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CH-8093 Zürich, Switzerland
bInstitute of Theoretical Physics, Chinese Academy of Sciences,

100190 Beijing, P.R. China
cDepartment of Physics, Brown University,

182 Hope Street, Providence , RI 02912, U.S.A.

E-mail: gaberdiel@itp.phys.ethz.ch, weili@itp.ac.cn,

cheng peng@brown.edu, kilar@itp.ac.cn

Abstract: The affine Yangian of gl1 is known to be isomorphic to W1+∞, the W -algebra

that characterizes the bosonic higher spin — CFT duality. In this paper we propose some of

the defining relations of the Yangian that are relevant for the N = 2 superconformal version

of W1+∞. Our construction is based on the observation that the N = 2 superconformal

W1+∞ algebra contains two commuting bosonic W1+∞ algebras, and that the additional

generators transform in bi-minimal representations with respect to these two algebras. The

corresponding affine Yangian can therefore be built up from two affine Yangians of gl1 by

adding in generators that transform appropriately.

Keywords: Conformal and W Symmetry, Higher Spin Symmetry, Quantum Groups

ArXiv ePrint: 1711.07449

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP05(2018)200

mailto:gaberdiel@itp.phys.ethz.ch
mailto:weili@itp.ac.cn
mailto:cheng_peng@brown.edu
mailto:kilar@itp.ac.cn
https://arxiv.org/abs/1711.07449
https://doi.org/10.1007/JHEP05(2018)200


J
H
E
P
0
5
(
2
0
1
8
)
2
0
0

Contents

1 Introduction 1

2 Building up the N = 2 W∞ algebra 3

2.1 Decoupling the bosonic subalgebras 3

2.2 Character analysis 5

3 The minimal and conjugate minimal representation 7

3.1 The minimal representation 8

3.2 Charges of the conjugate representation 9

3.3 The conformal dimensions at finite N and k 10

3.3.1 Representations 11

4 The Yangian at the free field point 12

4.1 The affine Yangian generators at λ = 0 12

4.2 Identifying the representations 15

5 The Yangian at generic parameters 16

5.1 The generators in minimal representations 17

5.1.1 Other minimal generators 18

5.2 The generators in conjugate minimal representations 18

5.3 The OPEs with e and f 20

5.4 The N = 2 algebra 22

6 Conclusions 23

A Additional relations of the free field theory 24

B The defining relations 26

B.1 The OPE like description 26

B.2 The mode relations 26

B.3 The initial conditions 27

C Supercharge constraints 28

1 Introduction

The tensionless limit of string theory on AdS is believed to be dual to a free (or nearly

free) conformal field theory [1–3], where string theory is expected to contain a higher spin

theory [4]. At this point in moduli space the large symmetry algebra underlying string
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theory (see [5–7] for indirect evidence) is expected to become visible. This is also the place

where the integrability of the theory should be most easily discerned.

In the context of AdS3, the emergence of a higher spin symmetry at the tensionless

point was recently seen quite explicitly in [8], see also [9, 10] for attempts to observe this

directly from a world-sheet perspective. In that case, the dual 2d conformal field theory

of string theory on AdS3 × S3 × T4, the symmetric orbifold of T4, was shown to contain a

W∞ symmetry algebra. This is the hallmark of the duality between higher spin theories

on AdS3 and 2d CFT’s [11–13], see [14] for a review.

On the other hand, there has also been progress in understanding the integrable struc-

ture of string theory on AdS3 [15–18], and it would be very interesting to relate the higher

spin and integrable symmetries. Integrable theories are usually distinguished by having

a Yangian symmetry, and one may therefore try to identify the relevant Yangian in the

explicit higher spin description. This was recently done [19, 20] for the bosonic toy model

of [13], where the generators of W∞[λ], the symmetry algebra of the higher spin theory,

were explicitly identified with those of the affine Yangian of gl1. (The underlying isomor-

phism was first noted in [21, 22], generalizing the construction of [23], and independently

by [24] and [25–27], see also [28] for further generalizations. The affine Yangian of gl1 is

also isomorphic to the spherical degenerate double affine Hecke algebra SHc of [29], and

was also constructed independently in [30].)

In this paper we show how to construct the Yangian algebra corresponding to the

N = 2 superconformal generalisation of W∞. Our approach is partially inspired by the

fact that the underlying higher spin algebra shs[λ] contains two commuting bosonic higher

spin subalgebras hs[λ]⊕ hs[1− λ]. Subsequently, it was suggested in [31, section 11.1] that

this relation may also be true for the full W(N=2)
∞ [λ] algebra. We begin by showing that

W(N=2)
∞ [λ] actually has this structure, i.e. that it contains two decoupled W∞[µ] algebras.

(This analysis relies on the precise form of the defining structure constant of the W(N=2)
∞ [λ]

algebra that was identified in [32].) We then show that the additional generators that have

to be added to the two bosonic W∞ algebras in order to generate the full W(N=2)
∞ [λ]

algebra transform in what one may call bi-minimal representations with respect to the two

W∞ algebras. (This is to say, they transform as a minimal representation with respect to

one, and as an anti-minimal representation with respect to the other; here “anti-minimal”

means that it is the conjugate representation to the minimal representation.) The basic

idea of our construction is then to add generators to the two affine Yangians of gl1 that

have these transformation properties.

The main technical difficulty of this approach comes from the fact that the descrip-

tion of conjugate minimal representations in terms of the affine Yangian was not known.

The affine Yangian viewpoint gives rise to an elegant description of representations in

terms of plane partitions [19], see also [33], but this language only applies to the “box”-

representations, but not to those made of “anti-boxes”. However, the bi-minimal repre-

sentations that are relevant for the above extension always involve also anti-box represen-

tations. We propose a general formula for the description of anti-box representations in

terms of plane partitions, see section 3.2. With this insight we can then propose some

of the commutation relations of the two sets of affine Yangian generators of gl1 with the
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additional modes, and thus undertake the first steps towards defining the supersymmetric

generalisation of the affine Yangian.

The paper is organized as follows. In section 2 we show that the W(N=2)
∞ [λ] algebra

contains (and can be built up from) two commuting bosonic W∞ algebras. We identify

the additional generators that need to be added, and in particular, their representation

properties with respect to the two bosonic W∞ algebras. In section 3 we review the

relevant minimal representation of the affine Yangian, and explain how to describe the

conjugate representation. In section 4 we analyze the N = 2 construction for λ = 0,

where the W(N=2)
∞ [λ] algebra has a free field realization, in terms of which also the two

bosonic W∞ algebras can be identified. In particular, we can make an explicit ansatz

for the additional generators that need to be added and compute their commutation and

anti-commutation relations for λ = 0. In section 5, we then deform these relations away

from the free field point (λ = 0), using as a guiding principle our insight into the correct

description of the minimal and conjugate minimal representations. We furthermore test our

ansatz by comparing to the free field limit, and by showing that the additional generators

lead to states in the correct representations. Our conclusions and avenues for future work

are outlined in section 6. There are two appendices: in appendix A, we have spelled out

some of the free field relations that we did not want to put in the main part of the text,

and in appendix B we have summarized the defining relations of the supersymmtric affine

Yangian we have found.

Note added: as we were in the final stages of this work we were made aware of [39]

which contains some overlap with section 2 of our paper.

2 Building up the N = 2 W∞ algebra

In this section we explain that theW(N=2)
∞ [λ] algebra contains two bosonicW∞[µ] algebras

as mutually commuting subalgebras, one at µ = λ and one at µ = 1 − λ. Note that it

is known, see e.g. eq. (202) in [14], that the N = 2 higher spin algebra can be written in

this manner

shs[λ](bos) ∼= hs[λ]⊕ hs[1− λ] . (2.1)

However, it is not obvious whether this will also be true for the full quantum W(N=2)
∞ [λ]

algebra.1 This viewpoint will be important below because it will allow us to construct the

full W(N=2)
∞ [λ] algebra starting with these bosonic subalgebras.

2.1 Decoupling the bosonic subalgebras

In order to understand how this comes about, it is convenient to parametrise theW(N=2)
∞ [λ]

algebra as W(N=2)
N,k , i.e. to express both λ and c in terms of N and k as

c ≡ c(N=2)
N,k =

3Nk

N + k + 1
, λ =

N

N + k + 1
, (2.2)

1For the case of the N = 2 W3 algebra this was already noted in [34, 35]; however, for general λ this is

not known.
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see e.g. [32] for our conventions. As is also explained there, theW(N=2)
N,k algebra contains two

spin h = 2 fields: the stress energy tensor T , and the primary spin h = 2 field W ≡W (2)0.

