view). The construction developed in [14, 15] associates a set of trace class operators to

a given mirror curve. Exact quantization conditions and Fredholm determinants for these

operators are then conjecturally encoded in the enumerative geometry of the CY. This

provides a correspondence between spectral theory and topological strings, or TS/ST cor-

respondence, which has been further developed in [17–38]. So far, in spite of very stringent

tests, no counterexample has been found for the conjectures put forward in [14, 15].

Most of the work which has been done on the TS/ST correspondence focuses on its

closed string side, which relates closed string invariants to the eigenvalue spectrum of the

operators. However, in order to fully solve the spectral problem, one should also find the

eigenfunctions. From the point of view of the TS/ST correspondence, this involves the open

string sector. In fact, in the works [1, 2], the central object is the D-brane wavefunction,

which is the generating functional of certain open BPS invariants.
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A detailed study of wavefunctions in the TS/ST correspondence was made in [39],

focusing for simplicity on the local F0 geometry (see [40, 41] for other attempts to write

down the wavefunctions1). Building on calculations performed in different limits, [39] con-

jectured that the exact wavefunctions of the spectral problem can be obtained by combining

the WKB solution for the wavefunction with the so-called topological string wavefunction

(which encodes open BPS invariants associated to symmetric Young tableaux). This is

a direct extension of the exact results of [14] for the spectral determinant, in which one

combines the WKB grand potential with the topological string free energy. The conjec-

tural wavefunctions of [39] are quantum generalizations of the Baker-Akhiezer function on

the mirror curve, akin to (but different from) the construction of [43]. However, there is

a new twist in the story: as shown in [39], one has also to consider different copies of the

resulting wavefunction, corresponding to the different sheets of the Riemann surface. In

the (hyper)elliptic example considered in [39], the contribution of one of the two sheets can

be easily calculated from the open BPS invariants, and then one applies an appropriate

transformation to obtain the contribution of the second sheet. The total wavefunction is

the sum of both contributions. Each contribution is afflicted with WKB-type singularities,

which cancel in the sum. This prescription is conceptually similar to the mechanism de-

scribed in [44] in the context of non-critical strings. The total wavefunction can be written

down very explicitly in the so-called maximally supersymmetric case or self-dual case, when

~ = 2π. The result of [39] for the local F0 geometry has been verified by Kashaev and

Sergeev in [45].

The conjecture put forward in [39] was only developed in detail in the case of local F0

(and for a fixed value of its mass parameter), since this is the simplest and most symmetric

example. A deeper understanding of the open string sector for the TS/ST correspondence

requires further testing of the conjecture in [39]. In this paper we make various steps in

this direction, by extending the results of [39] in various ways. First, we test the conjecture

in the maximally supersymmetric case ~ = 2π for two different geometries: local P2, which

has genus one, and more importantly, the resolved C3/Z5 orbifold studied in [15]. This is a

genus two geometry, which is technically more challenging. We manage however to obtain

an exact expression for the wavefunctions on this genus two geometry, in the self-dual case,

and for generic moduli. This result, as well as the conjectural result for local P2, have been

successfully checked against numerical calculations of the wavefunctions.

Our explicit result for a higher genus geometry allows us to explore under a new angle

the relation between the quantization of mirror curves put forward in [15], and the cluster

integrable system of Goncharov and Kenyon [46]. As it turns out, a toric CY leads to

two different spectral problems: the spectral problem in one dimension considered in [15],

based on the quantization of the mirror curve Σ, and the spectral problem in gΣ dimensions

considered in [46], based on gΣ mutually commuting Hamiltonians (here, gΣ is the genus

of the mirror curve). The two spectral problems are however closely related. Based on the

conjectural exact solution for the spectrum of the cluster integrable system proposed in [26],

1While this paper was being typed, a very interesting paper appeared [42] which makes a concrete

proposal for the eigenfunctions of the relativistic Toda lattice by using instanton partition functions in the

presence of defects. This corresponds to the family of toric CYs engineering pure SU(N) gauge theories.
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it has been noted that the spectral problem of [15] is more general than the one associated

to the cluster integrable system. In particular, the quantization condition put forward

in [15] leads to a codimension one submanifold of the moduli space. This submanifold

contains the spectrum of the integrable system, which is a discrete set of points, as a

subset [15, 26, 30]. It is then important to ask what is the physical mechanism which further

restricts the submanifold [15] to the discrete spectrum of the cluster integrable system. A

natural answer is that the one-dimensional operator of [15] is the Baxter operator for the

cluster integrable system. The spectrum of the cluster integrable system should follow

from the spectrum of the Baxter operator by requiring appropriate boundary conditions

on its solutions, as it happens in the standard Toda lattice [47–50]. In this paper we give

some evidence that this is the case in the example of the resolved C3/Z5 orbifold. Namely,

we show that the wavefunctions of the Baxter operator, which we find explicitly when

~ = 2π, decay more rapidly at infinity precisely when the values of the moduli correspond

to the spectrum of the cluster integrable system. This provides a physical realization of

the additional quantization conditions found in [26, 30].

Finally, we explore the validity of the conjecture in [39] when ~ takes arbitrary values.

In this case, the information provided by the open topological string amplitudes is in

principle more limited: the generating functions of BPS invariants are given by expansions

at large x, so we do not have closed formulae for the x dependence on the wavefunctions.

This leads to important limitations in obtaining the contributions to the wavefunction from

the different sheets of the Riemann surface. However, as noted in [39], when the Riemann

surface is hyperelliptic, the contributions of the two Riemann sheets can be calculated

separately on the spectral theory side. It is then possible to compare the results for the

contribution of the first Riemann sheet, which can be obtained from standard open BPS

invariants, and we do so in the example of local P1 × P1 and for different values of ~. We

find perfect agreement.

This paper is organized as follows. In section 2 we present the conjecture of [39]

for the exact eigenfunctions in a general setting, we work out in detail the maximally

supersymmetric or self-dual case, and we illustrate it with a new example, namely local P2.

In section 3, we study the genus two example of the resolved C3/Z5 orbifold and we make

a connection between the integrable system and the decay at infinity of the wavefunctions.

In section 4 we consider the conjectural eigenfunctions for arbitrary values of ~, and we

study then in detail in the example of local F0. Finally, in section 5 we present some

conclusions and open problems.

2 The exact eigenfunctions: a conjecture

2.1 The closed string sector

We will now summarize some basic ingredients of the TS/ST correspondence. We refer the

reader to [14–16] for more details and extensive references to the background results on

topological string theory and local mirror symmetry.

Let X be a toric Calabi-Yau manifold, with gΣ “true” moduli denoted by κi,

i = 1, · · · , gΣ. It also has rΣ mass parameters, ξj , j = 1, · · · , rΣ [51, 52]. We will de-
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note by nΣ ≡ gΣ + rΣ the total number of moduli of X. Its mirror curve has genus gΣ and

it is given by an equation of the form

W (ex, ey) = 0. (2.1)

It is convenient to write this curve in a “canonical” form, by picking up one of the geometric

moduli, say κi, so that (2.1) can be written as

Oi(x, y) + κi = 0. (2.2)

The function Oi(x, y) is a sum of monomials of the form eax+by, with coefficients that

depend on the moduli and the mass parameters. We can write

Oi(x, y) + κi = O(0)
i (x, y) +

gΣ∑
j=1

Pij(x, y)κj , (2.3)

where Pii(x, y) = 1. We can obtain an operator by Weyl quantization of the mirror

curve: we promote x, y to self-adjoint Heisenberg operators x, y satisfying the commutation

relation

[x, y] = i~. (2.4)

Under Weyl quantization, we have that,

eax+by → eax+by, (2.5)

so that the function Oi(x, y) becomes a self-adjoint operator, which will be denoted by Oi.

