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1 Introduction

In the past time following the discovery of AdS/CFT duality [1–4] we faced a lot of progress

in the study of integrable structures behind the quantum field theories with extended

supersymmetry in dimensions greater then two, see for a review and introduction [5–10].

The most well understood theories are given by N = 4 SYM in four and N = 6 super

Chern-Simons theory in three dimensions. The latter theory is more known as ABJM

model [11]. In particular, different techniques from the world of integrable systems, such as

worlsheet and spin-chain S-matrices [12–20], Asymptotic Bethe Ansatz (ABA) [16, 21–26]

and Thermodynamic Bethe Ansatz (TBA) [27–30] as well as Y and T -systems [31–37] were

shown to be very useful for the computation of conformal spectrum of these theories. The

integrability based methods were also applied to the study of quark-antiquark potential [38–

41], expectation values of polygonal Wilson loops at strong coupling and beyond [42–47],

eigenvalues of BFKL kernel [48–50], structure constants [51–54] and one-point functions of

operators in the defect conformal field theory [55–57].
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Recently, the detailed study of TBA equations for N = 4 SYM and ABJM models

resulted in the discovery of very effective Quantum Spectral Curve (QSC) formulation for

these models [58–63]. The latter gives an alternative reformulation of TBA equations as a

nonlinear Riemann-Hilbert problem. The iterative procedure for perturbative solution of

the mentioned Riemann-Hilbert problems for these theories at weak coupling was finally

proposed in [64, 65]. However, the presented technique is limited to the situation when

the states quantum numbers are given explicitly as some integer numbers. It is sufficient

for the recovery of full analytical structure of the conserved charges in the respective spin

chains provided that we know a finite basis of functions in terms of which they could be

written explicitly. It is known that in the case of N = 4 SYM both the contributions

of asymptotic Bethe ansatz and wrapping or finite size corrections for twist-2 and twist-3

operators are expressed in terms of the harmonic sums [66–76]. However, in the case of

ABJM model it was possible to express in the harmonic sums basis only the asymptotic

contribution, while the wrapping corrections part misses such a representation. Moreover,

the generalization of harmonic sums basis for this problem is not known at present [65, 77–

82]. In this paper we present a Mellin space technique for the solution of multiloop Baxter

equations, which is the main ingredient for the solution of corresponding quantum spectral

problems, and provide explicit results for the solution of ABJM quantum spectral curve in

the case of twist 1 operators in sl(2) sector for arbitrary spin values up to four loop order

with explicit account for wrapping corrections. The results for anomalous dimensions we

obtained could be further expressed in terms of harmonic sums decorated by the fourth

root of unity factors.

The present paper is organized as follows. In the next section we remind the reader

the formulation of ABJM quantum spectral curve. Section 3 contains the solution of

ABJM QSC in the case of twist 1 operators in sl(2) sector up to four loop order. Next, in

section 4 we present the details of solution of corresponding Baxter equations with Mellin

space technique. Section 5 contains the discussion of our results for anomalous dimensions

of twist 1 operators up to four loop order and for arbitrary values of spin variable. Finally,

in section 6 we come with our conclusion. Appendices and Mathematica notebooks contain

some details of our calculation.

2 ABJM quantum spectral curve

ABJM is a three-dimensional N = 6 Chern-Simons theory with product gauge group

U(N)× Û(N) at levels ±k. The field content of the theory is given by two gauge fields Aµ
and Âµ, four complex scalars Y A and four Weyl spinors ψA. The matter fields transform

in the bi-fundamental representation of the gauge group. The global symmetry group

of ABJM theory for Chern-Simons level k > 2 is given by orthosymplectic supergroup

OSp(6|4) [11, 83] and the “baryonic” U(1)b [83]. In the present paper we will be interested

in anomalous dimensions of sl(2)-like states given by single-trace operators of the form [84]:

tr
[
DS

+(Y 1Y †4 )L
]
. (2.1)
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In fact in what follows we will restrict ourselves with only twist 1 (L = 1) operators. It

should be noted that these operators characterized by Dynkin labels [L + S, S;L, 0, L] do

not form a closed subsector by themselves but belong to a wider OSp(2|2) subsector. At

the moment the most advanced method to deal with spin chain spectral problems arising

in the study if AdSd+1/CFTd duality is offered by quantum spectral curve (QSC) method.

For the case of ABJM theory QSC formulation was introduced in [62, 63], see also [65].