W is also primary with respect to the u(1) current J , but T is not; however, we can define

the decoupled spin 2 field via

T̃ = T − 3

2c
: JJ : . (2.3)

The modes of these two fields then satisfy the commutation relations

[T̃m, T̃n] = (m− n)T̃m+n +
(c− 1)

12
m(m2 − 1) δm,−n

[T̃m,Wn] = (m− n)Wm+n (2.4)

[Wm,Wn] = (m− n)

(
2n2

(c− 1)
T̃m+n +

c22,2

2
Wm+n

)
+
n2

6
m(m2 − 1) δm,−n ,

where we are using the same conventions as in [32], and the last identity is directly read

off from eq. (2.14) of that paper. To find the two commuting Virasoro algebras, we make

the ansatz

T̃m = a+L+
m + a−L−m , Wm = b+L+

m + b−L−m , (2.5)

and demand that L± commute with one another and each lead to a Virasoro algebra with

central charge c± where c+ ≥ c−. In particular, it follows that

(c− 1) = c+ + c− , 0 = b+c+ + b−c− . (2.6)

These two conditions fix the coefficients a± and b± uniquely, and one finds that the two

solutions are

a± = 1 , b± =
c22,2

4
∓ 1

4

√
(c22,2)2 + 32

n2

(c− 1)
. (2.7)

The corresponding central charges are then

c+ =
(c− 1)b−

b− − b+ , c− = −(c− 1)b+

b− − b+ . (2.8)

Upon plugging in the formulae for b± and using the explicit expression for γ = (c22,2)2

from [32], one finds that c± equals cN,k and ck,N , respectively, where

cN,k = (N − 1)
[
1− N(N + 1)

(N + k)(N + k + 1)

]
(2.9)

is the central charge of the bosonic WN,k algebra (without the additional u(1) current).

Note that the full (decoupled) stress energy tensor T̃ , defined in eq. (2.3), is indeed the

sum of L+ and L−,

T̃m = L+
m + L−m , (2.10)

as also follows from (2.7). In particular, this implies that the total central charge of the

N = 2 algebra must equal — the “+1” comes from the u(1) factor we have divided out —

cN,k + ck,N + 1 =
(3k − 1)N − k − 1

N + k + 1
+ 1 =

3Nk

N + k + 1
= c

(N=2)
N,k , (2.11)

as is indeed true.
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For each integer spin s ≥ 3, the W(N=2)
∞ [λ] (or W(N=2)

N,k ) algebra contains at least two

Virasoro primary fields. It seems plausible that among these spin s fields, we can always

find two fields W (s)± such that2

[L±m,W
(s)±
n ] =

(
(s− 1)m− n)W

(s)±
m+n , [L±m,W

(s)∓
n ] = 0 . (2.12)

Since all W (s)+ fields commute with L−, the same must be true for their commutator, and

hence the VOA generated by L+ and the W (s)+ fields must close. (Obviously, a similar

statement also holds for L− and the W (s)− fields.) Furthermore, the commutator of W (s)+

with W (t)− must vanish since, with respect to L+, say, W (t)− behaves like the identity

field and hence does not give rise to a non-trivial commutator. Thus, if for each spin s

there are two fields such that (2.12) holds, it follows that the W(N=2)
∞ [λ] algebra contains

two commuting bosonic W∞[µ] algebras, one generated by the fields L+ and the W (s)+,

and the other generated by L− and the W (s)−. Given that their central charges equal cN,k
and ck,N , it is very plausible that the relevant W∞ algebras are just the bosonic WN,k and

Wk,N algebras, respectively, i.e. that

W(N=2)
N,k ⊃ WN,k ⊕Wk,N . (2.13)

In order to confirm this we would have to construct the relevant fields and determine

their C33
4 structure constants, but we have not attempted to do so here. Note that this

structure also nicely reflects the Z2 ⊂ Z2 × Z2 symmetry of the W(N=2)
N,k algebra that is

realized by N ↔ k.

2.2 Character analysis

Next we want to understand the additional generators that need to be added to the two

bosonic W∞[µ] algebras in order to generate W(N=2)
∞ [λ]. For the following it will be con-

venient to add a single free boson field to W(N=2)
∞ [λ]. Then the corresponding vaccum

character equals

χ0(q) =

∞∏
n=1

(1 + qn+ 1
2 )2n

(1− qn)2n
, (2.14)

since the vacuum character of the W(N=2)
∞ algebra is

χ′0(q) =
∞∏
s=1

∞∏
n=s

(1 + qn+ 1
2 )2

(1− qn)(1− qn+1)
, (2.15)

and a single free boson contributes

χ fb =

∞∏
n=1

1

(1− qn)
. (2.16)

We want to organise this character in terms of W1+∞[λ] ⊕ W1+∞[1 − λ]. The vacuum

character of each W1+∞[µ] algebra is described by a plane partition, see e.g. [19, 20]

χpp =
∞∏
n=1

1

(1− qn)n
, (2.17)

2We have checked explicitly that this is the case for spin s = 3.
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and hence the two algebras account precisely for the denominator of χ0(q) in eq. (2.14).

The numerator of (2.14) corresponds to the fermionic excitations, and is accounted for in

terms of bi-minimal representations of the two algebras3 together with their tensor powers.

Since for each representation R of W1+∞[µ] the character is of the form

χ
(wedge)
R (q)χpp(q) , (2.18)

this amounts to the condition that

∞∏
n=1

(1 + qn+ 1
2 )2n =

∑
R

χ
(wedge) [λ]
R (q) · χ(wedge) [1−λ]

R̄T (q) , (2.19)

where R runs over all representations that appear in finite tensor powers of the two bi-

minimal representations, and R̄T is the conjugate representation to RT , with T denoting

the transpose of R. Since R involves in general box and anti-box representations, and since

the wedge character of such a mixed representation is simply the product of the wedge

character of the box representation and that of the anti-box representation, the above

identity follows from

∞∏
n=1

(1 + yqn+ 1
2 )n =

∑
S

y|S| χ(wedge) [λ]
S (q) · χ(wedge) [1−λ]

ST (q) , (2.20)

where S runs over all Young diagrams (labelling say box-representations), ST is the trans-

pose Young diagram (labelling now anti-box representations), and |S| denotes the number

of boxes in S. The first few cases are explicitly (see [36] for the general method for how to

derive them)

χ
(wedge)

(q) =
qh

1− q (2.21)

χ
(wedge)

(q) =
q2h

(1− q)(1− q2)
(2.22)

χ
(wedge)

(q) =
q2h+1

(1− q)(1− q2)
(2.23)

χ
(wedge)

(q) =
q3h

(1− q)(1− q2)(1− q3)
(2.24)

χ
(wedge)

(q) =
q3h+1

(1− q)2(1− q3)
(2.25)

χ
(wedge)

(q) =
q3h+3

(1− q)(1− q2)(1− q3)
. (2.26)

3The bi-minimal representations that are relevant here are “minimal” with respect to one factor, and

“conjugate-minimal” with respect to the other. There are therefore two such representations, namely

“minimal”–“conjugate-minimal” and “conjugate-minimal”–“minimal”.
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It is then straightforward to check (2.20) explicitly,4 provided that we take the box repre-

sentations of W1+∞[λ] and W1+∞[1− λ] to be the ones with conformal dimensions

h =
1

2
(1 + λ) , ĥ =

1

2

(
1 + (1− λ)

)
, (2.27)

respectively, so that the total conformal dimension equals

h+ ĥ =
1

2
(1 + λ) +

1

2

(
1 + (1− λ)

)
=

3

2
, (2.28)

thus reproducing the conformal dimension of the supercharge.

3 The minimal and conjugate minimal representation

As we have seen in the previous section, the additional generators that need to be added

to the two bosonic W1+∞ algebras transform in bi-minimal representations with respect to

these two algebras. For the following it will be important to describe these representations

from the viewpoint of the affine Yangian.

Recall from [19, 20] that the defining relations of the affine Yangian can be written as

e(z) f(w)− f(w) e(z) = − 1

σ3

ψ(z)− ψ(w)

z − w , (3.1)

and

e(z) e(w) ∼ ϕ3(z − w) e(w) e(z) (3.2)

f(z) f(w) ∼ ϕ−1
3 (z − w) f(w) f(z) (3.3)

ψ(z) e(w) ∼ ϕ3(z − w) e(w)ψ(z) (3.4)

ψ(z) f(w) ∼ ϕ−1
3 (z − w) f(w)ψ(z) , (3.5)

where ‘∼’ means equality up to terms that are regular at z = 0 or w = 0. Here the fields

are expanded in terms of modes as

e(z) =
∞∑
j=0

ej
zj+1

, f(z) =
∞∑
j=0

fj
zj+1

, ψ(z) = 1 + σ3

∞∑
j=0

ψj
zj+1

, (3.6)

and the function ϕ3(z) is defined by

ϕ3(z) =
(z + h1)(z + h2)(z + h3)

(z − h1)(z − h2)(z − h3)
=
z3 + σ2z + σ3

z3 + σ2z − σ3
. (3.7)

The hi parameters satisfy h1 + h2 + h3 = 0, and we have defined

σ2 = h1h2 + h2h3 + h1h3 , σ3 = h1h2h3 . (3.8)

The structure of these OPEs can be summarised by the diagram of figure 1.

4We have done this up to q10. It should not be too hard to prove this analytically, but we have not

attempted to do so.
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ϕ3(∆) ϕ−1

3 (∆)

ϕ3(∆) ϕ−1
3 (∆)

Figure 1. The OPE relations of the affine Yangian.

