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1 Introduction

The microscopic description of charged quantum matter is usually intractable when the

number of its fundamental objects is very large. Generically, however, such microscopic

descriptions admit a hydrodynamic limit in which the low-energy collective behaviour of

matter is captured by a few emergent degrees of freedom, such as temperature, chemical

potential and velocity fields. In this limiting regime, rapidly varying quantities compared

to the mean-free path of the fundamental objects are integrated out while the dynamics

of the slowly varying quantities is governed by the conservation laws of the microscopic

system. These conservation laws are a direct manifestation of the underlying symmetries

of the system.
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Despite hydrodynamics being a well established research subject, there has been a

substantial progress in its structural foundations in recent years. This includes an off-shell

formulation of hydrodynamics and the development of classification schemes of its trans-

port properties [1–3]; the construction of effective field theories and the formulation of

action principles for dissipative fluid dynamics [4–9]; the establishment of a framework for

describing interfaces between different fluid phases [10–12]; a new formalism for studying

non-relativistic fluids [13–16]; and the development of hydrodynamic theories with gener-

alised global 1-form symmetries and their connections to magnetohydrodynamics [17–20]

as well as their role in the understanding of effective theories with translational symmetry

breaking and states with dynamical defects [21].

This paper introduces a framework for building effective hydrodynamic theories of dis-

sipative fluids with q-form symmetries, generalising previous work for q = 0, 1. These effec-

tive theories correspond to the hydrodynamic limit of microscopic descriptions whose un-

derlying fundamental charged objects are q-dimensional (i.e. q-dimensional branes). These

q-dimensional objects couple to a background gauge field Aq+1. In the language of [22],

these fluids describe microscopic systems with a generalised q-form global symmetry. Asso-

ciated with the q-form symmetry is a (q+1)-form current J whose integral over a (D−q−1)

dimensional hypersurface MΓ yields a conserved dipole charge

QMΓ
=

∫

MΓ

⋆J , (1.1)

where the operator ⋆ is the Hodge dual operator in D-dimensional spacetime. This dipole

charge counts the number of q-dimensional objects that cross the (D − q − 1)-dimensional

hypersurface MΓ.
1 The hydrodynamic theories constructed here capture the collective

excitations of these charged q-dimensional objects around a state of thermal equilibrium.

This work has been highly motivated by the structure of long-wavelength perturbations

of black branes in supergravity, where dissipative fluids with higher-form symmetries are

naturally realised [23–27]. As the fundamental fields in supergravity include several higher-

form gauge fields, generic black brane bound states can carry multiple higher-form (dipole)

charges. For instance, the D3-F1 bound state in type IIB string theory carries two 2-

form currents and one 4-form current [27]. Within this context, the fluid stress tensor

and charge currents appear as the effective currents sourcing the gravitational and electric

fields far away from the black brane horizon [27], while their conservation laws are realised

as constraint equations when solving Einstein equations in a long-wavelength expansion.

Tackling the general problem of establishing a hydrodynamic theory of dissipative fluids

carrying multiple higher-form charges is certainly of interest and in this work we take the

first step towards this goal by constructing the effective hydrodynamic theory of fluids

with one single q-form symmetry. These fluids are anisotropic with SO(D− q− 1)×SO(q)

symmetry and the source of this anisotropy is the existence of a higher-form charge current.

Gravitational duals to these fluids are encountered in black brane geometries in gravity

1In the case q = 1 in D = 4 and in the context of magnetohydrodynamics where Jµν = ⋆Fµν , the

fundamental objects are strings and QMΓ
counts the number of magnetic field lines crossing a codimension-2

hypersurface. See [18] for a detailed discussion.
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theories with a metric gµν , one single (q + 1)-form gauge field Aq+1 and possibly a dilaton

field. Several examples of such gravitational duals with arbitrary q were found in [24].

In this work, we formulate the theory of dissipative fluids with q-form symmetry to

first order in a long-wavelength expansion (to first order in derivatives of the fluid fields)

focusing on the parity-even sector of the theory.2 We also study equilibrium configurations

and highlight some of the technical complications that arise while describing the hydrostatic

sector of fluids with higher-form symmetries. In addition, we generalise our results to

include the presence of interfaces separating different fluid phases and study specific cases

of surface waves, finding signatures of anisotropy in their dispersion relation.

1.1 Summary of the results and organisation of the material

In section 2, the ideal order dynamics of fluids with q-form symmetry living in a background

spacetime with metric gµν and a (q+1)-form gauge field Aq+1 is introduced. These fluids are

anisotropic with SO(D−q−1)×SO(q) symmetry and carry a dipole charge density Q. They

are characterised by a stress tensor, charge (q + 1)-form current and an entropy current.

The existence of this (q + 1)-form current is responsible for the microscopic anisotropic

properties of the fluid. When the charge Q vanishes, the current vanishes as well and the

usual uncharged isotropic fluid is recovered. We establish their thermodynamic properties

and conservation laws. As far as we are aware, this is the first time that the ideal order

dynamics of these fluids is formalised in the literature.

In section 3 we formulate the dissipative sector of the theory up to first order in

derivatives. We focus on the parity-even sector for q ≥ 0 while for q = 1 we in addition

require charge conjugation invariance. First, we describe how frame transformations act

on the stress tensor and currents and comment on different choices of frames. Picking a

higher-form analogue of the Landau frame, we proceed and require the divergence of the

entropy current to be positive semi-definite. This leads to the existence of q+8 transport

coefficients for q > 1 and 8 for q = 1, all of which are dissipative, thereby contributing to

entropy production. Once Kubo formulae are obtained, we note that Onsager’s relation for

mixed correlation functions sets a constraint among these transport coefficients, thereby

leading to q+7 independent transport coefficients at first order in derivatives for q > 1 and

7 for q = 1. Compared to the q = 1 case studied in [18, 19], for q > 1 there is one additional

transport coefficient with the physical interpretation of shear viscosity in the SO(q) sector

and q−1 extra current resistivities. At the end of this section, we study the constraints on

these transport coefficients in isotropic limits. We observe that some of these constraints

are satisfied by gravitational duals even away from the isotropic limits.

Section 4 contains a detailed analysis of equilibrium configurations in theories with a

q-form symmetry. We begin by noting that the equilibrium partition function presented

in [18] for q = 1 does not describe the hydrostatic sector of the theory completely. As

such, the hydrostatic solution as defined in [18], which assumes hydrostatic backgrounds

to admit not just a timelike isometry but also q spacelike isometries, causes production of

2The q = 1 case deserves considerably more attention and will be the focus of a later publication [28].

In this paper we further restrict the q = 1 case by requiring charge conjugation invariance in addition to

parity invariance. In this case, our analysis for q = 1 is the same as that inpro [18].

– 3 –



J
H
E
P
0
5
(
2
0
1
8
)
1
9
2

entropy, which is incompatible with equilibrium. We show that to avoid this, an additional

constraint must be imposed on the hydrostatic backgrounds. Furthermore, [18] assumed

that spacelike and timelike isometries admitted by the hydrostatic backgrounds must have

vanishing mutual inner products, which further restricts the class of backgrounds on which

equilibrium can be realised. We explicitly derive the most general partition function where

these inner products are not assumed to be zero and show that the resulting solution is a

q-form generalisation of the q = 1 solution presented in [24]. We comment on other issues

regarding the hydrostatic sector of these theories, wherein the requirement of an equilib-

rium partition function seems to impose more constraints than requiring the second law

of thermodynamics alone to hold. This is in striking contrast with q = 0 hydrodynamics,

where the second law guarantees the existence of an equilibrium partition function at all

orders in the derivative expansion [29, 30].

In section 5, following [10, 12], we generalise our results in order to include the presence

of an interface/surface separating two different fluid phases. Similar to section 4, we write

down a partition function for fluids with q-form symmetry in the presence of the interface.

We then analyse the divergence of the surface entropy current and obtain the surface

thermodynamics as well as a constraint on the normal component of the bulk fluid velocity.

We observe that this matches partition function expectations. Having established a notion

of equilibrium in this setting, we obtain the dispersion relation for capillary waves and

ripples on the interface, finding clear signals of anisotropy.

Finally, in section 6 we comment on some open issues and future research directions.

We also provide appendix A with some of our results written in another fluid frame in

order to ease comparison with earlier literature.

2 Ideal order fluids with q-form symmetry

In this section we introduce the ideal order currents and conservation equations for the

propagation of an anisotropic fluid with q-form symmetry carrying q-brane charge in

a D-dimensional background geometry (M, gµν , Aq+1) with p-spatial directions so that

D = (p+ 1) with p ≥ q. The manifold M is endowed with the Levi-Civita connection ∇µ

built out from the background metric gµν with coordinates xµ. These fluids are charac-

terised by a (q + 1)-form current J that couples to the background gauge field Aq+1. In

general, introducing a conserved higher-form current breaks the SO(p) symmetry enjoyed

by the ordinary relativistic “point charged” (or neutral) fluid to a SO(p− q)× SO(q) sym-

metry.3 As usual, at each point of M there exists a rest-frame in which the fluid is static.

At ideal order, this frame is unambiguously defined and is characterised by a timelike vec-

tor uµ (the fluid velocity) normalised such that uµuµ = −1. For later use, we introduce

the projector transverse to the fluid velocity ∆µν = gµν + uµuν . The local thermodynamic

fields of the fluid are then unambiguously defined as their local values in the rest-frame.

We now proceed to write now the ideal order hydrodynamics describing this system.

3If multiple qi-form conserved currents with i = 1, . . . , ℓ are introduced, the fluid is expected to have the

symmetry SO(p−
∑ℓ

i=1 qi)× SO(qi)× · · · × SO(qℓ).
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2.1 Fluid stress tensor and current

At the ideal order level, the (q + 1)-form current takes the following form

Jideal = Q Vol(q+1) . (2.1)

Here Q denotes the quasi-local dipole charge and Vol(q+1) is a (q + 1)-dimensional volume

form. We can decompose it as Vol(q+1) ≡ u ∧ Volq, where Volq = −ıuVol(q+1) (here ı

denotes the interior product) is the local volume form on the space spanned by the q

(linearly independent) spatial directions vi of the current in the rest-frame, i.e.

