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Abstract: Applying the method of light-cone sum rules with photon distribution am-

plitudes, we compute the subleading-power correction to the radiative leptonic B → γ`ν

decay from the twist-two hadronic photon contribution at next-to-leading order in QCD;

and further evaluate the higher-twist “resolved photon” corrections at leading order in αs,

up to twist-four accuracy. QCD factorization for the vacuum-to-photon correlation func-

tion with an interpolating current for the B-meson is established explicitly at leading power

in Λ/mb employing the evanescent operator approach. Resummation of the parametrically

large logarithms of m2
b/Λ

2 entering the hard function of the leading-twist factorization for-

mula is achieved by solving the QCD evolution equation for the light-ray tensor operator

at two loops. The leading-twist hadronic photon effect turns out to preserve the symmetry

relation between the two B → γ form factors due to the helicity conservation, however, the

higher-twist hadronic photon corrections can yield symmetry-breaking effect already at tree

level in QCD. Using the conformal expansion of photon distribution amplitudes with the

non-perturbative parameters estimated from QCD sum rules, the twist-two hadronic pho-

ton contribution can give rise to approximately 30% correction to the leading-power “direct

photon” effect computed from the perturbative QCD factorization approach. In contrast,

the subleading-power corrections from the higher-twist two-particle and three-particle pho-

ton distribution amplitudes are estimated to be of O(3 ∼ 5%) with the light-cone sum rule

approach. We further predict the partial branching fractions of B → γ`ν with a photon-

energy cut Eγ ≥ Ecut, which are of interest for determining the inverse moment of the

leading-twist B-meson distribution amplitude thanks to the forthcoming high-luminosity

Belle II experiment at KEK.
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1 Introduction

Exploring the subleading-power contributions to exclusive B-meson decays in effective field

theories are of essential importance to understand general properties of the heavy quark

expansion and its higher-order behaviours in QCD and to achieve precision determinations

of CKM matrix elements with a wealth of data accumulated at the B factories and at

the LHC phenomenologically. In these respects, the radiative leptonic decay B → γ`ν

with an energetic photon in the final state is widely believed to provide a clean probe

of the strong interaction dynamics of a heavy quark system and to put stringent con-

straints on the inverse moment of the leading-twist B-meson distribution amplitude (DA).

Factorization properties of B → γ`ν have been investigated extensively at leading power

in Λ/mb with distinct QCD techniques [1, 2] and with the soft-collinear effective theory

(SCET) [3–5] which established the corresponding QCD factorization formula to all orders

in perturbation theory.

Subleading-power corrections to the B → γ`ν transition form factors were discussed

in QCD factorization at tree level [6], where the symmetry-preserving form factor ξ(Eγ)

was introduced to parameterize the non-local SCET matrix element without integrating
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out the hard-collinear scale. Systematic studies on the higher-power terms of the radiative

leptonic B-meson decay amplitude in the heavy quark expansion are, however, still absent

in the framework of SCET beyond the leading-order in αs. Applying the dispersion rela-

tions and the parton-hadron duality, an alternative approach without identifying manifest

structures of the subleading-power effective operators was proposed [7] to estimate the

power suppressed soft contributions at tree level and was further extended [8] to compute

the soft-overlap contribution at next-to-leading-order (NLO) in QCD. Consequently, there

will be a price to pay for the dispersion approach when taking into account the hadronic

photon corrections and the end-point contributions (the so-called Feynman mechanism)

by implementing the non-perturbative modifications of the QCD spectral densities, as two

additional non-perturbative parameters (vector meson mass mρ and effective threshold pa-

rameter s0) are introduced when compared to the direct QCD calculation. It is then evident

that evaluating the higher-power terms in the expansion of Λ/mb individually with direct

QCD approaches is of particular interest to deepen our understanding of perturbative QCD

factorization for hard exclusive reactions.

The major objective of this paper is to perform QCD calculations of the subleading-

power corrections induced by the hadronic component of the energetic photon at NLO

in the strong coupling constant. QCD factorization formula for the two-particle hadronic

photon correction to the B → γ`ν amplitude was demonstrated to be invalidated by

the rapidity divergence in the convolution integral of the hard scattering kernel with the

light-cone DAs of the B-meson and of the photon [5]. Employing the technique of light-

cone sum rules (LCSR) with the two-particle photon DAs, the power suppressed “resolved

photon” contribution was computed at twist-four accuracy and at leading-order (LO) in

αs [9–11], and was further updated [12] by including the NLO correction to the leading-

twist hadronic photon DA contribution and by calculating the higher-twist correction from

the three-particle photon DAs at tree level. However, QCD factorization for the vacuum-to-

photon correlation function with an interpolating current for the B-meson is not explicitly

demonstrated with the operator-product-expansion (OPE) technique at one loop in [12],

where the renormalization scheme dependence of γ5 for the QCD amplitude in dimensional

regularization was not addressed in any detail. It is therefore necessary to perform an

independent calculation of the twist-two hadronic photon correction to the B → γ`ν form

factors at NLO in αs by compensating the above-mentioned gaps. To this end, we will apply

the standard perturbative matching procedure including the evanescent SCET operators to

establish QCD factorization formulae for the vacuum-to-B-meson correlation function with

the Dirac matrix γ5 defined in naive dimensional regularization (NDR) (see [13, 14] for an

overview, and [15] for a discussion in the context of the pion-photon transition form factor).

The presentation is organized as follows. We first summarize the theoretical status on

QCD calculations of the B → γ`ν form factors with different techniques based upon the

heavy quark expansion and discuss the origin of subleading-power corrections in section 2.

To construct the sum rules for the leading-twist hadronic photon correction, we then estab-

lish QCD factorization for the correlation function defined with an interpolating current for

the B-meson and with the weak transition current [ū γµ (1− γ5) b] in section 3, where the

master formula of the hard matching coefficient entering the factorization formula at one
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loop will be derived with the implementation of the infrared (IR) subtraction including the

evanescent SCET operator. With the aid of the evolution equation of the twist-two photon

DA at two loops, summation of the parametrically large logarithms of m2
b/Λ

2 in the hard

function will be further preformed at next-to-leading-logarithmic (NLL) accuracy apply-

ing the momentum-space renormalization group (RG) approach. The NLL resummation

improved LCSR for the twist-two hadronic correction to the B → γ form factors will be

also presented here, taking advantage of the dispersion relation technique and the parton-

hadron duality ansatz. The subleading-power corrections to the B → γ`ν decay amplitude

from both the two-particle and three-particle higher-twist photon DAs displayed in [16] will

be computed with the LCSR approach at tree level in section 4, where a comparison of our

results with that obtained in [11, 12] will be also presented. Phenomenological impacts of

the various subleading-power corrections with the non-perturbative parameters of the pho-

ton DAs determined from QCD sum rules [17] will be explored in section 5, including the

dependence of the partial branching fractions of B → γ`ν, with the phase-space cut of the

photon energy, on the inverse moment λB. A summary of our main observations and future

perspectives will be presented in section 6. We further collect spectral representations of

the convolution integrals entering the leading-twist factorization formulae for the vacuum-

to-photon correlation function at one-loop accuracy and the operator-level definitions of

the higher-twist photon DAs up to the twist-four in appendices A and B, respectively.

2 Theoretical overview of B → γ`ν decay

The radiative leptonic B → γ`ν decay amplitude is defined by the following matrix element

A(B− → γ ` ν) =
GF Vub√

2

〈
γ(p) `(p`) ν(pν)

∣∣[¯̀γµ (1− γ5) ν
]

[ū γµ (1− γ5) b]
∣∣B−(pB)

〉
.

(2.1)

Following [8] we will work in the rest frame of the B-meson with momentum pB = mB v

and introduce two light-cone vectors nµ and n̄µ with the definitions

pµ =
n · p

2
n̄µ ≡ Eγ n̄µ , vµ =

nµ + n̄µ
2

. (2.2)

Expanding A(B− → γ ` ν) to the leading order in electromagnetic interaction and employ-

ing the Ward identity due to the conservation of vector current leads to [6, 8]

A(B−→ γ ` ν)→ GF Vub√
2

(igem ε
∗
ν)v ·p

{
−iεµνρσ nρ vσFV (n·p)+gµν FA(n·p)

}
, (2.3)

where the contribution due to photon radiation off the final-state lepton has been taken

into account by the redefinition of the axial form factor FA(n · p).
At leading power in Λ/mb the QCD factorization formula for the B → γ form factors

can be readily derived with the SCET technique [3, 4]

FV,LP(n · p) = FA,LP(n · p) =
QumB

n · p
f̃B(µ)C⊥(n · p, µ)

∫ ∞
0

dω
φ+
B(ω, µ)

ω
J⊥(n · p, ω, µ) .

(2.4)
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The hard function C⊥ arises from matching the QCD weak current ū γµ⊥ (1 − γ5) b onto

the corresponding SCET current and the one-loop expression is given by [18, 19]

C⊥ = 1− αsCF
4π

[
2 ln2 µ

n · p
+ 5 ln

µ

mb
− 2 Li2

(
1− 1

r

)
− ln2 r

+
3r − 2

1− r
ln r +

π2

12
+ 6

]
, (2.5)

with r = n · p/mb. The hard-collinear function J⊥ entering the SCET factorization for-

mula (2.4) reads [3, 4, 8]

J⊥ = 1 +
αsCF

4π

[
ln2 µ2

n · p (ω − n̄ · p)
− π2

6
− 1

]
+O(α2

s) . (2.6)

Setting µ as a hard-collinear scale of order
√

Λmb and performing the NLL resummation

of the parametrically large logarithms in the hard function yields

FV,LP(n · p) = FA,LP(n · p)

=
QumB

n · p λB(µ)

[
U2(n · p, µh2, µ) f̃B(µh2)

]
[U1(n · p, µh1, µ)C⊥(n · p, µh1)]

×
{

1 +
αs(µ)CF

4π

[
σ2(µ) + 2 ln

µ2

n · p µ0
σ1(µ) + ln2 µ2

n · p µ0
− π2

6
− 1

]}
,

(2.7)

where the convolution integral of ω has been expressed as moments of the B-meson DA

defined in [6] and the manifest expressions of the evolution functions U1 and U2 can be

found in [8].