In terms of the conformal field theory language, the hi parameters and ψ0 can be

expressed as,

ψ0 = N (3.9)

and

h1 = −
√
N + k + 1

N + k
, h2 =

√
N + k

N + k + 1
, h3 =

1√
(N + k)(N + k + 1)

, (3.10)

see eqs. (3.51) and (3.52) of [20].

As is explained in [19, 20], the different states of the vacuum representation are de-

scribed by plane partitions where the eigenvalues of ψi on the configuration Λ are given by

ψΛ(z) =

(
1 +

ψ0σ3

z

) ∏
∈(Λ)

ϕ3(z − h( )) , (3.11)

where

h( ) = h1x( ) + h2y( ) + h3z( ) (3.12)

with x( ) the x-coordinate of the box, etc. Furthermore, the representations of the affine

Yangian are parametrised by non-trivial asymptotic box stackings, and the charges of the

corresponding states are still given by (3.11), except that now the infinite product (over the

infinitely many boxes defining the asymptotic configuration) must be suitably regularized.

3.1 The minimal representation

The simplest non-trivial representations are the minimal representations whose asymptotic

box configuration consists of a single row of boxes extending along either x1, x2 or x3. For

our analysis above, the minimal representation corresponding to an asymptotic single box

in the x2 direction will play a central role.5 Its ground state has the charges

ψ(u) =

(
1 +

ψ0σ3

u

) ∞∏
n=0

ϕ3(u− nh2)

=

(
1 +

ψ0σ3

u

)
u(u+ h2)

(u− h1)(u− h3)
. (3.13)

Expanding out in inverse powers of u, this is of the form

ψ(u) = 1 +
ψ0σ3

u
− h1h3

u2
+
h1h3(h2 − ψ0σ3)

u3
+O(u−4) . (3.14)

5It is the one whose conformal dimension equals (2.27) in the classical limit. Note that selecting out x2
breaks the S3 symmetry of the affine Yangian to Z2.
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Comparing with (3.6) we read off

ψ1 = − 1

h2
, ψ2 =

h2 − σ3ψ0

h2
, ψ3 =

h2σ3ψ0 − h2
1 − h3h1 − h2

3

h2
. (3.15)

3.2 Charges of the conjugate representation

As will become clear from the free field analysis of the next section, the above minimal rep-

resentations will not suffice. In fact, the bi-minimal representations that appear in (2.19)

have the property that they are minimal with respect to one W∞ algebra, but conjugate

minimal (or anti-minimal) with respect to the other. Thus in order to describe these gen-

erators we also need to understand how to describe the conjugate minimal representation

from the affine Yangian perspective. In the following we shall make a general proposal for

how this works.

Given a box representation described by ϕ(u) (where again ϕ(u) does not include

the vacuum factor ψ0(u)), we claim that the corresponding conjugate representation has

charges given by

ϕ−1(−u− ψ0σ3) . (3.16)

The signficance of this shift is that it turns the vacuum factor ψ0(u) = (1 + ψ0σ3
u ) into

ψ0(−u− ψ0σ3) = ψ−1
0 (u) . (3.17)

Thus the full eigenvalue function of the anti-box representation is

ψ0(u)ϕ−1(−u− ψ0σ3) =
(
ψ0(v)ϕ(v)

)−1
, where v = −u− ψ0σ3 , (3.18)

and therefore indeed just the inverse of ψΛ(u) = ψ0(u)ϕ(u). (Note that the shift (and

sign) transformation from u to v is just the spectral flow (and scaling) automorphism of

the affine Yangian, see e.g. sections 2.2 and 2.3 of [19].)

We can check this proposal explicitly by checking whether the first few W s
0 charges

change correctly — recall that for the conjugate representation the charges of the odd spin

W s
0 generators must have the opposite sign, while the even spin generators are the same.

Suppose then that ϕ(u) describes a given representation with eigenvalues ψj , i.e. we have

the expansion

(1 + ψ0σ3
u )ϕ(u) = 1 +

ψ0σ3

u
+
ψ1σ3

u2
+
ψ2σ3

u3
+
ψ3σ3

u4
+ · · · . (3.19)

Then, according to the above proposal, the power series expansion of the conjugate repre-

sentation is(
1 +

ψ0σ3

u

)
ϕ−1(−u− ψ0σ3) = 1 +

ψ0σ3

u
− ψ1σ3

u2
+
ψ2σ3

u3

+
σ3(−ψ3 − ψ0ψ2σ3 + ψ2

1σ3)

u4
+ · · · (3.20)

This predicts that the conjugate representation has the charges

ψ̄0 = ψ0 , ψ̄1 = −ψ1 , ψ̄2 = ψ2 , ψ̄3 = −ψ3 − ψ0ψ2σ3 + ψ2
1σ3 . (3.21)
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Together with the form of the spin s = 3 charge from [20]

W 3
0 = −1

3
ψ3 −

σ3ψ0

6
ψ2 +

σ3

6
ψ1ψ1 , (3.22)

it follows that the value of W 3
0 on the conjugate representation equals

w̄ = −1

3
ψ̄3 −

σ3ψ̄0

6
ψ̄2 +

σ3

6
ψ̄1ψ̄1

= −1

3

(
−ψ3 − ψ0ψ2σ3 + ψ2

1σ3

)
− σ3ψ0

6
ψ2 +

σ3

6
ψ1ψ1

= −
[
−1

3
ψ3 −

σ3ψ0

6
ψ2 +

σ3

6
ψ1ψ1

]
= −w , (3.23)

as expected. This is a fairly non-trivial consistency check of this proposal.

In particular, for the conjugate minimal representation from above we find

ψ̄1 =
1

h2
, ψ̄2 = 1− h1h3ψ0 , ψ̄3 = h2 (1− h1h3ψ0) 2 , (3.24)

while for s ≥ 3 we find the simple closed form expression

ψ̄s = hs−2
2 (1− h1h3ψ0) s−1 . (3.25)

3.3 The conformal dimensions at finite N and k

As an aside, the above analysis now allows us to check the finite N and k corrections

to the conformal dimension (2.28). According to [19, 20], the conformal dimensions with

respect to the coupled theory (where the u(1) generator has not been removed) equals, see

eq. (3.15)

h =
1

2
ψ2 =

1

2

(
1− ψ0h1h3

)
=

1

2

(
1 +

N

N + k

)
, (3.26)

where we have used the dictionary (3.10). Note that this is true both for the minimal

representation, as well as the anti-minimal representation, see eq. (3.24). We should also

mention in passing that the decoupled conformal dimension is then, see eq. (5.67) of [19]

hdec =
1

2
ψ2 −

ψ2
1

2ψ0
=

(N − 1)

2N

(
1 +

N + 1

N + k

)
, (3.27)

and hence agrees indeed with the conformal dimension of h(f; 0) in the coset, see, e.g.,

eq. (2.13) of [13].

For the problem at hand, however, we should work with the coupled conformal dimen-

sion (since we are dealing with W1+∞ rather than just W∞). Furthermore, for the N = 2

construction, we consider two plane partitions that correspond to λ and 1− λ, i.e., for the

second W∞ algebra we should exchange the roles of N and k. Note that, according to the

dictionary of eq. (3.10), this only affects ψ0, but not the values of hi. Thus we shall work

with the same values of hi for both affine Yangians, but distinguish the two affine Yangians

by setting

ψ0 = N , ψ̂0 = k . (3.28)
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Note that, using (3.10), this relation can be written as

h1h3ψ0 = − N

N + k
= −1 +

k

N + k
= −1− h1h3ψ̂0 , (3.29)

or equivalently as

σ3ψ̂0 = −h2 − σ3ψ0 . (3.30)

If we then add (3.26) to the corresponding expression with N ↔ k, we find altogether

htot =
1

2

(
1− ψ0h1h3

)
+

1

2

(
1− ψ̂0h1h3

)
=

3

2
, (3.31)

as desired. This is another highly non-trivial consistency check for this construction to

work also at the quantum level.

It may also be worth noting that the Z2 × Z2 symmetry of the W(N=2)
∞ algebra [32]

has a nice geometric interpretation in this setting. First of all, the S3 symmetry of each of

the two affine Yangians is broken down to a common Z2 symmetry that exchanges the x1

and x3 direction. In addition, there is the symmetry exchanging the roles of the two affine

Yangians, which corresponds to the N ↔ k transformation.