Volq =
√
det (vi · vj) v1 ∧ . . . ∧ vq , viµu

µ = 0 . (2.2)

Here we have used the inverse of the matrix
(
vi · vj

)
defined as gµνviµv

j
ν , which is the

induced metric on the q-manifold. We will justify this picture and notation below. Clearly,

Volq and uµ are both SO(q) invariant structures. Moreover, Vol(q+1) is a SO(1, q) Lorentz

invariant under boosts along the q-directions vi with i = 1, . . . , q. This invariance must be

reflected in the hydrodynamic theory once dissipation is introduced.

In general, the current induces stresses along the q-spatial directions of the current.

We thus introduce a SO(q) invariant projector Πµν along these directions. In particular,

this projector satisfies the relations

Πµ
ρΠ

ρ
ν = Πµ

ν , Πµ
ρu

ρ = 0 , TrΠ ≡ gµνΠµν = q . (2.3)

Without loss of generality, one may choose the q one-forms vi to be orthonormal, leading

to the projector4

Πµν = δijv
i
µv

j
ν , gµνviµv

j
ν = δij , (2.4)

thereby justifying the form of (2.2). Given this projector, we introduce the ideal order

fluid stress tensor as

Tµν
ideal = E uµuν + Pq Πµν + P Γµν , (2.5)

where Γµν ≡ ∆µν − Πµν is the SO(p − q) invariant projector orthogonal to the current.

This projector satisfies ΓµρΠρν = Γµρuρ = 0 and TrΓ = (p− q). We also find it convenient

to introduce the projector onto all timelike and spacelike directions of the charge current,

Ξµν = −uµuν + Πµν . The stress tensor (2.5) is the most general stress tensor compatible

with the given symmetries. In (2.5) we have introduced the energy density E such that

uνT
µν
ideal = −Euµ while Pq and P denote the pressure along and orthogonal to the current,

respectively.

The stress tensor also satisfies the orthogonality condition ΠµρΓνσT
µν
ideal = 0, which

will play an important role in the choice of fluid frame when discussing dissipative effects.

Note that, in particular, when q = 0 (equivalently Πµν = 0) or when q = p (equivalently

Γµν = 0) we recover the complete SO(p) isotropy as required.5 Isotropy is also recovered

4Note that Volq is invariant under a local GL(q) transformation: viµ → Ri
jv

j
µ, where Ri

j is an arbitrary

q× q non-singular matrix. By choosing to work in an orthonormal basis for the vectors viµ, we have reduced

this GL(q) symmetry down to a residual SO(q).
5The dynamics of p = q fluids has been extensively analysed in [23, 26].
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in the uncharged (or neutral) limit (Q = 0) since the source of anisotropy is only due to

the existence of the current (2.1). In turn, this implies that (P − Pq)|Q=0 = 0. Requir-

ing consistency with the existence of an uncharged isotropic limit will impose non-trivial

constraints among transport coefficients in the dissipative sector of the theory in that limit.

2.2 Thermodynamics

The local thermodynamics of the q-charged fluid is analogous to the local thermodynamics

of the q = 1 fluid first considered in [24]. In particular, the fluid energy density satisfies

the first law of thermodynamics

dE = TdS + µdQ , (2.6)

with T , S and µ denoting the temperature, entropy density and chemical potential dual to

Q, respectively.6 We assume that the fluid carries an entropy current of the form

Sµ
ideal = Suµ , (2.7)

which we require to obey a local form of the second law of thermodynamics ∇µS
µ
ideal ≥ 0.

In addition, the difference between the pressure orthogonal and along the current is

given by the energy density of the dissolved q-branes carried by the fluid, i.e.

P − Pq = µQ . (2.8)

The local thermodynamics of the fluid with q-brane charge also satisfy the Gibbs-Duhem

relations

E + P = TS + µQ , dP = SdT +Qdµ , dPq = SdT − µdQ . (2.9)

One may easily see that relation (2.8) is the result of integrating the last two relations

in (2.9). Furthermore, it is clear that in the uncharged limit (Q = 0) one obtains the

condition (P − Pq) |Q=0 = 0.

2.3 Conservation equations

The stress tensor and current obey the usual conservation laws

∇µT
µν = F ν , d ⋆ J = 0 , (2.10)

where F ν ≡ 1
(q+1)!F

νµ1...µq+1Jµ1...µq+1 is a Lorentz force acting on the fluid and where the

(q + 2)-form F is the field strength F = dAq+1. Here ⋆ is the Hodge dual on M. We first

consider the charge conservation equation. Taking the wedge product of d ⋆ J = 0 with J

itself we obtain

⋆ J ∧ ⋆ (d ⋆ J) = ⋆f , (2.11)

6These thermodynamic properties are motivated from black brane geometries [23, 24, 27] but we also

show in section 4 that they naturally follow from partition function considerations.
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where at ideal order, f is the one-form

fµ = (−1)qQ Ξµλ∇ν

(
Q Ξνλ

)
. (2.12)

By projecting out this equation along the uµ and Πµν directions, the vanishing of the

one-form f then implies two continuity equations for the charge Q, namely

uµ∇µQ = −Q ϑ(p−q) , Πµ
ν∇νQ = Q Πµ

ν
(
aν −∇λΠ

λ
ν

)
, (2.13)

where we have defined the fluid expansion ϑ(p−q) = Γµν∇µuν in the SO(p−q) sector as well

as the fluid acceleration aµ = uλ∇λu
µ. We now look at the charge conservation equation

in directions orthogonal to the current. Let us introduce (p − q) one-forms γaµ orthogonal

to uµ and Πµν and mutually orthonormal. Contracting the conservation equation with γaµ,

we obtain

Ξλµ(dγa)µνΞ
νρ = 0 . (2.14)

By virtue of Frobenius’ theorem, the set of one-forms γa are thus surface-forming, that is,

in each point there exists an integral (q+1)-dimensional submanifold of the vectors u and

vi. It follows that M is foliated into a set of (q + 1)-dimensional submanifolds which can

essentially be thought of as the level-surfaces for the dipole charge Q. Furthermore, the

induced metric on these submanifolds is Ξµν and the volume-form is precisely the structure

we previously denoted by Vol(q+1) in (2.1)–(2.2). By projecting (2.14) along u and vi one

finds the set of equations

Γν
λ

(
vµi ∇µv

λ
j − vµj ∇µv

λ
i

)
= Γν

λ

(
uµ∇µv

λ
i − vµi ∇µu

λ
)
= 0 . (2.15)

These equations will become important when analysing equilibrium configurations.

We now consider the conservation of the stress tensor (2.10) at ideal order and project

it along the uµ, Πµν and Γµν directions, obtaining the three equations of motion

uµ∇µE = −(E + P )∇µu
µ + µQ ϑq ,

(E + P )Πµ
νaν = µQ Πµ

ν∇λΠ
λ
ν −Πµ

ν∇ν(P − µQ) ,

(E + P )Γµ
νaν = µQ Γµ

ν∇λΠ
λ
ν − Γµ

ν∇νP + ΓµνF
ν ,

(2.16)

where we have defined the fluid expansion ϑq = Πµν∇µuν in the SO(q) sector. Using the

charge conservation equations (2.13) and the thermodynamic properties (2.6)–(2.9), we

may rewrite the stress conservation equations (2.16) as the conservation of entropy current

– 7 –
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and Euler force equations7

∇µ (Su
µ) = 0 ,

Πµ
ν

(
aν +

1

T
∇νT

)
= 0 ,

(E + P ) Γµ
ν

(
aν +

1

T
∇νT

)
+QT Γµ

ν

(
∇ν

(µ
T

)
− µ

T
∇λΠ

λ
ν −

1

T
Eν

)
= 0 ,

(2.17)

where Eµ = 1
q!u

µ1Vol
µ2...µq+1
q Fµµ1...µq+1.

It is instructive to perform an explicit counting of independent degrees of freedom and

the number of dynamical equations determining the time evolution of a given fluid config-

uration. There are p independent components of the fluid velocity uµ, as one component

is fixed by the normalisation condition uµuµ = −1, and one degree of freedom associated

with the temperature T . Corresponding to these (p+1) degrees of freedom are (p+1) dy-

namical equations provided by the stress tensor conservation equation (2.17). In addition,

there are (p−q)q independent components of viµ and one degree of freedom associated with

the chemical potential µ.8 Their dynamics is provided by the charge conservation equa-

tions with a time-derivative, i.e. the first equation in eq. (2.13) and the second equation in

eq. (2.15) with (p − q)q components. Therefore there is a match between the number of

independent degrees of freedom and the number of dynamical equations. This continues

to hold at higher order in derivatives since, as we will show below, it is always possible

to choose a fluid frame for which the corrections to the current δJ satisfy ıuδJ = 0. The

remaining equations in (2.13) and (2.15) provide consistency requirements for the initial

conditions on a Cauchy slice.

We will return to all these conservation equations in section 4 where we discuss equi-

librium configurations. In the following section we formulate the theory at first order in

derivatives.

3 Dissipative fluids with q-form symmetry

Having defined the hydrodynamics of an ideal anisotropic fluid, we now explain how to

include derivative corrections. Here we shall follow the approach to relativistic dissipative

hydrodynamics originally introduced by Landau and Lifshitz [31]. This approach entails

postulating the existence of an entropy current Sµ which to any given order is constructed

from the available hydrodynamic operators. The entropy current is then constrained on-

shell by an ultra-local version of the second law of thermodynamics, namely, ∇µS
µ ≥ 0. In

7The last equation in (2.17) can also be written as

ST Γµ
ν (aν +∇ν lnT )−Qµ Γµ

ν (Kν −∇ν lnµ) = ΓµνF
ν ,

where Kµ is the mean extrinsic curvature of the q-brane embedded into the (p + 1)-dimensional space,

defined as Kµ = Ξνλ∇νΞλ
µ. This is a higher-form generalisation of the analogous equation derived for

q = 1 and Fµ = 0 in [24].
8The q one-forms have q(p+ 1) components but there are q(q+ 1)/2 mutual orthonormality conditions,

q vanishing inner products with uµ and q(q − 1)/2 components which are not independent due to SO(q)

symmetry. This leads to (p− q)q independent components.

– 8 –



J
H
E
P
0
5
(
2
0
1
8
)
1
9
2

this section we first comment on possible choices of fluid frames and then, after picking a

higher-form generalisation of the Landau frame, impose the second law of thermodynamics

leading to q+8 transport coefficients for q > 1 and 8 transport coefficients for q = 1. This is

followed by a derivation of Kubo formulae, which, when combined with Onsager’s relation

further constrains the transport coefficients, reducing the total number of transport coef-

ficients by one. Finally, we study the constraints on the transport coefficients in different

isotropic limits discussed in section 2.1.

