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1 Introduction

The black hole information paradox is related to the question of smoothness of the black

hole horizon [1, 2]. The latter question becomes particularly sharp for typical CFT states

dual to a large black hole in AdS. It is challenging to reconcile the smoothness of their

horizon to unitarity of the dual CFT [3, 4], even though these black holes do not evaporate.

In [5–7] it was argued that these problems can be resolved by describing the space-time

behind the horizon using state-dependent CFT operators, which are partly selected by

their entanglement with fields in the exterior. A related proposal from a somewhat different

perspective was described in [8, 9]. It remains a challenge to fully understand the geometry

dual to a typical black hole microstate.

In [10], it was realized how to probe the horizon of a two-sided eternal AdS black hole

by using double-trace deformations of the CFT Hamiltonian. This protocol, reviewed in

the next section, has provided evidence for the smoothness of the eternal black hole and

the ER=EPR proposal [11]. It was further discussed in [12–14] and applied to a class of

a-typical pure states in [15–17].

In this paper we develop a similar protocol for one-sided black holes dual to typical pure

states in the CFT. This protocol relies on perturbing the Hamiltonian by state-dependent

operators and allows us to connect the smoothness of the horizon of a typical pure state

to properties of CFT correlators. Moreover, it provides an explicit CFT realization of an

analogue of the Hayden-Preskill protocol [18]. More details will be provided in upcoming

work [19].
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2 Two-sided black hole

The thermofield double state, which is holographically dual to an eternal two-sided AdS

black hole [20], is an entangled state in the tensor product of two identical CFTs (called

“left” and “right”),

|TFD〉 =
1√
Z(β)

∑
E

e−
βE
2 |E〉L ⊗ |E〉R , (2.1)

where β is the inverse temperature and we sum over energy eigenstates. The two CFTs

are not interacting, therefore operators on the left and right commute [OL,OR] = 0 and no

information can be transferred between the CFTs. Equivalently, in the bulk the Einstein-

Rosen wormhole is not traversable.

In [10] it was argued that the wormhole can become traversable if we couple the two

CFTs by a double-trace interaction of the form V = OL(0)OR(0) which then allows for

geometric transfer of information, if the sign of the coupling is appropriately chosen. An

example of a CFT correlator which can diagnose traversability is [12]

C ≡ 〈TFD|[φL(−t), e−igVφR(t)eigV]|TFD〉. (2.2)

A probe is created on the left by φL(−t) and detected on the right by φR(t). Without the

double trace interaction V , we would have [φL(−t), φR(t)] = 0. When including V certain

terms in (2.2) grow exponentially with t, as typical for out-of-time-order commutators

in chaotic systems [21]. Around scrambling time t = β
2π logS, we see [12] a signal in

the correlator (2.2) representing the probe crossing the wormhole, thus demonstrating

smoothness of the horizon of the two-sided eternal black hole.

3 One-sided black hole

We consider a typical state in a large N holographic CFT, which can be thought of as a

random superposition of energy eigenstates

|Ψ0〉 =
∑

Ei∈(E0,E0+δE)

ci |Ei〉, (3.1)

from a narrow energy band of width δE ∼ O(N0) and ci are randomly chosen with the

uniform Haar measure. We take E0 to be in the regime dominated by a large AdS black

hole in the bulk.

These are almost time-independent equilibrium states. The bulk dual contains at least

the exterior of the black hole. It has been proposed [5–7] that the interior can be described

using the “mirror operators”, denoted as Õ. These operators play a role similar to OL in

the two-sided black hole and we will use them to perform an analogue of the experiment

discussed in the previous section.

We will now review the mirror operator construction. First we define a “small algebra”

A corresponding to simple observables in effective field theory. Then, given a typical black

hole microstate |Ψ0〉, we define the “small Hilbert space”, also called code-subspace, as

H|Ψ0〉 = span{A|Ψ0〉}. (3.2)

This subspace is the one relevant for describing effective field theory in the bulk.
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Figure 1. Conjectured Penrose diagram of a typical black hole microstate, to leading order in 1/N ,

with a probe created by mirror operators (blue) and two negative energy shockwaves (orange).

If |Ψ0〉 is a black hole microstate, it follows [5–7] that the representation of the algebra

A on the subspace H|Ψ0〉 is reducible and the algebra has a non-trivial commutant A′.
The commutant A′ can be concretely identified by an analogue of the Tomita-Takesaki

construction1 and it is natural to associate A′ with the left region of the extended AdS-

Schwarzschild solution.