The QSC method is another reformulation of Thermodynamic Bethe Ansatz (TBA)

as a set of functional equations, such as Y or T -systems. The QSC method or Pµ-system

is special in a sense, that it involves only a finite number of objects satisfying a set of

nonlinear matrix Riemann-Hilbert equations. The Pµ-system for ABJM consists of six

functions Pa, a = 1, . . . , 6 and an antisymmetric 6 × 6 matrix µab. Both Pa and µab
are functions of spectral parameter u. The Pa functions are defined on a Riemann sheet

with a single cut running from −2h to +2h (h is ABJM QSC coupling constant), while

functions µab have an infinity of branch cuts at intervals (−2h,+2h)+ in, n ∈ Z and satisfy

a simple relation

µ̃ab(u) = µab(u+ i), (2.2)

where f̃ here and in the following will denote a function f analytically continued around

one of the branch points on the real axis. It is important to mention that, in contrast to

N = 4 SYM, ABJM QSC coupling constant h is a nontrivial function of ABJM t’Hooft

coupling constant λ [25, 85], which scales as h ∼ λ at small and as h ∼
√
λ/2 at strong

coupling constant. An important conjecture for the exact form of h(λ) was made in [86, 87]

by a comparison with the structure of localization results. The functions Pa and µab satisfy

the set of nonlinear constraints

P5P6 = 1 + P2P3 −P1P4, (2.3)

µχµχ = 0, (2.4)

where nonzero entries of 6× 6 symmetric matrix χ are given by

χ14 = χ41 = −1, χ23 = χ32 = 1, χ56 = χ65 = −1. (2.5)

The fundamental Riemann-Hilbert relations for Pa and µab functions are written as

P̃a = Pa − µabχbcPc, (2.6)

µab − µ̃ab = −PaP̃b + PbP̃a. (2.7)

It should be noted that, similar to the N = 4 SYM there is a complementary set of functions

satisfying their Riemann-Hilbert relations, so called Qω-system [62]. The Qω-system is

similar to Pµ-system (2.3)–(2.7) with replacements

Pa → Qa , µab → ωab . (2.8)

The Q and ω functions have different cut structure however, see for details [62, 63] and [58,

59]. In the case of ABJM model it is convenient to parametrize µab matrix in terms of 8
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functions νi, ν̄i, i = 1, . . . , 4 as [62, 63]:

µab =



0 ν1ν̄1 ν2ν̄2 ν̄2ν3 − ν̄1ν4 ν1ν̄2 ν̄1ν2

−ν1ν̄1 0 ν̄2ν3 + ν1ν̄4 ν3ν̄3 ν1ν̄3 ν̄1ν3

−ν2ν̄2 −ν̄2ν3 − ν1ν̄4 0 ν4ν̄4 −ν̄2ν4 −ν2ν̄4

ν̄1ν4 − ν̄2ν3 −ν3ν̄3 −ν4ν̄4 0 −ν̄3ν4 −ν3ν̄4

−ν1ν̄2 −ν1ν̄3 ν̄2ν4 ν̄3ν4 0 ν̄2ν3 − ν2ν̄3

−ν̄1ν2 −ν̄1ν3 ν2ν̄4 ν3ν̄4 ν2ν̄3 − ν̄2ν3 0


(2.9)

with an additional constraint: ν1ν̄4 − ν̄1ν4 = ν2ν̄3 − ν̄2ν3. Here νi and ν̄i satisfy already

periodic/anti-periodic constraints (σ = ±1):

ν̃i = σiν
[2]
i = σ ν

[2]
i , (2.10)

where here and in what follows f [n] (u) = f (u+ in/2). To describe anomalous dimensions

of sl(2)-like states (2.1) it is enough to consider Pµ-system reduced to symmetric, parity

invariant states. The reduced Pµ-system is identified by constraints P5 = P6 = P0, νi = ν̄i
and is written as [62, 63, 65]:

ν̃i = −Pij χ
jkνk, (2.11)

P̃ij −Pij = νiν̃j − νj ν̃i, (2.12)

where

Pij =


0 −P1 −P2 −P0

P1 0 −P0 −P3

P2 P0 0 −P4

P0 P3 P4 0

 , χij =


0 0 0 −1

0 0 1 0

0 −1 0 0

1 0 0 0

 , (2.13)

and

(P0)2 = 1−P1P4 + P2P3. (2.14)

In addition to the above constraints it is required [65], that P and ν functions have no poles

and stay bounded at branch points. The quantum numbers of the states we are interested

in, that is twist L, spin S and conformal dimension 4 are encoded in the behavior of P, ν

functions at large u [62, 63, 65]:

P0−4 ' (A0u
0, A1u

−L, A2u
−L−1, A3u

+L+1, A4u
+L),

A1A4 = −(∆− L+ S)(∆− L− S + 1)(∆ + L− S + 1)(∆ + L+ S)

L2(2L+ 1)

A2A3 = −(∆− L+ S − 1)(∆− L− S)(∆ + L− S + 2)(∆ + L+ S + 1)

(L+ 1)2(2L+ 1)
, (2.15)

and

νi ∼
(
u∆−L, u∆+1, u∆, u∆+L+1

)
. (2.16)

The anomalous dimension γ is given by γ = 4− L− S.
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3 Perturbative solution of ABJM QSC

For the perturbative solution of ABJM quantum spectral curve we use the same set of

equations as in [65]. The latter easily follow1 from fundamental Pν-system (2.11)–(2.12)

and are given by

ν
[3]
1

P
[1]
1

− ν
[−1]
1

P
[−1]
1

− σ

(
P

[1]
0

P
[1]
1

− P
[−1]
0

P
[−1]
1

)
ν

[1]
1 = −σ

(
P

[1]
2

P
[1]
1

− P
[−1]
2

P
[−1]
1

)
ν

[1]
2 , (3.1)

ν
[3]
2

P
[1]
1

− ν
[−1]
2

P
[−1]
1

+ σ

(
P

[1]
0

P
[1]
1

− P
[−1]
0

P
[−1]
1

)
ν

[1]
2 = σ

(
P

[1]
3

P
[1]
1

− P
[−1]
3

P
[−1]
1

)
ν

[1]
1 , (3.2)

and

σν
[2]
1 = P0ν1 −P2ν2 + P1ν3 , (3.3)

σν
[2]
2 = −P0ν2 + P3ν1 + P1ν4 , (3.4)

P̃2 −P2 = σ
(
ν3ν

[2]
1 − ν1ν

[2]
3

)
, (3.5)

P̃1 −P1 = σ
(
ν2ν

[2]
1 − ν1ν

[2]
2

)
, (3.6)(

ν1 + σν
[2]
1

) (
p0 − (hx)L

)
= p2

(
ν2 + σν

[2]
2

)
− p1

(
ν3 + σν

[2]
3

)
, (3.7)(

ν2 + σν
[2]
2

) (
p0 + (hx)L

)
= p3

(
ν1 + σν

[2]
1

)
+ p1

(
ν4 + σν

[2]
4

)
, (3.8)

where

x ≡ x(u) =
u+
√
u2 − 4h2

2h
(3.9)

is the Zhukovsky variable parameterizing the single cut of P functions on the defining

Riemann sheet. In addition from the analytical structure of νi(u) functions on the defining

Riemann sheet it follows, that the following combinations of functions

νi(u) + ν̃i(u) = νi(u) + σν
[2]
i (u) ,

νi(u)− ν̃i(u)√
u2 − 4h2

=
νi(u)− σν[2]

i (u)√
u2 − 4h2

(3.10)

are free of cuts on the whole real axis. Similar to [64, 65] we will parametrize the P(u)

functions entering the solution as

P1 = (xh)−Lp1 = (xh)−L

(
1 +

∞∑
k=1

∞∑
l=0

c
(l)
1,k

h2l+k

xk

)
, (3.11)

P2 = (xh)−Lp2 = (xh)−L

(
h

x
+

∞∑
k=2

∞∑
l=0

c
(l)
2,k

h2l+k

xk

)
, (3.12)

1See [65] for details.
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P0 = (xh)−Lp0 = (xh)−L

 ∞∑
l=0

A
(l)
0 h2luL +

L−1∑
j=0

∞∑
l=0

m
(l)
j h

2luj +

∞∑
k=1

∞∑
l=0

c
(l)
0,k

h2l+k

xk

 ,

(3.13)

P3 = (xh)−Lp3 = (xh)−L

 ∞∑
l=0

A
(l)
3 h2lu2L+1 +

2L∑
j=0

∞∑
l=0

k
(l)
j h

2luj +

∞∑
k=1

∞∑
l=0

c
(l)
3,k

h2l+k

xk

 .