3.3.1 Representations

One can similarly understand how the two minimal N = 2 representations appear from

the above bosonic viewpoint. The relevant representations have conformal dimensions

h(f; 0, N) =
N

2(N + k + 1)
, and h

(
0; f,−(N + 1)

)
=

k

2(N + k + 1)
, (3.32)

see, e.g. eq. (3.9) of [32]. From the above perspective, these representations correspond

to the representation that has an infinite row of boxes along the x1 direction for either

of the two plane partitions. Indeed, it follows from [19, 20] that the relevant conformal

dimensions are (cf. eq. (3.26))

h
(1)
min =

1

2

(
1− ψ0h2h3

)
=

k + 1

2(N + k + 1)
(3.33)

and

h
(2)
min =

1

2

(
1− ψ̂0h2h3

)
=

N + 1

2(N + k + 1)
. (3.34)

Note that these conformal dimensions are higher than those in (3.32), with the difference

in both cases being equal to

δh =
1

2(N + k + 1)
. (3.35)

This is the contribution of the overall u(1) generator that was added in (2.16). In general,

the representations of the N = 2 affine Yangian will therefore be described by infinite box

configurations extending in the x1 and x3 direction for both plane partitions. (The repre-

sentations where the boxes extend along the x3 direction are again the non-perturbative

representations, in analogy to what happens in the bosonic case, see [37].)
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4 The Yangian at the free field point

For the following it will sometimes be important to compare our ansatz with an explicit

free field realization. Recall that at λ = 0 (or λ = 1), the W(N=2)
∞ algebra has a free field

construction in terms of free complex fermions and bosons. More explicitly, the neutral

bilinears in the fermions, i.e. the fields of the form

∑
j

∂lχj ∂mχ̄j (4.1)

generate W1+∞[0], while the neutral bilinears in the bosons, i.e. the fields of the form

∑
j

∂lφj ∂mφ̄j (4.2)

give rise to W∞[1]. (Here χj and χ̄j are the complex fermions, and φj and φ̄j are the

complex bosons.) On the other hand, the fermionic generators are linear combinations of

the form ∑
j

∂lχj ∂mφ̄j and
∑
j

∂lχ̄j ∂mφj . (4.3)

From the viewpoint of the two bosonicW∞ algebras, i.e.W1+∞[0] andW∞[1], these gener-

ators transform in the ‘bi-minimal’ representation. Indeed, the fermion field χj corresponds

(with respect to W1+∞[0]) to the representation (f; 0) in the coset language, while the bo-

son field ∂φj describes (with respect to W∞[1]) the representation (f; 0). Thus the two

fermionic fields above correspond to the states in

(f; 0)⊗ (f̄; 0) and (f̄; 0)⊗ (f; 0) , (4.4)

respectively. (Here we have used that the complex conjugate fermion transforms in (f̄; 0),

and correspondingly for the complex conjugate boson.)

In terms of the description in terms of plane partitions, this means that the first

fermionic generators act as an addition of an infinite row of boxes with respect to the

first plane partition — the one corresponding to W1+∞[0] — while it acts as an addition

of an infinite row of anti-boxes with respect to the second plane partition — the one

corresponding to W∞[1].

4.1 The affine Yangian generators at λ = 0

We can use this free field realisation to construct the relevant affine Yangian generators for

this special case, and work out their commutation and anti-commutation relations. In the

next section we shall explain how to modify these relations as we move away from λ = 0.

– 12 –



J
H
E
P
0
5
(
2
0
1
8
)
2
0
0

We recall from [20] (see also [19]) that for the bosonic W1+∞[0] algebra, the corre-

sponding affine Yangian generators can be defined as

ψr =
∑

m∈Z+ 1
2

∑
i

((
−m− 1

2

)r
−
(
−m+

1

2

)r)
: χ̄i−mχ

i
m : (4.5)

er = −
∑

m∈Z+ 1
2

∑
i

(
−m− 1

2

)r
: χ̄i−m−1χ

i
m : (4.6)

fr =
∑

m∈Z+ 1
2

∑
i

(
−m+

1

2

)r
: χ̄i−m+1χ

i
m : , (4.7)

where the free fermion modes are denoted by χim and χ̄im. As was shown there, these

generators satisfy the affine Yangian algebra of [19] for σ2 = −1 and σ3 = 0 with σ3ψ0 = 0.

In terms of the hi parameters, this corresponds to the case

h1 = −1 , h2 = 1 , h3 = 0 , (4.8)

see eq. (3.10) above. We also need a description for the affine Yangian generators associated

to W∞[1], and they are given as

ψ̂r =
∑
m∈Z

∑
i

(
(m+ 1)(−m)r−2 +

(
−m+ 1

)r−1
)

: ᾱi−mα
i
m : (4.9)

êr =
∑
m∈Z

∑
i

(−m)r−1 : ᾱi−1−mα
i
m : (4.10)

f̂r = −
∑
m∈Z

∑
i

(
−m+ 1

)r−1
: ᾱi1−mα

i
m : . (4.11)

This leads to the affine Yangian with hi being given by (4.8); the only difference to the

case of W∞[0] above is that now σ3ψ̂0 = −1. On the face of it, these definitions only make

sense for êr, f̂r with r ≥ 1 and ψ̂r with r ≥ 2. However, we can at least formally extend

these definitions to include also ê0 and ψ̂1 by setting αi0 ≡ 0, i.e., by dropping the term

with m = 0 from all of these expressions. (Similarly, we could define f̂0 by setting ᾱi0 ≡ 0.)

The generator ê0 is then the −1 mode of a non-local field with spin 1. One checks by an

explicit calculation that it satisfies the correct commutation relation with the ψ̂r modes,

in particular (see eq. (4.13) of [20])

[ψ̂1, ê0] = 0 , [ψ̂2, ê0] = 2ê0 , [ψ̂3, ê0] = 6ê1 − 2ê0 . (4.12)

For the fermionic generators we now make the ansatz

xs =
∑
m∈Z

∑
i

(−m− 1)s−
1
2 : χ̄i− 3

2
−m α

i
m : , (4.13)

and

x̄s =
∑
m∈Z

∑
i

(m+ 1)s−
1
2 : χi− 3

2
−m ᾱ

i
m : , (4.14)
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where s = 1
2 ,

3
2 , . . ., and we define the generating functions by

x(z) =
∞∑

s=1/2

xs z
−s−1/2 , x̄(z) =

∞∑
s=1/2

x̄s z
−s−1/2 . (4.15)

Note that

xs ∼W (s+1)+
−3/2 , and x̄s ∼W (s+1)−

−3/2 , (4.16)

i.e. the term with s = 1
2 corresponds to the supercharge, etc. Obviously, the algebra also

contains the corresponding +3/2 modes, which we may define via conjugation as

ys =
∑
m∈Z

∑
i

(m− 1)s−
1
2 : χi3

2
−m ᾱ

i
m : , (4.17)

and

ȳs =
∑
m∈Z

∑
i

(1−m)s−
1
2 : χ̄i3

2
−m α

i
m : , (4.18)

where the corresponding generating functions are

y(z) =

∞∑
s=1/2

ys z
−s−1/2 , ȳ(z) =

∞∑
s=1/2

ȳs z
−s−1/2 , (4.19)

and

x†s = ys , and x̄†s = ȳs . (4.20)

Their treatment is similar to that of the xr and x̄r generators, and is therefore relegated

to appendix A.

It is now straightforward to work out the commutation and anti-commutation relations

of these generators. For example, one finds

0 = [ψr+2, xs]− 2[ψr+1, xs+1] + [ψr, xs+2] + [ψr+1, xs]− [ψr, xs+1] (4.21)

0 = [er+1, xs]− [er, xs+1] + [er, xs] (4.22)

0 = [fr+1, xs]− [fr, xs+1] , (4.23)

as well as

0 = [ψr+2, x̄s]− 2[ψr+1, x̄s+1] + [ψr, x̄s+2]− [ψr+1, x̄s] + [ψr, x̄s+1] (4.24)

0 = [er+1, x̄s]− [er, x̄s+1]− [er, x̄s] (4.25)

0 = [fr+1, x̄s]− [fr, x̄s+1] . (4.26)

On the other hand, the commutation relations with the hatted modes are

0 = [ψ̂r+2, xs]− 2[ψ̂r+1, xs+1] + [ψ̂r, xs+2]− 3[ψ̂r+1, xs] + 3[ψ̂r, xs+1] + 2[ψ̂r, xs] (4.27)

0 = [êr+1, xs]− [êr, xs+1]− 2[êr, xs] (4.28)

0 = [f̂r+1, xs]− [f̂r, xs+1]− [f̂r, xs] (4.29)
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and

0 = [ψ̂r+2, x̄s]− 2[ψ̂r+1, x̄s+1] + [ψ̂r, x̄s+2] + [ψ̂r+1, x̄s]− [ψ̂r, x̄s+1] (4.30)

0 = [êr+1, x̄s]− [êr, x̄s+1] + [êr, x̄s] = 0 (4.31)

0 = [f̂r+1, x̄s]− [f̂r, x̄s+1] = 0 . (4.32)

In addition, there are the initial conditions

[ψ0, xs] = 0 [ψ1, xs] = −xs
[ψ0, x̄s] = 0 [ψ1, x̄s] = x̄s
[ψ̂1, xs] = xs [ψ̂2, xs] = 2xs + 2xs+1 [ψ̂3, xs] = 4xs + 7xs+1 + 3xs+2

[ψ̂1, x̄s] = −x̄s [ψ̂2, x̄s] = 2x̄s − 2x̄s+1 [ψ̂3, x̄s] = −2x̄s + 5x̄s+1 − 3x̄s+2 .