Following this, we can define the mirror operators on the code subspace to act as

Õω|Ψ0〉 = e−
βH
2 O†ωe

βH
2 |Ψ0〉,

ÕωOω1 . . .Oωn |Ψ0〉 = Oω1 . . .OωnÕω|Ψ0〉,

[H, Õω]Oω1 . . .Oωn |Ψ0〉 = ω ÕωOω1 . . .Oωn |Ψ0〉.

(3.3)

Here Oω denote the Fourier modes in time of single-trace operators. The extension of the

operators on the rest of the Hilbert space is irrelevant for the following calculations. We

notice that [O, Õ] = 0 only inside the code subspace and may be nonzero as an operator.

While the definiton of Õ to subleading orders in 1/N is not unique, and in particular

it will be related to the details of gravitational dressing of local bulk operators, for the

purposes of this paper we extend these equations even when we include 1/N effects. Possible

alternate extensions at the 1/N level may modify the interpretation of the bulk geometry

at the subleading (i.e. 1/N) order, but this would not change qualitatively the main point

of the thought experiment which we consider, which is already visible in correlators of

O(1) size.

The equations (3.3) are defined only for modes with |ω| < ω∗ where ω∗ is a large,

but N -independent frequency. Because of this restriction, it is not meaningful to define

the mirror operators for sharply localized operators O(t). Moreover, the time argument of

smeared mirror operators in position space is assigned so that 〈Ψ0|O(t1)Õ(t2)|Ψ0〉 depends

on t1 + t2. This also determines the time-ordering of mirror operators. We emphasize that

these operators are explicitly time-dependent, as will be discussed in more detail in [19].

Taking into account the mirror operators, it is natural to conjecture that the geometry

dual to a typical state contains not only the exterior, but also the black and white hole

1See [22] for a physics-motivated introduction, [5–7] for application to the black hole interior and [23]

for a recent review of applications in QFT.
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interiors, as well as part of the left region. This was recently emphasized in [24]. However,

we do not expect to be able to describe the full left asymptotic region due to the restriction

in the frequencies |ω| < ω∗. This restriction introduces an effective cutoff of the left region,

whose nature will be described more precisely in [19].

We consider the mirror operators as gravitationally dressed with respect to the right.

If we call M, M̃ the mass of the solution measured on the right, left respectively, the first

law [25–29] applied to the two-sided Cauchy slice Σ up to the left cutoff implies

δM − δM̃ = δK full
bulk, (3.4)

where K full
bulk =

∫
Σ ∗(ξTbulk) and ξ is the Killing vector field. This can naturally be split

into the right and left contributions K full
bulk = K− K̃. Since the operators are right-dressed,

we have δM̃ = 0. This means that in the code subspace the CFT Hamiltonian acts as

H = M = E0 +K full
bulk, (3.5)

where E0 is the energy of |Ψ0〉.
We are now ready to set up the one-sided analogue of the double trace deformation

protocol of [10], which will allow us to extract particles from behind the horizon.

A particle in the left region can be created in two ways. The first way is to actively

perturb the CFT Hamiltonian at time −t by a “mirror-quench” φ̃(−t). The perturbation

by φ̃(−t) creates a probe in the bulk indicated by the blue line in the figure 1.2 Without

other perturbations the probe would end up in the singularity. The second way to create

a particle in the left region is to consider a non-equilibrium state of the form

U(φ̃)|Ψ0〉 = e−
βH
2 U(φ)e

βH
2 |Ψ0〉. (3.6)

These states were extensively discussed in [24]. For definiteness, we will consider the

first scenario.

After creating an excitation in the left region by perturbing the CFT with φ̃(−t), we

perturb the CFT Hamiltonian by eigV , where V = O(0)Õ(0). With the appropriate choice

of the sign of g, this creates two negative energy shockwaves as indicated in figure 1. When

analyzing the trajectory of the probe in the region around t = 0, one should take into ac-

count the effect of the gravitational dressing of the Õ operators creating the shockwave [19].

Eventually, the probe particle intersects the right negative energy shockwave and thus un-

dergoes a time-advance. This allows it to escape the horizon and to come out in the right

region, where it can finally be detected by φ(t). This is captured by the correlator

C ′ ≡ 〈Ψ0|[φ̃(−t), e−igV φ(t)eigV ]|Ψ0〉. (3.7)

The conjectured bulk geometry of figure 1 predicts that this correlator should show a

sharp signal at t ≈ β
2π logS, similar to that of (2.2). The presence of a signal of the expected

form in the CFT correlator (3.7) is thus a necessary (though not sufficient) condition that

the conjectured bulk geometry is the one described above and that the horizon is smooth.