The subleading-power corrections from photon radiation off the heavy quark and from

higher-twist B-meson DAs were addressed [6] by computing the two diagrams for the

tree b ū → γ W ∗ amplitude in QCD. Since the factorization property of the non-local

subleading-power correction from photon radiation off the light quark has not been explored

yet, we will only focus on the local subleading-power contribution to the B → γ`ν amplitude

at tree level

FLC
V,NLP(n · p) = −FLC

A,NLP(n · p) =
Qu fBmB

(n · p)2
+
Qb fBmB

n · pmb
. (2.8)

As discussed in [5] the subleading-power contribution can be further generated by the

effective matrix element 〈γ(p)|O|B−(pB)〉 with the SCET operator O ⊃ [q̄s hv]s [ξ̄ ξ]c con-

taining no photon field, due to the unsuppressed interactions of photons with any numbers

of collinear quark and gluon fields. The collinear matrix element 〈γ(p)|[ξ̄ ξ]c|0〉 defines

the photon DAs on the light cone, making the photon behave in analogy to an energetic

vector meson. Consequently, these terms are also referred to as the “hadronic (resolved)

photon” contributions in different contexts. QCD calculations of such power suppressed

corrections to the B → γ`ν decay form factors will be carried out, to the twist-four photon

DAs accuracy, with the LCSR approach in the following.
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3 Leading-twist hadronic photon correction in QCD

To obtain the sum rules for the form factors FV (n · p) and FA(n · p), we construct the

vacuum-to-photon correlation function with an interpolating current for the B-meson

Πµ(p, q) =

∫
d4x ei q·x 〈γ(p)|T{ū(x) γµ⊥ (1− γ5) b(x), b̄(0) γ5 u(0)}|0〉 , (3.1)

where q = p` + pν refers to the four-momentum of the lepton-neutrino pair. QCD factor-

ization for the correlation function (3.1) can be demonstrated with the technique of the

light-cone OPE at (p + q)2 � m2
b and q2 � m2

b . For definiteness, we will employ the

following power counting scheme

n · p ∼ O(mb), |n · (p+ q)−mb| ∼ O(Λ) . (3.2)

The primary task of this section is to compute the perturbative matching coefficient enter-

ing the leading-twist factorization formula for (3.1) at NLO, with the evanescent operator

approach.

3.1 The twist-two hadronic photon correction at tree level

QCD factorization for the twist-two contribution to the correlation function (3.1) can be

justified by investigating the QCD amplitude

Fµ(p, q) =

∫
d4x ei q·x 〈q(z p) q̄(z̄ p)|T{ū(x) γµ⊥ (1− γ5) b(x), b̄(0) γ5 u(0)}|0〉 , (3.3)

where z indicates the momentum fraction carried by the collinear quark and z̄ ≡ 1 − z.

Evaluating the tree diagram displayed in figure 1 leads to

F (0)
µ (p, q) =

i

2

n̄ · q
z(p+ q)2 + z̄ q2 −m2

b + i0
ū(z p) γµ⊥ 6n (1 + γ5) v(z̄ p)

=
i

2

n̄ · q
z′(p+ q)2 + z̄′ q2 −m2

b + i0
∗ 〈OA,µ(z, z′)〉(0) , (3.4)

where the convolution integral of z′ is represented by an asterisk. 〈OA,µ(z, z′)〉(0) indicates

the partonic matrix element of the SCET operator OA,µ at tree level

〈OA,µ(z, z′)〉 = 〈q(z p) q̄(z̄ p)|OA,µ(z′)|0〉 = ξ̄(z p) γµ⊥ 6n (1 + γ5) ξ(z p) δ(z − z′) +O(αs),

(3.5)

where the general definition of the collinear operator in moment space reads

Oj, µ(z′) =
n · p
2π

∫
dτ e−i z

′ τ n·p ξ̄(τ n)Wc(τ n, 0) Γj ξ(0) ,

Γj = γµ⊥ 6n (1 + γ5) . (3.6)

The collinear Wilson line with the convention of the covariant derivative Dµ ≡ ∂µ− i gsAµ
is defined as

Wc(τn, 0) = P

{
Exp

[
i gs

∫ τ

0
dλn ·Ac(λn)

]}
. (3.7)
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q

p + q

b

u

ū

Figure 1. Diagrammatical representation of the leading-order (LO) contribution to the QCD

amplitude Fµ(p, q) defined in (3.3).

To establish the hard-collinear factorization for the QCD amplitude (3.3), we further

decompose the SCET operator OA,µ into the light-ray operators defining the photon DAs

displayed in [16]

OA,µ = O1, µ +O2, µ +OE, µ , (3.8)

with

Γ1 = γµ⊥ 6n , Γ2 =
nν

2
εµναβ σ

αβ , ΓE = γµ⊥ 6nγ5 −
nν

2
εµναβ σ

αβ . (3.9)

It is evident that OE, µ is an evanescent operator vanishing in four-dimensional space.

Expanding the operator matching equation including the evanescent operator

Fµ(p, q) =
∑
i

Ci(z
′, (p+ q)2, q2) ∗ 〈O1, µ(z, z′)〉 , (3.10)

at the LO in the strong coupling constant, gives rise to

C
(0)
1 = C

(0)
2 = C

(0)
E =

i

2

n̄ · q
z′(p+ q)2 + z̄′ q2 −m2

b + i0
. (3.11)

Taking advantage of the definition of the leading-twist photon DA [16]

〈γ(p)|ξ̄(x)Wc(x, 0) σαβ ξ(0)|0〉

= i gemQq χ(µ) 〈q̄q〉(µ) (pβ ε
∗
α − pα ε∗β)

∫ 1

0
dz ei z p·x φγ(z, µ) +O(x2) . (3.12)

we can readily derive the tree-level factorization formula for the correlation function (3.1)

Πµ(p, q) =
i

2
gemQu χ(µ) 〈q̄q〉(µ) ε∗α(p)

[
g⊥µα − i εµανβ nν vβ

]
×
∫ 1

0
dz φγ(z , µ)

n · p n̄ · q
z(p+ q)2 + z̄ q2 −m2

b + i0
+O(αs) . (3.13)

Employing the definition of the B-meson decay constant in QCD

〈B−(pB)|b̄ γ5 u|0〉 = −i
fBm

2
B

mb +mu
, (3.14)

– 6 –



J
H
E
P
0
5
(
2
0
1
8
)
1
8
4

we can derive the hadronic dispersion relation of (3.1) as follows

Πµ(p, q) =
i

2
gem

fBm
2
B

mb +mu
ε∗α(p)

[
g⊥µα F

2PLT
A, photon(n · p)− i εµανβ nν vβ F 2PLT

V, photon(n · p)
]

× n · p
(p+ q)2 −m2

B + i0
+

∫ ∞
s0

ds
ρhµ(s, q2)

s− (p+ q)2 − i0
, (3.15)

where s0 is the effective threshold of the B-meson channel. The tree-level LCSR for the B →
γ`ν form factors can be obtained by matching the factorization formula (3.13) and (3.15)

with the aid of the parton-hadron duality approximation and the Borel transformation

fBmB

mb +mu
F 2PLT
V, photon(n · p) =

fBmB

mb +mu
F 2PLT
A, photon(n · p)

= Qu χ(µ) 〈q̄q〉(µ)

∫ 1

z0

dz

z
exp

[
−
m2
b − z̄ q2

zM2
+
m2
B

M2

]
φγ(z, µ)

+ O(αs) , (3.16)

with z0 = (m2
b−q2)/(s−q2). With the power counting scheme for the threshold parameter

and the Borel mass entering the sum rules (3.16)(
s0 −m2

b

)
∼M2 ∼ O(mb Λ) , z̄0 ∼ Λ/mb , (3.17)

the heavy-quark scaling of the hadronic photon correction at leading twist can be

established

F 2PLT
V, photon ∼ F 2PLT

A, photon ∼ O
(

Λ

mb

)3/2

, (3.18)

which is indeed suppressed by a factor of Λ/mb compared with the direct photon contri-

bution (see [5] for more details)〈
γ(p)

∣∣∣∣∣q̄s 6A⊥(γ)
1

i n̄ ·
←−
Ds

6 n̄
2
γµ (1− γ5)hv

∣∣∣∣∣B−(pB)

〉
∼ O

(
Λ

mb

)1/2

. (3.19)

3.2 The twist-two hadronic photon correction at one loop

In this subsection we will proceed to derive the NLO sum rules for the twist-two hadronic

photon correction to the B → γ form factors and to perform resummation of the large

logarithms of m2
b/µ

2 in the hard function at NLL accuracy. To this end, we will need to

demonstrate QCD factorization for the vacuum-to-photon correlation function (3.1) at one

loop, applying the technique of the light-cone OPE. For the sake of determining the NLO

matching coefficients entering the factorization formulae of Πµ(p, q), we will first evaluate

the one-loop diagrams for the QCD matrix element Fµ(p, q) displayed in figure 2.

The one-loop QCD correction to the weak vertex diagram shown in figure 2(a) can be

readily computed as

F
(1)
µ,weak =

g2
sCF

z(p+q)2+z̄q2−m2
b+i0

∫
dDl

(2π)D
1

[(zp+l)2+i0][(zp+q+l)2−m2
b+i0][l2+i0]

ū(zp)γν(z 6p+ 6 l)γµ⊥(1−γ5)(z 6p+ 6q+ 6 l+mb)γ
ν(z 6p+ 6 l+mb)γ5v(z̄p) , (3.20)

– 7 –
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(a) (b) (c) (d)

Figure 2. Diagrammatical representation of the NLO contribution to the QCD amplitude Fµ(p, q)

defined in (3.3).

where the external partons are already taken to be on the mass-shell due to the insensitivity

of the hard matching coefficients on the IR physics. With the power counting scheme

specified in (3.2), one can identify the leading-power contributions of the scalar integral

I1 =

∫
dDl

(2π)D
1

[(z p+ l)2 + i0][(z p+ q + l)2 −m2
b + i0][l2 + i0]

, (3.21)

from the hard and collinear regions as expected. Applying the method of regions [20],

the collinear contribution of I1 vanishes in dimensional regularization due to the resulting

scaleless integral. The collinear contribution of I1 may not vanish with a different regular-

ization scheme, however, it will be always cancelled by the corresponding IR subtraction

term. Reducing the Dirac algebra of F
(1)
µ,weak with the NDR scheme of the Dirac matrix γ5

and preforming the loop-momentum integration leads to

F
(1),h
µ,weak =

αsCF
4π

{[
2(1−r2)

r2−r1
ln

1−r1

1−r2
−1

] [
1

ε
+ln

µ2

m2
b

− ln[(1−r1)(1−r2)]

2
− r1−3r2

4(1−r2)
+2

]
+

1

r1−r2

[
2(1−r2)Li2

(
1− 1−r1

1−r2

)
− 2[r1(r1−2)+r2]

r1
ln(1−r1)

+
2[r1(r2−2)+r2]

r2
ln(1−r2)+

r2

2

]
− r1−3r2

4(1−r2)
−3

}
F (0)
µ , (3.22)

where r1 = (z p+ q)2/m2
b and r2 = q2/m2

b .