(4.33)

Note that the hatted generators only start with ψ̂2, i.e. the modes ψ̂0 and ψ̂1 are initially

not defined in (4.9). We have added the mode ψ̂1 by hand — the result also agrees with

what one obtains upon extending the definition of ψ̂r in (4.9) to r = 1, see the comments

above — and defined it so that it satisfies (4.27) and (4.30) for r ≥ 1. However, (4.27)

and (4.30) are then not compatible with [ψ̂0, xs] = 0 and [ψ̂0, x̄s] = 0. The reason for this

will become clear below: the deformed relations, see appendix B.2, contain an additional

contribution that survives (for r = 0) since σ3ψ̂0 = −1. With this correction term the

above results are then also compatible with the recursion relations of appendix B.2 for

r = 0. For the unhatted modes, these problems do not arise, and in fact the commutator

with ψ2 is determined using (4.21) and (4.24) with r = 0 as

[ψ2, xs] = xs − 2xs+1 , [ψ2, x̄s] = x̄s + 2x̄s+1 . (4.34)

Finally, for the anti-commutator of the xs and x̄r we find

0 = {xi+2, x̄j} − 2{xi+1, x̄j+1}+ {xi, x̄j+2}+ {xi+1, x̄j} − {xi, x̄j+1} − 2{xi, x̄j} . (4.35)

It is also convenient to define

{xr, ys} = Pr+s , (4.36)

with the initial condition that

P1 =
1

2

(
ψ2 + ψ̂2) +

3

2
ψ1 +N , (4.37)

where N is the number of complex free bosons and fermions. The Pr modes satisfy a

number of relations that are also spelled out in appendix A.

4.2 Identifying the representations

The discussion around eq. (4.4) suggests that the fermionic generators transform in a

minimal representation with respect to one W∞ algebra, but in the conjugate minimal

with respect to the other. We can now verify this also more explicitly.

Let us first analyse the generators described by x. The eigenvalues of ψr on the state

χ̄i−1/2|0〉 — this is the relevant state for the description of x1/2|0〉 — equals

ψ1 = −1 , ψ2 = 1 , ψ3 = −1 , (4.38)
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where the first few ψr generators are explicitly, see eq. (4.5)

ψ1 = −
∑

m∈Z+ 1
2

∑
i

: χ̄i−mχ
i
m : (4.39)

ψ2 =
∑

m∈Z+ 1
2

∑
i

2m : χ̄i−mχ
i
m : (4.40)

ψ3 = −
∑

m∈Z+ 1
2

∑
i

(
3m2 +

1

4

)
: χ̄i−mχ

i
m : (4.41)

Using that h1 = −1, h2 = 1 and h3 = 0 (with σ3ψ0 = 0) this agrees then with the charges

of the minimal representation, see (3.15).

On the other hand, the charges of the state χi−1/2|0〉 (that is relevant for the description

of x̄s) are

ψ1(x̄) = 1 , ψ2(x̄) = 1 , ψ3(x̄) = 1 . (4.42)

These are not the charges of the minimal representation, but rather that of the conjugate

minimal representation. Indeed, evaluating (3.24) for h1 = −1, h2 = 1, h3 = 0 with

σ3ψ0 = 0 we find ψ̄1 = 1, ψ̄2 = 1 and ψ̄3 = 1, which reproduces indeed (4.42).

Incidentally, the situation is precisely reverse with respect to the hatted modes. In

that case, we need to evaluate the charges

ψ̂2 = 2
∑
m∈Z

∑
i

: ᾱi−mα
i
m : (4.43)

ψ̂3 =
∑
m∈Z

∑
i

(1− 3m) : ᾱi−mα
i
m : . (4.44)

First consider the state ᾱi−1|0〉 (that is relevant for the x̄s modes), for which we find

ψ̂2(x̄) = 2 , ψ̂3(x̄) = −2 . (4.45)

This is then of the form (3.15) with h1 = −1, h2 = 1, h3 = 0 and σ3ψ̂0 = −1; thus the x̄r
generators transform in the minimal representation with respect to the hatted modes. On

the other hand, on the state αi−1|0〉 that is relevant for the description of the xs modes,

see eq. (4.13), the charges equal

ψ̂2(x) = 2 , ψ̂3(x) = 4 . (4.46)

Now, this does not correspond to the minimal representation, i.e. it does not match (3.15)

with h1 = −1, h2 = 1, h3 = 0 and σ3ψ̂0 = −1, but rather corresponds to the conjugate

minimal representation, i.e., it agrees with (3.24) for h1 = −1, h2 = 1, h3 = 0 with

σ3ψ̂0 = −1. The situation for the y and ȳ generators is similar; we have summarized the

representation properties of these generators in the table 1.

5 The Yangian at generic parameters

Next we want to make a proposal for how the algebra should be deformed away from the

special point λ = 0, see eq. (4.8). Our guiding principle is that, with respect to the two

bosonic affine algebras, denoted by Y and Ŷ respectively in the following, the fermionic

generators sit in “bi-minimal” representations.
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generator unhatted modes Y hatted modes Ŷ
x minimal conj minimal

x̄ conj. minimal minimal

y conj. minimal minimal

ȳ minimal conj. minimal

Table 1. The representation properties of the fermionic generators.

5.1 The generators in minimal representations

Let us begin with studying the generators that transform in minimal (rather than con-

jugate minimal) representations. As we have seen above, the generator xs transforms in

the minimal representation of Y. By analogy with the construction of the bosonic affine

Yangian, the operation of adding xs should therefore change the eigenvalue of the ψ modes

by — this is ψ(u) in eq. (3.13) without the “vacuum” factor ψ0(u) = (1 + ψ0σ3
u )

ϕ2(u) =
u(u+ h2)

(u− h1)(u− h3)
. (5.1)

This then suggests that (4.21) should become

ψ(z)x(w) ∼ ϕ2(z − w)x(w)ψ(z) , (5.2)

whose modes — this can be deduced as in [20], see the discussion around eq. (2.12) there

— then satisfy

[ψr+2, xs]− 2[ψr+1, xs+1] + [ψr, xs+2] + h2

(
[ψr+1, xs]− [ψr, xs+1]

)
+ h1h3ψrxs = 0 . (5.3)

Note that this reduces to (4.21) for h2 = 1 and h1h3 = 0.

Before we proceed further, we can test this proposal by working out the charges of

the state that is created by x1/2 from the vacuum. Recall that on the vacuum state the

bosonic and fermionic modes satisfy

ei|0〉 = δi,0e0|0〉 , xi|0〉 = δi,1/2 x1/2|0〉 , x̄i|0〉 = δi,1/2 x̄1/2|0〉 . (5.4)

We want to confirm that the state x1/2|0〉 has the charges of the minimal representation of

Y. We postulate that the initial condition (4.33) is now modified to

[ψ0, xs] = 0 [ψ1, xs] = − 1

h2
xs . (5.5)

Then it follows that

ψ0 x 1
2
|0〉 = N x 1

2
|0〉 (5.6)

ψ1 x 1
2
|0〉 = − 1

h2
x 1

2
|0〉 . (5.7)
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In order to determine the higher charges we deduce from (5.3) that

ψ2x1/2|0〉 = [ψ2, x1/2]|0〉 = −h2[ψ1, x1/2]|0〉 − h1h3ψ0x1/2|0〉

= (1− h1h3ψ0)x1/2|0〉 (5.8)

[ψ3, x1/2]|0〉 = [ψ3, x1/2]|0〉 = −h2[ψ2, x1/2]|0〉 − h1h3ψ1x1/2|0〉

= −h2(1− h1h3ψ0)x1/2|0〉+
h1h3

h2
x1/2|0〉

=

(
σ3ψ0 −

h2
2 − h1h3

h2

)
x1/2|0〉 . (5.9)

Since h2 = −(h1 + h3), the last equation can now be rewritten as

ψ3 x 1
2
|0〉 =

(
σ3ψ0 −

h2
1 + h1h3 + h2

3

h2

)
x 1

2
|0〉 . (5.10)

These charges then agree precisely with eq. (3.15), thus confirming that our ansatz (5.2)

leads to states with the correct charges.

We also make the ansatz

e(z)x(w) ∼ G(∆)x(w) e(z) (5.11)

f(z)x(w) ∼ H(∆)x(w) f(z) , (5.12)

where here and in the following

∆ ≡ z − w . (5.13)

G(∆) and H(∆) are functions that will be constrained further below, see section 5.3.

5.1.1 Other minimal generators

The construction works similarly for the generators yr, which behave like the conjugate

operators to xr, i.e. they are like the fr modes relative to er in the bosonic affine Yangian.

Because of that we expect them to satisfy the inverse OPE, cf. eq. (3.4) and (3.5)

ψ(z) y(w) ∼ ϕ−1
2 (∆) y(w)ψ(z) . (5.14)

Given the simple relation between (5.2) and (5.14), we postulate that also the y-analogues

of (5.11) and (5.12) only involve simple inverses. The structure of the OPEs of x and y

with respect to the unhatted fields can then be summarized by the diagram of figure 2.