If the mass parameters and geometric moduli satisfy appropriate positivity conditions, the

operator

ρi = O−1
i , (2.6)

acting on L2(R), is of trace class in all known examples [17, 24]. Therefore, it has a discrete

spectrum of eigenvalues κ
(n)
i = −e−E

(i)
n , n = 0, 1, 2, · · · , with eigenfunctions |ψ(i)

n 〉, which

satisfy (
Oi + κ

(n)
i

)
|ψ(i)
n 〉 = 0, n = 0, 1, 2, · · · (2.7)

Since there are gΣ canonical forms for the curve, there are gΣ operators Oi that one can

consider. However, these operators are related by a similarity transformation

Oi + κi = P
1/2
ij (Oj + κj)P

1/2
ij , i, j = 1, · · · , gΣ, (2.8)

where Pij is the operator corresponding to the monomial Pij . In particular, the eigenfunc-

tions associated to the gΣ operators are related as [15]

|ψ(j)
n 〉 = P

1/2
ij |ψ

(i)
n 〉. (2.9)

The conjectures of [14, 15, 39] provide an answer for this spectral problem, based on

the (refined) BPS invariants of the toric CY X. Therefore, in order to write down explicit

formulae for these quantities, we have to introduce some generating functionals of BPS

– 4 –
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invariants for X. In doing this, we will mostly follow the conventions of [33]. As discussed

above, the CY X has gΣ “true moduli” denoted by κi, i = 1, · · · , gΣ. We will introduce

the associated “chemical potentials” µi by

κi = eµi , i = 1, · · · , gΣ. (2.10)

The true moduli and the mass parameters are encoded in the Batyrev coordinates zi
defined by

− log zi =

gΣ∑
j=1

Cijµj +

rΣ∑
k=1

αik log ξk, i = 1, · · · , nΣ. (2.11)

One can choose the Batyrev coordinates in such a way that, for i = 1, · · · , gΣ, the zi’s

correspond to true moduli, while for i = gΣ + 1, · · · , gΣ + rΣ, they correspond to mass

parameters. For such a choice, the non-vanishing coefficients in (2.11)

Cij , i, j = 1, · · · , gΣ, (2.12)

form an invertible matrix, which agrees (up to an overall sign) with the charge matrix Cij
appearing in [52]. The mirror map expresses the Kähler moduli ti of the CY in terms of

the Batyrev coordinates zi:

− ti = log zi + Π̃i(z) , i = 1 . . . , nΣ , (2.13)

where Π̃i(z) is a power series in zi. Together with (2.11), this implies that

ti =

gΣ∑
j=1

Cijµj +

rΣ∑
k=1

αik log ξk +O(e−µ) . (2.14)

By using the quantized mirror curve, one can promote the classical mirror map to a quantum

mirror map ti(~) depending on ~ [2]:

− ti(~) = log zi + Π̃i(z; ~) , i = 1 . . . , nΣ . (2.15)

The enumerative invariants of X are encoded in various important functions. The topo-

logical string genus g free energies Fg(t) encode the information about the Gromov-Witten

invariants of X. In the so-called large radius frame, they have the structure

F0(t) =
1

6

nΣ∑
i,j,k=1

aijktitjtk + 4π2
nΣ∑
i=1

bNS
i ti +

∑
d

Nd
0 e−d·t,

F1(t) =

nΣ∑
i=1

biti +
∑
d

Nd
1 e−d·t,

Fg(t) = Cg +
∑
d

Nd
g e−d·t, g ≥ 2.

(2.16)

In these formulae, Nd
g are the Gromov-Witten invariants of X at genus g and multi-degree

d. The coefficients aijk, bi are cubic and linear couplings characterizing the perturba-

tive genus zero and genus one free energies. Finally, Cg is the so-called constant map
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contribution [53]. The constants bNS
i usually appear in the linear term of FNS(t, ~) (see

below, (2.23)). The total free energy of the topological string is the formal series,

FWS (t, gs) =
∑
g≥0

g2g−2
s Fg(t) = F (p)(t, gs) +

∑
g≥0

∑
d

Nd
g e−d·tg2g−2

s , (2.17)

where

F (p)(t, gs) =
1

6g2
s

nΣ∑
i,j,k=1

aijktitjtk +

nΣ∑
i=1

(
bi +

4π2

g2
s

bNS
i

)
ti +

∑
g≥2

Cgg
2g−2
s (2.18)

and gs is the topological string coupling constant.

The sum over Gromov-Witten invariants in (2.17) can be resummed order by order

in exp(−ti), at all orders in gs. This resummation involves the Gopakumar-Vafa (GV)

invariants ndg of X [54], and it has the structure

FGV (t, gs) =
∑
g≥0

∑
d

∞∑
w=1

1

w
ndg

(
2 sin

wgs
2

)2g−2
e−wd·t. (2.19)

Note that, as formal power series, we have

FWS (t, gs) = F (p)(t, gs) + FGV (t, gs) . (2.20)

In the case of toric CYs, the Gopakumar-Vafa invariants are special cases of the refined

BPS invariants [55–57]. These refined invariants depend on the degrees d and on two

non-negative half-integers or “spins”, jL, jR. We will denote them by Nd
jL,jR

. We now

define the Nekrasov-Shatahsvili (NS) free energy as

FNS(t, ~) = F pert
NS (t, ~) + F inst

NS (t, ~) , (2.21)

where

F pert
NS (t, ~) =

1

6~

nΣ∑
i,j,k=1

aijktitjtk +

(
~ +

4π2

~

) nΣ∑
i=1

bNS
i ti , (2.22)

and

F inst
NS (t, ~) =

∑
jL,jR

∑
w,d

Nd
jL,jR

sin ~w
2 (2jL + 1) sin ~w

2 (2jR + 1)

2w2 sin3 ~w
2

e−wd·t . (2.23)

In this equation, the coefficients aijk are the same ones that appear in (2.16). By expand-

ing (2.21) in powers of ~, we find the NS free energies at order n,

FNS(t, ~) =
∞∑
n=0

FNS
n (t)~2n−1. (2.24)

The first term in this series, FNS
0 (t), is equal to F0(t), the standard genus zero free energy.

– 6 –
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Following [12], we now define the grand potential of the CY X.2 It is the sum of two

functions. The first one is

JWKB
X (µ, ~) =

nΣ∑
i=1

ti(~)

2π

∂FNS(t(~), ~)

∂ti
+

~2

2π

∂

∂~

(
FNS(t(~), ~)

~

)

+
2π

~

nΣ∑
i=1

(
bi + bNS

i

)
ti(~) +A(ξ, ~).

(2.25)

The function A(ξ, ~) is only known in a closed form in some simple geometries. The

second function is the “worldsheet” grand potential, which is obtained from the generating

functional (2.19),

JWS
X (µ, ~) = FGV

(
2π

~
t(~) + πiB,

4π2

~

)
. (2.26)

It involves a constant integer vector B (or “B-field”) which depends on the geometry under

consideration. This vector satisfies the following requirement: for all d, jL and jR such

that Nd
jL,jR

is non-vanishing, we must have

(−1)2jL+2jR+1 = (−1)B·d. (2.27)

The total grand potential is the sum of the above two functions,

JX(µ, ~) = JWKB
X (µ, ~) + JWS

X (µ, ~). (2.28)

In practice, the total grand potential can be computed by using the (refined) topological

vertex [55, 58], which can be used to compute FGV and FNS by taking the standard and

the NS limit of the refined topological string free energy, respectively.

The central quantity determining the spectral properties of the operator O is the

(generalized) spectral determinant of X. To define it, we write the quantized mirror curve as

Oi + κi = O
(0)
i

1 +

gΣ∑
j=1

κjAij

 . (2.29)

The spectral determinant of X is given by

ΞX(κ; ~) = det

1 +

gΣ∑
j=1

κjAij

 . (2.30)

Although in defining this operator we have singled out one particular canonical form of

the mirror curve (i.e. made a particular choice of Oi), it is shown in [15] that the above

definition is independent of this choice, so the spectral determinant is associated to the

mirror curve itself, and not to any particular parametrization of it. The zero locus of

ΞX(κ; ~) defines a codimension one submanifold M in the gΣ-dimensional space of “true”

2In some papers, this is also called the modified grand potential since it does not agree with the grand

potential of the corresponding Fermi gas. In this paper we shorten the name to grand potential tout court.
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moduli. This submanifold gives the spectrum of the operator Oi (and of the other opera-

tors obtained from it by similarity transformations). For example, if we fix the values of

the moduli κj , j 6= i, we find a discrete set of values of κi inM, κi,n, n = 0, 1, 2, · · · , which

are identified as (minus) the eigenvalues −eE
(i)
n of Oi (see [15] for a detailed discussion and

illustration in the case of the resolved C3/Z5 orbifold).

The main conjecture of [14, 15] is that the spectral determinant (2.30) can be obtained

as a Zak transform of the total grand potential of X, as follows

ΞX(κ; ~) =
∑

n∈ZgΣ
exp (JX(µ+ 2πin, ~)) . (2.31)

In particular, this conjecture solves completely the problem of determining the spectrum

of the operator(s) associated to the mirror curve.

2.2 A conjecture for the exact eigenfunctions

The total grand potential corresponds to the closed string sector of the topological string

on X, and it solves the problem of calculating the eigenvalues of the quantum mirror

curve. In order to extract the exact eigenfunctions, we have to find its open string theory

counterpart. The spectral problem (2.7) has a WKB solution for the eigenfunction which

is a formal power series expansion in ~,

ψWKB(x;κ) = exp

[ ∞∑
n=0

SWKB
n (x)(−i~)n−1

]
. (2.32)

It turns out that this expansion can be resummed, order by order in an expansion at x→∞
and at large radius. When expressed in terms of flat coordinates for both the open and

the closed string moduli, this resummation has the following structure. Let us introduce

the vector of quantum corrected Kähler parameters, obtained from the quantum mirror

map (2.15)

t~ = t(µ, ~), (2.33)

and the exponentiated Planck constant,

q = ei~. (2.34)

We will use very often the exponentiated x coordinate, which plays the rôle of the open

string modulus,

X = ex, (2.35)

as well as its rescaled version,

X̂ = ex−r·t~ , (2.36)

where r is a vector of rational entries which depends on the geometry. Then, the open

string WKB grand potential is given by

JWKB
open (x,µ, ~) = log ψWKB(x;κ) = JWKB

pert (x, ~) +
∑
d,`,s

∞∑
k=1

Ds
d,`

qks

k(1− qk)
(−X̂)−k`e−kd·t.