Along the same vein, the one-loop QCD correction to the B-meson vertex diagram

displayed in figure 2(b) can be written as

F
(1)
µ,B =− g2

s CF
z(p+q)2+z̄ q2−m2

b+i0

∫
dDl

(2π)D
1

[(z̄ p−l)2+i0][(z p+q+l)2−m2
b+i0][l2+i0]

ū(z p)γµ⊥ (1−γ5)(z 6p+ 6q+mb)γν (z 6p+ 6q+ 6 l+mb)γ5 (z̄ 6p− 6 l)γν v(z̄ p) , (3.23)

which again depends on the precise prescription of γ5 in the complex D-dimensional space.

It is straightforward to verify that the leading-power contributions to the B-meson vertex

diagram also arise from the hard and collinear regions. Evaluating the hard contribution

– 8 –
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to F
(1)
µ,B with the method of regions in the NDR scheme of γ5 yields

F
(1),h
µ,B =−αsCF

4π

{
2

[
1−r3

r1−r3
ln

1−r1

1−r3
−1

] [
1

ε
+ln

µ2

m2
b

− ln[(1−r1)(1−r3)]

2
+

3r1−r3

2(1−r3)

]
− 2

r1−r3

[
(1−r3)Li2

(
1− 1−r1

1−r3

)
+(3r1−r3−1)

(
ln(1−r1)

r1
− ln(1−r3)

r3

)]
− 1−3r1

1−r3
+3

}
F (0)
µ , (3.24)

with r3 = (p+ q)2/m2
b .

The self-energy correction to the intermediate bottom-quark propagator displayed in

figure 2(c) can be computed as

F
(1)
µ,wfc = −αsCF

4π

{
7− r1

1− r1

[
1

ε
+ ln

µ2

m2
b

− ln(1− r1) +
1

2

]}
F (0)
µ . (3.25)

Furthermore, the wave function renormalization of the external quarks will be cancelled

precisely by the corresponding collinear subtraction term and hence will not contribute to

the perturbative matching coefficients.

Now we turn to compute the one-loop correction to the box diagram displayed in

figure 2(d)

F
(1)
µ,box =−g2

s CF

∫
dDl

(2π)D
1

[(z p+l)2+i0][(z p+q+l)2−m2
b+i0][(ūp−l)2+i0][l2+i0]

ū(z p)γν (z 6p+ 6 l)γµ⊥ (1−γ5)(z 6p+ 6q+ 6 l+mb)γ5 (z̄ 6p− 6 l)γν v(z̄ p)

=−ig2
s CF F

(0)
µ

∫
dDl

(2π)D
m2
b (r1−1)

[(z p+l)2+i0][(z p+q+l)2−m2
b+i0][(ūp−l)2+i0][l2+i0]

× (D−4)

{
−D−4

D−2
l2⊥+

n̄·l
n̄·q

[
n̄·l n·(up+q)+l2

]}
, (3.26)

where the reduction of the Dirac algebra is achieved with the NDR scheme of γ5 in the

second step and l2⊥ ≡ g⊥µν l
µ lν . Performing the loop-momentum integration we find that

the one-loop box diagram only contributes at O(ε), vanishing in four dimensional space.

Such observation is in analogy to the hard-collinear factorization for the hadronic photon

correction to the pion-photon form factor at leading-twist accuracy [15].

Adding up different pieces together, we obtain the one-loop QCD correction to the

four-point QCD matrix element as follows

F (1)
µ (p, q) = T

(1)
A, hard(z′, (p+ q)2, q2) ∗ 〈OA,µ(z, z′)〉(0) + . . .

=
∑

i=1,2,E

T
(1)
i, hard(z′, (p+ q)2, q2) ∗ 〈Oi, µ(z, z′)〉(0) + . . . , (3.27)
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where the explicit expression of the NLO hard amplitude is given by

T
(1)
i,hard

∣∣
NDR

=
αsCF

4π

{
(−2)

[
1−r2

r1−r2
ln

1−r1

1−r2
+

1−r3

r1−r3
ln

1−r1

1−r3
+

3

1−r1

](
1

ε
+ln

µ2

m2
b

)
+

2(1−r2)

r1−r2
Li2

(
1− 1−r1

1−r2

)
+

2(1−r3)

r1−r3
Li2

(
1− 1−r1

1−r3

)
+

(
1−r2

r1−r2
+

1−r3

r1−r3

)
ln2(1−r1)− 1−r2

r1−r2
ln2(1−r2)− 1−r3

r1−r3
ln2(1−r3)

+

[
2

r1(r3−r1)
+

2(r3−2)

r3−r1
+

6

1−r1
− 2−r2

r1−r2
+

4

r1
−4

]
ln(1−r1)

+

(
2−r2

r1−r2
− 4

r2
+2

)
ln(1−r2)+

[
2

r3(r1−r3)
+

2(r1−2)

r1−r3
− 6

r3

]
ln(1−r3)

+
r2

2(r1−r2)
− 3

1−r1
− 15

2

}
C

(0)
i,hard , (3.28)

where the parameter z in the definition of r1 should be apparently understood as z′.

We are now in a position to derive the master formulae for the hard functions

C1,2(z′, (p + q)2, q2) by implementing the ultraviolet (UV) renormalization and the IR

subtraction. Expanding the operator matching condition (3.10) at O(αs) gives rise to∑
i

T
(1)
i (z′,(p+q)2, q2)∗〈Oi,µ(z,z′)〉(0)

=
∑
i

[
C

(1)
i (z′,(p+q)2, q2)∗〈Oi,µ(z,z′)〉(0)+C

(0)
i (z′,(p+q)2, q2)∗〈Oi,µ(z,z′)〉(1)

]
. (3.29)

The UV renormalized one-loop SCET matrix elements 〈Oi, µ〉(1) can be further written

as [21]

〈Oi, µ〉(1) =
∑
j

[
M

(1), R
ij, bare + Z

(1)
ij

]
〈Oj, µ〉(0) , (3.30)

where M
(1), R
ij, bare are the bare matrix elements dependent on the IR regularization scheme and

Z
(1)
ij are the UV renormalization constants at one loop. When both UV and IR divergences

are coped with dimensional regularization, the bare SCET matrix elements vanish due to

the resulting scaleless integrals from the corresponding one-loop diagrams. Comparing the

coefficients of 〈Oi, µ〉(0) (i = 1, 2) on both sides of (3.29) with the aid of (3.30) yields

C
(1)
i = T

(1)
i −

∑
j=1,2,E

C
(0)
j ∗ Z

(1)
ji . (3.31)

The SCET operators O1,µ and O2,µ do not mix into each other, which can be verified

explicitly by computing the one-loop correction to the two SCET matrix elements

〈Oi, µ〉(1) = Z
(1)
ii 〈Oi, µ〉

(0) , with i = 1, 2 . (3.32)

The collinear subtraction term Z
(1)
ii 〈Oi, µ〉(0) and the UV renormalization of the QCD

pseudoscalar current b̄ γ5 u will remove the divergent terms of the NLO QCD amplitude T
(1)
i

– 10 –



J
H
E
P
0
5
(
2
0
1
8
)
1
8
4

(a) (b) (c)

Figure 3. The one-loop diagrams for the SCET matrix element 〈OE, µ〉.

to guarantee that the perturbative matching coefficients entering the factorization formulae

of the correlation function (3.1) are free of singularities and are entirely from the hard-

scale dynamics of Πµ. We further turn to determine the IR subtraction term Z
(1)
Ei (i = 1, 2)

originated from the renormalization mixing of the evanescenet operators OE, µ into the

physical SCET operators O1, µ and O2, µ. As discussed in [21–23], the renormalization

constants Z
(1)
Ei (i = 1, 2) will be determined by implementing the prescription that the IR

finite matrix element of the evanescent operator OE, µ vanishes, when applying dimensional

regularization only to the UV divergences and regularizing the IR singularities with any

other scheme different from the dimensions of spacetime. In accordance with (3.30) this

amounts to

Z
(1)
Ei = −M (1), off

Ei, bare . (3.33)

Inserting (3.33) into (3.31) leads to the following master formula

C
(1)
i = T

(1)
i − C(0)

i ∗ Z
(1)
ii + C

(0)
E ∗M

(1), off
Ei, bare = T

(1), reg
i, hard + C

(0)
E ∗M

(1), off
Ei, bare , (3.34)

where T
(1), reg
i, hard is the regularized terms of the NLO hard contribution to the QCD matrix

element Fµ as presented in (3.28) and i = 1, 2.

We proceed to compute the one-loop matrix element of the evanescent SCET operator

〈OE, µ〉(1) by evaluating the effective diagrams shown in figure 3. Employing the SCET

Feynman rules, we find that only the diagram (a) with a collinear-gluon exchange between

two collinear quarks could give rise to a non-trivial contribution to M
(1), off
Ei, bare. Evaluating

this one-loop SCET diagram explicitly yields

〈OE, µ(z, z′)〉(1) ⊃ −i g2
s CF

∫
dDl

(2π)D
1

[(z p+ l)2 + i0][(l − z̄ p)2 + i0][l2 + i0]

ū(z p) γν⊥ 6 l⊥ Γ3 6 l⊥ γν⊥ v(z p) δ

(
z′ − z − n · l

n · p

)
, (3.35)

which only generates a non-vanishing contribution proportional to the SCET matrix ele-

ment 〈OE, µ〉(0) at O(ε) with the NDR scheme of γ5. Explicitly, we obtain

C
(0)
E ∗M

(1), off
Ei, bare = 0 , with i = 1, 2 , (3.36)

from which the one-loop hard matching coefficients can be written as

C
(1)
i = T

(1), reg
i, hard . (3.37)
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Now we are ready to demonstrate the factorization-scale independence of the factor-

ization formula for the vacuum-to-photon correlation function (3.1)

Πµ(p, q) =
i

2
gemQu χ(µ) 〈q̄q〉(µ) ε∗α(p)

[
g⊥µα − i εµανβ nν vβ

] ∫ 1

0
dz φγ(z , µ)

n · p n̄ · q
z(p+ q)2 + z̄ q2 −m2

b + i0

[
1 +

C
(1)
i (z, (p+ q)2, q2)

C
(0)
i (z, (p+ q)2, q2)

]
+O(α2

s) . (3.38)

To this end, we need to make use of the evolution equation for the leading-twist photon DA

µ2 d

dµ2
[χ(µ) 〈q̄q〉(µ)φγ(z, µ)] =

∫ 1

0
dz′ Ṽ (z, z′)

[
χ(µ) 〈q̄q〉(µ)φγ(z′, µ)

]
, (3.39)

with the renormalization kernel Ṽ (z, z′) expanded perturbatively in QCD

Ṽ (z, z′) =
∑
n=0

( αs
4π

)n+1
Ṽn(z, z′) , (3.40)

and the RG equation for the bottom-quark mass [24, 25]

dmb(µ)

d lnµ
= −

∑
n=0

(
αs(µ)

4π

)n+1

γ(n)
m , γ(0)

m = 6CF . (3.41)

The explicit expression of the one-loop evolution kernel Ṽ0 is given by [26, 27]

Ṽ0(z, z′) = 2CF

[
z̄

z̄′
1

z − z′
θ(z − z′) +

z

z′
1

z′ − z
θ(z′ − z)

]
+

− CF δ(z − z′) , (3.42)

where the plus function is defined as

[
f(z, z′)

]
+

= f(z, z′)− δ(z − z′)
∫ 1

0
dt f(t, z′) . (3.43)

It is then straightforward to write down

dΠµ(p, q)

d lnµ
=
i

2
gemQu χ(µ) 〈q̄q〉(µ) ε∗α(p)

[
g⊥µα − i εµανβ nν vβ

] ∫ 1

0
dz φγ(z , µ)

n · p n̄ · q
z(p+ q)2 + z̄ q2 −m2

b + i0

{
αsCF

4π
6 +O(α2

s)

}
. (3.44)

The residual µ dependence at one loop arises from the UV renormalization of the pseu-

doscalar QCD current defining the correlation function (3.1). Distinguishing the renor-

malization scale µ, due to the non-conservation of the pseudoscalar current in QCD, from

the factorization scale µ governing the RG evolution in SCET, we are led to conclude

that the factorization formula (3.38) of Πµ(p, q) is indeed independent of the scale µ at

one-loop accuracy.