The analysis is completely analogous for the two fields x̄ and ȳ with respect to the

hatted fields, and the structure of the corresponding OPEs can thus be similarly realized,

see figure 3.

5.2 The generators in conjugate minimal representations

A more interesting case are the OPEs of the unhatted fields with x̄ and ȳ, or equivalently,

that of the hatted fields with x and y. For concreteness, let us describe the former case in
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ψ fe

x

y

ϕ3(∆) ϕ−1
3 (∆)

ϕ3(∆) ϕ−1
3 (∆)

ϕ2(∆)G(∆)
H(∆)

ϕ−1
2 (∆) G−1(∆)

H−1(∆)

Figure 2. The OPE relations involving x and y.

x̄

ê ψ̂ f̂

ȳ

ϕ3(∆) ϕ−1
3 (∆)

ϕ3(∆) ϕ−1
3 (∆)

ϕ2(∆)
G(∆)

H(∆)

ϕ−1
2 (∆)

G−1(∆)
H−1(∆)

Figure 3. The OPE relations involving x̄ and ȳ.

detail. Since the charges of the conjugate minimal representation are described by (3.16),

the natural ansatz for the OPE is thus

ψ(z) x̄(w) ∼ ϕ−1
2 (−∆− ψ0σ3) x̄(w)ψ(z) . (5.15)

By the usual arguments, this then leads to the commutation relations

[ψr+2, x̄s]− 2[ψr+1, x̄s+1] + [ψr, x̄s+2] + (−h2 + 2ψ0σ3)
(

[ψr+1, x̄s]− [ψr, x̄s+1]
)

+ ψ0σ3(ψ0σ3 − h2)[ψr, x̄s]− h1h3 x̄sψr = 0 , (5.16)

which reduces indeed to (4.24) in the free field limit. Again, before proceeding further, we

should check that this gives the correct charges on the corresponding states. In analogy

to (5.5) we now postulate

[ψ0, x̄s] = 0 [ψ1, x̄s] =
1

h2
x̄s . (5.17)
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ϕ2(−∆ − σ3ψ0) G(−∆ − σ3ψ0)H(−∆ − σ3ψ0)

ϕ−1
2 (−∆ − σ3ψ0)G−1(−∆ − σ3ψ0) H−1(−∆ − σ3ψ0)

G(∆)

G−1(∆)

ϕ2(∆)

ϕ−1
2 (∆)

ϕ3(∆) ϕ−1
3 (∆)

ϕ3(∆) ϕ−1
3 (∆)

Figure 4. The additional relations (in red and blue) together with some of the relations from

figures 2 and 3 for comparison.

Then we find, using (5.16)

ψ1 x̄1/2|0〉 =
1

h2
x̄1/2|0〉 (5.18)

ψ2 x̄1/2|0〉 = [ψ2, x̄1/2] |0〉 = (h2 − 2ψ0σ3)[ψ1, x̄1/2] |0〉+ h1h3ψ0x̄1/2 |0〉

= (1− h1h3ψ0)x̄1/2|0〉 (5.19)

ψ3 x̄1/2|0〉 = (h2 − 2ψ0σ3)[ψ2, x̄1/2] |0〉 − ψ0σ3(ψ0σ3 − h2)[ψ1, x̄1/2]|0〉

=

[
(h2 − 2ψ0σ3)(1− h1h3ψ0)− ψ0σ3(ψ0σ3 − h2)

h2

]
x̄1/2|0〉

= (1− h1h3ψ0)
(
h2 − 2ψ0σ3 + ψ0σ3) x̄1/2|0〉

= h2(1− h1h3ψ0)2 x̄1/2|0〉 , (5.20)

thus giving the correct charges of the anti-minimal representation, see eq. (3.24). The

structure of the corresponding OPEs can therefore be summarized as in figure 4. The situ-

ation for the hatted fields with respect to x and y is completely analogous and summarized

in figure 5.

5.3 The OPEs with e and f

Since the ψ field appears in the OPE of the e and the f field, see eq. (3.1), we can also

deduce constraints on the OPE of the e and f field with x from that with ψ. To this end,
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Figure 5. The additional relations (in red and blue) together with some of the relations from

figures 2 and 3 for comparison.

we recall the ansatz from eqs. (5.11) and (5.12)

e(z)x(w) ∼ G(∆)x(w) e(z) (5.21)

f(z)x(w) ∼ H(∆)x(w) f(z) . (5.22)

Note that, just like the identities of eqs. (3.2) – (3.5), these relations cannot be exactly

correct, but are only true up to terms that are regular at either z = 0 or w = 0, see the

discussion around eq. (5.15) in [20]. Applying this identity twice we find that

e(z1) f(z2)x(w) ∼ G(z1 − w)H(z2 − w)x(w) e(z1)f(z2) (5.23)

f(z2) e(z1)x(w) ∼ G(z1 − w)H(z2 − w)x(w) f(z2) e(z1) . (5.24)

Subtracting the two equations from one another and using (3.1) we thus deduce that

ψ(z1)x(w)− ψ(z2)x(w)

z1 − z2
∼ G(z1 − w)H(z2 − w)

x(w)ψ(z1)− x(w)ψ(z2)

z1 − z2
. (5.25)

Next we apply (5.2) to the left-hand-side, from which we deduce that this equals

ϕ2(z1 − w)x(w)ψ(z1)− ϕ2(z2 − w)x(w)ψ(z2)

z1 − z2
. (5.26)

Thus it follows that

ϕ2(z1 − w)

z1 − z2
∼ ϕ2(z2 − w)

z1 − z2
∼ G(z1 − w)H(z2 − w)

z1 − z2
. (5.27)
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Because these identities are only true up to regular terms, this implies that the functions

G(∆) and H(∆) have to satisfy the identity

G(∆)H(∆) = ϕ2(∆) . (5.28)

The most natural ansatz that is compatible with the free field limit (see below) is

G(∆) =
∆ + h2

∆− h1
, H(∆) =

∆

∆− h3
, (5.29)

In terms of commutators this leads to

0 = [er+1, xs]− [er, xs+1]− h1[er, xs] + h3xs er (5.30)

0 = [fr+1, xs]− [fr, xs+1]− h3frxs , (5.31)

which reduces indeed to the correct free field answers, see eqs. (4.22) and (4.23). However,

this ansatz cannot be right since there are two box-descendants of the state generated by

x1/2|0〉 — this follows from the bosonic structure of the minimal representation — and

hence the function G(∆) must have two poles [38]. In fact, one can use the representation

theory to constrain the function G(∆) (and hence H(∆)) further, but this goes beyond the

scope of the present paper and will be described elsewhere [38].

5.4 The N = 2 algebra

Our starting point in section 2 was the W(N=2)
∞ [λ] algebra, and we can now try to identify

its generators with those of the supersymmetric affine Yangian. The vacuum character, see

eq. (2.14), contains two spin s = 1 fields: the u(1) generator of the N = 2 superconformal

algebra, as well as the extra bosonic generator that we added by hand to the W(N=2)
∞ [λ]

vacuum character (2.15). This free boson should be completely decoupled, and its zero

mode be identified with the central generator

U0 ≡ ψ1 + ψ̂1 . (5.32)

Obviously, U0 commutes with all er, fr, êr and f̂r generators, and because of the relations

we have imposed, it also commutes with the xs and x̄s generators.

We also know that the total Möbius generators correspond to

L−1 = e1 + ê1 , L1 = −f1 − f̂1 , L0 =
1

2

(
ψ2 + ψ̂2

)
, (5.33)

and it is thus natural to assume that the ±1 modes of the decoupled boson are

U−1 = e0 + ê0 , U1 = −
(
f0 + f̂0

)
. (5.34)

The u(1) generator of the N = 2 algebra, on the other hand, should be identified with

J0 = (σ3ψ̂0)ψ1 − (σ3ψ0) ψ̂1 , (5.35)

and

J−1 = (σ3ψ̂0) e0 − (σ3ψ0) ê0 , J1 = −(σ3ψ̂0) f0 + (σ3ψ0) f̂0 . (5.36)
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Then [Jm, Un] = 0 for m,n ∈ {0,±1}, and we find

[Jm, Jn] =
c(N=2)

3
mδm,−n , with c(N=2) = 3 (σ3)2ψ0 ψ̂0 (ψ0 + ψ̂0) . (5.37)

In terms of the dictionary of [20], this central charge then equals

c(N=2) =
3Nk

N + k + 1
, (5.38)

in agreement with the N = 2 central charge, see eq. (2.11). The other bosonic generators

can be similarly identified: for each integer s, there are two decoupled bosonic fields, see

the discussion below (2.12), and they can be identified with the affine Yangian generators

of the two bosonic affine Yangians, using the dictionary of [20].