(3.14)

where we have accounted for correct polynomial asymptotic of P functions at large values of

spectral parameter u (2.15). We may always assume that on the defining or first Riemann

sheet |x(u)| > 1 and thus the above expansions are justified. Due to gauge symmetry of

QSC equations2

νi → R j
i νj , Pij → R i′

i Pi′j′R
j′

j , (3.15)

where R is any 4 × 4 constant matrix satisfying RtχR = χ the coefficients m
(l)
j , k

(l)
j in

the above parametrization at twist L = 1 are left undetermined. The coefficients A
(l)
0 ,

A
(l)
3 and c

(l)
i,k are some functions of spin S only, otherwise they are just constants. Here we

have also used the mentioned gauge freedom to set A1 = 1 and A2 = h2. Since x tends to

x+(u) = u+i
√

4h2−u2
2h and x−(u) = 1/x+(u) = u−i

√
4h2−u2
2h on the upper and lower bank of

the cut, correspondingly, the values of the functions Pa(u) on the two banks are related as

Pa(u− i0) = Pa(u+ i0)|x+(u)→1/x+(u) .

Therefore, in a sufficiently small vicinity3 of the cut on the second sheet of u-plane (the

inner vicinity of unit circle in x-plane) we have

P̃a = Pa

∣∣∣
x→1/x

=

(
x

h

)L
p̃a , p̃a = pa

∣∣∣
x→1/x

. (3.16)

Next, the expansion of νi(u) functions in terms of QSC coupling constant h is given by

νi(u) =

∞∑
l=0

h2l−Lν
(l)
i (u) . (3.17)

3.1 Leading order

From now on we consider the case of L = 1 operators. First, from eqs. (2.15) and (2.14)

at large values of spectral parameter u we get

A
(0)
0 = σ(2S + 1) . (3.18)

Next, we take LO approximation of the first Baxter equation (3.1). The solution of the

latter, as described in detail in the next section, is given by

ν
(0)
1 (u) = αQ[−1](S, u) , (3.19)

2See for details [65].
3The vicinity is such that the substitution x→ 1/x retains the convergence of (3.11)–(3.14).
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where Q(S, u) is LO Baxter polynomial defined in eq. (4.8) and α is some spin S dependent

constant to be determined later. In general for the details of the solutions of Baxter

equations (3.1)–(3.2) we refer the reader to next section. Here we will just use the results

obtained there. Next, from equation (3.3) we determine the expression for ν
(0)
3 (u) and

substitute it in the equation (3.5). Expanding the latter at u = 0 up to O(u2) we get the

expression4 for constant α:

1

α2
= −4iB1(S) , B1(S) = H1(S)−H−1(S) . (3.20)

Also from the requirement of absence of poles in combinations (3.10) for ν
(0)
1 we may

determine the value of σ = (−1)S . Knowing the expression for ν
(0)
1 (u) we may determine

ν
(0)
2 by solving second Baxter equation (3.2):

ν
(0)
2 = σ

α

2

[
− 1

4
A

(0)
3

(
3 (S + 2) (S + 1)

2S + 3
Q[−1] (S + 2, u)− 2

3S2 + 3S + 1

2S + 1
Q[−1] (S, u)

+
3S (S − 1)

2S − 1
Q[−1] (S − 2, u)

)
+
i

2
k

(0)
2

[
Q[−1] (S + 1, u)− δS 6=0Q

[−1] (S − 1, u)
]

+k
(0)
1

1

2S + 1
Q[−1] (S, u)

]
. (3.21)

Next, from equation (3.6) expanded at u = 0 up to O(u) we get the value of A
(0)
3 constant:

A
(0)
3 = −4

3
(2S + 3)(2S − 1)B1(S) . (3.22)

In addition, from the same expansion we get the following values of coefficients

k
(0)
2 = 0 , c

(0)
1,1 = 0 . (3.23)

Note, that if we account for δS,0 term in the ν
(0)
2 solution then the value of k

(0)
2 coefficient

turns out to be fixed. So, the analytical continuation in spin S allows us to fix extra

gauge freedom.

3.2 Next-to-leading order

Before starting actual NLO calculation it makes sense to determine as many required

constants as possible with the information on LO solutions we already have. Performing

small u expansion of (3.6) up to O(u3) we get

c
(0)
1,2 = 4B1(S)−B1(S)2 − 2B2(S) . (3.24)

Next, equation (3.7) expanded at u = 0 up to O(1) terms gives us the value of c
(0)
0,1

coefficient:

c
(0)
0,1 =

σk
(0)
1

2(1 + 2S)
− 1− iσS (1 + S)

3(1 + 2S)α2
. (3.25)