According to the QCD factorization formula (3.38) for the correlation function Πµ(p, q),

we cannot avoid the parametrically large logarithms of O(ln (m2
b/Λ

2)) by adopting a uni-

versal scale µ in the hard matching coefficient and in the photon DA. We will perform
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resummmation of the above-mentioned large logarithms at NLL accuracy by applying the

two-loop RG equation of the twist-two photon DA and by setting the factorization scale

as µ ∼ mb. The NLO evolution kernel Ṽ1 in QCD can be decomposed as follows [28–30]

Ṽ1(z, z′) =
Nf

2
CF ṼN (z, z′) + CF CA ṼG(z, z′) + C2

F ṼF (z, z′) , (3.45)

where the explicit expressions of the evolution functions can be found in [29]. Symmetry

properties of the RG evolution equation (3.39) imply the series expansion of the leading-

twist photon DA in terms of the Gegenbauer polynomials

φγ(z, µ) = 6 z z̄
∞∑
n=0

an(µ)C3/2
n (2z − 1) . (3.46)

The two-loop evolution of the Gegenbauer moment an(µ) can then be obtained as follows

χ(µ) 〈q̄q〉(µ) an(µ) = ENLO
T,n (µ, µ0)χ(µ0) 〈q̄q〉(µ0) an(µ0)

+
αs(µ)

4π

n−2∑
k=0

ELO
T,n(µ, µ0) dkT,n(µ, µ0)χ(µ0) 〈q̄q〉(µ0) an(µ0) , (3.47)

where k, n = 0, 2, 4, . . . and the explicit expressions of the RG functions E
(N)LO
T,n and the

off-diagonal mixing coefficients can be found in appendix A of [15]. In contrast to the LO

evolution in QCD, the Gegenbauer coefficients an(µ) do not renormalize multiplicatively

at NLO accuracy. Inserting (3.46) and (3.47) into the NLO factorization formula (3.38)

gives rise to the NLL resummation improved expression

Πµ(p, q) = gemQu n · pχ(µ) 〈q̄q〉(µ) ε∗α(p)
[
g⊥µα − i εµανβ nν vβ

]
×
∑
n=0

an(µ) Kn((p+ q)2, q2) +O(α2
s) , (3.48)

where the perturbative function Kn((p+ q)2, q2) is determined by

Kn =

∫ 1

0
dz
[
C

(0)
i (z, (p+ q)2, q2) + C

(1)
i (z, (p+ q)2, q2)

] [
6 z z̄ C3/2

n (2 z − 1)
]
. (3.49)

To construct the sum rules for the twist-two hadronic photon correction to the B → γ`ν

form factors, we need to derive the dispersion representation for the NLL factorization

formula (3.48). Applying the spectral representations of the convolution integrals collected

in appendix A, we can readily obtain

Πµ(p, q) =
i

2
gemQu n · p n̄ · q χ(µ) 〈q̄q〉(µ) ε∗α(p)

[
g⊥µα − i εµανβ nν vβ

]
×
∫ ∞

0

ds

s− (p+ q)2 − i0

[
ρ(0)(s, q2) +

αsCF
4π

ρ(1)(s, q2)

]
, (3.50)

where the LO spectral function ρ(0)(s, q2) is given by

ρ(0)(s, q2) = − 1

s− q2
φγ

(
m2
b − q2

s− q2
, µ

)
θ(s−m2

b) . (3.51)
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The resulting NLO spectral function ρ(1)(s, q2) is rather involved and can be written as

ρ(1)(s,q2) = (−2) ln

(
µ2

m2
b

)
1

r3−r2

{∫ 1

0
dz

[
ln

(
z r3+z̄ r2−1

1−r2

)
θ(z r3+z̄ r2−1)

+ ln

∣∣∣∣z r3+z̄ r2−1

r3−1

∣∣∣∣ (θ(z r3+z̄ r2−1)−θ(r3−1))

]
φ′γ(z,µ)

+

∫ 1

0
dz

[
θ(z r3+z̄ r2−1)

z
− θ(z r3+z̄ r2−1)−θ(r3−1)

z̄

]
φγ(z,µ)

+
3

r3−r2
θ(r3−1)φ′γ

(
1−r2

r3−r2
,µ

)
− 1

r3−r2

2π2

3
φγ

(
1−r2

r3−r2
,µ

)
θ(r3−1)

}
+ 2

∫ 1

0
dzφγ(z,µ)

{[
1

z r3+z̄ r2−1
− 1

z

1

r3−r2

]
ln

(
1+

z r3+z̄ r2−1

1−r2

)
× θ(z r3+z̄ r2−1)−

[
1

z r3+z̄ r2−1
+

1

z̄

1

r3−r2

]
ln

(
1+

z r3+z̄ r2−1

1−r3

)
× θ
(
z r3+z̄ r2−1

1−r3

)}
+

∫ 1

0
dz

2

r3−r2

[
ln2(z r3+z̄ r2−1)−π

2

3

]
× θ(z r3+z̄ r2−1) φ′γ(z,µ)+

∫ 1

0
dzφγ(z,µ)

(
1

z
− 1

z̄

)
×
[

2

r3−r2
ln(z r3+z̄ r2−1)θ(z r3+z̄ r2−1)+ δ(r3−r2) ln2(1−r2)

]
+

1

r3−r2
φγ

(
1−r2

r3−r2
,µ

)
θ(r3−1)

[
ln2(1−r2)+ln2(r3−1)−π2

]
+ 2

∫ 1

0
dzφγ(z,µ)

[
P 1

z r3+z̄ r2−1
− 1

z̄

1

r2−r3

]
ln(r3−1)θ(r3−1)

+
θ(r3−1)

r3−r2

[
4

r3
ln(r3−1)+

(2−r2)(8−3r2)

r2 (4−r2)
ln(1−r2)

]
φγ

(
1−r2

r3−r2
,µ

)
+ 3

θ(r3−1)

(r3−r2)2

[
φ′γ

(
1−r2

r3−r2
,µ

)
+2 ln(r3−1)φ′γ (z= 1,µ)

]
−
∫ 1

0
dz ln(z r3+z̄ r2−1)

θ(z r3+z̄ r2−1)

r3−r2

[
6

r3−r2

d2

dz2
+

r2

1−r2

d

dz

]
φγ(z,µ)

− θ(r3−1)

∫ 1

0
dzφγ(z,µ)

{
θ

(
z− 1−r2

r3−r2

) [
r2(r2−2)(1+z)+2z

r2 (1−r2)zz̄

1

r2−r3

+
2(z−2 z̄ r2)

z̄ r2

1

z r3+z̄ r2

]
+

2(1−r2)

z̄ r2

1

r3−r2
− 2(1−3 z̄ r2)

z̄ r2 (1−z̄ r2)

1

r3

− 4z

1−z̄ r2
P 1

z r3+z̄ r2−1

}
+

r2

1−r2
δ(r2−r3)

∫ 1

0
dz
φγ(z,µ)

z

− 1

r3−r2

16r2−15

2(1−r2)
φγ

(
1−r2

r3−r2
,µ

)
θ(r3−1) , (3.52)
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where P indicates the principle-value prescription. Finally, the NLL sum rules for the

hadronic photon correction to the B → γ form factors at leading twist can be written as

fBmB

mb +mu
F 2PLT
V, photon(n · p) =

fBmB

mb +mu
F 2PLT
A, photon(n · p)

= −Qu χ(µ) 〈q̄q〉(µ) n̄ · q
∫ s0

0
ds exp

[
−
s−m2

B

M2

]
×
[
ρ(0)(s, q2) +

αsCF
4π

ρ(1)(s, q2)

]
+ O(α2

s) . (3.53)

It is evident that the twist-two hadronic photon correction preserves the symmetry relation

of the two form factors FV and FA at leading power in Λ/mb.

4 Higher-twist hadronic photon corrections in QCD

In this section we will aim at computing the higher-twist hadronic photon corrections to

the B → γ`ν decay form factors at LO in αs, up to the twist-four accuracy, from the LCSR

approach. Following the discussion on a general classification of the photon DAs [16], we

will need to take into account the subleading-power contributions arising from the light-cone

matrix elements of both the two-body and three-body collinear operators. To achieve this

goal, we first demonstrate QCD factorization for the two-particle and three-particle higher-

twist contributions to the vacuum-to-photon correlation function (3.1) and then construct

the tree-level sum rules for the form factors FV and FA following the standard strategy.