This leaves us with the fermionic generators. The lowest fermionic generators are the

supercharge generators G±r , which, at the free point, can be identified with

x1/2 =
1√
2
G+
−3/2 , x̄1/2 =

1√
2
G−−3/2 . (5.39)

It would be natural to postulate this identification also for generic hi. However, there is

a problem with this proposal. The N = 2 generators should commute with the decoupled

free boson described by Un. But even at the free point one finds

[e0 + ê0, x1/2] =
∑
n 6=0

∑
i

1

n
: χ̄i−5/2−nα

i
n : . (5.40)

The origin of this problem is that the ê0 generator corresponds to the −1 mode of a non-

local field,

ê0 = −
∑
m 6=0

∑
i

1

m
: ᾱi−m−1α

i
m : , (5.41)

see also the discussion below eq. (4.11). The fact that ê0 is non-local at the free point

is an artefact of the free limit — for generic λ, both e0 and ê0 describe the −1 mode of

local fields, as follows from the discussion in [20]. One may therefore suspect that the fact

that [U0, x1/2] 6= 0 is purely a free-field artefact, but this is not the case: as we show in

appendix C, with the above identifications, this problem persists for generic λ.

We believe that the resolution of this problem is that we need to correct the identifica-

tion (5.39) by (non-local) correction terms. The fact that such non-local correction terms

appear is maybe not surprising in view of the fact that also in the bosonic setting non-local

correction terms were required for the identification of the spin 3 and 4 fields, see [20]. The

relevant analysis is, however, rather cumbersome, and we leave it to future work.

6 Conclusions

In this paper we have found some of the defining relations of the Yangian algebra that

is expected to be isomorphic to W(N=2)
∞ [λ], the N = 2 superconformal version of W∞[λ].

We have extensively used the fact that W(N=2)
∞ [λ] contains two commuting bosonic W∞[µ]
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algebras, each of which in turn is isomorphic to an affine Yangian of gl1. The additional

generators transform in bi-minimal representations with respect to these two W∞[µ] al-

gebras. We have shown how this translates into explicit commutation relations for the

additional Yangian generators — our main technical advance is the description of the con-

jugate representations, see section 4.2. This has allowed us to make a proposal for at least

some of the defining relations of the N = 2 superconformal affine Yangian. We have also

checked — in fact this was an important guiding principle — that these relations reduce

to the expected identities in the free field case (λ = 0).

There are many open questions which we hope to address in the future. First of all,

it would be nice to construct the representation theory of this Yangian algebra, see [38]

for first steps in this direction; this will involve two plane partitions on which the various

generators should have some natural action. (The two affine Yangians of gl1 act separately

on each, while the additional bi-minimal generators generate infinite rows of boxes (and

anti-boxes), connecting the two plane partitions.) Among other things, this would allow us

to prove the consistency of our construction and to find the remaining relations. It would

also be interesting to establish the dictionary to the W(N=2)
∞ [λ] algebra in more detail,

generalizing the construction of [20] to the current context, and to explore the various

duality symmetries this picture suggests. Note that the construction selects out one of the

three directions of each plane partition, thereby breaking the S3 symmetry [37] of each affine

Yangian of gl1 to a Z2 symmetry that exchanges the remaining two directions. Together

with the exchange symmetry of the two affine Yangians, the N = 2 affine Yangian therefore

has a Z2 × Z2 symmetry. We hope to come back to these questions in the near future.
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A Additional relations of the free field theory

In addition to the free field relations that were given in the main body of the text, see

eqs. (4.21)–(4.33), the commutation relations of ys and ȳs are

0 = [ψr+2, ys]− 2[ψr+1, ys+1] + [ψr, ys+2] + [ψr+1, ys]− [ψr, ys+1] (A.1)

0 = [er+1, ys]− [er, ys+1] (A.2)
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0 = [fr+1, ys]− [fr, ys+1] + [fr, ys] (A.3)

0 = [ψr+2, ȳs]− 2[ψr+1, ȳs+1] + [ψr, ȳs+2]− [ψr+1, ȳs] + [ψr, ȳs+1] (A.4)

0 = [er+1, ȳs]− [er, ȳs+1] (A.5)

0 = [fr+1, ȳs]− [fr, ȳs+1]− [fr, ȳs] , (A.6)

as well as

0 = [ψ̂r+2, ys]− 2[ψ̂r+1, ys+1] + [ψ̂r, ys+2]− 3[ψ̂r+1, ys] + 3[ψ̂r, ys+1] + 2[ψ̂r, ys]

0 = [êr+1, ys]− [êr, ys+1]− [êr, ys] (A.7)

0 = [f̂r+1, ys]− [f̂r, ys+1]− 2[f̂r, ys] (A.8)

0 = [ψ̂r+2, ȳs]− 2[ψ̂r+1, ȳs+1] + [ψ̂r, ȳs+2] + [ψ̂r+1, ȳs]− [ψ̂r, ȳs+1] (A.9)

0 = [êr+1, ȳs]− [êr, ȳs+1] (A.10)

0 = [f̂r+1, ȳs]− [f̂r, ȳs+1] + [f̂r, ȳs] . (A.11)

The Pr modes that were defined in eq. (4.36), and their corresponding barred version

{xr, ys} = Pr+s , {x̄r, ȳs} = P̄r+s , (A.12)

are given explicitly by

P1 =
1

2

(
ψ2 + ψ̂2) +

3

2
ψ1 +N , P̄1 =

1

2

(
ψ2 + ψ̂2)− 3

2
ψ1 +N , (A.13)

as well as (for r ≥ 2)

Pr =
∑

m∈Z+ 1
2

∑
i

(
m+

3

2

)(
m+

1

2

)r−1

: χi−mχ̄
i
m : +

∑
u∈Z

∑
i

(
u− 1

)r−1
: αi−uᾱ

i
u :

P̄r =
∑

m∈Z+ 1
2

∑
i

(
m− 3

2

)(
m− 1

2

)r−1

: χi−mχ̄
i
m : +

∑
u∈Z

∑
i

(
u+ 1

)r−1
: αi−uᾱ

i
u : .

They satisfy

0 = [Pi+2, x̄j ]− 2[Pi+1, x̄j+1] + [Pi, x̄j+2] + [Pi+1, x̄j ]− [Pi, x̄j+1]− 2[Pi, x̄j ] (A.14)

0 = [Pi+2, ȳj ]− 2[Pi+1, ȳj+1] + [Pi, ȳj+2] + [Pi+1, ȳj ]− [Pi, ȳj+1]− 2[Pi, ȳj ] (A.15)

0 = [Pi+2, ej ]− 2[Pi+1, ej+1] + [Pi, ej+2]− ([Pi+1, ej ]− [Pi, ej+1]) (A.16)

0 = [Pi+2, fj ]− 2[Pi+1, fj+1] + [Pi, fj+2]− ([Pi+1, fj ]− [Pi, fj+1]) (A.17)

0 = [Pi+2, êj ]− 2[Pi+1, êj+1] + [Pi, êj+2] + 3([Pi+1, êj ]− [Pi, êj+1]) + 2[Pi, êj ] (A.18)

0 = [Pi+2, f̂j ]− 2[Pi+1, f̂j+1] + [Pi, f̂j+2] + 3([Pi+1, f̂j ]− [Pi, f̂j+1]) + 2[Pi, f̂j ] (A.19)

and

0 = [P̄i+2, xj ]− 2[P̄i+1, xj+1] + [P̄i, xj+2]− [P̄i+1, xj ] + [P̄i, xj+1]− 2[P̄i, xj ] (A.20)

0 = [P̄i+2, yj ]− 2[P̄i+1, yj+1] + [P̄i, yj+2]− [P̄i+1, yj ] + [P̄i, yj+1]− 2[P̄i, yj ] (A.21)
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0 = [P̄i+2, êj ]− 2[P̄i+1, êj+1] + [P̄i, êj+2]− ([P̄i+1, êj ]− [P̄i, êj+1]) (A.22)

0 = [P̄i+2, f̂j ]− 2[P̄i+1, f̂j+1] + [P̄i, f̂j+2]− ([P̄i+1, f̂j ]− [P̄i, f̂j+1]) (A.23)

0 = [P̄i+2, ej ]− 2[P̄i+1, ej+1] + [P̄i, ej+2] + ([P̄i+1, ej ]− [P̄i, ej+1]) (A.24)

0 = [P̄i+2, fj ]− 2[P̄i+1, fj+1] + [P̄i, fj+2] + ([P̄i+1, fj ]− [P̄i, fj+1]) . (A.25)

B The defining relations

In this appendix we collect some of the defining relations of the supersymmetric affine

Yangian.