4See appendix B for definition of B-sums.
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Substituting the expression for ν
(0)
4 from (3.4) into equation (3.8) and expanding the latter

at small u up to O(1) terms we get the value of c
(0)
3,1 coefficient:

c
(0)
3,1 =

σ(2S(1 + S) + 3iα2k
(0)
1 )(12i(1 + 2S)α2 − σ(2S(1 + S) + 3iα2k

(0)
1 ))

36(1 + 2S)2α4
. (3.26)

Finally, the expansion of (3.5) at u = 0 up to O(u4) terms gives us the values of c
(0)
2,2 and

c
(0)
2,3 coefficients:

c
(0)
2,2 = 0 , c

(0)
2,3 = 4iα2 (B1(S)B2(S) +B3(S)) . (3.27)

Now, we are ready to proceed with the solution of NLO Baxter equations. As is

explained in the next section the solution of the first Baxter equation (3.1) at NLO is

given by

ν
(1)
1 (u) =

α

2

(
σA

(1)
0 − 2(2S − 1)B1(S)

){
Q[−1](S, u) (γE + log 2− iη1(u)

−H1(S) + iπ coth(πu)) +

S∑
k=1

1 + (−1)k

k
Q[−1](S − k, u)

}

−α
S∑
k=1

1 + (−1)k

k
(B1(S)+B1(S − k))Q[−1](S − k, u)

+φper
1,0Q

[−1](S, u) + φper
1,1P1(u)Q[−1](S, u) . (3.28)

The absence of poles in combinations (3.10) for ν
(1)
1 allows us to determine the values of

coefficients A
(1)
0 and φper

1,1 :

A
(1)
0 = 2σ (3 + 2S)B1(S) , φper

1,1 = −2iαB1(S) . (3.29)

Next, the expansions of (3.5) at u = 0 up to O(u2) terms fixes the value of φper
1,0 :

φper
1,0 = α

{
4

3
B1(S)2+B2(S)+

3B3(S) + 2H3(S)− 2H−3(S)

3B1(S)
−2B1(S)(1+2 log 2)

}
. (3.30)

Now we are ready to solve the second Baxter equation at NLO (3.2). The details of

the solution could be found in the next section. In terms of q
(1)
2 (u) (4.45) the expression

for ν
(1)
2 (u) is then given by

ν
(1)
2 (u) = q

(1)
2 (u− i/2) . (3.31)

Requiring the absence of poles in combinations (3.10) for ν
(1)
2 allows us to fix coefficients

φper
2,0 and φanti

2,0 :

φper
2,0 = 0 , φanti

2,0 = 4iαB1(S) . (3.32)

– 8 –
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Finally, expanding equation (3.6) at u = 0 up to O(1) terms gives us the value of A
(1)
3

coefficient:

A
(1)
3 = −16

3
(2S − 1)(2S + 3)

(
3H̄−2,−1 − 2H̄−2,i − H̄−2,1 − H̄−1,−2 + 2H̄−1,2i − H̄−1,2

−6H̄i,−2 + 12H̄i,2i − 6H̄i,2 − 6H̄2i,−1 + 4H̄2i,i + 2H̄2i,1 − H̄1,−2 + 2H̄1,2i

−H̄1,2 + 3H̄2,−1 − 2H̄2,i − H̄2,1 + 2H̄−1,i,−1 − 2H̄−1,i,1 + 8H̄i,−1,−1

−12H̄i,−1,i + 4H̄i,−1,1 − 16H̄i,i,−1 + 16H̄i,i,i + 4H̄i,1,−1 − 4H̄i,1,i + 2H̄1,i,−1

−2H̄1,i,1 −
1

2
B1ζ2

)
− 4

3
(5 + 20S + 4S2)B2

1 . (3.33)

where H̄a, ... = Ha, ...(2S) is defined in (5.4). The reason behind the appearance of sums

different from harmonic is related to the fact that solutions of Baxter equations at NLO

contain Baxter polynomials Q(S, u) under different summation signs with various weights.

For example, in the case of homogeneous solution of second Baxter equation Z(S, u) en-

tering the expression for q
(1)
2 (u) (4.45) its expansion at u = i/2 is given by

Z
(
S, u+

i

2

)
= −i(−1)S [S−1(S) + ln 2] + u(−1)S [−B1(S) ln 2 + V (S) + ζ2/2] +O(u2) ,

(3.34)

where V (S) =
∑S

k=1
1+(−1)S+k

k+S B1(k− 1) could be further rewritten in terms of generalized

harmonic sums (5.4). Also, the necessity of the argument 2S could be promptly realized

after examining the denominators of the rational numbers entering the results for large

enough S and observing the appearance of prime numbers in the interval [S+1, 2S) among

their factors.