(2.37)

– 8 –
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In this equation, JWKB
pert (x, ~) is a perturbative part, which is a polynomial in x, and Ds

d,`

are integer invariants which depend on a spin s, a winding number `, and the multi-degrees

d [40, 59]. The minus sign in X̂ in this equation is due to the fact that, in the WKB solution,

the sign of X is the opposite one to what is required by integrality of the invariants. The

total WKB grand potential is obtained by adding (2.25) and (2.37), i.e.

JWKB(x,µ, ~) = JWKB(µ, ~) + JWKB
open (x,µ, ~). (2.38)

We note that, although the closed WKB grand potential can be computed from the refined

topological vertex in the NS limit, we have not found a clear relationship between the refined

vertex and the generating function in (2.37). In practice, we calculate (2.37) directly from

the WKB solution for the eigenfunction. In principle it should be possible to calculate

it also from the instanton partition function with defects (see [41] and references therein,

and [42] for very recent progress in this direction).

As in the closed string case, the open string grand potential also has a contribution from

the standard open topological string. We recall that the open topological string free energy

of a toric CY manifold X depends on a choice of Lagrangian D-brane. For each choice of

Lagrangian brane, one can define open BPS invariants ng,d,` [60, 61] which generalize the

Gopakumar-Vafa invariants of the closed topological strings. They depend on a quantum

number g or “genus”, the multi-degree d, and winding numbers ` = (`1, · · · , `h) of the

boundaries. The topological string wavefunction is a particular case of the open string free

energy, depending on a single open modulus X (see [39] for more details on this relation).

It can be written in terms of the open BPS invariants as [61]

logψtop(X, t, gs) =
∑
d

∞∑
g=0

∞∑
h=1

∑
`

∞∑
w=1

ih

h!
ng,d,`

1

w

(
2 sin

wgs
2

)2g−2

×
h∏
i=1

(
2 sin

w`igs
2

)
1

`1 · · · `h
X−w(`1+···+`h)e−wd·t.

(2.39)

The topological string wavefunction can be computed for example by using the topological

vertex [58]. In the topological vertex formalism, D-brane amplitudes are given by partition

functions labelled by Young tableaux. The topological string wavefunction involves only

tableaux with a single row. We now introduce the worldsheet contribution to the open

string grand potential,

JWS(x,µ, ~) = JWS(µ, ~) + JWS
open(x,µ, ~). (2.40)

The first term in the r.h.s. is the worldsheet grand potential (2.26), while

JWS
open(x,µ, ~) = logψtop

(
X̂

2π
~ ,

2π

~
t~ + πiB,

4π2

~

)
. (2.41)

We will sometimes use the dual Planck constant,

~D =
4π2

~
. (2.42)
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The total, x-dependent grand potential is

J(x,µ, ~) = JWKB(x,µ, ~) + JWS(x,µ, ~). (2.43)

The first term in the r.h.s. of this equation is a resummation of the WKB expansion, while

the second term is a non-perturbative correction in ~ to the perturbative WKB result. Note

that both terms have poles when ~/2π is a rational number. However, as shown in [39],

they cancel when we add both functions, provided that [40]

(−1)B·d = (−1)2s (2.44)

for all d and s such that Ds
d,` 6= 0.

As we just mentioned, the open topological string wavefunction depends on a choice of

Lagrangian D-brane in the geometry. What is then the right choice of D-brane to solve the

spectral problem? It turns out that the wavefunctions associated to different branes are re-

lated by a linear canonical transformation [62], therefore they are physically equivalent and

give different representations of the same wavefunction. However, one should make a choice

of the Lagrangian brane which is compatible with the choice of coordinate in the wave-

function. We will see some non-trivial examples of this in the genus two case of section 3.

In writing the open string grand potential we have made another implicit choice,

namely a choice of sheet for the Riemann surface defining the mirror curve. For example,

when the mirror curve is hyperelliptic, in the exponent of (2.32) there is an implicit choice

of sign, just as in the standard WKB method. We will denote the choice of sheet by

a subindex σ in the open grand potential. When the mirror curve is hyperelliptic, and

there are only two sheets, we have σ = ±. The conjecture of [39], slightly generalized to

the higher genus case, states that the wavefunction ψ(x;κ) is given by the sum over the

different sheets,

ψ(x;κ) =
∑
σ

ψσ(x;κ), (2.45)

where

ψσ(x;κ) =
∑
n∈ZgΣ

exp [Jσ(x,µ+ 2πin, ~)] . (2.46)

After summing over the different sheets, we expect to find an entire function on the complex

plane, as pointed out in [44] in the context of non-critical strings, and as illustrated in [39]

in the case of local F0.

There are various observations that can be made on (2.45). First of all, the wavefunc-

tion can be defined for any value of the moduli κ. However, it will not be an eigenfunction

of ρ unless the values of κ belong to the zero locus of the spectral determinant, and in many

cases it will not even be square integrable. For those values of κ where the spectral determi-

nant vanishes, we will say that the wavefunction is “on-shell”. If, for example, we consider

the eigenvalue equation (2.7) for i = 1 for fixed values of the moduli κj , j = 2, · · · , gΣ,

we obtain a sequence of eigenvalues κ1 = −eEn . The expression (2.45), evaluated on these

values, provides the exact eigenfunctions ψn(x) corresponding to the eigenvalues. We can

however keep the wavefunction (2.45) “off-shell”. In this case, the expression (2.45) gives
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an x-dependent generalization of the spectral determinant that can be calculated from the

Fredholm theory of the operator O. This was shown in detail in [39] in the case of local

F0. In this and the next section, we will focus on on-shell wavefunctions, while in section 4

we will consider the theory off-shell.

We should mention that the implementation of the sum over the different sheets turns

out to be quite subtle for general values of ~. In the hyperelliptic case, one of the sheets

(which we will take to be σ = −) involves standard BPS invariants, as obtained from the

WKB expansion and the topological vertex. The wavefunction with σ = + is obtained by

transforming ψ−(x;κ) to the second sheet of the Riemann surface. This can be done in

detail in the maximally supersymmetric case, as discussed in [39] and in the next section,

but for general values of ~ the transformation is more difficult to implement.

2.3 The maximally supersymmetric case

One unexpected consequence of the conjectures put forward in [14, 15, 39] is that the theory

becomes particularly simple when

~ = 2π. (2.47)

This is the “self-dual” value for the Planck constant, in which ~ = ~D. For this value,

the expressions for the spectral determinant and for the wavefunctions become exact at

one-loop in the topological string expansion and in the WKB expansion. We will now write

down explicit and general expressions for the wavefunctions in the maximally supersym-

metric case and for any toric geometry. For simplicity, we will assume in the following

that there are no mass parameters in the model, so the matrix C reduces to the invertible

matrix (2.12) (the inclusion of mass parameters is straightforward but it requires some

additional ingredients and notation).

In the self-dual case ~ = 2π, the only contribution from the topological string wave-

function involves the disk amplitude g = 0, h = 1, and the annulus amplitude g = 0, h = 2.

Let us introduce the functions,

D̃(X) =
∑
d,`

n0,d,`

∞∑
w=1

1

w2
e−wd·t(−X̂)−w`,

Ã(X) =
∑

d,`1,`2

n0,d,`1,`2

∞∑
w=1

1

w
e−wd·t(−X̂)−w(`1+`2).

(2.48)

Here, we use the “classical” Kähler parameters t ≡ t0. Up to a change of sign in the

exponentiated open string moduli, these functions are, respectively, the disk amplitude

and the annulus amplitude A(X1, X2) for X1 = X2 = −X̂. In order to proceed, we define

two constant vectors c and b by the equality,

t2π + iπB = t(µ+ iπc, 0) + 2πib. (2.49)

Using these two vectors, we can define the following transformations in the closed and open

moduli,

µ→ µ+ iπc, x→ x+ iπr · (B− 2b). (2.50)
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We can use this transformation to obtain new functions D(X), A(X) from the standard

disk and annulus amplitudes (2.48):

D(X) = D̃(X)
∣∣∣
µ→ µ + iπc

x→ x + iπr · (B− 2b)

, A(X) = Ã(X)
∣∣∣
µ→ µ + iπc

x→ x + iπr · (B− 2b)

. (2.51)

The remaining ingredient is the exponentially small part of the next-to-leading term in the

WKB expansion,

D̃1(X) =
∑
d,`,s

∞∑
k=1

Ds
d,`(

1
2 − s)
k

e−kd·t(−X̂)−k`. (2.52)

This is essentially the one-loop correction to the WKB wavefunction. After transforming

the closed and open moduli as in (2.50), we obtain the function D1(X). A simple calculation

by using all the above ingredients leads to the following expression

J(x,µ, 2π) = JWKB
pert (x, 2π) +

i

2π

(
x
∂D(X)

∂x
+ t2π ·

∂D(X)

∂t
−D(X)

)
− 1

2
A(X) +D1(x) + J(µ, 2π).

(2.53)