3.1 Dissipative corrections and choices of fluid frames

In a derivative expansion, all the hydrodynamic currents are corrected in powers of the

expansion parameter such that the total stress tensor Tµν , charge current Jµ and entropy

current Sµ can be written as

Tµν =Tµν
ideal+δTµν+O(∂2) , J = Jideal+δJ+O(∂2) , Sµ=Sµ

ideal+δSµ+O(∂2) , (3.1)

where δTµν , δJ and δSµ are O(∂) derivative corrections whose general form we seek to

find. We decompose the corrections to these currents according to the available symmetries

δTµν = α uµuν + 2
(
u(µφ

ν)
Π + u(µφ

ν)
Γ

)
+ τΠΠ

µν + τΓΓ
µν + τµν ,

δJ = β Vol(q+1) + ψ ∧Volq +Υ ,

δSµ =
1

T
φµ
Π +

1

T
φµ
Γ − µ

T
ψµ + δSµ

non-can .

(3.2)

In (3.2) we have introduced the first order vector φµ
Π describing the heat flux along the

Πµν directions, subject to the constraints uµφ
µ
Π = Γµνφ

ν
Π = 0. Similarly, φµ

Γ is a heat flux

vector along Γµν satisfying uµφ
µ
Π = Πµνφ

ν
Γ = 0. We have also introduced τΠ = ΠµνδT

µν

and τΓ = ΓµνδT
µν which denote the trace of δTµν along the Πµν and Γµν directions

respectively. Furthermore, τµν is a symmetric and traceless tensor subject to the constraints

uµτ
µν = Πµντ

µν = Γµντ
µν = 0. In the decomposition of the charge current, we introduced

the one-form ψµ such that uµψµ = Πµνψν = 0. In addition, Υ is a (q+1)-form orthogonal

to δJ , that is, Volq ∧ ⋆Υ = 0. The scalars α and β are composed of linear combinations of

the one-derivative hydrodynamic scalars available, namely ϑ(p−q) and ϑq.

The first three terms in the entropy current are made out of vector structures which

are already present in the stress tensor and charge current, and are commonly referred to as

the canonical entropy current. The last term δSµ
non-can is referred to as the non-canonical

entropy current and accounts for independent tensor structures that can appear in the

entropy current. As we shall see, up to first order in derivatives and when restricted to the

parity-even sector, δSµ
non-can is forced to vanish due to the second law of thermodynamics.9

Therefore the entropy current at first order in derivatives takes the canonical form. Nev-

ertheless, we include this term here in order to facilitate the analysis of the hydrostatic

sector of the theory.

9For q = 1 we further require charge conjugation invariance, implying that terms appearing in the

constitutive relations must be invariant under the transformation vµ1 → −vµ1 . Relaxing parity and charge-

conjugation invariance leads to many more transport coefficients. In the case of q = 1, many of these have

been written down in [19]. In a future publication, we will revisit this case in further detail [28].
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3.1.1 Fluid frames

So far, the discussion has been rather general and the decomposition and constraints have

been imposed on symmetry grounds and to match the anticipated number of degrees of

freedom. However, as usual, one must specify a fluid frame due to the freedom of redefining

the fluid variables T , µ, uµ, viµ according to

T → T + δT , µ → µ+ δµ , u → uµ + δuµ , vi → viµ + δviµ , (3.3)

subjected to the orthogonality conditions

uµδu
µ = 0 , uµδviµ + viµδu

µ = 0 , viµδvjµ + vjµδviµ = 0 ∀ i, j = 1, . . . , q . (3.4)

This frame transformation leads to the following change in the stress tensor and charge

current

δTµν = δE uµuν + δPq Πµν + δP Γµν + 2(E + P )u(µδuν) − 2µQ δijv
(µ
i δv

ν)
j ,

δJ = δQ Vol(q+1) +Q δu ∧Volq +Qu ∧
q∑

i=1

(ıviVolq) ∧ δvi .
(3.5)

For a fluid with particle charge (q = 0) a convenient choice of frame is the Landau frame

defined by the conditions uµδT
µν = uµδJ

µ = 0. For arbitrary p and q, the obvious

generalisation of the Landau conditions, which reduces to the Landau frame in the isotropic

limits (q = 0 or q = p or Q = 0), is defined by

uµδT
µν = 0 , ΠµλΓνρδT

µν = 0 , ⋆
(
⋆Vol(q+1) ∧ δJ

)
= 0 . (3.6)

This choice of frame implies that α = β = φΠ = φΓ = 0 and that τµν satisfies the

orthogonality condition ΠµλΓνρτ
µν = 0.

Another common frame used in the context of dissipative fluids with particle charge is

the Eckart frame, defined as uµuνδT
µν = δJµ = 0. We note that in the general case of a

fluid charged under a (q+ 1)-form current, there is no direct analogue of the Eckart frame

in the sense that it is not possible to set δJ = 0 since there is no frame transformation (3.5)

that can eliminate the orthogonal components of the current Γν1
µ1 . . .Γνq+1

µq+1Jν1...νq+1 .

The closest analogue of the Eckart frame is defined by the conditions

uµuνδT
µν = 0 , uµΠνλδT

µλ = 0 , ⋆ (Volq ∧ ⋆δJ) = 0 , ıuδJ = 0 . (3.7)

This frame implies that α = β = φΠ = ψ = 0 and the constraint ıuΥ = 0. This in turn

has the consequence that the interpretation given by eq. (2.14) of M being foliated into

a set of (q + 1)-dimensional submanifolds is in general lost, though it is recovered in the

hydrostatic sector, as we shall see in section 4. In the core of this paper we have choosen

to use the Landau frame (3.6) but in appendix A we present the results of the next section

in the frame of [18, 19], which is different than the frame (3.6).
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3.2 Entropy current constraints

We are now ready to obtain the constraints following from the second law of thermodynam-

ics. To begin with, we evaluate the divergence of the entropy current given in (3.2) without

making reference to a particular hydrodynamic frame. After a bit of algebra, we obtain

∇µS
µ=− 1

T 2
α uµ∇µT− 1

T

(
φµ
Π+φµ

Γ

)( 1

T
∇µT+aµ

)

− τΓ
T
ϑ(p−q)−

τΠ
T

ϑq−
1

T
τµν∇µuν

−β uµ∇µ

(µ
T

)
−ψµ

(
∂µ

(µ
T

)
− µ

T
∇νΠ

ν
µ−

1

T
Eµ

)
− 1

T
⋆
[
⋆Υ∧(µdVolq+ıuF )

]

+∇µδS
µ
non-can , (3.8)

where we have defined the interior product of (q+2)-form field strength as (ıuF )µ1...µq+1
=

uµFµµ1...µq+1 . Given our choice of fluid frame (3.6), these expressions can be simplified to

∇µS
µ = −ψµ

(
∂µ

(µ
T

)
− µ

T
∇νΠ

ν
µ − 1

T
Eµ

)
− 1

T
⋆
[
⋆Υ ∧ (µ dVolq + ıuF )

]

− 1

T
τµν∇µuν −

τΓ
T
ϑ(p−q) −

τΠ
T

ϑq +∇µδS
µ
non-can . (3.9)

Our main task now is to make this expression manifestly positive semi-definite for any

hydrodynamic configuration. We begin by focusing on the non-canonical piece. Note

that every term other than ∇µδS
µ
non-can is a product of two one-derivative tensor struc-

tures. Therefore, to ensure positive definiteness, we must ensure that ∇µδS
µ
non-can does

not contain any pure two derivative terms. By an explicit counting, it is possible to show

that no such terms can appear in δSµ
non-can when imposing parity-invariance (and charge-

conjugation invariance for q = 1). Thus, δSµ
non-can vanishes at first order in derivatives. We

now analyse the remaining terms, proceeding term-by-term.

The first term in (3.9) implies that

ψµ = −DTh{µ} , {h} = h{µ}dx
µ = Γµ

ν

(
∇ν

(µ
T

)
− µ

T
∇λΠ

λ
ν −

1

T
Eν

)
dxµ , (3.10)

where the functionD(T, µ) satisfiesD(T, µ) ≥ 0 and where curly brackets denote projection

onto Γµν . The vector ψµ is the usual charge diffusion vector with an associated diffusion

constant D (Fick’s diffusion law). As expected, the diffusion flux is only sensitive to the

thermodynamic charges orthogonal to the current. This means that the diffusion vector

vanishes in the case q = p, as it should [26, 32].

We now consider the second term in (3.9), which leads to transport coefficients that

have no analogue in fluids carrying particle charge. The simplest way to make this term

positive semi-definite is by taking Υ ∼ µ dVolq + ıuF , however, this is not consistent with

the constraint Volq ∧ ⋆Υ = 0. We therefore need to project µ dVolq + ıuF against Volq.

Since µ dVolq+ıuF is a (q+1)-form as opposed to Volq which is a q-form, we need to project

at least two indices of µ dVolq + ıuF along the uµ or Γµν directions. Let us first define
(
dVolΓq

)
µ1...µq+1

≡ Γµ
[µ1

Γν
µ2(dVolq)|µν|µ3...µq+1]

,
(
dVolUq

)
µ1...µq+1

≡ uµu[µ1
Γν

µ2(dVolq)|µν|µ3...µq+1]
.

(3.11)
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Note that due to the definition of Volq in (2.2), contracting more than two of its indices

along uµ or Γµν leads to zero. In light of this, (3.11) are the most generic contractions

of dVolq along uµ and Γµν . Since the contraction of ıuF with uµ vanishes, the projection

of µ dVolq + ıuF along one uµ and one Γµν direction leads to µ dVolUq . The remaining

independent projections on the other hand are

µ dVolΓq + Γ2(ıuF ) , ΓI+1(ıuF ) for 2 ≤ I ≤ q , (3.12)

where ΓI+1(ıuF ) has I+1 of its indices contracted along Γµν and the remaining along Πµν .

The number of such projections is bounded by p − q, i.e. the number of independent Γµν

directions available. Having isolated the tensor structures, we can write down the most

generic expression for Υ as

Υ = −Θ dVolUq − Ω1

(
µ dVolΓq + Γ2(ıuF )

)
−

q∑

I=2

ΩIΓ
I+1(ıuF ) , (3.13)

where Θ(T, µ) and ΩI(T, µ) satisfy Θ(T, µ),ΩI(T, µ) ≥ 0 and are new types of current

resistivities that appear for fluids carrying q-brane charge.