4.1 Higher-twist two-particle corrections

Employing the light-cone expansion of the bottom-quark propagator and keeping the

subleading-power contributions to the correlation function (3.1) leads to

Πµ(p, q) ⊃
∫

d4k

(2π)4

∫
d4x ei (q−k)·x kν

k2 −m2
b

〈γ(p)|ū(x)σµν (1 + γ5)u(0)|0〉

− i

∫
d4k

(2π)4

∫
d4x ei (q−k)·x mb

k2 −m2
b

〈γ(p)|ū(x) γµ (1− γ5)u(0)|0〉 . (4.1)

Making use of the definitions of the higher-twist photon DAs displayed in appendix B, it

is straightforward to write down

Πµ(p,q)⊃ i

4
gemQq (p·q)

∫ 1

0
dz

{
ε∗µ

[
ρ2PHT
A,2 ((p+q)2, q2,z)

[(z p+q)2−m2
b+i0]2

+
ρ2PHT
A,3 ((p+q)2, q2,z)

[(z p+q)2−m2
b+i0]3

]

− iεµναβ ε∗ν nα vβ
[
ρ2PHT
V,2 ((p+q)2, q2,z)

[(z p+q)2−m2
b+i0]2

+
ρ2PHT
V,3 ((p+q)2, q2,z)

[(z p+q)2−m2
b+i0]3

]}
, (4.2)

where the explicit expressions of the invariant functions ρ2PHT
V (A), i (i = 2 , 3) are given by

ρ2PHT
V,2 ((p+ q)2, q2, z) = 2mb f3γ(µ)ψ(a)(z, µ)− 〈q̄q〉(µ) A(z, µ) ,

ρ2PHT
V,3 ((p+ q)2, q2, z) = −2m2

b 〈q̄q〉(µ) A(z, µ) ,

ρ2PHT
A,2 ((p+ q)2, q2, z) = 4mb f3γ(µ) ψ̄(v)(z, µ) +

[
A(z, µ)− 2 h̄γ(z, µ)

]
〈q̄q〉(µ) ,

ρ2PHT
A,3 ((p+ q)2, q2, z) = −2m2

b 〈q̄q〉(µ)
[
A(z, µ)− 2 h̄γ(z, µ)

]
. (4.3)
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The two new functions ψ̄(v)(z, µ) and h̄γ(z, µ) introduced in (4.3) are defined by

ψ̄(v)(z, µ) = 2

∫ z

0
dαψ(v)(α, µ) , h̄γ(z, µ) = − 4

∫ z

0
dα(z − α)hγ(α, µ) . (4.4)

The resulting LCSR for the two-particle higher-twist hadronic photon corrections to the

B → γ`ν form factors can be further derived as follows

− fBmB

mb +mu
exp

(
−
m2
B

M2

)
F 2PHT,LL
V (A), photon(n · p)

=
Qq
4

{
1

m2
b − q2

exp
(
− s0

M2

)
ρ2PHT
V (A),2

(
s0, q

2, z = f1(s0, q
2)
)

+

∫ s0

m2
b

ds

m2
b − q2

1

M2
exp

(
− s

M2

)
ρ2PHT
V (A),2

(
s, q2, z = f1(s, q2)

)
+

1

(s0 − q2)2
exp

(
− s0

M2

) d

dz

[
1

2 z
ρ2PHT
V (A),3(s0, q

2, z)

] ∣∣∣∣
z=f1(s0,q2)

+
s0 − q2

2 (m2
b − q2)2

d

ds0

[
exp

(
− s0

M2

)
ρ2PHT
V (A),3(s0, q

2, z)
] ∣∣∣∣
z=f1(s0,q2)

−
∫ s0

m2
b

ds
s− q2

2 (m2
b − q2)2

d2

ds2

[
exp

(
− s

M2

)
ρ2PHT
V (A),3(s, q2, z)

] ∣∣∣∣
z=f1(s,q2)

}
, (4.5)

where we have defined f1(s, q2) = (m2
b − q2)/(s− q2) to compactify the above expressions.

Several comments on the tree-level sum rules for the higher-twist corrections to the

form factors FV and FA presented in (4.5) are in order.

• It is evident from (4.3) that the higher-twist two-particle hadronic photon corrections

can lead to the symmetry-breaking contributions to the B → γ`ν form factors already

at tree level, in agreement with the observation made in [12]. However, it needs to

be pointed out that the subleading-twist effects do not always violate the symmetry

relation of the two B → γ form factors at leading power in Λ/mb [8].

• Applying the power-counting scheme for the threshold parameter (3.17) and the end-

point behaviours of the two-particle photon DAs ψ̄(v)(z, µ), ψ(a)(z, µ), A(z, µ) and

h̄γ(z, µ), we can readily identify the heavy-quark scaling for the two-particle higher-

twist corrections

F 2PHT,LL
V, photon (n · p) ∼ F 2PHT,LL

A, photon (n · p) ∼
(

Λ

mb

)3/2

, (4.6)

which is of the same power as the twist-two hadronic photon contribution obtained

in (3.18) and is suppressed by only one factor of Λ/mb compared with the “direct”

photon contribution (3.19). We are then led to conclude that there is generally no

correspondence between the heavy-quark expansion and the twist expansion for the

B → γ`ν form factors in the LCSR approach (see [31] for a discussion in the context

of the pion-photon form factor).
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Figure 4. Diagrammatical representation of the three-particle contribution to the QCD amplitude

Fµ(p, q) defined in (3.3) at tree level.

4.2 Higher-twist three-particle corrections

We will proceed to compute the higher-twist three-particle hadronic photon corrections to

the B → γ`ν form factors at tree level with the sum rule technique. Following the standard

strategy, we first compute the three-particle contribution to the four-point QCD amplitude

Fµ(p, q) (3.3) displayed in figure 4. Keeping the one-gluon part for the light-cone expansion

of the bottom-quark propagator in the background gluon/photon field [32, 33]

〈0|T{b̄(x), b(0)}|0〉

⊃ igs
∫

d4k

(2π)4
e−ik·x

∫ 1

0
dv

[
vxµ

k2−m2
b

Gµν(vx)γν−
6k+mb

2(k2−m2
b)

2
Gµν(vx)σµν

]
+igemQb

∫
d4k

(2π)4
e−ik·x

∫ 1

0
dv

[
vxµ

k2−m2
b

Fµν(vx)γν−
6k+mb

2(k2−m2
b)

2
Fµν(vx)σµν

]
, (4.7)

and employing the definitions of the three-particle photon DAs in appendix B, we obtain

Πµ(p,q)⊃ igemQq (p·q)
∫ 1

0
dv

∫
[Dαi]

{
ε∗µ

[
ρ3P
A,2((p+q)2, q2,αi,v)

[((αq+vαg)p+q)2−m2
b+i0]2

+
ρ3P
A,3((p+q)2, q2,αi,v)

[((αq+vαg)p+q)2−m2
b+i0]3

]
− iεµναβ ε∗ν nα vβ

×

[
ρ3P
V,2((p+q)2, q2,αi,v)

[((αq+vαg)p+q)2−m2
b+i0]2

+
ρ3P
V,3((p+q)2, q2,αi,v)

[((αq+vαg)p+q)2−m2
b+i0]3

]}
, (4.8)

where the integration measure is defined as

∫
[Dαi] ≡

∫ 1

0
dαq

∫ 1

0
dαq̄

∫ 1

0
dαg δ (1− αq − αq̄ − αg) . (4.9)
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The resulting expressions for the invariant functions ρ3P
V (A),i (i = 2, 3) are given by

ρ3P
V,2 = − [S(αi, µ) + Sγ(αi, µ)] + (1− 2 v) S̃(αi, µ)− 2 v [T1(αi, µ)− T2(αi, µ)] ,

ρ3P
V,3 = 0 ,

ρ3P
A,2 = −(1− 2 v) [S(αi, µ) + Sγ(αi, µ)] + S̃(αi, µ) + T1(αi, µ) + (1− 2 v)T2(αi, µ) ,

ρ3P
A,3 = 2

[
(p+ q)2 − q2

] {
(2 v − 1) T̄3(αi, µ)−

[
T̄4(αi, µ) + T̄ γ4 (αi, µ)

]}
, (4.10)

where we have introduced the following notations

T̄3(4)(αi, µ) =

∫ αq

0
dα′q T3(4)(α

′
q, αq̄, αg, µ) , T̄ γ4 (αi, µ) =

∫ αq

0
dα′q T

γ
4 (α′q, αq̄, αg, µ) .

(4.11)

Implementing the continuum subtraction with the aid of the parton-hadron duality

relation and preforming the Borel transformation in the variable (p+ q)2 → s gives rise to

the desired sum rules for the three-particle hadronic photon corrections at tree level

− fBmB

mb+mu
exp

(
−
m2
B

M2

)
F 3P,LL
V (A),photon(n·p)

=Qq 〈q̄q〉(µ)

{∫ f1(s0,q2)

0
dαq

∫ 1−αq

f2(αq ,s0,q2)

dαg
αg

θ(1−αq−f2(αq,s0, q
2))

m2
b−q2

exp
(
− s0

M2

)
× ρ3P

V (A),2

(
s0, q

2,αq,αq̄,αg,v=
f2(αq,s0, q

2)

αg

)
+

∫ s0

m2
b

ds

∫ f1(s,q2)

0
dαq

∫ 1−αq

f2(αq ,s,q2)

dαg
αg

× θ(1−αq−f2(αq,s,q
2))

m2
b−q2

1

M2
exp

(
− s

M2

)
ρ3P
V (A),2

(
s,q2,αq,αq̄,αg,v=

f2(αq,s,q
2)

αg

)
−
∫ f1(s0,q2)

0

dαg
αg

exp
(
−s0/M

2
)

2(m2
b−q2)(s0−q2)

ρ3P
V (A),3

(
s0, q

2,αq = f1(s0, q
2)−αg,αq̄,αg,v= 1

)
+

∫ 1−f1(s0,q2)

0

dαg
αg

exp
(
−s0/M

2
)

2(m2
b−q2)(s0−q2)

ρ3P
V (A),3

(
s0, q

2,αq = 1−f1(s0, q
2),αq̄,αg,v= 0

)
+

∫ f1(s0,q2)

0
dαq

∫ 1−αq

f2(αq ,s0,q2)

dαg
α2
g

θ(1−αq−f2(αq,s0, q
2))

(s0−q2)2
exp

(
− s0

M2

)
× d

dv

[
1

2(αq+vαg)
ρ3P
V (A),3

(
s0, q

2,αq,αq̄,αg,v
)]∣∣∣∣

v=f2(αq ,s0,q2)/αg

+

∫ f1(s0,q2)

0
dαq

∫ 1−αq

f2(αq ,s0,q2)

dαg
αg

s0−q2

2(m2
b−q2)

θ(1−αq−f2(αq,s0, q
2))

× d

ds0

[
exp

(
− s0

M2

)
ρ3P
V (A),3

(
s0, q

2,αq,αq̄,αg,v
)]∣∣∣∣

v=f2(αq ,s0,q2)/αg

−
∫ s0

m2
b

ds

∫ f1(s,q2)

0
dαq

∫ 1−αq

f2(αq ,s,q2)

dαg
αg

s−q2

2(m2
b−q2)

θ(1−αq−f2(αq,s,q
2))

× d2

ds2

[
exp

(
− s

M2

)
ρ3P
V (A),3

(
s,q2,αq,αq̄,αg,v

)]∣∣∣∣
v=f2(αq ,s,q2)/αg

}
, (4.12)
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where for brevity we have introduced the auxiliary function f2(αq, s, q
2) defined by

f2(αq, s, q
2) =

m2
b − q2

s− q2
− αq . (4.13)

In accordance with the power counting scheme for the threshold parameter and the end-

point behaviours of the three-particle photon DAs entering the sum rules (4.12), we can

deduce the heavy-quark scaling of the three-particle hadronic photon corrections

F 3P,LL
V, photon(n · p) ∼ F 3P,LL

A, photon(n · p) ∼
(

Λ

mb

)5/2

, (4.14)

which is suppressed by one factor of Λ/mb compared with the higher-twist two-particle

contributions to the B → γ`ν form factors at tree level as presented in (4.5). It remains in-

teresting to verify whether the NLO QCD corrections to the three-particle hadronic photon

contributions can give rise to a dynamically enhancement to remove the power-suppression

mechanism of the LO contributions (see [34, 35] for a discussion in the context of the NLO

sum rules for the B → π form factors) and we will leave explicit QCD calculations of the

yet higher-order corrections for future work.