All the quantities appearing here can be computed explicitly in terms of geometric ingredi-

ents on the mirror curve. First of all, since the theory at the self-dual point ~ = 2π involves

the shift of the moduli given in (2.50), we implement this transformation directly in the

equation for the mirror curve. We will denote by y(x) the corresponding solution to the

transformed equation. At large x, this solution goes as y(x) = p(x) + ỹ(x), where p(x) is

a polynomial in x and ỹ(x) = O(e−x). Let us now define the following set of differentials,

ωi = −∂κiy(x)dx, i = 1, · · · , gΣ, (2.54)

and the associated matrix of A-periods,

αij =

∮
Aj
ωi, (2.55)

which is essentially given by the derivatives of t2π with respect to κ, up to the matrix C

appearing in (2.11). By using the normalized differentials

du = α−1ω, (2.56)

we define the Abel-Jacobi map as

u(X) =

∫ x

∞
du, (2.57)

with the basepoint at ∞. A fundamental result in the open local B-model is that the disk

invariants can be read from the equation of the mirror curve [62, 63]. This leads to

D(X) =

∫ x

∞
ỹ(x′)dx′, ∂tD(X) = −2πi(C−1)Tu(X), (2.58)
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where Cij is the matrix appearing in (2.11). Using the above information, we can write

J(x,µ, 2π) = J(µ, 2π) + JWKB
pert (x, 2π) +

i

2π
Σ(x,µ)− 1

2
A(X) +D1(x), (2.59)

where

Σ(x,µ) = xỹ(x)−
∫ x

∞
ỹ(x′)dx′ − 2πit2π · (C−1)Tu(X). (2.60)

In order to obtain the wavefunction (2.45), we have to sum over all the shifts of µ by

2πin. Only terms with explicit factors of t2π inherit the shift:

t2π → t2π + 2πiCn. (2.61)

To proceed, we have to be more explicit about the structure of the closed string contribution

to the grand potential. Let us denote by F̂g, F̂
NS
n the free energies (2.16), (2.24) in which

t~ has been shifted by the B-field in the worldsheet instanton part. The resulting free

energies have the following structure

F̂0 =
1

6

nΣ∑
i,j,k=1

aijkt
i
2πt

j
2πt

k
2π + F̂ inst

0

F̂1 =

nΣ∑
i=1

bit
i
2π + F̂ inst

1

F̂NS
1 =

nΣ∑
i=1

bNS
i ti2π + F̂NS,inst

1 ,

(2.62)

where the instanton contributions, labelled by “inst”, are invariant under the shift (2.61).

Also, the quantity aijk is totally symmetric in its labels. We then obtain

J(x,µ+ 2πin, 2π) = J(x,µ, 2π) + 2iπ (vk + uk(X))nk + iπτijninj

− iπ

3
aijkCimCjnCkpnmnnnp,

(2.63)

where repeated indices are now summed over, and

v = CT

[
1

4π2

(
(∂2

t2π
F̂0)t2π − ∂t2π F̂0)

)
+ b + bNS

]
,

τ =
i

2π
CT(∂2

t2π
F̂0)C.

(2.64)

In all the examples that have been considered, the cubic term in n in (2.63) could always

be absorbed into constant linear and quadratic terms, thus introducing shifts in v and

τ . We will call these shifted quantities v̂ and τ̂ . To write down the final answer for the

wavefunction, we have to use the Riemann theta function with characteristics a, b:

ϑ

[
a

b

]
(u; τ) =

∑
n∈ZgΣ

eiπ(n+b)Tτ(n+b)+2iπ(u+a)T(n+b). (2.65)
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It is an odd function when 4a · b =odd. For definiteness, we call ϑodd the theta function

with a = b = (0, . . . , 0, 1/2)T. The Riemann theta function with a = b = 0 will be

denoted simply by ϑ(u; τ). The normalized B-periods of the (transformed) mirror curve

can be written as ∮
Bj

du = τ + S, (2.66)

where S is a matrix of constants. According to the theory of the B-model presented

in [64, 65], the annulus amplitude A(X) can be written in terms of the Bergman kernel of

the mirror curve (see [39] for details of a similar computation), and one finds,

A(X) = log

(
ϑodd(u(X); τ + S)2

C∇uϑodd(0; τ + S) · u′(X)

)
, (2.67)

where

C = lim
X→∞

X2∇uϑodd(0; τ + S) · u′(X), (2.68)

is a κ dependant constant, and u′(X) is the derivative of the Abel-Jacobi map with respect

to X (not x). Our final expression for ψ(x;κ) is then,

ψ(x;κ) = eJ(µ,2π)
√
C∇uϑodd(0;τ+S)·u′(X)

ϑ(u(X)+v̂; τ̂)

ϑodd(u(X);τ+S)
eJ

WKB
pert (x,2π)+ i

2π
Σ(x,µ)+D1(x).

(2.69)

This wavefunction is very similar to a classical Baker-Akhiezer function on the mirror

curve [66] (see for example [67, 68]), although there are also some important differences

(for example, the term D1(x) is not part of the standard Baker-Akhiezer function).

So far we have not been explicit about the multi-covering structure of the mirror

curve. When the mirror curve is hyperelliptic, so that the Riemann surface is a two-sheeted

covering of the complex plane, the wavefunction (2.69) corresponds to the contribution of

the first sheet ψ−(x;κ), and it involves the standard open BPS invariants. The second

contribution ψ+(x;κ) is obtained by considering the transformation of (2.69) to the second

sheet. This involves a detailed analysis of the covering structure, but in the maximally

supersymmetric case its calculation is in principle straightforward. Such a transformation

was successfully implemented in the case of local F0 in [39], and we will see more examples

in the next subsection and in section 3. One intriguing aspect of this transformation is

that the contribution of the second sheet seems to involve a different realization of the open

string BPS invariants. We will see an illustration of this in the example of local P2.

2.4 An application: eigenfunctions for local P2

In [39] we used the conjecture (2.45) to write down an exact expression for the wavefunctions

in the maximally supersymmetric case ~ = 2π and for local F0. We now apply this to

another important example, namely the local P2 geometry, also for ~ = 2π, where we can

write a fully closed expression.

The mirror curve for local P2 is

ex + ey + e−x−y + κ = 0. (2.70)
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The corresponding spectral problem is

(O + κ)ψ(x) = 0, O = ex + ey + e−x−y. (2.71)

In order to write down the wavefunction, we have to consider the relation (2.49). By

looking at the quantum mirror map of local P2 [1, 14], we find that B = 1, c = 1, b = −1.

In addition, in (2.36) we have r = 1/3. The transformation (2.50) reads then,

κ→ −κ, x→ x+ iπ (2.72)

We can now write down the ingredients appearing in (2.60). The function ỹ(x) is given by

ỹ(X) = log

(
−X2 − κX +

√
σ(X)

2X−1

)
, (2.73)

where

σ(X) = X(4 +X(X + κ)2). (2.74)

The Abel-Jacobi map is

u(X) = K ∂

∂κ

∫ X

∞

dX ′

X ′
ỹ(X ′), (2.75)

where

K = − 3

2πi

(
∂t2π(κ)

∂κ

)−1

, t2π = 3 log(κ)− 6

κ3 4F3

(
1, 1,

4

3
,
5

3
; 2, 2, 2;

27

κ3

)
. (2.76)

The perturbative WKB piece is given by

JWKB
pert (x, 2π) = − ix2

2π
. (2.77)

For the annulus amplitude, one finds

A(X) = − log

(
ϑ1(u(X); τ)2

K2ϑ′1(0; τ)2

√
σ(X)

)
, (2.78)

where the elliptic modulus is given by

τ =
9i

2π
∂2
t2π F̂0 = i

√
3

2F1

(
1
3 ,

2
3 ; 1; 1− 27

κ3

)
2F1

(
1
3 ,

2
3 ; 1; 27

κ3

) . (2.79)

Our conventions for the genus one theta functions are as in [66]. Finally, the function

D1(X) is given by

D1(X) =
1

4
log

(
X4

σ(X)

)
. (2.80)

This can be easily found by a standard WKB expansion.

Using all these data, one finds, by specializing (2.69),

ψ−(x;κ) = eJ(µ,2π)Kϑ′1(0) e−
ix2

2π
+x e

i
2π

Σ(x)√
σ(X)

ϑ3(u(X) + ξ − 3
8)

ϑ1(u(X))
, (2.81)
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where

Σ(x) = xỹ(X)−
∫ X

∞

dX ′

X ′
ỹ(X ′)− 2πi

3
t2πu(X),

ξ =
3

4π2
(t2π∂

2
t2π F̂0 − ∂t2π F̂0),

(2.82)

and the closed string grand potential J(µ, 2π) has been calculated in [14]. As the subindex −
indicates, the expression (2.81) gives just the contribution of the first sheet. The condition

that ψ−(x;κ) decays at large x is satisfied if the ratio of theta functions goes to a constant

in the large x limit. This happens if

ϑ3

(
ξ − 3

8

)
= 0, (2.83)

which is precisely the quantization condition in the maximally supersymmetric case found

in [14]. This condition determines a discrete set of values for κn = −eEn , giving the

spectrum of the operator O in (2.71) when ~ = 2π.