B.1 The OPE like description

ψ(z)x(w) ∼ ϕ2(∆)x(w)ψ(z) (B.1)

ψ̂(z)x(w) ∼ ϕ−1
2 (−∆− ψ̂0σ3)x(w)ψ̂(z) (B.2)

ψ(z) x̄(w) ∼ ϕ−1
2 (−∆− ψ0σ3) x̄(w)ψ(z) (B.3)

ψ̂(z) x̄(w) ∼ ϕ2(∆) x̄(w)ψ̂(z) , (B.4)

where ϕ2(u) is defined in eq. (5.1). For the y fields we find

ψ(z) y(w) ∼ ϕ−1
2 (∆) y(w)ψ(z) (B.5)

ψ̂(z) y(w) ∼ ϕ2(−∆− ψ̂0σ3) y(w)ψ̂(z) (B.6)

ψ(z) ȳ(w) ∼ ϕ2(−∆− ψ0σ3) ȳ(w)ψ̂(z) (B.7)

ψ̂(z) ȳ(w) ∼ ϕ−1
2 (∆) ȳ(w)ψ̂(z) . (B.8)

B.2 The mode relations

In terms of modes, these identities are

[ψr+2, xs]− 2[ψr+1, xs+1] + [ψr, xs+2] + h2

(
[ψr+1, xs]− [ψr, xs+1]

)
+ h1h3ψrxs = 0

[ψ̂r+2, xs]− 2[ψ̂r+1, xs+1] + [ψ̂r, xs+2]− (h2 − 2ψ̂0σ3)
(

[ψ̂r+1, xs]− [ψ̂r, xs+1]
)

+ (h1 + ψ̂0σ3)(h3 + ψ̂0σ3)[ψ̂r, xs]− h1h3 ψ̂rxs = 0

[ψr+2, x̄s]− 2[ψr+1, x̄s+1] + [ψr, x̄s+2] + (−h2 + 2ψ0σ3)
(

[ψr+1, x̄s]− [ψr, x̄s+1]
)

+ ψ0σ3(ψ0σ3 − h2)[ψr, x̄s]− h1h3 x̄sψr = 0

[ψ̂r+2, x̄s]− 2[ψ̂r+1, x̄s+1] + [ψ̂r, x̄s+2] + h2

(
[ψ̂r+1, x̄s]− [ψ̂r, x̄s+1]

)
+ h1h3ψ̂rx̄s = 0

[ψr+2, ys]− 2[ψr+1, ys+1] + [ψr, ys+2] + h2

(
[ψr+1, ys]− [ψr, ys+1]

)
− h1h3 ysψr = 0

[ψ̂r+2, ys]− 2[ψ̂r+1, ys+1] + [ψ̂r, ys+2]− (h2 − 2ψ̂0σ3)
(

[ψ̂r+1, ys]− [ψ̂r, ys+1]
)

+ ψ̂0σ3(ψ̂0σ3 − h2)[ψ̂r, ys] + h1h3 ψ̂rys = 0
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[ψr+2, ȳs]− 2[ψr+1, ȳs+1] + [ψr, ȳs+2]− (h2 − 2ψ0σ3)
(

[ψr+1, ȳs]− [ψr, ȳs+1]
)

+ ψ0σ3(ψ0σ3 − h2)[ψr, ȳs] + h1h3ψrȳs = 0

[ψ̂r+2, ȳs]− 2[ψ̂r+1, ȳs+1] + [ψ̂r, ȳs+2] + h2

(
[ψ̂r+1, ȳs]− [ψ̂r, ȳs+1]

)
+ h1h3ȳsψ̂r = 0 .

For completeness, we also give the mode relations of the bosonic generators [19, 20], which

we write only for the unhatted generators (but which hold similarly also for the hatted

generators).

0 = [ψj , ψk] (B.9)

ψj+k = [ej , fk] (B.10)

σ3{ej , ek} = [ej+3, ek]− 3[ej+2, ek+1] + 3[ej+1, ek+2]− [ej , ek+3]

+σ2[ej+1, ek]− σ2[ej , ek+1] , (B.11)

−σ3{fj , fk} = [fj+3, fk]− 3[fj+2, fk+1] + 3[fj+1, fk+2]− [fj , fk+3]

+σ2[fj+1, fk]− σ2[fj , fk+1] (B.12)

σ3{ψj , ek} = [ψj+3, ek]− 3[ψj+2, ek+1] + 3[ψj+1, ek+2]− [ψj , ek+3]

+σ2[ψj+1, ek]− σ2[ψj , ek+1] (B.13)

−σ3{ψj , fk} = [ψj+3, fk]− 3[ψj+2, fk+1] + 3[ψj+1, fk+2]− [ψj , fk+3]

+σ2[ψj+1, fk]− σ2[ψj , fk+1] . (B.14)

In addition, they satisfy the Serre relations

Sym(j1,j2,j3)[ej1 , [ej2 , ej3+1]] = 0 , Sym(j1,j2,j3)[fj1 , [fj2 , fj3+1]] = 0 . (B.15)

B.3 The initial conditions

The modified initial conditions, generalizing (4.33) are

[ψ0, xs] = 0 [ψ1, xs] = −h−1
2 xs

[ψ̂0, xs] = 0 [ψ̂1, xs] = h−1
2 xs

[ψ0, x̄s] = 0 [ψ1, x̄s] = h−1
2 x̄s

[ψ̂0, x̄s] = 0 [ψ̂1, x̄s] = −h−1
2 x̄s .

(B.16)

Furthermore,

[ψ0, ȳs] = 0 [ψ1, ȳs] = −h−1
2 ȳs

[ψ̂0, ȳs] = 0 [ψ̂1, ȳs] = h−1
2 ȳs

[ψ0, ys] = 0 [ψ1, ys] = h−1
2 ys

[ψ̂0, ys] = 0 [ψ̂1, ys] = −h−1
2 ys .

(B.17)

Finally, the initial relations of the bosonic generators are

[ψ0, ej ] = 0 , [ψ1, ej ] = 0 , [ψ2, ej ] = 2ej , (B.18)

and

[ψ0, fj ] = 0 , [ψ1, fj ] = 0 , [ψ2, fj ] = −2fj . (B.19)
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C Supercharge constraints

We start by assuming that the decoupled u(1) generator commutes with the x1/2 generator,

which we would like to identify with the supercharge, see eq. (5.39),

[e0 + ê0, x1/2] = 0 . (C.1)

We will deduce two identities from this assumption, using the commutation relations we

have postulated. First we consider

[[(ψ2 − ψ̂2), x1/2], (e0 + ê0)] = [[(ψ2 − ψ̂2), (e0 + ê0)], x1/2] + [[(e0 + ê0), x1/2], (ψ2 − ψ̂2)]

= 2[(e0 − ê0), x1/2] = 4[e0, x1/2] .

For the left-hand side we then use

[ψ2, x1/2] = − 2

h2
x3/2 + (1− h1h3ψ0)x1/2 (C.2)

[ψ̂2, x1/2] =
2

h2
x3/2 + (1− h1h3ψ̂0)x1/2 (C.3)

from which it follows, using again (C.1), that

[x3/2, e0 + ê0] = h2[x1/2, e0] . (C.4)

The other identity can be derived similarly, except that now we consider the commu-

tator with ψ3 + ψ̂3,

[[(ψ3 + ψ̂3), x1/2], (e0 + ê0)] = [[(ψ3 + ψ̂3), (e0 + ê0)], x1/2] + [[(e0 + ê0)], x1/2], (ψ3 + ψ̂3)]

= [[(ψ3 + ψ̂3), e0 + ê0], x1/2] .

Now the relevant charge relations are

[ψ3 + ψ̂3, x1/2] = (10 + 2h1h3ψ0)x3/2 + d x1/2 (C.5)

where d is some constant, and

[ψ3 + ψ̂3, e0 + ê0] = 6(e1 + ê1) + 2σ3ψ0 e0 + 2σ3ψ̂0 ê0 . (C.6)

This then leads to the identity

(10 + 2h1h3ψ0)[x3/2, e0 + ê0] = 6[e1 + ê1, x1/2] + 2σ3ψ0[e0, x1/2] + 2σ3ψ̂0[ê0, x1/2]

= 6[σ3ψ̂0 e0 − σ3ψ0 ê0, x1/2] + 2σ3ψ0[e0, x1/2]

+2σ3ψ̂0[ê0, x1/2]

= h2(4− 4h1h3ψ0) [x1/2, e0] , (C.7)

where we have also used that

[e1 + ê1, x1/2] = [L−1, x1/2] = [J−1, x1/2] = [σ3ψ̂0 e0 − σ3ψ0 ê0, x1/2] , (C.8)

– 28 –



J
H
E
P
0
5
(
2
0
1
8
)
2
0
0

as follows from the fact that x1/2 ∼ G+
−3/2 is the mode of a primary field of spin 3/2 with

charge +1, i.e., from the relations of the N = 2 superconformal algebra

[Jm, G
±
r ] = ±G±m+r , [Ln, G

±
r ] =

(
n

2
− r
)
G±m+r . (C.9)

The two identities (C.4) and (C.7) are only compatible provided that

(10 + 2h1h3ψ0) = (4− 4h1h3ψ0) , i.e. h1h3ψ0 = − N

N + k
= −1 , (C.10)

which corresponds to the case λ = 1. Given the usual symmetry λ 7→ 1 − λ one may

wonder why λ = 1 appears rather than λ = 0. In fact, if one repeats the same analysis for

x̄r instead of xr, the same analysis goes through, except that the compatibility condition

is then λ = 0. This is also mirrored by the fact that, in the explicit free field calculation

at λ = 0, the analogue of (5.40) vanishes, [e0 + ê0, x̄1/2] = 0.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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