We now look at the corrections due to non-trivial terms in the stress tensor. We start

by looking at the term involving τµν . To this end we decompose the covariant derivative

of the fluid velocity according to

∇µuν = −uµaν + ωµν +
ϑq

q
Πµν +

ϑ(p−q)

p− q
Γµν +Σµν . (3.14)

Here ωµν = ∆µ
λ∆ν

ρ∇[λuρ] is the vorticity of the fluid while Σµν is the symmetric and

traceless part of ∇µuν orthogonal to u decomposed according to the available SO-sectors

such that10

Σµν =
1

2

(
LuΓ{µν} + LuΠ〈µν〉

)
+ LuΓ{(µν)〉 + LuΠ{(µν)〉 . (3.15)

Here Lu denotes the Lie derivative with respect to uµ and the curly (angled) brackets

denote projection onto Γµν (Πµν) and subtraction of the trace. For example

LuΓ{µν} = Γλ
µΓ

ρ
ν

(
uα∇αΓλρ + Γαρ∇λu

α + Γλα∇ρu
α − 2

p− q
ΓλρΓ

αβ∇αuβ

)
. (3.16)

Using (3.15), we see that it is possible to add three distinct terms to τµν : LuΠ〈µν〉, LuΓ{µν}

and LuΓ{(µν)〉 +LuΠ{(µν)〉. Note that via projections of ∇µuν only the linear combination

of LuΓ{(µν)〉 and LuΠ{(µν)〉 provides an independent tensor structure. Therefore τµν can

only depend on this sum. In any case, the second Landau condition in (3.6) eliminates

a possible LuΓ{(µν)〉 + LuΠ{(µν)〉 term in τµν . This implies that in this frame there is no

shear cross-viscosity between the two sectors. Therefore, we are lead to take

τµν = −ηΠLuΠ〈µν〉 − ηΓLµΓ{µν} , (3.17)

10For the purposes of comparison, note that for an isotropic fluid the decomposition (3.14) may be

expressed as

∇µuν = −uµaν + ωµν +
ϑp

p
∆µν +

1

2
∆µ

λ∆ν
ρ

(
Lugλρ −

1

p
gλρTrLug

)
.
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where ηΠ(T, µ) and ηΓ(T, µ) satisfy ηΠ(T, µ), ηΓ(T, µ) ≥ 0 and denote the shear viscosity

in the SO(q) and SO(p− q) sectors, respectively.

Finally, we look at the τΠ and τΓ terms in (3.9). The most general ansatz for these

terms is given in terms of first order scalars such that

τΠ = −q
(
ζΠ ϑq + ζΠ,Γ ϑ(p−q)

)
, τΓ = −(p− q)

(
ζΓ ϑ(p−q) + ζΓ,Π ϑq

)
. (3.18)

Here ζΠ is a bulk viscosity in the SO(q) sector, ζΓ a bulk viscosity in the SO(p− q) sector

and ζΠ,Γ, ζΓ,Π are two bulk cross-viscosities. This ansatz, when introduced into (3.9) leads

to the following contribution to the divergence of the entropy currrent

∇µS
µ ∼ 1

T

(
ϑ(p−q)

ϑq

)T(
(p− q)ζΓ (p− q)ζΓ,Π
q ζΠ,Γ q ζΠ

)(
ϑ(p−q)

ϑq

)
. (3.19)

Requiring this quadratic form to be positive semi-definite implies that we must have

ζΓ ≥ 0 , ζΠ ≥ 0 , q(p− q)ζΓζΠ ≥ 1

4
((p− q)ζΓ,Π + qζΠ,Γ)

2 . (3.20)

This completes the requirements of the second law of thermodynamics.

Summarising, we have the following first order derivative corrections to the stress

tensor, charge and entropy current11

δTµν = −ηΠLuΠ〈µν〉 − ηΓLuΓ{µν} −Πµν

(
ζΠϑq + ζΠ,Γϑ(p−q)

)
− Γµν

(
ζΓϑ(p−q) + ζΓ,Πϑq

)
,

δJ = −DT{h} ∧Volq −Θ dVolUq − Ω1

(
µ dVolΓq + Γ2(ıuF )

)
−

q∑

I=2

ΩIΓ
I+1(ıuF ) ,

δSµ = DµTh{µ} , (3.21)

parametrised by q+8 transport coefficients for q > 1 and 8 for q = 1, namely, 2 shear

viscosities ηΠ, ηΓ, 4 bulk viscosities ζΠ, ζΓ, ζΠ,Γ, ζΓ,Π, 1 diffusion constant D and q + 1

kinds of resistivities Θ, ΩI satisfying

(ηΠ, ηΓ,D,Θ,ΩI , ζΓ, ζΠ) ≥ 0 , q(p− q)ζΓζΠ ≥ 1

4
((p− q)ζΓ,Π + qζΠ,Γ)

2 . (3.22)

In the next section we will show that Onsager’s relation implies that the bulk cross-

viscosities must be equal, i.e., ζΠ,Γ = ζΓ,Π = ζ as also was shown to be the case for

q = 1 in [18, 19].

It is worth noting that compared to the case q = 1 studied in [18, 19], there are q

additional transport coefficients for q > 1, namely the shear viscosity ηΠ in the SO(q)

sector and q−1 resistivities ΩI≥2. In the case q = 1 the shear viscosity in the SO(q) sector

is obsolete since LuΠ〈µν〉 = 0 as there is only one vector vµ1 .

11As earlier advertised, the total entropy current up to first order in derivatives takes the canonical form

Sµ = suµ
−

1

T
δTµνuν −

µ

T
δJµµ1...µq (Volq)µ1...µq

.
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3.3 Kubo formulae

Here we derive Kubo formulae for the transport coefficients found above using the varia-

tional background method of [33]. The results presented here can be seen as an extension

of those derived in [18, 19] for q = 1, though in a different frame. These formulae, together

with Onsager’s relation imply a constraint between the two bulk cross-viscosities found

above, leading to one less independent transport coefficient.

We split the background coordinates xα into the set t, ya, zi where t is the time

coordinate, zi with i = 1, . . . , q label the q directions along vµi , and ya with a = 1, . . . , p− q

label the orthogonal directions to uµ and vµi . We consider an equilibrium fluid configuration

in flat space with vanishing background gauge field Aq+1 and with velocity profile

uµ = δµt , vµi = δµi . (3.23)

Performing a small time-dependent, but homogeneous in space, perturbation of all fields

uµ → uµ + δuµ, vµi → vµi + δvi
µ, gµν → ηµν + δhµν and Aq+1 → δAq+1 leads to

δut =
1

2
δhtt , δvti = δui + δhti , δk(jδvi)

k = −1

2
δhij , (3.24)

as well as ∇(aub) = ∂tδhab/2 and ∇(iuj) = ∂tδhij/2. We define the one-point functions

T
µν =

√−g 〈Tµν〉 , J
µ1...µq+1 =

√−g 〈Jµ1...µq+1〉 , (3.25)

which according to linear response theory can be written in terms of retarded Green’s

functions of frequency ω such that (see e.g. [34])

δTµν(ω)=
1

2
Gµν,λρ

TT (ω)δhλρ+
1

(q+1)!
G

µν,µ1...µq+1

TJ (ω)δ(Aq+1)µ1...µq+1 ,

δJµ1...µq+1(ω)=
1

2
G

µ1...µq+1,λρ
JT δhλρ(ω)+

1

(q+1)!
G

µ1...µq+1,ν1...νq+1

JJ (ω)δ(Aq+1)ν1...νq+1 .

(3.26)

Using (3.24) and the form of the stress tensor and charge current (3.21) one finds

ηΓ = lim
ω→0

1

ω
Im Gab,ab

TT , for a 6= b , ζΓ + 2
(p− q − 1)

(p− q)
ηΓ = lim

ω→0

1

ω
Im Gaa,aa

TT ,

ηΠ = lim
ω→0

1

ω
Im Gij,ij

TT , for i 6= j , ζΠ +
2(q − 1)

q
ηΠ = lim

ω→0

1

ω
Im Gii,ii

TT ,

ζ = ζΠ,Γ = ζΓ,Π = lim
ω→0

1

ω
Im Gii,aa

TT = lim
ω→0

1

ω
Im Gaa,ii

TT ,

D = lim
ω→0

1

ω
Im G

ai1...iq ,ai1...iq
JJ ,

ΩI = lim
ω→0

1

ω
Im G

a1...aI+1i1...iq−I ,a1...aI+1i1...iq−I

JJ ,

Θ = lim
ω→0

1

ω
Im G

ati1...iq−1,ai
JT .

Note that in the third line we have identified ζ = ζΠ,Γ = ζΓ,Π. This follows from Onsager’s

relation for mixed correlation functions, exactly in the same manner as in [18, 19] for

q = 1. This implies that parity-even fluids with q-form symmetry are characterised by q+7

independent transport coefficients at first order in derivatives for q > 1 and 7 independent

transport coefficients for q = 1.
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3.4 Constraints on transport in the isotropic limits

As stressed in section 2, the hydrodynamics of fluids with q-form symmetry must reduce to

the hydrodynamics of (charged) isotropic fluids in the limits q = 0, q = p or Q → 0. This

requirement imposes relations between transport coefficients in the isotropic limit. The

corrections to the stress tensor and charge current (3.21) in the isotropic limit must take

the following form in the Landau frame (see e.g. [26, 32])

δTµν = −η∆µ
λ∆ν

ρ

(
Lugλρ −

1

p
gλρTrLug

)
− ξϑp∆

µν ,

δJµ = −DT∆µν

(
∇ν

(µ
T

)
− 1

T
Eν

)
,

(3.27)

for some coefficients η, ξ, D and where we have only considered corrections to the current

for the q = 0 case since the total current vanishes in the limit Q → 0 while the corrections

δJ vanish when q = p since in this case Q is a global charge and hence non-dynamical.

The most non-trivial limit is the uncharged (neutral) limit Q → 0 which must remove

all sources of anisotropy. This means that when rewriting the stress tensor in (3.21) in

terms of a SO(p) and a SO(q) sector, the SO(q) sector must vanish in the limit Q → 0.

This imposes non-trivial constraints on the transport coefficients in this limit. In particular

we must have

η
(0)
Π = η

(0)
Γ , ζ(0) =

(p− q)ζ
(0)
Γ − qζ

(0)
Π

p− 2q
, (3.28)

where the subscript (0) denotes the value of the transport coefficients in the limit Q → 0.