The wavefunction ψ−(x;κ) has singularities at the “turning points” defined by

σ(X) = 0. In order to remove these singularities, we have to add to this function the

wavefunction ψ+(x;κ) living in the second sheet of the Riemann surface. The transforma-

tion to the second sheet is similar to what was done in [39] in the case of local F0. Since

we want to eventually use these results to write down the actual eigenfunctions, we will

assume that κ = −|κ| + i0, with |κ| > 3.3 The transformation of the Abel-Jacobi map

turns out to be given by

u(X)→ −τ
3
− 1− u(X). (2.84)

By integrating this relation and fixing the integration constant carefully, one finds∫ X

∞

dX ′

X ′
ỹ(X ′)→ −

∫ X

∞

dX ′

X ′
ỹ(X ′)− ∂tF̂0 +

2πi

3
t+

3

2
x2 − πix+

3π2

2
. (2.85)

In addition, the function ỹ(x) changes as

ỹ(x)→ 3x− iπ − ỹ(x). (2.86)

We can now write the wavefunction associated to the second sheet,

ψ+(x;κ) = e
πi
4 eJ(µ,2π)− 2πi

3
ξKϑ′1(0) e

ix2

4π
+x e−

i
2π

Σ(x)√
σ(X)

ϑ3(u(X) + ξ − 3
8 + τ

3 )

ϑ1(u(X) + τ
3 )

. (2.87)

The total wavefunction is the sum of (2.81) and (2.87), and it has no singularities at the

turning points. In fact, it is an entire function on the complex plane.

As in the local F0 case analyzed in [39], the expression for the eigenfunction simplifies

considerably when one evaluates it “on-shell”, i.e. for κ = −eEn , n = 0, 1, 2, · · · . This is

due to the fact that, when ξ satisfies the quantization condition (2.83), the quotients of

3The assumption κ < −3 comes from the analysis of the classical system related to the operator O: the

classical phase space is empty for κ > −3. The regularization +i0 is introduced to avoid the branch cut of

the hypergeometric functions in (2.76) and (2.79).
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theta functions in (2.81) and (2.87) simplify to elementary functions of u and τ . After

some massaging, one finds a relatively simple formula for the eigenfunctions. To write this

formula, let X0 be the zero of σ(X) given by

X0 = ex0 = −2κ

3
− e−

2iπ
3 κ2

3ν(κ)1/3
+

e
2iπ
3

3
ν(κ)1/3, (2.88)

with

ν(κ) = 54− κ3 − 6
√

3
√

27− κ3. (2.89)

Let us also introduce the real Kähler parameter for κ < 0,

t̃ = 3 log(−κ)− 6

κ3 4F3

(
1, 1,

4

3
,

5

3
; 2, 2, 2;

27

κ3

)
. (2.90)

Finally, we introduce the functions

ϕ±n (x) = exp

[
± i

2π

∫ X

X0

dX ′

(
− log(X ′)(3X ′ + κ)

2
√
σ(X ′)

− t̃

∂κt̃

1√
σ(X ′)

)]
. (2.91)

It is understood that one should set κ = κn in these equations. Then, the eigenfunctions

are given by

ψn(x;κn) = i
e−

ix2

8π
+x√

σ(X)

(
ϕ+
n (x)− ϕ−n (x)

)
, (2.92)

up to an overall normalization constant. This expression is very useful for explicit calcu-

lations. In figure 1 we show the resulting eigenfunctions for the very first energy levels,

together with their square modulus. We have verified that these eigenfunctions agree with

a direct calculation by using a standard numerical diagonalization.

As we mentioned before, the contribution from the second sheet seems to involve a

different realization of the open string invariants. This is seen more clearly in the annulus

amplitude of the geometry. In the first sheet, this is given by (2.78), which has the large

X expansion

A(X)−=
Q+4Q2+35Q3+400Q4+O(Q5)

(−X̂)2
+

2Q+6Q2+48Q3+522Q4+O(Q5)

(−X̂)3

+
3Q+ 23

2 Q
2+70Q3+690Q4+O(Q5)

(−X̂)4
+O(X̂−5),

(2.93)

where Q = e−t2π . However, after the transformation to the second sheet, implemented

by (2.84), one finds the expansion

A(X)+ =− log(−κX2)+

(
5Q+

51

2
Q2+

806

3
Q3+

13235

4
Q4+O(Q5)

)
+
−2+10Q2+128Q3+1716Q4+O(Q5)

−X̂
+

1+3Q+4Q2−7Q3−325Q4+O(Q5)

(−X̂)2

+
−2

3−6Q−12Q2−48Q3−216Q4+O(Q5)

(−X̂)3
+O(X̂−4). (2.94)
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Figure 1. Evaluation of the eigenfunctions of local P2 and ~ = 2π, by using the expression (2.92),

for the ground state wavefunction and the first three excited states. On the left, the blue line is

the real part and the red dashed line is the imaginary part. On the right we represent the square

of the absolute value, showing n+ 1 peaks for the nth level.
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Interestingly, one can also extract integer invariants from this expression by using the

multicovering formula in (2.48), and they seem to correspond to a different open BPS

sector. It would be important to have a deeper understanding of this new sector, associated

to the second sheet of the Riemann surface.4 This would provide eventually a framework

to obtain the precise contribution of the second sheet in the general case.

3 Higher genus curves and integrable systems

As explained in [15], in the higher genus case, the quantization of the mirror curve [15] leads

to a single quantization condition and to a codimension one submanifoldM in the space of

“true” moduli. However, the toric data of X define as well a cluster integrable system [46]

with gΣ mutually commuting Hamiltonians. The spectrum of these Hamiltonians was

conjecturally determined in [25, 26] in terms of gΣ exact quantization conditions. It has

been observed in [15, 26, 30] that the spectrum of the cluster integrable system is a subspace

of M. Presumably, the mechanism relating the two quantization conditions is as follows:

the quantization of the mirror curve gives the analogue of the Baxter operator for this

problem. The spectrum and eigenfunctions of this operator determine in principle the

spectrum and eigenfunctions of the cluster integrable system. However, there are clearly

admissible eigenfunctions of the trace class operator associated to the quantum curve which

are not admissible solutions of the cluster integrable system, since we know that most of the

points inM are not in the spectrum of the cluster integrable system. Therefore, additional

conditions should be imposed on the solutions of the Baxter equation. Such additional

conditions were empirically found in [26] in one example, and more systematically in [30].

The physical meaning of these conditions is not clear, though.

In this section, we will analyze a simple genus two geometry, namely the resolved C3/Z5

orbifold, in order to clarify this picture. We will construct explicitly the eigenfunctions in

the self-dual case, following the prescription of the previous section. When the values

of the moduli belong to M, these eigenfunctions are square integable, as expected from

the analysis of [15, 39]. We will show however that the decay properties at infinity of

these eigenfunctions change (and improve) when the moduli belong to the spectrum of the

corresponding cluster integrable system. In this way we will able to recover the additional

quantization condition found empirically in [26].

3.1 Exact wavefunctions for the resolved C3/Z5 orbifold

The resolved C3/Z5 orbifold geometry, which has gΣ = 2, was studied in detail in [15] from

the point of view of the TS/ST correspondence. Let us first recall some results from [15].

The are two canonical forms for the mirror curve of this CY. The first one is

WX(x′, y′) = ex
′
+ ey

′
+ e−2x′−2y′ + κ2e−x

′−y′ + κ1 = 0. (3.1)

4For example, is there an algorithmic way of obtaining these new invariants from the invariants asso-

ciated to the usual BPS sector, without explicitly performing the analytic continuation of the resummed

amplitudes?
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Figure 2. Toric diagram and dual web for C3/Z5.

We will call this the symmetric parametrization, because x′ and y′ appear symmetrically.

The associated spectral problem is

(O1 + κ1)ψ(x′) = 0, O1 = ex
′
+ ey

′
+ e−2x′−2y′ + κ2e−x

′−y′ . (3.2)

In the second canonical form, the mirror curve is

WX(x, y) = ex + ey + e−3x−y + κ1e−x + κ2 = 0. (3.3)

We will call this the hyperelliptic parametrization, because it leads to a hyperelliptic curve

in the exponentiated variables. The corresponding spectral problem is

(O2 + κ2)ψ(x) = 0, O2 = ex + ey + e−3x−y + κ1e−x. (3.4)

The coordinates x′, y′ and x, y appearing in (3.1) and (3.3) are related by the following

linear canonical transformation (
x

y

)
=

(
−1 −1

2 1

)(
x′

y′

)
. (3.5)

We will focus on the hyperelliptic parametrization, since it leads to a two-sheet covering of

the complex plane where we can use the simple prescriptions of the previous section. We

can always obtain the wavefunctions in the symmetric parametrization by using (2.9) As

in the example of local P2, we will focus on the maximally supersymmetric case in which

~ = 2π, where we can write down explicit, closed formulae for the eigenfunctions.