Collecting the different pieces together, the resulting expressions for the B → γ`ν

form factors including the subleading-power contributions from the tree-level b ū → γ W ∗

amplitude in QCD and from the hadronic photon corrections can be written as

FV (n·p) =FV,LP(n·p)+FLC
V,NLP(n·p)+F 2PLT

V,photon(n·p)+F 2PHT,LL
V,photon (n·p)+F 3P,LL

V,photon(n·p) ,

FA(n·p) =FA,LP(n·p)+FLC
A,NLP(n·p)+F 2PLT

A,photon(n·p)+F 2PHT,LL
A,photon (n·p)+F 3P,LL

A,photon(n·p)

+
Q` fB
v ·p

, (4.15)

where the last term proportional to the electric charge of the lepton comes from the

redefinition of the axial-vector form factor as discussed in section 2. The detailed ex-

pressions of the individual terms displayed on the right-hand side of (4.15) are given

by (2.7), (2.8), (3.53), (4.5) and (4.12), respectively. We mention in passing that the LCSR

calculations of the hadronic photon corrections to the B → γ`ν decay form factors pre-

sented here suffer from the systematic uncertainty due to the parton-hadron duality ansatz

in the B-meson channel. Future development of the subleading-power contributions to the

radiative leptonic B-meson decays in the framework of SCET including a proper treatment

of the rapidity divergences will be in demand for a model-independent QCD analysis.

Several comments on the general structure of the B → γ`ν form factors (4.15) are

in order.

• Both the point-like (short-distance) and the hadronic (long-distance) photon con-

tributions to the B → γ`ν amplitude were computed with same correlation func-

tion (3.1) in [12] (see also [9, 10]), where the leading-power point-like photon con-

tribution was represented by the triangle quark diagrams. By contrast, we apply

the QCD factorization approach for the evaluation of the short-distance photon ef-

fect and employ the LCSR method with the photon DAs for the computation of the

– 19 –



J
H
E
P
0
5
(
2
0
1
8
)
1
8
4

subleading power hadronic photon corrections. Since both the short-distance and

long-distance photon contributions can be defined by hadronic matrix elements of

the corresponding effective operators in SCET [5], we are allowed to compute the dif-

ferent hadronic matrix elements contributing to the B → γ`ν amplitude with the aid

of distinct QCD techniques, and such “hybrid” computation scheme as implemented

in this work is free of the double-counting issue. However, it needs to be pointed

out that an additional source of the systematic uncertainty could be introduced in

the “hybrid” approach, due to the scheme dependence of separating the leading and

sub-leading power contributions.

• The subleading power contributions to the B → γ`ν transition form factors were

also computed from the dispersion approach [7, 8, 36] by investigating the B → γ∗`ν

amplitude with the parton-hadron duality ansatz. In particular, the higher-twist

corrections to the form factors due to the higher Fock states of the B-meson and to

the transverse momentum of the light-quark in the valence state were computed at

tree level [36], where the soft contributions from the twist-five and -six B-meson DAs

were also estimated in the factorization approximation.

5 Numerical analysis

We are now ready to explore the phenomenological implications of the hadronic photon

corrections to the B → γ`ν amplitude computed from the LCSR approach. To this end,

we will proceed by specifying the nonperturbative models of the two-particle and three-

particle photon DAs, the first inverse moment λB(µ) and the logarithmic moments σ1(µ)

and σ2(µ) of the leading-twist B-meson DA, and by determining the Borel mass and the

hadronic threshold parameter entering the sum rules for the subleading-power resolved

photon contributions. Having at our disposal the theory predictions for the form factors

FV and FA, we will further explore the opportunity of constraining the inverse moment

λB(µ) taking advantage of the improved measurements at the Belle II experiment in the

near future.

5.1 Theory inputs

In analogy to the leading-twist photon DA, we employ the conformal expansion for the

twist-three DAs defined by the chiral-even light-cone matrix elements

ψ(v)(z, µ) = 5
(
3 ξ2 − 1

)
+

3

64

(
15ωVγ (µ)− 5ωAγ (µ)

) (
3− 30 ξ2 + 35 ξ4

)
,

ψ(a)(z, µ) =
5

2

(
1− ξ2

)
(5 ξ2 − 1)

(
1 +

9

16
ωVγ (µ)− 3

16
ωAγ (µ)

)
,

V (αi, µ) = 540ωVγ (µ) (αq − αq̄)αq αq̄ α2
g ,

A(αi, µ) = 360αq αq̄ α
2
g

[
1 +

ωAγ (µ)

2
(7αg − 3)

]
, (5.1)
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with ξ = 2 z − 1, and for the chiral-odd twist-four DAs

A(z,µ) = 40z2 z̄2
[
3κ(µ)−κ+(µ)+1

]
+8
[
ζ+

2 (µ)−3ζ2(µ)
] [
z z̄ (2+13z z̄)

+ 2z3 (10−15z+6z2) lnz+2 z̄3 (10−15 z̄+6 z̄2) ln z̄
]
,

hγ(z,µ) =−10
(
1+2κ+(µ)

)
C

1/2
2 (2z−1) ,

S(αi,µ) = 30α2
g

{(
κ(µ)+κ+(µ)

)
(1−αg)+(ζ1+ζ+

1 )(1−αg)(1−2αg)

+ ζ2(µ)
[
3(αq̄−αq)2−αg (1−αg)

]}
,

S̃(αi,µ) =−30α2
g

{(
κ(µ)−κ+(µ)

)
(1−αg)+(ζ1−ζ+

1 )(1−αg)(1−2αg)

+ ζ2(µ)
[
3(αq̄−αq)2−αg (1−αg)

]}
,

Sγ(αi,µ) = 60α2
g (αq+αq̄) [4−7(αq̄+αq)] ,

T1(αi,µ) =−120
(
3ζ2(µ)+ζ+

2 (µ)
)

(αq̄−αq) αq̄αqαg ,
T2(αi,µ) = 30α2

g (αq̄−αq)
[(
κ(µ)−κ+(µ)

)
+
(
ζ1(µ)−ζ+

1 (µ)
)

(1−2αg)+ζ2(µ)(3−4αg)
]
,

T3(αi,µ) =−120
(
3ζ2(µ)−ζ+

2 (µ)
)

(αq̄−αq)αq̄αqαg ,
T4(αi,µ) = 30α2

g (αq̄−αq)
[(
κ(µ)+κ+(µ)

)
+
(
ζ1(µ)+ζ+

1 (µ)
)

(1−2αg)+ζ2(µ)(3−4αg)
]
,

T γ4 (αi,µ) = 60α2
g (αq−αq̄) [4−7(αq̄+αq)] , (5.2)

defined by the chiral-odd light-ray matrix elements. Here, we have truncated the conformal

expansion of the photon light-cone DAs up to the next-to-leading conformal spin (i.e.,

‘‘P”-wave). The renormalization-scale dependence of the twist-three parameters can be

written as

f3γ(µ) =

(
αs(µ)

αs(µ0)

)γf/β0

f3γ(µ0) , γf = −CF
3

+ 3CA , β0 = 11−
2nf

3
,(

ωVγ (µ)− ωAγ (µ)

ωVγ (µ) + ωAγ (µ)

)
=

(
αs(µ)

αs(µ0)

)Γω/β0
(
ωVγ (µ0)− ωAγ (µ0)

ωVγ (µ0) + ωAγ (µ0)

)
, (5.3)

where the anomalous dimension matrix Γω is given by [16, 37]

Γω =

(
3CF − 2

3 CA
2
3 CF −

2
3 CA

5
3 CF −

4
3 CA

1
2 CF + CA

)
. (5.4)

Due to the Ferrara-Grillo-Parisi-Gatto theorem [38], the twist-four parameters correspond-

ing to the “P”-wave conformal spin satisfy the following relations

ζ1(µ) + 11 ζ2(µ)− 2 ζ+
2 (µ) =

7

2
. (5.5)
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f3γ(µ0) (GeV2) ωVγ (µ0) ωAγ (µ0) κ(µ0) κ+(µ0) ζ1(µ0) ζ+
1 (µ0) ζ+

2 (µ0)

−(4± 2) × 10−3 3.8± 1.8 −2.1± 1.0 0.2± 0.2 0 0.4± 0.4 0 0

Table 1. Numerical values of the nonperturbative parameters entering the photon DAs at the

renormalization scale µ0 = 1.0 GeV.

The scale evolution of the nonperturbative parameters at twist-four accuracy is given by

κ+(µ) =

(
αs(µ)

αs(µ0)

)(γ+−γqq̄)/β0

κ+(µ0) , κ(µ) =

(
αs(µ)

αs(µ0)

)(γ−−γqq̄)/β0

κ(µ0) ,

ζ1(µ) =

(
αs(µ)

αs(µ0)

)(
γ
Q(1)−γqq̄

)
/β0

ζ1(µ0) , ζ+
1 (µ) =

(
αs(µ)

αs(µ0)

)(
γ
Q(5)−γqq̄

)
/β0

ζ+
1 (µ0) ,

ζ+
2 (µ) =

(
αs(µ)

αs(µ0)

)(
γ
Q(3)−γqq̄

)
/β0

ζ+
2 (µ0) , (5.6)

where the anomalous dimensions of these twist-four parameters at one loop are given by [16]

γ+ = 3CA −
5

3
CF , γ− = 4CA − 3CF ,

rqq̄ = −3CF , γQ(1) =
11

2
CA − 3CF ,

γQ(3) =
13

3
CF , γQ(5) = 5CA −

8

3
CF . (5.7)

Numerical values of the input parameters entering the photon DAs up to twist-four are

collected in table 1, where we have assigned 100 % uncertainties for the estimates of the

twist-four parameters from QCD sum rules [17]. The second Gegenbauer moment of the

leading-twist photon DA will be further taken as a2(µ0) = 0.07± 0.07 as obtained in [16].

The magnetic susceptibility of the quark condensate χ(1 GeV) = (3.15± 0.3) GeV−2 com-

puted from the QCD sum rule approach including the O(αs) corrections [16] and the quark

condensate density 〈q̄q〉(1 GeV) = −(246+28
−19 MeV)3 determined by the GMOR relation [39]

will be also employed for the numerical estimates in the following.