In addition to (3.28) one also obtains

ζ
(0)
Γ − ζ(0) − 2

η
(0)
Γ

(p− q)
= 0 , ζ(0) −

(
ζ
(0)
Π +

1

2
ζ
(0)
Γ

)
+

p

q(p− q)
η
(0)
Π = 0 . (3.29)

However, the second condition above is redundant as the first condition in (3.29) together

with conditions (3.28) imply the second in (3.29). Given these relations, comparison

with (3.27) yields

η = η(0) , ξ = ζ
(0)
Γ − q

p(p− q)
η
(0)
Γ . (3.30)

As we shall see in a companion paper where we study a specific class of gravitational

duals to these fluid configurations in flat space [35], the first condition in (3.28) is actually

satisfied for any value of p, q, Q since it is found that ηΠ/S = ηΓ/S = 1/4π. The second

condition in (3.28) is also satisfied for all p, q, Q for the same class of gravitational duals.

This latter relation is also observed in the context of another class of gravitational duals

in Anti-de Sitter space studied in [20], for which it was found ζΓ = ζΠ/4 = −ζ/2 (see eq.

(88) in [20]) in agreement with the second condition in (3.28) for (p, q) = (3, 1).

In the limit q = 0 for which the fluid is carrying particle charge, we obtain the

identification

η = η
(q=0)
Γ , ξ = ζ

(q=0)
Γ , D = D(q=0) , (3.31)

while in the limit q = p we find

η = η
(q=p)
Π , ξ = ζ

(q=p)
Π . (3.32)
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Taking the subsequent limit Q → 0 of the viscosities η and ξ in (3.31)–(3.32) must lead to

the results (3.30) so that

η= η
(q=p)
Π |Q→0= η

(q=0)
Γ |Q→0= η(0) , ξ= ζ

(q=p)
Π |Q→0= ζ

(q=0)
Γ |Q→0= ζ

(0)
Γ − q

p(p−q)
η
(0)
Γ .

(3.33)

As will be shown in a companion publication [35], it is possible to verify these relations

using a family of gravitational duals parametrised by p, q and Q.

4 Equilibrium partition function

In this section we study the hydrostatic sector of the hydrodynamic theory presented in

the previous sections. We show that the most general partition function that gives rise

to the fluids with q-form symmetry introduced above, regardless of the microscopic origin

of the vectors vµi , requires the existence of q mutually commuting spacelike isometries in

addition to a timelike isometry. This analysis shows that, under these assumptions, the

most general partition function is a q-form generalisation of the free energy for q = 1 fluids

considered in [24]. At the end of this section, we show that further constraints must be

imposed on the partition function in order to describe the hydrostatic sector of the theory.

4.1 The partition function

In order to describe equilibrium solutions, we consider the existence of a timelike Killing

vector field kµ with modulus k = |−gµνk
µkν |1/2. For the configuration to be stationary, the

Lie derivative along kµ of any quantity characterising the fluid must vanish, in particular

Lkgµν = 0 , LkAq+1 = 0 . (4.1)

In order to construct the partition function we must classify the ideal order Lorentz and

gauge invariants on which the partition may depend on. It is straightforward to realise that

there are only two possible scalars that can be constructed from background data, namely

k2 , kµAµ for q = 0 , (4.2)

where the second scalar is only defined for q = 0. Note that under a time independent

gauge transformation Λ with kµ∂µΛ = 0, the second scalar is indeed gauge-invariant. Re-

quiring the partition function to be dependent on these two scalars leads to the stress

tensor, currents and thermodynamics of a q = 0 charged fluid.

For q > 0, however, there is no natural equivalent of the second scalar in (4.2) since the

respective contraction kµAq+1
µµ1µ2...µq is a q-form. Consequently, to describe the hydrostatic

sector of fluids with a q-form symmetry, we need to introduce additional tensor structures

on the background. If we were provided with a (q + 1)-dimensional Killing subspace, we

could use the associated volume form to contract with the indices of Aq+1
µ1µ2...µq+1 and obtain

a gauge-invariant scalar. To this end, we assume the existence of q mutually commuting

spacelike Killing vectors ℓ
µ
i that satisfy [kµ, ℓνi ] = 0, but whose inner product kµℓνi gµν
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does not necessarily vanish. Since the vectors ℓ
µ
i are Killing vectors fields, one must also

have that

Lℓi
gµν = 0 , Lℓi

Aq+1 = 0 , Lℓi
kµ = 0 . (4.3)

The subspace spanned by the vectors ℓµi and kµ is the desired (q + 1)-dimensional Killing

subspace, which is invariant under an arbitrary redefinition of ℓµi involving themselves and

kµ, i.e.

ℓ
µ
i → R j

i ℓ
µ
j + Pik

µ . (4.4)

Here R j
i is an arbitrary q × q non-singular matrix and Pi is a q-vector. In addition to

the timelike Killing vector field kµ, we require the equilibrium partition function to only

depend on the (q + 1)-dimensional Killing subspace, and not on the Killing vector fields

ℓ
µ
i individually. This is equivalent to demanding the invariance of the partition function

under (4.4). As it will be shown below, this requirement leads to the correct constitutive

relations for q-form hydrodynamics as introduced in section 2.

It is convenient to fix a large part of the redefinition freedom (4.4) by instead working

with a set of orthonormal vectors defined as

ζµi = S j
i

(
ℓ
µ
j −

kνℓ
ν
j

k2 kµ

)
, where S k

i S l
j ℓ

µ
kℓ

ν
l

(
gµν −

kµkν

k2

)
= δij , (4.5)

which satisfy ζµi kµ = 0 and ζµi ζ
ν
j gµν = δij , and span a q-dimensional subspace transverse to

kµ. The second condition above can be seen as determining the matrix S j
i up to a residual

SO(q) symmetry which rotates the vectors ζµi . This is precisely the SO(q) symmetry of q-

form hydrodynamics as introduced in section 2 (see footnote 4). Imposing the normalisation

conditions removes q+ q(q+1)/2 components from ζµi , while the SO(q) symmetry removes

further q(q − 1)/2 components. This leads to (p − q)q independent components in ζµi ,

matching the counting performed in section 2 for the independent components of the fields

vµi . As a trade-off for working in an orthonormal basis, the ζµi ’s are not necessarily Killing

vector fields, since while ℓνi kν/k
2 cannot depend on the directions along the timelike and

spacelike isometries, it may depend on the transverse (p− q) directions.

Given these considerations, it follows that there are now two scalars that can be built

from background data and on which the partition function may depend on, namely12

k2 , σ ≡ 1

q!
ǫji1...iq−1ζµ1

i1
. . . ζ

µq−1

iq−1
kµζνj A

q+1
µνµ1...µq−1

, (4.6)

which are well defined for all p and q.13 In defining σ, we have introduced a SO(q) covariant

Levi-Civita tensor with ǫ123...q = 1. We can now consider the partition function to be a

12The scalar σ is the pullback of the background gauge field Aq+1 onto the (q+ 1)-dimensional subspace

spanned by the vectors k
µ and ℓ

µ
i . This scalar is gauge invariant due to the Killing properties of kµ and

ℓ
µ
i . On the other hand, zero-derivative scalars constructed from the projection of Aq+1 onto the (p − q)-

dimensional subspace will not be gauge invariant for arbitrary p and q.
13One may shift the scalar σ by a constant µ0 which would turn out to have the interpretation of a

constant global chemical potential.
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function of these two scalars, therefore we write14

W =
1

T0

∫

Σ
dD−1x

√−g P
(
k2, σ

)
, (4.7)

where T0 is the constant global temperature and the integral is taken over a spatial hyper-

surface Σ. From this partition function we may obtain the stress tensor and currents in

the following manner

Tµν =
2√−g

δW

δgµν
= Pgµν + 2

∂P
∂k2k

µkν − σ
∂P
∂σ

δijζµi ζ
ν
j ,

Jµ1...µq+1 =
1√−g

δW

δAq+1
µ1...µq+1

= (q + 1)
∂P
∂σ

k[µ1ζµ2
i1

. . . ζ
µq+1]

iq
ǫi1...iq .

(4.8)

Comparing this stress tensor and current with (2.1) and (2.5) one identifies

P = P , Q = k
∂P
∂σ

, uµ =
kµ

k
, µ =

σ

k
, E + P = 2k2 ∂P

∂k2 , vµi = ζνi . (4.9)

In addition, by obtaining the total entropy from the partition function

Stot =
∂ (T0W )

∂T0
=

∫

Σ
dD−1x

√−g
∂P
∂T0

, (4.10)

and comparing with that obtained by integrating the ideal order entropy current (2.7)

leads to the identification T = T0/k, which together with (4.9), yield the thermodynamic

properties (2.9). The solution defined by (4.9) and T = T0/k agrees with that obtained

in [24] for q = 1 which reduces to the one considered in [18] only when kµℓ
µ
1 = 0.

4.2 Additional constraints from the second law of thermodynamics

In equilibrium, a hydrodynamic theory is expected not to produce any entropy. If the

solution (4.9) provided by the equilibrium partition function above is truly an equilibrium

solution, then not only must the ideal order fluid equations (2.13), (2.15) and (2.17) be

trivially satisfied, but also the divergence of the entropy current (3.8) must vanish so that

no entropy is produced. We can isolate all the independent tensor structures appearing in

the entropy current divergence and first order constitutive relations in terms of

∇(µ

(uν)
T

)
, d

(µ
T
Volq

)
+

1

T
ıuF . (4.11)

14If we had not required the partition function to be invariant under (4.4), it could depend on many other

scalars such as fi = ℓ
µ
i kµ and hij = ℓ

µ
i ℓ

ν
j (gµν − kµkν/k

2) for all i, j = 1, 2, . . . , q, in addition to k
2 and

σ. Moreover, it would have also been possible to consider SO(q) invariant scalars that are not invariant

under arbitrary redifinitions given by (4.4). This class of scalars includes fifjh
ij and dethij where hij is

the inverse of hij . All these possible extra dependences, though perhaps of interest for the description of

other physical systems, would be incompatible with the q-form fluid that we are trying to describe, whose

thermodynamic properties only depend on two scalar degrees of freedom, namely, T and µ.
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All the other tensor structures appearing in section 3 are given by projections of these

along uµ, Πµν and Γµν , leading to

uµ∇µT , Γµ
ν

(
1

T
∇νT + aν

)
, Πµ

ν

(
1

T
∇νT + aν

)
, ϑ(p−q) , ϑq ,

LuΓ{µν} , LuΠ〈µν〉 , LuΓ{(µν)〉 + LuΠ{(µν)〉 ,

uµ∇µ

(µ
T

)
, h{µ} , dVolUq , µ dVolΓq + Γ2(ıuF ) , ΓI+1(ıuF )

∣∣q
I=2

. (4.12)

One may readily check that the solution (4.9) together with T = T0/k leads to the vanishing

of the first tensor structure in (4.11) but not the second. In components, this corresponds

to the last two terms in (4.12), which do not vanish for the solution (4.9). From here it

follows that all the conservation laws are trivially satisfied, however, the terms proportional

to ΩI in (3.21) contribute to entropy production. To remedy this situation, we must require

the second term in (4.11) to vanish by hand. In equilibrium, this term evaluates to15

d
(µ
T
Volq

)
+

1

T
ıuF =

1

T0
d (σVolq − ıkAq+1) = 0 , (4.13)

where we have used the identity that LkAq+1 = d(ıkAq+1) + ıkF vanishes in equilibrium.