In order to write down these eigenfunctions, we recall some basic ingredients from the

special geometry of the resolved C3/Z5 orbifold. The toric and the web diagram of the

geometry are shown in figure 2. This geometry has no mass parameters, and the Batyrev

coordinates in moduli space are given by

z1 =
κ2

κ3
1

, z2 =
κ1

κ2
2

. (3.6)

The corresponding Kähler parameters will be denoted by t1, t2 (explicit formulae for the

classical and quantum mirror maps of this geometry can be found in [15]). The C matrix is

C =

(
3 −1

−1 2

)
. (3.7)
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The B-field is given by B = (1, 0). We have to determine the vectors r, b and c appearing

in (2.36) and (2.49). One finds that c = (0, 1), b = (1,−1) and r = (1
5 ,

3
5), so (2.50) reads

κ1 → κ1, κ2 → −κ2, x→ x+ iπ. (3.8)

Correspondingly, the function ỹ(x) is given by

ỹ(X) = log

(
X3 + κ1X + κ2X

2 +
√
σ(X)

2X3

)
, (3.9)

where

σ(X) = 4X + (X3 + κ1X + κ2X
2)2. (3.10)

The integral of ỹ(x) calculates (up to the transformation (3.8)) the generating functional

of disk invariants D̃(X) in (2.48), corresponding to a toric D-brane in the external leg III

shown in figure 2. The Abel-Jacobi map is

ui(X) = − 1

2πi
Cil

(
∂t2π
∂κ

)−1

lj

∫ X

∞
∂κj ỹ(X ′)

dX ′

X ′
, i = 1, 2. (3.11)

The perturbative WKB piece is

JWKB
pert (x, 2π) =

ix2

4π
. (3.12)

The annulus amplitude is given by

A(X) = log

(
e−

iπ
4 ϑodd(u(X); τ)2

√
σ(X)

C′(0)C(X)

)
, (3.13)

where the τ matrix is

τij = − 1

2πi
CimCjn

∂2F̂0

∂t2π,m∂t2π,n
(3.14)

and the function C(X) reads

C(X) =
1

2πi
[∇uϑodd(0)]TC

(
∂t2π
∂κ

)−1
(

1

X

)
. (3.15)

Finally, the function D1(X) is given by

D1(X) =
1

4
log

(
X6

σ(X)

)
. (3.16)

These ingredients determine the open string grand potential. The wavefunction (2.69) is

in this case given by

ψ−(x;κ) = eJ(µ,2π)
√
C′(0)

√
C(X)

σ(X)

ϑ

[
0

0

]
(u(X) + v + s; τ)

ϑodd(u(X); τ)
e

ix2

4π
+ 3x

2
+ i

2π
Σ(x), (3.17)
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and it corresponds to the first sheet of the Riemann surface. In the expression (3.17), v is

given by

vk = Cik

[
1

4π2

(
∂2F̂0

∂t2π,i∂t2π,j
t2π,j −

∂F̂0

∂t2π,i

)
+ bi + bNS

i

]
, (3.18)

where the vectors b, bNS are, for this geometry [15],

b =

(
2/15

3/20

)
, bNS =

(
−1/12

−1/8

)
, (3.19)

and the constant shift s is given by

s =

(
1/2

2/3

)
(3.20)

As in other cases, the quantization condition is obtained by requiring the function (3.17)

to decay at infinity. At large X = ex we have that,

C(X) ≈ X, σ(X) ≈ X6, u(X) ≈ X−1, ϑodd(u(X); τ) ≈ X−1. (3.21)

Therefore, in order for ψ−(x,κ) to vanish at infinity, we need to choose κ1 and κ2 in such

a way that

ϑ

[
0

0

]
(v + s; τ) = 0. (3.22)

For fixed κ1, this gives a quantization condition for −κ2 = eE2 . Conversely, for fixed κ2,

this gives a quantization condition for −κ1 = eE1 . The quantization condition (3.22) turns

out to be equivalent to the vanishing of the spectral determinant Ξ(κ1, κ2; 2π), and it agrees

with the quantization condition for this spectral problem found in [15].

We should now consider the wavefunction associated to the second sheet. The trans-

formation rules require a detailed analysis of the Riemann surface defined by (3.9). One

finds that the Abel-Jacobi map changes as

u(X)→ (τC−1 + 3)e2 − u(X), e2 =

(
0

1

)
, (3.23)

while the integral of ỹ(x) changes as∫ X

∞
ỹ(X ′)

dX ′

X ′
→− 19π2

6
+ ∂t2π,2F̂0 − 2iπ

(
3

5
t2π,1 +

9

5
t2π,2

)
− 5x2

2
+ iπx

−
∫ X

∞
ỹ(X ′)

dX ′

X ′
.

(3.24)

This is valid when κ2 < 0. When κ2 is interpreted as minus the eigenvalue of O2, we

have indeed κ2 < 0 if for example κ1 > 0. After implementing these transformations in
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ψ−(x;κ), we find

ψ+(x;κ) = eJ(µ)
√
C′(0)e

23
15
πi+2πieT

2 C
−1v

√
C(X)

σ(X)

×
ϑ

[
0

0

]
(τC−1e2 + v + s− u(X); τ)

ϑodd(τC−1e2 − u(X); τ)
e−

ix2

π
+ 3x

2
− i

2π
Σ(x).

(3.25)

The full wavefunction is then the sum of (3.17) and (3.25),

ψ(x;κ) = ψ−(x;κ) + ψ+(x;κ). (3.26)

The resulting wavefunction is entire on the complex plane of the x variable, and it belongs

to L2(R) when the quantization condition (3.22) is imposed. In figure 3 we show the exact

eigenfunctions for the ground state and the first two excited states (we have removed the

overall x-independent constant eJ(µ,2π)
√
C′(0)). Note that in this case κ1 plays the rôle

of a parameter and we have set κ1 = e4. We have tested these results against a direct

numerical calculation of the eigenfunctions, and we have found full agreement. This is a

highly non-trivial test of the conjecture put forward in [39] in the higher genus case, where

the solution involves full-fledged Riemann theta functions at genus two.

Once the eigenfunctions have been found in the hyperelliptic parametrization (3.3),

one can use the general transformation rule (2.9) to obtain the eigenfunctions in the sym-

metric parametrization (3.1), i.e. for the spectral problem (3.2). In this case, the operator

appearing in (2.8) is P12 = e−x. One also has to take into account the linear canonical

transformation (3.5) relating the two variables. By implementing this transformation as a

unitary operator [69] (see also [39]), we find that the eigenfunction in (3.2) is related to

the eigenfunction in (3.4) by

ψ
(
x′
)

=

∫
e

i
2~ (x2−2xx′−x′2)−x

2ψ(x) dx, (3.27)

up to an overall normalization constant (since our eigenfunctions are not normalized any-

way, we do not keep track of these constants). When we plug in the integrand of the r.h.s.

the eigenfunction (3.26) for parameter κ1 and eigenvalue −κ2, we obtain the eigenfunction

of (3.2) with parameter κ2 and eigenvalue −κ1. This eigenfunction can be succcesfully

compared to the result of a numerical diagonalization of the operator O1.

3.2 Wavefunctions and integrability

Armed with the explicit results obtained in the previous section, we can address now how

the underlying cluster integrable system manifests itself in the behaviour of the eigenfunc-

tions. First of all, we note that the eigenfunction (3.26), after imposing the quantization

condition (3.22), has the following behavior as |x| → ∞:

ψ(x;κ) ∼

e−x
(

e
i

4π
x2O(1) + e−

i
π
x2O(1)

)
, x→∞

ex
(

e−
3i
8π
x2O(1) + e−

3i
8π
x2O(1)

)
, x→ −∞.

(3.28)
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Figure 3. Exact eigenfunctions for the ground state and two first excited states, as obtained

numerically from (3.26) without the overall constants. Here we set κ1 = e4. On the left, the blue

line shows the real part, while the orange line shows the imaginary part. The plots on the right

show the squared absolute value.

In addition, we find that ψ(x;κ) decays at infinity in the strip −4π
3 < Im(x) < π

2 around

the real axis. The decay as x→∞ is guaranteed by the quantization condition, which can

be written as

ϑ

[
0

0

]
(u(∞) + v + s; τ) = 0, (3.29)

to emphasize that this leads to a improved behavior when X = ∞. Due to Riemann’s

vanishing theorem, the Riemann theta function in genus two vanishes at two points on the

Riemann surface. The quantization condition (3.22) imposes that one of these points is

X = ∞. In order to improve the decay properties of the wavefunction at infinity, we can
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impose the other vanishing point to be X = 0, i.e. x = −∞. This leads to the additional

condition

ϑ

[
0

0

]
(u(0) + v + s; τ) = 0. (3.30)

When this additional condition is imposed, the decay properties of the wavefunction are

enhanced to

ψ(x;κ) ∼

e−x
(

e
i

4π
x2O(1) + e−

i
π
x2O(1)

)
, x→∞

e
3
2
x
(

e−
3i
8π
x2O(1) + e−

3i
8π
x2O(1)

)
, x→ −∞

. (3.31)

In addition, one finds that ψ(x) decays in the strip −2π < Im(x) < π
2 , which is larger than

the strip obtained before. It can be verified that the condition (3.30) is equivalent to the

vanishing of the rotated spectral determinant considered in [26], i.e. to the condition

Ξ(e
6πi
5 κ1, e

− 2πi
5 κ2; 2π) = 0. (3.32)

Together, the two conditions (3.22), (3.30) are equivalent to the two quantization condi-

tions proposed in [26] to determine the spectrum of the cluster integrable system associated

to C3/Z5.