The key quantity entering the leading-power factorization formula of the B → γ`ν

form factors is the first inverse moment of the B-meson DA λB(µ), whose determination

has been discussed extensively in the context of exclusive B-meson decays with distinct

QCD approaches (see [34, 40] for more discussions). To illustrate the phenomenological

consequences of the subleading-power corrections from the hadronic photon contributions

we will take the interval λB(1 GeV) = 354+38
−30 MeV implied by the LCSR calculations of

the semileptonic B → π form factors with B-meson DAs on the light-cone [34]. The

renormalization-scale dependence of λB(µ) at one loop can be determined from the evolu-

tion equation of φ+
B(ω, µ) [41]

λB(µ)

λB(µ0)
= 1 +

αs(µ0)CF
4π

ln
µ

µ0

[
2− 2 ln

µ

µ0
− 4σ1(µ0)

]
+O(α2

s) , (5.8)
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where the inverse-logarithmic moments σn(µ0) are defined as [6]

σn(µ0) = λB(µ)

∫ ∞
0

dω

ω
lnn
(µ0

ω

)
φ+
B(ω, µ0) . (5.9)

Numerically we will employ σ1(1GeV) = 1.5 ± 1 consistent with the NLO QCD sum rule

calculation [42] and σ2(1GeV) = 3 ± 2 from [6]. Furthermore, the static B-meson decay

constant f̃B(µ) will be expressed in terms of the QCD decay constant fB

f̃B(µ) = fB

{
1 +

αs(µ)CF
4π

[
3 ln

mB

µ
− 2

]}−1

, (5.10)

and the determination fB = (192.0 ± 4.3) MeV from the FLAG Working Group [43] will

be taken in the numerical analysis.

Following the discussions presented in [6, 34], the hard scales µh1 and µh2 entering the

leading-power factorization formula will be chosen as µh1 = µh2 ∈ [mb/2, 2mb] around

the default value mb and the factorization scale in (2.7) will be varied in the interval

1 GeV ≤ µ ≤ 2 GeV with the central value µ = 1.5 GeV. In contrast, the factorization scale

entering the LCSR for the hadronic photon corrections will be taken as µ ∈ [mb/2, 2mb]

around the default choice mb. In addition, we adopt the numerical values of the bottom

quark mass mb(mb) = 4.193+0.022
−0.033 GeV [44] in the MS scheme from non-relativistic sum

rules. Finally, we turn to determine the Borel mass M2 and the threshold parameter

s0 in the LCSR for the hadronic photon contributions. Applying the standard strategies

presented in [34] (see also [45] for a review) gives rise to following intervals

s0 = (37.5± 2.5) GeV2 , M2 = (18.0± 3.0) GeV2 , (5.11)

which is consistent with the determinations from the LCSR of the B → π form factors [46].

5.2 Predictions for the B → γ`ν form factors

We are now in a position to explore the phenomenological significance of the hadronic

photon corrections to the B → γ`ν form factors. To develop a better understanding of the

heavy quark expansion for the bottom sector, we plot the photon-energy dependence of

the leading-power contribution, the subleading-power local correction and the subleading-

power two-particle and three-particle hadronic photon effects in figure 5. It is apparent

that the twist-two hadronic photon contribution at NLL can generate sizeable destructive

interference with the leading-power “direct photon” contribution: approximately O(30%)

for n · p ∈ [3 GeV ,mB] with λB(µ0) = 354 MeV. However, both the two-particle higher-

twist and the three-particle hadronic photon contributions turn out to be numerically

insignificant at tree level and will only shift the leading-power prediction by an amount of

O (3 ∼ 5)% for n · p ∈ [3 GeV ,mB]. Furthermore, the subleading-power local contribution

FLC
V,NLP at tree level displayed in (2.8) will give rise to O(3%) correction at n · p = mB and

O(10%) correction at n · p = 3 GeV. On account of the observed pattern for the separate

terms contributing to the B → γ form factors numerically, we are led to conclude that the

power suppressed contributions to the radiative leptonic B-meson decay are dominated by

the leading-twist hadronic photon correction with the default theory inputs.
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Figure 5. The photon-energy dependence of different terms contributing to the vector B → γ

form factor FV (2Eγ) as displayed in (4.15) with the central values of theory inputs. The individual

contributions correspond to the leading-power contribution at NLL computed from the QCD factor-

ization approach (FNLL
V,LP, black), the subleading-power local contribution at LO (FLC

V,NLP, green), the

two-particle leading-twist hadronic photon correction at NLL (F 2PLT,NLL
V, photon , blue), the two-particle

higher-twist hadronic photon correction at leading-logarithmic (LL) accuracy (F 2PHT,LL
V, photon , yellow),

the three-particle leading-twist hadronic photon correction at LL (F 3P,LL
V, photon, red).

We further turn to investigate the numerical impact of the perturbative correction

at NLO and the QCD resummation of the parametrically large logarithms of m2
b/Λ

2 for

the leading-twist hadronic photon contribution computed from the LCSR technique. It

is evident from figure 6 that the NLO QCD correction can decrease the tree-level pre-

diction of the twist-two hadronic photon contribution by an amount of O (20 ∼ 40)%

for the factorization scale varied in the interval [3.0, 5.0] GeV and the NLL resumma-

tion effect can yield O (10 %) enhancement to the NLO QCD results within the same

range of µ. Hence, the dominant radiative correction to the leading-twist hadronic pho-

ton contribution originates from the NLO QCD correction to the hard matching coef-

ficient entering the factorization formula (3.38) rather than from resummation of the

large logarithms m2
b/Λ

2. However, the renormalization scale dependence of the resumma-

tion improved theory predictions in the allowed region indeed becomes weaker compared

with the NLO calculation. We further plot the photon-energy dependence of the ratio

R2PLT
FV, photon(n · p) ≡ F 2PLT,NLL

V, photon (n · p)/F 2PLT,LL
V, photon (n · p) characterizing the perturbative QCD

corrections at NLL in figure 6, where the theory uncertainties due to the variations of the

renormalization scale µ are also displayed.
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Figure 6. Left : the renormalization scale dependence of the twist-two hadronic photon correction

to the vector B → γ form factor FV (mB) at LL (dashed), NLO (dotted), and NLL (solid) accuracy,

respectively. Right : the photon-energy dependence of the ratio R2PLT
FV, photon(n · p) ≡ F 2PLT,NLL

V, photon (n ·
p)/F 2PLT,LL

V, photon (n · p) with the uncertainties from the variations of the renormalization scale µ.

Taking into account the fact that the QCD sum rule calculation of the second Gegen-

bauer moment of the twist-two photon DA a2(µ0) suffers from the large theory uncertainties

due to the strong sensitivity to the input parameters [16], we plot the leading-twist hadronic

photon correction to the vector form factor FV (n · p) in a wide range of a2(µ0) in figure 7.

One can readily observe that the variation of the Gegenbauer moment a2(µ0) ∈ [−0.2, 0.2]

can only give rise to a minor impact on the theory prediction of the B → γ form factor

FV (mB) at maximal recoil numerically. However, the “P-wave” conformal spin contribu-

tion from the leading-twist photon DA will become significant for the evaluation of the

form factor FV (n · p) with the decrease of the photon energy: approximately O(35%) at

n · p = 3 GeV. To further understand the systematic uncertainty due to the truncation

of the conformal expansion at “P-wave”, we also display the theory predictions for the

B → γ`ν form factors including the “D-wave” effect from the fourth Gegenbauer moment

a4(µ0) in figure 7. It is apparent that the sensitivity of the leading-twist hadronic photon

contribution on a4(µ0) is rather weak numerically for n·p ∈ [3 GeV,mB] in the “reasonable”

interval −0.2 ≤ a4(µ0) ≤ 0.2. In the light of such observation, the yet higher Gegenbauer

moments of the twist-two photon DA are not expected to bring about notable impact on

the prediction of the subleading-power contribution to the B → γ`ν form factors induced

by the photon light-cone DAs.

We present our final predictions for the B → γ`ν form factors including the newly com-

puted two-particle and three-particle hadronic photon corrections with theory uncertain-

ties in figure 8. The dominant theory uncertainties originate from the first inverse moment

λB(µ0), the factorization scale µ entering the leading-power “direct photon” contribution,

and the second Gegenbauer moment a2(µ0) of the twist-two photon DA. However, the sym-

metry breaking effect between the two B → γ form factors due to the subleading-power
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Figure 7. Dependence of the leading-twist hadronic photon correction at n ·p = 3 GeV (left panel)

and n ·p = mB (right panel) on the second Gegenbauer moment of the photon light-cone DA a2(µ0)

with different values of the fourth Gegenbauer moment: a4(µ0) = 0.2 (dashed), a4(µ0) = 0 (solid)

and a4(µ0) = −0.2 (dotted).

Figure 8. The photon-energy dependence of the B → γ`ν form factors as well as their difference

computed from (4.15) with the theory uncertainties from variations of different input parameters

added in quadrature.

local contribution and the higher-twist hadronic photon corrections suffers from much less

uncertainty than the individual form factors at 3 GeV ≤ n · p ≤ mB. Having in our hands

the theoretical predictions for the B → γ`ν form factors, we proceed to discuss the theory

constraints on the inverse moment λB(µ0) taking advantage of the future measurements

on the (partially) integrated branching fractions with a photon-energy cut to get rid of

the soft photon radiation. It is straightforward to derive the differential decay width for
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Figure 9. Dependence of the partial branching fractions BR(B → γ`ν, Eγ ≥ Ecut) on the first

inverse moment λB(µ0) for Ecut = 1.5 GeV (blue band) and Ecut = 2.0 GeV (green band).

B → γ`ν in the rest frame of the B-meson (see also [6, 8])

dΓ(B → γ`ν)

dEγ
=
αemG

2
F |Vub|2

6π2
mB E

3
γ

(
1− 2Eγ

mB

) [
F 2
V (n · p) + F 2

A(n · p)
]
, (5.12)

and the integrated branching fractions with the phase-space cut on the photon energy read

BR(B → γ`ν, Eγ ≥ Ecut) = τB

∫ mB/2

Ecut

dEγ
dΓ(B → γ`ν)

dEγ
, (5.13)

where τB indicates the lifetime of the B-meson. Our predictions for the partial branching

fractions of the radiative leptonic decay B → γ`ν including the hadronic photon corrections

to the form factors are displayed in figure 9 with the variation of the inverse moment λB(µ0)

in the interval [0.2, 0.6] GeV. It can be observed that the integrated branching fractions

BR(B → γ`ν, Eγ ≥ Ecut) grow rapidly with the decrease of the inverse moment due to

the dependence of the two form factors on 1/λB(µ0) at leading-power in Λ/mb. Since

the photon-energy cut Eγ ≥ 1 GeV implemented in the Belle measurements [47] is not

sufficiently large to perform perturbative QCD calculations of the B → γ form factors,

we will not employ the experimental bound BR(B → γ`ν, Eγ ≥ Ecut) < 3.5 × 10−6 with

the full Belle data sample reported in [47] for the determination of λB(µ0) at the moment.