To have a consistent hydrostatic solution, we must require this additional condition on our

hydrostatic backgrounds on top of the existence of q additional spacelike isometries.16

To summarise, apart from the existence of a timelike isometry, we have introduced two

additional constraints on our backgrounds so that they admit a hydrostatic solution: they

must admit q additional spacelike isometries and they must satisfy the constraint (4.13).

This seems to be a feature of hydrodynamics with higher-form symmetries. However,

one may wonder if at higher orders in the derivative expansion further conditions must be

imposed on these backgrounds to ensure the consistency of the hydrostatic sector so that no

entropy is produced. Extending the all order analysis of the second law of thermodynamics

given in [2] to higher-form fluids, one can check that at arbitrarily high derivative orders,

the second law forces the entropy current divergence in (3.8) to be a positive semi-definite

quadratic form made out of various tensor structures in (4.12) and their derivatives. Since

15In the q = 1 case, this condition reduces to

∂[µ

( µ

T
v1ν]

)
+

uλ

T
Fλµν =

1

T0
∂[µ

(
σv1ν] − k

ρA|ρ|ν]

)
=

1

T0
∂[µ

(
ζ1ν]ζ

σ
1 k

ρAρσ − k
ρA|ρ|ν]

)
= 0 .

It is easy to see from here that this condition is generically non-trivial. To further supplement our intuition,

let us choose a basis (t, z, ya) such that k
µ = δµt and ℓ

µ
1 = δµz . This renders the background metric and

gauge field independent of the t and z coordinates. For simplicity, let us further choose gµν = ηµν . The

[ab] components of the above equation then give a non-trivial condition

1

T0
∂[aAb]t = 0 ,

which is clearly not satisfied for arbitrary Aµν . In the context of [18], this leads to the vanishing of their

eq. (3.12) in equilibrium, which would otherwise contribute to entropy production.
16Even though ref. [24] did not impose (4.13) on their backgrounds, all their backgrounds do happen

to satisfy (4.13). This means that all dipole charged black hole configurations studied in [24] are indeed

equilibrium solutions.
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we have already ensured these to vanish on the solution (4.9), we are guaranteed to have a

vanishing entropy current divergence at arbitrarily high orders in the derivative expansion.

Let us use this opportunity to point out a rather unconventional feature of hydrostatics

in higher-form fluids as defined above. In 0-form hydrodynamics, one generally finds that

requiring the existence of an equilibrium partition function does not give any new con-

straints on the constitutive relations, besides those already imposed by the second law of

thermodynamics [29, 30]. In other words, requiring the second law to hold on a set of consti-

tutive relations is sufficient to guarantee the existence of an equilibrium partition function.

In the higher-form case however, given that the existence of equilibrium relies on additional

spacelike isometries, it is worth investigating if this still holds in full generality, in partic-

ular also when parity-invariance or charge conjugation invariance are not imposed. For

concreteness, let us focus on the case of fluids with a 1-form symmetry and consider charge

conjugation non-invariant derivative corrections to the constitutive relations of the form

δTµν =
µ

T 2
vρ1∂ρT

(
T
∂α1

∂T
uµuν − µ

T

∂α1

∂(µ/T )
vµ1 v

ν
1

)
− 2α1

µ

T 2
v
(µ
1 ∇ν)T −∇µ

(
α1

µ

T
vµ1

)
uµuν ,

δJµν =
2

T
u[µ
(

µ

T 2
v
ν]
1 vρ1∂ρT

∂α1

∂ν
+ α1

1

T
∇ν]T

)
,

δSµ = 2α1
µ

T 3
u[ρv

µ]
1 ∂µT − 1

T
uνδT

µν − µ

T
v1νδJ

µν , (4.14)

where α1(T, µ) is some independent transport coefficient. These expressions have been

specifically engineered to satisfy the second law of thermodynamics with no entropy pro-

duction. Interestingly, on the supposed solution (4.9) where uµ and vµ1 are aligned along

(linear combinations of) isometries, most of the terms vanish, but the second to last term

in the stress tensor in (4.14) and the last term in the charge current remain. This is

clearly in tension with the equilibrium partition function because there are no first or-

der parity-preserving (but charge conjugation non-invariant) scalars that can be written

in equilibrium. Consequently, the partition function analysis sets α1 to zero. It appears,

therefore, that for fluids with a higher-form symmetry, the equilibrium partition function

analysis is imposing new constraints on the transport coefficients, which do not follow from

an entropy current analysis. Although it is not a contradiction of any sort, it is in striking

contrast with 0-form hydrodynamics where, by itself, the requirement of the second law

to hold is sufficient to ensure a well-defined hydrostatic sector.17 We will return to these

issues in a future publication [28].

5 Surface dynamics of fluids with q-form symmetry

In this section we study the surface transport properties of fluids carrying q-brane charge

following [10, 12]. We first introduce conservation equations for the surface dynamics and

17The analysis of [18] avoided these issues altogether by focusing on a sector which respects parity

and charge-conjugation symmetry (which takes vµ1 → −vµ1 ). All the first order problematic terms of the

kind (4.14) are not present if these requirements are imposed. However, it is not clear whether this continues

to hold at higher orders in derivatives.
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then generalise the partition function discussed in the previous section in order to include

the presence of a surface. We then perform a surface entropy current analysis and show

that it agrees with the partition function expectations. Finally, we study capillary waves

on the surface of the fluid and find signatures of anisotropy in the dispersion relation.

5.1 Conservation equations and the second law of thermodynamics

We introduce an interface/surface separating two different fluid phases by adding localised

source contributions to the stress tensor and currents. Therefore, the full stress tensor,

charge and entropy currents take the form

Tµν = Tµν
blk Θ(f) + Tµν

sur δ̃(f) + . . . ,

J = Jblk Θ(f) + Jsur δ̃(f) + . . . ,

Sµ = Sµ
blk Θ(f) + Sµ

sur δ̃(f) + . . . ,

(5.1)

where the dots represent higher order corrections in the thickness ∂ρδ(f) of the surface

which we do not consider in the present paper.18 In (5.1) we have introduced the shape-

field f in terms of which the location of the surface is represented as f = 0. The step

function Θ(f) vanishes at f = 0 while δ̃(f) is the reparametrisation invariant delta function

δ̃(f) =
√−γ/

√−g δ(f). γ denotes the determinant of the induced metric on the surface,

γµν = gµν − nµnν , and nµ = −∂µf/|∂µf∂µf |1/2 is the normal co-vector to the surface.

The conservation equations for the stress tensor were already considered in [10, 12]

and the charge current conservation equation can be obtained by a simple generalisation

of the results of [36, 37]. These conservation laws take the form

∇̃µT
µν
sur − Fµ

sur = Tµν
blknν , ∇̃µJ

µµ1...µq
sur = J

µµ1...µq

bulk nµ , (5.2)

with Fµ
sur = Fµ

µ1...µq+1J
µ1...µq+1
sur /(q + 1)! and in addition the system must obey the second

law of thermodynamics

∇̃µS
µ
sur − Sµ

blknµ ≥ 0 , (5.3)

together with the constraints Tµν
surnµ = J

µµ1...µq
sur nµ = Sµ

surnµ = 0. In eq. (5.2), we have

introduced the surface projection of the background covariant derivative ∇̃µ ≡ γµ
ν∇ν .

19

In the present paper, we choose a consistent truncation, as explained in [10, 12], in which

the bulk currents are expanded up to first order in derivatives and the surface is kept

at ideal order. This implies that we take the bulk stress tensor and currents to be those

derived in the previous section at first order in derivatives, that is (2.1), (2.5), (2.7) together

with (3.21). We will now consider equilibrium configurations and then perform a surface

entropy current analysis.

18See [10] for a thorough analysis of these terms in the context of uncharged fluids.
19This covariant derivate should not be confused with the surface covariant derivative ∇̃µ introduced

in [12]. The purpose of using the surface projection of the covariant derivative instead is to avoid having

to work with the singular character of the delta function δ̃(x).
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5.2 Equilibrium partition function and entropy current analysis

Analogously to the cases studied in [10, 12], one may write equilibrium partition functions

for fluids with q-form symmetry in the presence of surfaces. Up to first order in derivatives,

and under the assumptions of parity-invariance and charge conjugation invariance, the

partition function takes the form20

W =
1

T0

∫

Σ
dD−1x

√−g P(k2, σ) +
1

T0

∫

Σ̃
dD−2x̃

√−γ C(k2, σ) , (5.4)

where Σ is now a spatial hypersurface enclosed by the spatial codimension-2 surface Σ̃ at

the boundary with coordinates x̃. Since we aim to describe stationary configurations, we

must have

Lkf = 0 , Lℓi
f = 0 . (5.5)

By performing a variation with respect to the background metric and gauge fields one

obtains the stress tensor and currents in the form (5.1), where, in particular, the surface

stress tensor and charge current take the analogous form to (4.8) and with the exact same

thermodynamic properties. We will explicitly derive these currents below using an entropy

current analysis.

As shown in [10, 12], constraints on surface transport can be obtained by analysing

the divergence of the surface entropy current. This analysis not only fixes the surface

thermodynamics and currents, but also the value of uµnµ at leading order on the surface.

As stated above, the surface currents must satisfy the constraints Tµν
surnµ = J

µµ1...µq
sur nµ =

Sµ
surnµ = 0. This implies that at ideal order, and ignoring parity-odd effects, the surface

currents take the form21

Tµν
sur = (E − Y) ũµũν − Y Γ̃µν − (Y + µQ) Π̃µν ,

Jsur = Q Ṽol(q+1) ,

Sµ
sur = S ũµ .