There is a simple WKB argument which relates the quantization conditions of the

cluster integrable system to the decay behavior of the eigenfunctions of the Baxter operator

(this is based on a similar argument in [49] for the Toda lattice). We first note that, as

pointed out in [26], under the symplectic linear transformation,

y→ p = y +
3

2
x, x→ x, (3.33)

the operator associated to the hyperelliptic parametrization (3.3) becomes

O2 + κ2 = e−
3x
4 B e−

3x
4 , (3.34)

where the Baxter operator B is given by

B = ep + e−p + 2t5(ex/2) (3.35)

and

2t5(z) = z5 + κ2z
3 + κ1z. (3.36)

A function Q(x) annihilated by the Baxter operator satisfies,

Q(x+ i~) +Q(x− i~) + 2t5(ex/2)Q(x) = 0, (3.37)

and the eigenfunctions of the operator O2 are related to Q(x) by

ψ(x;κ) = e
3x
4 Q(x). (3.38)

The WKB solution for Q(x) is exactly of the form found in [49],

Q(x) ≈ 1√
sinhS′0(x)

e−
i
~
∫ x S′0(u)du−πx~ , (3.39)
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Figure 4. The function 2t5
(
ex/2

)
as a function of x and κ1 = −κ2 = 7, showing the two “intervals

of instability” where |t5(ex/2)| ≥ 1.

where the function S0(x) is determined by

coshS′0(x) = t5(ex/2). (3.40)

Let us study the behaviour of this WKB solution as x→∞. Since

2 coshS′0(x) ≈ e5x/2, (3.41)

we have

Q(x) ≈ e−
πx
~ −

5x
4 , x→∞. (3.42)

As x → −∞, we have t5(ex/2) → 0, and we cross two “intervals of instability”, as shown

in figure 4. Between these intervals, |t5(ex/2)| ≤ 1 and S′0(x) must be imaginary. We can

choose S′0(x) as shown in figure 5, so that

S′0(x) ≈ 5πi

2
, x→ −∞, (3.43)

provided it satisfies the quantization conditions∮
Ck

S′0(u) = 2π~nk, k = 1, 2, (3.44)

where n1, n2 are integers. If this is the case, Q(x) behaves as

Q(x) ≈ e
3πx
2~ , x→ −∞. (3.45)

It is easy to verify from (3.42), (3.45) and (3.38) that the function ψ(x;κ) will have precisely

the asymptotic behavior given in (3.31). The quantization conditions (3.44) give the leading

WKB approximation to the exact quantization conditions proposed in [26].

Our main conclusion is that, at least in this example, the quantization conditions of the

cluster integrable system are conditions for an enhanced decay at infinity of the eigenfunc-

tions of the Baxter equation. This gives a physical interpretation to the observation made

in [26], where it was noted that the spectrum of the cluster integrable system is recovered
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Figure 5. The map S′
0(x) as we go from x→∞ to x→ −∞ above the real axis (line on the right)

and below the real axis (line on the left).

when the additional condition (3.32) is imposed. It would be interesting to see whether the

“rotated” spectral determinants introduced in [30], by generalizing the observation in [26],

can be also related to the behavior of the eigenfunctions at infinity.

Of course, in order to have a complete picture of the relationship between the two

spectral problems, one should find an explicit relationship between the eigenfunctions of

the quantum mirror curve and the eigenfunctions of the cluster integrable system itself, as

it was done in [50] for the Toda lattice. The enhanced decay properties that we have found

should arise as necessary conditions for the square integrability of the eigenfunctions of the

cluster integrable system.

4 Testing general values of the Planck constant

4.1 General strategy

So far, our tests of the conjecture for the exact eigenfunctions have been done in the self-dual

case. There is a good reason for this: when ~ = 2π, one can write the functions ψ∓(x;κ)

in closed form, and in particular one can implement the transformation to the second sheet

in complete detail, as we did in the previous examples. However, our conjecture can be

also used to obtain information about the exact wavefunctions for general values of ~.

In order to do this, it is useful to review some relevant aspects of the closed string case.

For general ~, the total grand potential (2.28) can be computed as power series in e−t, by

using the information on the BPS invariants of X. From this one can in principle compute

the corresponding expansion of the spectral determinant. This was done in some genus one

geometries in section 3.2 of [14]. It is however easier to calculate the spectral determinant

by considering the so-called fermionic spectral traces of the operators. These are defined by

the coefficients ZX(N ; ~) in the expansion of the spectral determinant around the origin,

ΞX(κ; ~) =
∑
N1≥0

· · ·
∑

NgΣ≥0

ZX(N ; ~)κN1
1 · · ·κ

NgΣ
gΣ . (4.1)
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This expansion can be inverted to

ZX(N ; ~) =
1

(2πi)gΣ

∫ i∞

−i∞
dµ1 · · ·

∫ i∞

−i∞
dµgΣ exp

{
JX(µ, ~)−

gΣ∑
i=1

Niµi

}
. (4.2)

The contour integrations along the imaginary axes can be deformed to contours where the

integral is convergent. For example, in the genus one case, the integration contour is the

one defining the Airy function, as first noted in [9]. It turns out that the large radius

expansion of JX(µ, ~) leads to a convergent series expansion for the spectral traces, which

can be evaluated numerically to high precision. This provides very non-trivial tests of the

conjectures put forward in [14, 15].

What is the analogue of this procedure in the open string case? As already noted

in [39], there is an open string analogue of the fermionic spectral trace. This is simply

obtained by expanding each of the wavefunctions in (2.45) as in (4.1),

ψσ(x;κ) =
∑
N1≥0

· · ·
∑

NgΣ≥0

ψN ,σ(x)κN1
1 · · ·κ

NgΣ
gΣ . (4.3)

The analogue of the integral formula (4.2) is

ψN ,σ(x) =

∫ i∞

−i∞

dµ1

2πi
· · ·
∫ i∞

−i∞

dµgΣ

2πi
exp

{
Jσ(x,µ, ~)−

gΣ∑
i=1

Niµi

}
. (4.4)

Note that the expansion in (4.3) requires that κ takes arbitrary values. As we mentioned

above, we refer to these as “off-shell” wavefunctions. In [39] we explained how to obtain

these wavefunctions by factorizing in an appropriate way the resolvent of the corresponding

trace class operator. In this way, one can compute the functions ψN ,σ(x) directly in spectral

theory, and for separate σ. On the other hand, the function J−(x,µ, ~) can be computed

as a power series expansion at large radius and large open modulus X →∞, for any finite

~. By using this expansion, and integrating, one finds an expansion of ψN ,−(x) at fixed N

and large X, where each coefficient can be computed numerically to high precision. This

result can be then compared to the results for the off-shell wavefunctions.

In the case of ψN ,+(x), the calculation is more involved, since the transformation

required to go to the second sheet cannot be implemented order by order in 1/X (indeed,

the large X expansions have different structures in different sheets, as we saw for example

for the annulus amplitude in local P2). For this reason, in this paper we will restrict

ourselves to tests of ψN ,−(x).

4.2 The example of local F0

The connection between topological strings and spectral theory on local F0 has been stud-

ied in detail in various references, including [4, 14, 20]. Studies of eigenfunctions have

also focused on this geometry [40, 41], and it was also the main example in our previous

paper [39]. The mirror curve of local F0 is given by

ex +me−x + ey + e−y + κ = 0. (4.5)
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Here, m is a mass parameter that we will set to one, so that effectively we have a single

Kähler parameter t. We will denote

Q = e−t. (4.6)

The spectral problem to be solved is,

(O + κ)ψ(x) = 0, O = ex + e−x + ey + e−y. (4.7)

One finds that

X̂ = Q1/2X, (4.8)

and the B field is in this case zero [14]. In order to calculate J−(x, µ, ~) for this geometry,

we first determine the WKB piece. There are two possible methods for this. The simplest

one is to solve the difference equation (4.7) in a WKB expansion, order by order in ~,

i.e. to calculate the functions Sn(x) appearing in (2.32). Then, one has to resum them in

the form prescribed by (2.37). Another strategy consists in solving the difference equation

exactly in ~, but order by order in 1/X, akin to what was done originally in this example

in [2]. Either way we obtain:

JWKB
open (x, µ, ~) = JWKB

pert (x, ~)

+

(
− q

q − 1
− 2qQ~
q − 1

+

(
q2 + q + 1

)
Q2

~
1− q

−
2
(
q4 + q3 + q2 + q + 1

)
Q3

~
(q − 1)q

+O
(
Q4

~
)) 1

X̂

+

(
q2

2 (q2 − 1)
+
q2Q~
q − 1

+
q
(
q2 + 3q + 1

)
Q2

~
q2 − 1

+
2
(
q3 + q2 + q + 1

)
Q3

~
q − 1

+O
(
Q4

~
)) 1

X̂2

+O
(
X̂−3

)
, (4.9)

where Q~ = e−t~ , and

JWKB
pert (x, ~) = − i

2~
x2 +

1

2

(
2π

~
− 1

)
x. (4.10)