Instead, we prefer to explore the solid theory constraints on the first inverse moment

by comparing our predictions of the (partially) integrated branching fractions with the

improved measurements at the Belle II experiment, with the tighter phase-space cut on

the photon energy, thanks to the much higher designed luminosity of the SuperKEKB

accelerator.
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6 Conclusion

We computed perturbative QCD corrections to the leading-twist hadronic photon contribu-

tion to the B → γ`ν form factors employing the LCSR method. QCD factorization for the

vacuum-to-photon correlation function (3.1) has been demonstrated explicitly at one loop

with the OPE technique and the NDR scheme of the Dirac matrix γ5 including the evanes-

cent SCET operator. The perturbative matching coefficient entering the NLO factorization

formula (3.38) was obtained by applying the method of regions and the factorization-scale

independence of the correlation function (3.1) was further verified at O(αs) with the evo-

lution equations of the twist-two photon DA and of the bottom-quark mass. Resummation

of the parametrically large logarithms of O(ln(m2
b/Λ

2)) was achieved at NLL accuracy with

the two-loop RG equation of the light-ray tensor operator. Implementing the continuum

subtraction with the aid of the parton-hadron duality and the Borel transformation, the

NLL resummation improved LCSR for the twist-two hadronic photon correction to the

B → γ form factors was subsequently constructed with the spectral representations of the

factorization formula (3.38). The subleading-power correction to the B → γ`ν amplitude

from the leading-twist photon DA was shown to preserve the symmetry relation between

the two form factors due to the helicity conservation, in agreement with the observation

made in [12].

Along the same vein, we proceed to compute the two-particle and three-particle higher-

twist hadronic photon corrections to the B → γ`ν form factors at tree level, up to the

twist-four accuracy. The symmetry relation between the two form factors FV (n · p) and

FA(n · p) was found to be violated by both the two-particle and three-particle higher-twist

effects of the photon light-cone DAs. In addition, our calculations explicitly indicate that

the correspondence between the heavy-quark expansion and the twist expansion is generally

invalid for the soft contributions to the exclusive B-meson decays, in analogy to the similar

pattern observed in the context of the pion-photon form factor [31].1

Adding up different pieces contributing to the B → γ`ν amplitude, we further inves-

tigated the phenomenological impacts of the subleading-power hadronic photon contribu-

tions, employing the conformal expansion of the photon DAs at the “P-wave” accuracy.

Numerically, the NLL twist-two hadronic photon correction was estimated to give rise to

an approximately O(30%) reduction of the leading-power contribution, computed from

QCD factorization, with the default values of theory inputs. By contrast, the higher-twist

hadronic photon contributions at LO in O(αs) was found to be of minor importance at

3 GeV ≤ n · p ≤ mB, albeit with the rather conservative uncertainty ranges for the non-

perturbative parameters collected in table 1. Moreover, we observed that the dominant

radiative effect of the leading-twist hadronic photon contribution comes from the NLO

QCD correction instead of the QCD resummation of the parametrically large logarithms

m2
b/Λ

2. To understand the systematic uncertainty from the truncation of the Gegenbauer

expansion at the second order, we explored the numerical impact of the fourth moment

of the leading-twist photon DA in a wide interval α4(µ0) ∈ [−0.2, 0.2] and observed that

1The large scale Q2 in the pion-photon transition form factor Fγ∗γ→π(Q
2) plays a similar role of the

heavy-quark mass in B-meson decays.
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the dependence of the twist-two hadronic photon correction to the B → γ`ν form factors

on α4(µ0) was rather moderate at n · p ≥ 3 GeV, at least in the framework of the LCSR

method. Our main theory predictions for the B → γ`ν form factors with the uncertain-

ties from variations of different input parameters added in quadrature were displayed in

figure 8 and the poor constraint on the first inverse moment of the B-meson DA λB(µ0)

brought about one of the major uncertainties for the theory calculations. In this respect,

the improved measurements of the partial branching fractions BR(B → γ`ν, Eγ ≥ Ecut)

with the tighter phase-space cut on the photon energy to validate the perturbative QCD

calculations from the Belle II experiment will be of value to provide solid constraints on the

inverse moment λB(µ0), when combined with the theory predictions including the power

suppressed contributions of different origins.

Further improvements of the theory descriptions of the B → γ`ν form factors in QCD

can be pursued in distinct directions. First, it would be of interest to perform the NLO

QCD corrections to the twist-three hadronic photon corrections with the LCSR approach

for a systematic understanding of the higher-twist contributions. The technical challenge

of accomplishing this task lies in the demonstration of QCD factorization for the vacuum-

to-B-meson correlation function (3.1) in the presence of the non-trivial mixing of the two-

particle and three-particle light-ray operators under the QCD renormalization. Second,

exploring the subleading-power contributions to the radiative leptonic B-meson decay in

the framework of SCET directly will be indispensable for deepening our understanding of

factorization properties for more complicated exclusive B-meson decays, where the rapidity

divergences of the convolution integrals entering the corresponding factorization formulae

already emerge at leading power in the heavy quark expansion. Earlier attempts to ad-

dress this ambitious question have been undertaken in different contexts (for an incomplete

list, see for instance [5, 48–50]). Third, computing the subleading-power corrections to the

B → γ form factors from the higher-twist B-meson DAs will be of both conceptual and phe-

nomenological value to investigate general properties of the twist expansion in heavy-quark

effective theory (see [8] for a preliminary discussion with an incomplete decomposition of

the three-particle vacuum-to-B-meson matrix element on the light-cone). To this end, we

will need to employ the RG equations for these higher-twist B-meson DAs at one loop

following the discussions presented in [51], where the evolution equations of the twist-four

B-meson DAs at one loop were demonstrated to be completely integrable and therefore

can be solved exactly. We are therefore anticipating dramatic progress toward better un-

derstanding of the strong interaction dynamics of the radiative leptonic decay B → γ`ν

in QCD.
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A Spectral representations

Here we collect the dispersion representations of the various convolution integrals entering

the NLL factorization formula of the vacuum-to-photon correlation function (3.50) for the

sake of constructing the LCSR for the B → γ`ν form factors.

1

π
Ims

∫ 1

0
dzφγ(z,µ)

1

z r3+z̄ r2−1+i0

1−r2

r1−r2
ln

(
1−r2
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=
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z
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B Higher-twist photon DAs

In this appendix we will collect the operator-level definitions of the two-particle and three-

particle photon DAs on the light-cone up to the twist-four accuracy as presented in [16].

〈γ(p)|q̄(x)Wc(x,0) σαβ q(0)|0〉

= igemQq 〈q̄q〉(µ)(pβ ε
∗
α−pα ε∗β)

∫ 1

0
dz eiz p·x

[
χ(µ)φγ(z,µ)+

x2

16
A(z,µ)

]
+
i

2
gemQq

〈q̄q〉(µ)

q ·x
(xβ ε

∗
α−xα ε∗β)

∫ 1

0
dz eiz p·xhγ(z,µ) . (B.1)

〈γ(p)|q̄(x)Wc(x,0) γα q(0)|0〉=−gemQq f3γ(µ)ε∗α

∫ 1

0
dz eiz p·xψ(v)(z,µ) . (B.2)

〈γ(p)|q̄(x)Wc(x,0) γα γ5 q(0)|0〉
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4
Qq f3γ(µ)εαβρτ p
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0
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〈γ(p)|q̄(x)Wc(x,0) gsGαβ(vx) q(0)|0〉

= igemQq 〈q̄q〉(µ)(pβ ε
∗
α−pα ε∗β)

∫
[Dαi]ei(αq+vαg)p·xS(αi,µ) . (B.4)

〈γ(p)|q̄(x)Wc(x,0) gs G̃αβ(vx) iγ5 q(0)|0〉

= igemQq 〈q̄q〉(µ)(pβ ε
∗
α−pα ε∗β)

∫
[Dαi]ei(αq+vαg)p·x S̃(αi,µ) . (B.5)

〈γ(p)|q̄(x)Wc(x,0) gs G̃αβ(vx)γρ γ5 q(0)|0〉

=−gemQq f3γ(µ)pρ (pβ ε
∗
α−pα ε∗β)

∫
[Dαi]ei(αq+vαg)p·xA(αi,µ) . (B.6)

〈γ(p)|q̄(x)Wc(x,0) gsGαβ(vx) iγρ q(0)|0〉

= gemQq f3γ(µ)pρ (pβ ε
∗
α−pα ε∗β)

∫
[Dαi]ei(αq+vαg)p·xV (αi,µ) . (B.7)

〈γ(p)|q̄(x)Wc(x,0) gemQqFαβ(vx) q(0)|0〉

= igemQq 〈q̄q〉(µ)(pβ ε
∗
α−pα ε∗β)

∫
[Dαi]ei(αq+vαg)p·xSγ(αi,µ) . (B.8)

〈γ(p)|q̄(x)Wc(x,0) σρτ gsGαβ(vx) q(0)|0〉

=−gemQq 〈q̄q〉(µ)
[
pρ ε
∗
α g
⊥
τβ−pτ ε∗α g⊥ρβ−(α↔β)

] ∫
[Dαi]ei(αq+vαg)p·xT1(αi,µ)

− gemQq 〈q̄q〉(µ)
[
pα ε

∗
ρ g
⊥
τβ−pβ ε∗ρ g⊥τα−(ρ↔ τ)

] ∫
[Dαi]ei(αq+vαg)p·xT2(αi,µ)

− gemQq 〈q̄q〉(µ)
(pαxβ−pβ xα)(pρ ε

∗
τ−pτ ε∗ρ)

p·x

∫
[Dαi]ei(αq+vαg)p·xT3(αi,µ)

− gemQq 〈q̄q〉(µ)
(pρxτ−pτ xρ)(pα ε∗β−pβ ε∗α)

p·x

∫
[Dαi]ei(αq+vαg)p·xT4(αi,µ) . (B.9)
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〈γ(p)|q̄(x)Wc(x,0) σρτ gemQqFαβ(vx) q(0)|0〉

=−gemQq 〈q̄q〉(µ)
(pρxτ−pτ xρ)(pα ε∗β−pβ ε∗α)

p·x

∫
[Dαi]ei(αq+vαg)p·xT γ4 (αi,µ)+. . .

(B.10)

Here, we have employed the following notations for the dual field strength tensor and the

integration measure

G̃αβ =
1

2
εαβρτ G

ρτ ,

∫
[Dαi] ≡

∫ 1

0
dαq

∫ 1

0
dαq̄

∫ 1

0
dαg δ (1− αq − αq̄ − αg) . (B.11)
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