(5.6)

Here ũµ = uµ − (u.n)nµ and Π̃µν is a projector analogous to Πµν but constructed out the

vectors ṽµi = vµi − (vi.n)n
µ. Similarly, Ṽol(q+1) is the volume form introduced in (2.1) but

with uµ, vµi replaced by ũµ, ṽµi . These two vectors satisfy ũ.n = ṽi.n = 0. The projector

Γ̃µν is constructed using the induced metric so that Γ̃µν = γµν + ũµũν − Π̃µν .

Noting that the bulk entropy current Sµ
blk is given by (2.7) and (3.21), requiring the

second law (5.3) to be satisfied leads to

ũµ

T
(T∇µS+µ∇µQ−∇µE)−

1

T
(E−Y−TS−µQ)γµν∇̃µũν−

u.n

T
δTµν

blknµnν ≥ 0 , (5.7)

20Note that the condition (4.13) must be imposed on the background and a similar condition must be

imposed on the surface in order for (5.4) to be an equilibrium partition function.
21It is possible to consider a component in the surface stress tensor of the form ũ(µṽ

µ)
i which would

ultimately be required to vanish by the second law of thermodynamics. For clarity of presentation, we have

not considered it.
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where δTµν
blk is the first order correction to the bulk stress tensor given in (3.21). In the

present case, requiring positivity of the entropy current allows us to deduce the surface

thermodynamics

dE = TdS + µdQ , E − Y = TS + µQ , (5.8)

as well as the expected condition u.n = 0. This condition is expected to be modified

at higher-orders [12]. In particular, do note that this analysis, similar to the case of

the superfluid velocity in [12], does not fix the components vi.n at the surface. The stress

tensor, current and thermodynamics obtained here agree with those that are readily derived

from (5.4), once we identify C = −Y.

5.3 Surface conservation equations

Having derived the surface constitutive relations at ideal order, we can write down the first

order equations of motion at the surface using (5.2). After imposing u · n = 0, the compo-

nents of the q-form charge conservation law in (5.2) along with ũµ and Π̃µν are given by

uµ∇µQ+Qγµν∇̃µuν −QΠ̃µν∇µuν = 0 ,

Π̃α
ν∇νQ−QΠ̃ανu

µ∇µu
ν +QΠ̃αν∇̃σΠ̃

σν = Qṽiα (v
µ
i nµ) ,

(5.9)

while those along Γ̃µν are

Γ̃αµ (u
ν∇ν ṽ

µ
i − ṽνi ∇νu

µ) = Γ̃αµ

(
ṽνi ∇ν ṽ

µ
j − ṽνj∇ν ṽ

µ
i

)
= 0 . (5.10)

These should be contrasted with the respective bulk q-form conservation laws in (2.13)

and (2.15). The component of charge conservation along nµ trivially vanishes. Upon using

the charge conservation equations, the stress tensor conservation equation in (5.2) can be

projected along ũµ, Π̃µν and Γ̃µν such that

T
(
uµ∇µS + Sγµν∇̃µuν

)
= 0 ,

TS Π̃α
ν

(
1

T
∇νT + aν

)
= 0 ,

(E − Y)Γ̃α
ν

(
1

T
∇νT + aν

)
+ TQΓ̃α

ν
(
∇ν

(µ
T

)
− µ

T
γµσ∇µΠ̃

σ
ν

)
= Γ̃ανF

ν
sur ,

(5.11)

which are analogous to the bulk equations given in (2.17). Finally, projecting the stress

tensor conservation equation along nµ we get the Young-Laplace equation

−(E − Y)uµuν∇µnν + Y∇µn
µ + µQΠ̃µν∇µnν = P − µQΠµνnµnν , (5.12)

which provides an equation of motion for the shape-field. We will solve these equations at

the linear level in the next subsection.

5.4 Surface waves

In this subsection we study the nature of linearised fluctuations about an equilibrium

configuration. For simplicity, we work on a flat background with metric ηµν and vanishing
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gauge field. We pick a basis xµ = {t, zi, ya, r} and work around the equilibrium solution

given by22

uµ = δt
µ , vi

µ = δi
µ , T = T0 , µ = µ0 , f = r . (5.13)

It follows that nµ = −δrµ. This solution obviously satisfies the bulk equations of motion.

To solve the surface equations of motion, we must further require P (T0) = 0. Performing

a small perturbation around this solution and using that uµnµ = 0 implies

δut = 0 , δvi
t = δui , δvi

j = −δvj i , δur = −∂tδf . (5.14)

Furthermore, the vanishing Lie derivative conditions (5.10) imply

L1 ≡ ∂tδvi
a − ∂iδu

a = 0 , ∂iδvj
a − ∂jδvi

a = 0 , (5.15)

L2 ≡ ∂tδvi
r − ∂iδu

r = ∂t (δvi
r + ∂iδf) = 0 , ∂iδvj

r − ∂jδvi
r = 0 , (5.16)

which can be seen as determining δvi
a and δvi

r respectively. Note that the antisymmetric

modes in δvi
j are not physical due to the underlying SO(q) symmetry. Therefore, the

remaining degrees of freedom we need to solve for are δT , δµ, δui, δua and δf . Let us

first look at the boundary equations of motion. The Young-Laplace condition provides an

equation of motion for δf that takes the form

YL ≡ E∂2
t δf − (Y + µQ) δij∂i∂jδf − Yδab∂a∂bδf − SδT −Qδµ . (5.17)

The surface conservation equations (5.11) imply

S1 ≡ ∂tδS + S∂iδui + S∂aδua = 0 , (5.18)

S2 ≡
1

T
∂iδT + ∂tδui = 0 , (5.19)

S3 ≡ (E − Y)

(
1

T
∂aδT + ∂tδua

)
+ TQ

(
∂aδ

(µ
T

)
− µ

T
∂iδv

i
a

)
= 0 , (5.20)

S4 ≡ ∂tδQ+Q∂aδu
a = 0 , (5.21)

S5 ≡ ∂iδQ+Q∂aδvi
a +Q (δvi

r + ∂iδf) = 0 . (5.22)

Finally, the bulk equations of motion (2.13), (2.15) and (2.16) at the linear level are given by

B1 ≡ ∂tδS + S∂iδu
i + S∂aδu

a − S∂t∂rδf = 0 , (5.23)

B2 ≡
1

T
∂iδT + ∂tδui = 0 , (5.24)

B3 ≡ E

(
1

T
∂aδT + ∂tδua

)
+ TQ

(
∂aδ

(µ
T

)
− µ

T
∂iδv

i
a

)
= 0 , (5.25)

B′
3 ≡ E

(
1

T
∂rδT − ∂2

t δf

)
+ TQ

(
∂rδ

(µ
T

)
− µ

T
∂iδv

i
r

)
= 0 , (5.26)

B4 ≡ ∂tδQ+Q∂aδu
a −Q∂t∂rδf = 0 , (5.27)

B5 ≡ ∂iδQ+Q∂aδvi
a +Q∂rδvi

r = 0 . (5.28)

22For simplicity, we have assumed that f has no dependence on the zi coordinates.
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We focus on plane wave solutions to these equations which behave as ei(ωt−kiz
i−ℓaya)e−κr,

where ω is the frequency of the wave, ki is the wavenumber along the (p− q) directions, ℓa
the wavenumber along the q anisotropic directions and κ is a damping factor. Equations

L1, L2, B2, S2 are then immediately solved by choosing

δvi
a = −ki

ω
δua , δvi

r = ikiδf , δui =
ki

ω

1

T
δT . (5.29)

This also makes B5 and S5 linearly dependent on B4 and S4 respectively. The δua compo-

nents of the velocity are obtained by solving B3 and S3 such that

δua =
ωℓa

ω2E − k2Qµ
(SδT +Qδµ) , δua

∣∣
r→0

=
ωℓa

ω2(E − Y)− k2Qµ
(SδT +Qδµ) . (5.30)

Finally, we can turn to the scalar degrees of freedom δT and δµ which are given by solutions

of B1, B
′
3, B4 in the bulk and S1, S4 and YL at the surface. At the surface we have

(
k2

ω2

S
T
+

ℓ2S2

ω2(E−Y)−k2Qµ
−XTT

)
δT+

(
ℓ2QS

ω2(E−Y)−k2Qµ
−XTµ

)
δµ=0 , (5.31)

(
ℓ2QS

ω2(E−Y)−k2Qµ
−XTµ

)
δT+

(
ℓ2Q2

ω2(E−Y)−k2Qµ
−Xµµ

)
δµ=0 , (5.32)

(
−ω2E+k2µQ+

(
k2+ℓ2

)
Y
)
δf =SδT+Qδµ, (5.33)

which provide boundary conditions for the bulk equations of motion

(
k2

ω2

S

T
+

(ℓ2 − κ2)S2

ω2E − k2Qµ
− χTT

)
δT +

(
(ℓ2 − κ2)SQ

ω2E − k2Qµ
− χTµ

)
δµ = 0 , (5.34)

(
(ℓ2 − κ2)QS

ω2E − k2Qµ
− χTµ

)
δT +

(
(ℓ2 − κ2)Q2

ω2E − k2Qµ
− χµµ

)
δµ = 0 , (5.35)

δf =
κ

ω2E −Qµk2
(SδT +Qδµ) . (5.36)

Here we have defined k2 = kik
i, ℓ2 = ℓaℓ

a as well as the susceptibility matrices

XTT = −∂2Y
∂T 2

=
∂S
∂T

, XTµ = − ∂2Y
∂T∂µ

=
∂S
∂µ

=
∂Q
∂T

, Xµµ = −∂2Y
∂µ2

=
∂Q
∂µ

, (5.37)

χTT =
∂2P

∂T 2
=

∂S

∂T
, χTµ =

∂2P

∂T∂µ
=

∂S

∂µ
=

∂Q

∂T
, χµµ =

∂2P

∂µ2
=

∂Q

∂µ
. (5.38)

From eqs. (5.33) and (5.36) we can read out the frequency ω, which is given by

ω = ±
√

Qµk2 + κk2µQ+ κ (k2 + ℓ2)Y
E + κE , (5.39)

and is required for the consistency of the solution to δf . Finally, we have consistency

conditions involving δT and δµ, which will determine κ, k2 and ℓ2, namely

∣∣∣∣∣
k2

ω2
S
T + (ℓ2−κ2)S2

ω2E−k2Qµ
− χTT

(ℓ2−κ2)SQ
ω2E−k2Qµ

− χTµ

(ℓ2−κ2)SQ
ω2E−k2Qµ

− χTµ
(ℓ2−κ2)Q2

ω2E−k2Qµ
− χµµ

∣∣∣∣∣ = 0 , (5.40)
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and the following vanishing determinants at the surface

∣∣∣∣∣
k2

ω2
S
T + ℓ2S2

ω2(E−Y)−k2Qµ
−XTT

ℓ2QS
ω2(E−Y)−k2Qµ

−XTµ

ℓ2QS
ω2(E−Y)−k2Qµ

− XTµ
ℓ2Q2

ω2(E−Y)−k2Qµ
−Xµµ

∣∣∣∣∣ = 0 , (5.41)

∣∣∣∣∣
k2

ω2
S
T + (ℓ2−κ2)S2

ω2E−k2Qµ
− χTT

(ℓ2−κ2)SQ
ω2E−k2Qµ

− χTµ

k2

ω2
S
T + ℓ2S2

ω2(E−Y)−k2Qµ
−XTT

ℓ2QS
ω2(E−Y)−k2Qµ

−XTµ

∣∣∣∣∣ = 0 . (5.42)

Eqs. (5.39) to (5.42) completely characterise the wave fluctuations of the q-form fluid with

a surface.