The calculation of JWS
open(x, µ, ~) is even simpler, since we can use the topological vertex to

resum the expansion in ~D. We find,

log ψtop (X,t,~D) =

( √
qD

qD−1
+

2
√
qDQ

qD−1
+

3
√
qDQ

2

qD−1
+

10
√
qDQ

3

qD−1
+O

(
Q4
)) 1

X

+

(
qD

2
(
q2
D−1

)+
qDQ

qD−1
+
qD(2qD+3)Q2

q2
D−1

+
8qDQ

3

qD−1
+O

(
Q4
)) 1

X2

+O(X−3), (4.11)

where

qD = ei~D . (4.12)

These expansions can be used to calculate the open grand potential for arbitrary values of

~. The expression (4.4) becomes, in this genus one example,

ψ−,N (x) =

∫
C

dµ

2πi
eJ(µ,X,~)−Nµ, (4.13)
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where C is the integration contour for the Airy function, used in many previous compu-

tations (see for example [14]). We recall that the closed string grand potential has the

structure [14],

J(µ, ~) =
C(~)

3
µ3 +B(~)µ+A(~) +O

(
e−µ
)
, (4.14)

where A(~), B(~), C(~) are calculable constants. We can then write the integrand in the

l.h.s. of (4.13) as a double expansion at large µ and X,

eJ(µ,X,~)−Nµ = e
C(~)

3
µ3−(−B(~)+N)µ+A(~)+JWKB

pert (x,~)
∑
α,β

xβ

Xα

∑
n,`

c
(α,β)
`,n (~)e−nµµ`. (4.15)

We obtain,

ψ−,N (x) = eJ
WKB
pert (x,~)

∑
α,β

fα,β(N, ~)
xβ

Xα
, (4.16)

where the numerical coefficients fα,β(N, ~) are given by a (convergent) sum of Airy

functions,

fα,β(N, ~) = eA(~)C−1/3(~)
∑
n,`

c
(α,β)
`,n (~)

(
− ∂

∂N

)`
Ai

(
N −B(~) + n

C1/3(~)

)
. (4.17)

This is the prediction of our conjecture for the values of the wavefunctions ψ−,N (x), in terms

of open and closed BPS invariants of the geometry (which are encoded in the coefficients

c
(α,β)
`,n (~)).

To illustrate these predictions even more concretely, let us consider the value ~ = 4π,

which is particularly useful for a comparison with the results of spectral theory. One finds

the following double expansion of the open string grand potential, at large µ and large X:

J(x, µ, 4π) = J(µ, 4π)− i

8π
x2 − x

4

−
{

i

2
eµ/2 + ie−µ/2 + ie−3µ/2 + 6ie−5µ/2 +O

(
e−7µ/2

)} 1√
X

+

{(
− ix

4π
+

iµ

4π
− i

4π
− 1

2

)
eµ +

1

2
+

(
− iµ

π
− i

2π
+ 1

)
e−µ + 4e−2µ

+

(
−5iµ

π
− i

4π
+ 12

)
e−3µ +O

(
e−4µ

)} 1

X
+O

(
X−3/2

)
.

(4.18)

The closed string grand potential can be computed with the techniques of [14]. One finds,

J(µ,4π) =
µ3

6π2
−µ

4
+A(4π)−e−µ+

(
−2µ2

π2
− µ

π2
− 1

2π2

)
e−2µ− 16

3
e−3µ+O

(
e−4µ

)
. (4.19)

In spectral theory, the function ψ−,N (x) for ~ = 4π can be computed exactly as it was

done in [39] in the self-dual case. One finds, for N = 0, the following expressions:

ψ−,0(x) = e−
ix2

8π
−x

4
e

5iπ
16 ex

(
−i
√

2ex/2 + ex − i
)

2
√
π (e2x − 1)

= eJ
WKB
pert (x,~) e

5iπ
16

2
√
π

(
1− i

√
2X−1/2 − iX−1 +X−2 + . . .

)
.

(4.20)
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For N = 1 and N = 2, the exact expressions are somewhat long, but their expansion reads,

ψ−,1(x) = eJ
WKB
pert (x,~) e

5iπ
16

2
√
π

(
4−π
16π
− i

8
√

2

√
2X−1/2+

i(−4x+(1+10i)π+4)

16π
X−1+. . .

)
,

ψ−,2(x) = eJ
WKB
pert (x,~) e

5iπ
16

2
√
π

(
5π2−8π−24

512π2
− i(π2−8)

256
√

2π2
X−1/2

+
8i(π−4)x+π2(20+3i)−π(80+8i)+24i

512π2
X−1+. . .

)
.

(4.21)

The coefficients of the monomials xβX−α inside the parentheses are reproduced by our Airy

formula (4.17) (up to the overall normalization factor e
5iπ
16 /2
√
π). Expanding the grand

potential in (4.18) up to order e−3µ (as it is given in the explicit expression) yields around

16–18 significant digits. If we increase the number of terms and use an expansion up to

order e−6µ, the precision is increased to 30–32 significant digits. This provides a strong

check of our conjecture at ~ = 4π.

The same procedure can be performed for other values of ~, for example ~ = 2π/3.

For that value, the exact ψ−,N (x) can also be expressed using elementary functions. The

grand potential for ~ = 2π/3 is

J

(
x,µ,

2π

3

)
= J

(
µ,

2π

3

)
− 3ix2

4π
+x

+

{
−3−i

√
3

6
eµ

}
1

X
+

{
(3+i

√
3)e2µ

12
−1

}
1

X2
+

{
−π+i(1+3x−3µ)

6π
e3µ

+
(9π+i

√
3)π+18i(x−µ)

6π
eµ+O(e−µ)

}
1

X3
+O(X−4), (4.22)

with J
(
µ, 2π

3

)
given by

J

(
µ,

2π

3

)
=
µ3

π2
+

4µ

9
+A

(
2π

3

)
+
−4π2−54µ2+3

√
3π(2µ+1)

9π2
e−2µ+O(e−4µ). (4.23)

Again, by using (4.17), we find perfect agreement with the exact wavefunctions computed

from spectral theory.

5 Conclusions and open problems

In this paper we have provided various tests of the conjecture of [39] for the exact eigen-

functions of quantum mirror curves. We have verified it in the local P2 geometry and in

the resolved C3/Z5 orbifold geometry, which has genus two, for the self-dual value of the

Planck constant. We have also tested it for local F0, as originally done in [39], but for

more general values of ~. In all cases, we have found a remarkable agreement. Our results

provide the full conjectural solution of very non-trivial spectral problems, as it should be

clear from the example of the resolved C3/Z5 orbifold, which involves genus two Riemann

theta functions. In addition, we have used these results to clarify the relation between the
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quantum mirror curve and the underlying cluster integrable systems: at least in the exam-

ple considered in this paper, the spectrum of the integrable system corresponds to values

of the moduli where the eigenfunctions have an enhanced decaying behavior at infinity. It

would be very interesting to see if the additional quantization conditions introduced in [30],

by generalizing the observation in [26], can be also interpreted in terms of decay properties

of the corresponding eigenfunctions.

There are clearly many problems that remain open. An important ingredient of our

solution is that we have to sum over different sheets of the Riemann surface in order

to obtain the correct eigenfunction. Our conjecture (2.45) predicts in particular that the

different sheets contribute equally. So far, this summation has been implemented only when

the mirror curve is hyperelliptic, but one should understand more general situations. Even

in the hyperelliptic case, the transformation rules to write the wavefunctions in different

sheets can be applied in detail only in the self-dual case (i.e. when we have a fully resummed

function of x). For general values of ~, one needs more work to find a concrete prescription

to obtain the off-shell wavefunction on the second sheet. As we mentioned in this paper, the

existing evidence seems to indicate that this wavefunction involves a different topological

open string sector, with new integer invariants. Clearly, this deserves further investigation.

A related issue is that, for general values of ~, the conjecture provides an expression

for the wavefunction as an expansion around x→∞. It would be important to find other

representations, in which the dependence on x is partially resummed. In recent work [42], it

has been shown that the instanton partition function with defects gives the building block

for such a partial resummation. It would be interesting to see whether this representation

sheds some light on our conjecture.

Another important open problem, which was already mentioned in section 3, concerns

the relation between the quantum mirror curve and the cluster integrable system. As in the

case of the Toda lattice, we should find an explicit relationship between the eigenfunctions

of the two different quantum problems.5 This will probably give a deeper rationale for our

observations on the decay properties of the eigenfunctions.

Finally, the wavefunctions associated to the quantum mirror curves represents only

a small subset of D-brane partition functions (those corresponding to symmetric Young

tableaux). It would be important to find spectral theory implementations of more general

open string amplitudes, providing in this way a non-perturbative definition of the full open

string sector.
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