2Some care has to be taken about the interpretation of the bulk geometry to subleading order in 1/N [19].
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4 Comparison with two-sided case

We will now argue that the correlators C and C ′ are the same in the large N limit and that,

therefore, the traversability of the two-sided black hole provides evidence for the smoothness

of the horizon of the one-sided black hole. The argument is as follows. Operators in the

TFD state obey the relations

OL,ω|TFD〉 = e−
βĤ
2 O†R,ωe

βĤ
2 |TFD〉,

OL,ωOR,ω1 . . .OR,ωn |TFD〉 = OR,ω1 . . .OR,ωnOL,ω|TFD〉,
[Ĥ,OL,ω]OR,ω1 . . .OR,ωn |TFD〉 = ωOLωOR,ω1 . . .OR,ωn |TFD〉.

(4.1)

where Ĥ ≡ HR −HL.

Now, we consider the correlator C defined in (2.2) and we convert all left-CFT oper-

ators into right-CFT operators by repeatedly using the equations above. As a result, the

correlator C takes the form

C = 〈TFD|X (φR,OR)|TFD〉, (4.2)

where X is some time-dependent expression involving only right-CFT operators. We can

also write this as

C =
1

Z
Tr[e−βHX (φ,O)], (4.3)

where we have dropped the subscript R.

We now consider the correlator C ′ defined in (3.7) for the one-sided black hole. We

follow a similar procedure by using equations (3.3) to convert all mirror operators into

normal operators. The important point now is that by comparing equations (3.3) and (4.1)

we will get exactly the same string X , i.e.

C ′ = 〈Ψ0|X (φ,O)|Ψ0〉. (4.4)

We have thus reduced the question about the smoothness of the horizon of a one-sided

black hole, to a specific question about CFT expectation values of ordinary (non-mirror)

CFT operators. In particular, smoothness requires the proximity of the expectation value

of X (φ,O) in the thermal ensemble e−βH

Z and a typical pure state |Ψ0〉. This is a well-

defined CFT question which can in-principle be answered. It is important to notice that

this condition needs to hold only for modes with |ω| < ω∗.

5 A conjecture

We conjecture that in the large N limit, and for modes with |ω| < ω∗ we have

lim
N→∞

C ′ = lim
N→∞

C. (5.1)

As discussed above, this would provide evidence for the smoothness of the one-sided

horizon.
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The first step towards motivating (5.1) is to notice that based on general arguments,

expectation values on typical pure states differ by e−S from those in the microcanonical

ensemble ρm of small energy spread [30]. Hence, we have

C ′ = Tr[ρmX (φ,O)] +O(e−S). (5.2)

This means that to establish (5.1), we need to compare the expectation value of X in the

canonical and microcanonical ensembles

C =
1

Z
Tr[e−βHX (φ,O)],

C ′′ ≡ Tr[ρmX (φ,O)]. (5.3)

These two correlators are sensitive only to the diagonal matrix elements of X , since both

ensembles in (5.3) are diagonal in the energy basis,

〈Ei|X |Ej〉 = f(Ei)δij +Rij . (5.4)

The Eigenstate Thermalization Hypothesis (ETH) [31] postulates that for “simple observ-

ables” the diagonal elements f(E) are smooth functions of the energy and that they vary

slowly with the energy, in particular df
dE ∼ O(1/S). This suggests that the expectation

values C,C ′′ differ by 1/S corrections — which would imply our desired relation (5.1).

However, the observable X consists of products of simple operators localized at very dif-

ferent times of the order of scrambling time β
2π logS and it is not obvious that the ETH

will hold for such observables.

In particular, the interesting effect we want to see in the correlators C,C ′′, is coming

from certain 1/S corrections, which get enhanced by exponential factors e
2π
β
t

and which

become of O(1) at scrambling time. Hence, the non-trivial content of the conjecture (5.1) is

that these “chaos-enhanced” 1/S corrections are the same in the two ensembles. Relatedly,

it suggests that if some operators obey ETH, their product will also obey ETH, even when

the operators are widely separated.

Some evidence for this conjecture follows from the observation that the ETH is ex-

pected to be robust under multiplication of operators [4, 19], at least for small separations

in time between operators and for extremely large time separations, where the matrix

elements become almost totally uncorrelated. It is natural that the same is true for inter-

mediate times, which include times of the order of scrambling time.

Further evidence can be found by considering some simple models. Firstly, in large c

2d CFTs with sparse spectrum, it was argued in [32] that the commutator of two opera-

tors separated by times of the order of the scrambling time is dominated by certain time

ordered terms. This can be used to transform the out-of-time-order correlator to a time-

ordered correlator, for which it is generally assumed that factorization is still applicable

and that would imply our conjecture. Secondly, if we assume that the correlators are dom-

inated by the Virasoro identity block even at scrambling time, then there is evidence [33]

that (5.1) follows.