We will now study the dispersion relation of capillary waves in a particular approx-

imation scheme. For simplicity, we focus on the simplest case in which Y is a constant

function of the temperature and chemical potential. This implies that S = Q = XTT =

XTµ = Xµµ = 0, hence eqs. (5.41) and (5.42) are automatically satisfied. In order to

solve (5.40) we focus on long-wavelength perturbations so that ki ∼ τ and ℓa ∼ τ for a

small parameter τ and k 6= 0. In addition we consider the regime of small charge Q so that

Q,χTµ, χµµ ∼ ǫ for a small parameter ǫ. In this situation (5.40) leads to

κ= |k|− (k2+ℓ2)

2QS2
Y (χTTQ−χTµS)+O

(
τ4, ǫ

)
, ω=±

√
κ(k2+ℓ2)Y
TS+Eκ +O (ǫ) , (5.43)

which in turn yields the dispersion relation

ω =

√
k(k2 + ℓ2)Y
ST + Ek

(
1− (k2 + ℓ2)YT

(χTTQ− χTµS)

4kQS(Ek + ST )
+O(k7/2, ǫ)

)
. (5.44)

It is instructive to consider this expression in a particular limit. An interesting situation

is the case in which the perturbation only occurs along the (p− q) transverse directions so

that ℓ = 0.23 In this context, the dispersion relation takes the form

ω = k3/2
√

Y
ST

(
1− kY (χTTQ− χTµS)

4QS2
+O(k7/2, ǫ)

)
, (5.45)

where we have assumed that k is small enough such that Ek ≪ ST . The leading k3/2 be-

haviour is the classical result for the dispersion relation for capillary waves of an uncharged

fluid (see e.g. [12]), while the sub-leading term of order k5/2 is a small deviation due to the

presence of the dipole charge density Q.

Another interesting situation is one in which clear signatures of anisotropy are ob-

served. Consider now the case in which there is no perturbation along the (p−q) directions

so that ki = 0. In the same regime where ℓa ∼ τ andQ,χTµ, χµµ ∼ ǫ, eq. (5.40) now leads to

ω2 =
ℓ2Yκ

TS + Eκ +O (ǫ) , κ = −ℓ2
Y

QS2
(χTTQ− χTµS) +O(τ4, ǫ) , (5.46)

23The same scaling behaviour is observed if we take the perturbations to be the same in both directors,

i.e. when k2 = ℓ2.
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so that the dispersion relation takes the form

ω = ±ℓ2
√

Y2

TS2

d log(Q/S)

dT
+O

(
τ4, ǫ

)
. (5.47)

This behaviour is a radical departure from the usual dispersion relation of capillary waves

for isotropic fluids which behaves as (5.45) and a clear signature of the presence of micro-

scopic anisotropies. In order not to have unstable modes on the surface one must have

that d log(Q/S)/dT > 0. If this condition does not hold, (5.47) suggests that the surface

would not form in any physical situation as a small perturbation along the Πµν directions

would exponentially grow in time. In such cases, it would be interesting to understand the

nature of the resulting surface instability. However, do note that this potential instability

could be cured by considering the more physically relevant situation in which Y depends

non-trivially on T and µ. In fact, in such context it would be interesting to study sound

modes on the surface, analogously to [12]. We leave this possibility for future work.

6 Discussion

In this paper we have introduced a framework for building effective theories of hydrody-

namics with higher-form symmetries. In particular, we have developed in detail the case of

fluids with a single q-form symmetry to first order in derivatives. After defining the ideal

order dynamics in section 2, we have found in section 3 that the dissipative and parity-even

sector of the theory up to first order in derivatives is characterised by q+7 independent

transport coefficients for q > 1 and 7 for q = 1, once Onsager’s relation is imposed. In

comparison with the q = 1 case of [18, 19], there is one extra transport coefficient for q > 1

corresponding to the shear viscosity in the SO(q) sector and q−1 extra current resistivities.

In section 5 we have generalised these results in order to include the presence of an interface

separating distinct fluid phases and studied capillary waves on the interface, which show

signatures of anisotropy. This analysis turns out to be similar to the analysis carried out

in the case of superfluids in [12].

The work presented here suggests a few possible extensions:

The hydrostatic sector. In section 4 we have constructed the most general equilibrium

partition function under the assumption of one timelike and q spacelike isometries. We

observed that this partition function is more general than the one presented in [18] for

q = 1 and that it generalises for q > 1 the solution provided by the free energy obtained

in [24] for q = 1. Ref. [18] assumed that the isometries, in addition to having a vanishing

Lie bracket, had a vanishing inner product. This, however, is not necessarily the case as

we have explained.

Insisting on the existence of a hydrostatic sector for fluids with q-form symmetry,

regardless of the microscopic origin of the vectors vi, we noticed that equilibrium con-

figurations do not exist unless constraints are imposed on the background, in particular,

the existence of q spacelike commuting isometries and an additional constraint, namely,

d(σVolq − ıkAq+1) = 0. This condition guarantees that the equilibrium configurations ob-

tained from (4.7) do not produce entropy. We understand that this is a peculiar feature
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of fluids with higher-form symmetries as usually equilibrium only requires the existence of

a timelike isometry and no spatial isometries or extra conditions. The need for these fea-

tures originate from the fact that in equilibrium one must satisfy the charge conservation

equation

∇µ (QTvµ1 ) = 0 , (6.1)

where we have specialised to the q = 1 case for simplicity. A simple way to satisfy this

relation is to assume vµ1 to be a linear combination of background Killing vector fields at

the expense of having to introduce the ad-hoc requirement that d(σVolq − ıkAq+1) = 0.

On top of this, as we commented in section 4.2, the equilibrium partition function seems

to impose new constraints on transport coefficients that do not follow from the second law

of thermodynamics. These restrictions are clearly unsatisfactory and we intend to return

to this issue in a forthcoming publication [28].

Gravitational duals. As mentioned in the introduction, one of the main motivations

of this work was to understand the structure of long-wavelength perturbations of black

branes in supergravity. In the context of the fluid/gravity correspondence [38] and, more

generally, in the context of the blackfold approach [39, 40], one may test theories of hy-

drodynamics by appropriately perturbing certain classes of black brane geometries. It is

therefore interesting to consider gravitational duals to these theories and perturb them in

a derivative expansion. In the case q = 1 and in Anti-de Sitter space this was consid-

ered in [20]. In a future publication [35], we consider a more general class of black brane

geometries valid for all p, q, Q and show that, for a constant external gauge field, their

perturbations are characterised by the existence of 8 independent transport coefficients for

q > 1 in addition to the conservation equations for the stress tensor and current appearing

as constraint equations. In particular, we show that this particular class of geometries sat-

isfy the relations (3.28) away from the isotropic limit. Since the second relation in (3.28) is

also satisfied for the class considered in [20], this suggests that the relations (3.28) may be

universal for generic theories of gravity, at least those theories without higher-derivative

corrections.

Fluids with multiple higher-form currents. The case of fluids with multiple higher-

form currents is of particular interest in the context of supergravity and string theory as

generic black brane bound states in string theory may carry multiple higher-form charges.

In particular, in the case of the D3-F1 bound state in type IIB string theory, the effective

fluid carries two 2-form currents j2 and J2 dual to the NSNS two-form B2 and the 2-form

RR field, respectively, in addition to a 4-form current J4 dual to the 4-form RR field [27].

However, the current conservation equations are not trivial, instead they must satisfy

∇µj
µν
2 = 0 , ∇µJ

µµ1µ2µ3
4 = 0 , ∇µJ

µν
2 =

1

3!
Jµ1µ2µ3ν
4 H3µ1µ2µ3 , (6.2)

where H3µ1µ2µ3 = dB2µ1µ2µ3 . It would be interesting to address these systems in the

future and to consider the most general type of hydrodynamic theory that can arise from

supergravity [27].
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Another context where fluids with multiple higher-form currents have a role to play

is in the context of the effective theory of charge density waves and states with dynamical

defects [21, 41–43]. The framework introduced in this work is capable of dealing with these

cases and to provide a systematic construction of effective hydrodynamic theories with

multiple higher-form symmetries.
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A Currents in another fluid frame

In this appendix we briefly compare the transport coefficients in the frame chosen in

section 3.1.1 with those presented in [18] for q = 1. The two frames differ from each

other due to the transport coefficient Θ in the current (3.21). Using the frame transforma-

tion (3.5) in order to remove this term from the current we require

δvµ1 = 2ΘΓµνvλ1∇(νuλ) , (A.1)

which due to (3.5) adds an extra term to the stress tensor with one index along vµ1 and

another along the normal directions δvµ1 . Comparing with eqs. (3.9)-(3.14) of [18] and

using (3.21) we identify the transport coefficients

η|| = QµΘ , η⊥ = ηΓ , r⊥ = DT , r|| = µΩ1 , ζ|| = ζΠ , ζ⊥ = ζΓ , ζ× = ζ , (A.2)

where the coefficients η||, η⊥, r⊥, r||, ζ||, ζ⊥ and ζ× were introduced in [18].
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