– 6 –
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(a) (b)

Figure 2. Numerics in SYK model for N = 24. Left: 〈{ψI(t), ψJ(0)}2〉 in thermal (blue) and

typical pure state (red). The scrambling time is designated by the vertical line. Right: diagonal

matrix elements 〈Ei|{ψI(t), ψJ(0)}2|Ei〉 for t ≈ scrambling time. It shows slow variation with the

energy, compatible with the ETH, within the dominant regions of the canonical ensemble (blue)

and the microcanonical ensemble (red).

Finally, we have performed some numerical studies in the SYK model [34–36], a model

of N Majorana fermions in 0+1 dimensions with the Hamiltonian

HSYK =
∑
IJKL

JIJKLψIψJψKψL

The couplings JIJKL are selected randomly from a Gaussian distribution. The analogue

of the C,C ′ correlators can be respresented in the SYK model in terms of correlators

of the fermions ψI(t) at time separations of the order of scrambling time, evaluated on

the canonical ensemble and on a typical pure state respectively. More details can be found

in [19]. In the numerical comparison of the out-of-time-order correlators C,C ′ at scrambling

time, we find good agreement as shown in figure 2. Unfortunately for the values of N that

we were able to study numerically, there is no large separation between thermalization and

scrambling times.

The SYK model does not have an Einstein gravity dual, however it captures some

features of black hole physics, in particular it is maximally chaotic. The proximity of

C,C ′ that we observe numerically in SYK, does not logically imply that theories with

Einstein gravity duals (such as the N = 4 SYM at strong coupling) will also obey the

conjecture (5.1). To address that further investigation would be needed. Results which

appeared after the first version of this paper provide evidence in favor of (5.1) for a class of

theories with Einstein duals [33]. These results, in combination with the numerical evidence

that we find in SYK, suggest that the conjecture (5.1) may be true for a larger class of

strongly coupled theories. It would be interesting to identify this class more precisely.

6 An analogue of Hayden-Preskill

We observe that the mirror operators Õ discussed in the previous sections realize an ana-

logue of the Hayden-Preskill protocol, in the form described in [12]. We start with a black

– 7 –
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Figure 3. A realization of the Hayden-Preskill protocol: the code subspace approximately factorizes

into a tensor product corresponding to the algebras A,A′. These tensor factors are entangled and

provide the reservoir of EPR pairs needed to perform the teleportation. Here U, Ũ is time evolution

in the CFT and V = OÕ denotes the perturbation of the CFT Hamiltonian.

hole in AdS dual to a microstate |Ψ0〉. At some time t0 ≈ −tS (here tS is scrambling time),

we throw a qubit from the boundary into the black hole. This qubit is created in the bulk

by acting with the CFT operator Uε = eiεφ(t0) (appropriately smeared). We wait until the

particle has been absorbed, and then we ask what is the CFT operator we need to measure

in order to extract the quantum information of the qubit.

One natural way to do this, is by perturbing the CFT Hamiltonian by an interaction

of the form V = O(0)Õ(0) with an appropriate coupling constant, which produces two

negative energy shockwaves. The infalling particle collides with one of the shockwaves (the

“mirror shock”) and undergoes a time-advance, pushing it into the left region. It can then

be measured by the mirror operator φ̃(tS). The result of this measurement is captured

by a correlator similar to (3.7), with the roles of φ and φ̃ reversed. The conjecture of

the previous section implies that this correlator can extract the quantum information of

the probe.

The Hayden-Preskill protocol can only be applied after the half-point of evaporation,

when the black hole is maximally entangled with the early radiation. The analogue state-

ment in our case is that in order to define the operators φ̃, Õ, one needs to have knowledge

of the microstate, as the φ̃, Õ’s are state-dependent operators. We remind the reader that

even in the original Hayden-Preskill protocol, the decoding operation is state-dependent.

7 Comments

We formulated a necessary condition for the smoothness of the horizon of a typical black

hole microstate in terms of CFT correlators of local operator at scrambling time. We

argued that smoothness of the horizon requires that these correlators are similar in the

canonical and microcanonical ensembles. We provided some preliminary evidence in favor

of this conjecture. These observations imply that for certain purposes it is meaningful to

consider part of the left region of the extended AdS-Schwarzchild geometry.

– 8 –
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Our arguments made use of state-dependent operators. Since the boundary observer

has in principle unlimited resources, this fits within the conventional framework of quan-

tum mechanics. Indirectly, this provides evidence for the relevance of the state-dependent

operators for the infalling observer. Further details and open questions will be discussed

in an upcoming longer article [19].
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