We would like to mention, that in the simplification of the coefficients expressions the

use of HarmonicSums mathematica package [88–94] was helpful.

4 Solution of Baxter equations with Mellin transform

In the previous section we have seen that the most complicated part of the QSC solution is

the solution of two inhomogeneous Baxter equations at each perturbation order. To solve

these second order finite difference equations we will employ Mellin transform technique

to convert them to ordinary differential equations. The latter was originally applied to the

solution of Lipatov’s reggeon spin chain [95] by Faddeev and Korchemsky in [96]. Later

this technique was used to solve asymptotic Baxter equation in N = 4 SYM up to three

and four loops [97, 98]. In order to iteratively search for the perturbative solution of

equations (3.1)–(3.8), we expand eqs. (3.1), (3.2) up to hk and obtain the inhomogeneous

equations for q
(k)
1,2 =

(
ν

(k)
1,2

)[1]
in the following form

(u+ i/2)q
(k)
1 (u+ i)− i(2S + 1)q

(k)
1 (u)− (u− i/2)q

(k)
1 (u− i) =V

(k)
1 , (4.1)

(u+ i/2)q
(k)
2 (u+ i) + i(2S + 1)q

(k)
2 (u)− (u− i/2)q

(k)
2 (u− i) =V

(k)
2 . (4.2)
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Here V
(k)

1 depends on q
(l)
1,2 with l < k, and V

(k)
2 depends in addition on q

(k)
1 . Applying

Mellin transformation5 to eqs. (4.1) and (4.2), we get

(z̄ − z) ∂zΨ
(k)
1 (z) + 2SΨ

(k)
1 (z) = iṼ

(k)
1 (z) , (4.3)

(z̄ − z) ∂zΨ
(k)
2 (z)− 2 (S + 1) Ψ

(k)
2 (z) = iṼ

(k)
2 (z) , (4.4)

where Ψ
(k)
1,2 = M−1[q

(k)
1,2 ] and Ṽ

(k)
1,2 = M−1[V

(k)
1,2 ]. The integration of equations (4.3)

and (4.4) is straightforward and is given by

Ψ
(k)
1 (z) = i (z̄ − z)S

∫
(z̄ − z)−S−1 Ṽ

(k)
1 (z) dz , (4.5)

Ψ
(k)
2 (z) = i (z̄ − z)−S−1

∫
(z̄ − z)S Ṽ

(k)
2 (z) dz . (4.6)

Note that, when passing to the Mellin space, we silently assumed that Ψ
(k)
1,2(z) are finite

at z = 0 and z = 1. In general it might be not so due to the appearing logarithms of z

and z̄. Therefore, the approach based on Mellin transformation, should be used with great

care, in particular the results obtained within this approach should be transformed back

to u-space and directly checked against the equations (4.1) and (4.2). These complications

may be viewed as disadvantages of the Mellin-space approach. Nevertheless, we find it

advantageous to use Mellin transformation technique, at least, up to the next-to-leading

order considered in this paper.

4.1 Homogeneous solution

The solution of homogeneous first Baxter equation (4.3) in Mellin space is easy and is

given by6

Ψ
(0)
1 = (z̄ − z)S . (4.7)

Its Mellin transform to spectral parameter u-space is given by

Q (S, u) = 2F1

(
−S, 1

2
+ iu; 1; 2

)
=

(−1)SΓ
(

1
2 + iu

)
S!Γ

(
1
2 + iu− S

) 2F1

(
−S, 1

2
+ iu;

1

2
+ iu− S;−1

)
. (4.8)

Moreover, Φper
Q (u)Q(S, u) and Φanti

Q (u)Q(S, u), where Φper
Q (u) and Φanti

Q (u) are arbitrary

periodic and anti-periodic functions of spectral parameter u, are also solutions of homoge-

neous first (4.1) and second (4.2) Baxter equations correspondingly.

To find second solutions of homogeneous Baxter equations let us consider second Bax-

ter equation (4.2). Making the ansatz q2(S, u) = Q(S, u)b[1](S, u) similar to [64, 65] the

homogeneous Baxter equation (4.2) could be rewritten as

∇+(uQ[1]Q[−1]∇−b) = 0 , (4.9)

5See appendix A for more details and notation.
6The arbitrary constant in front of solution is dropped.
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where ∇+f = f − f [2] and ∇−f = f + f [2]. From equation (4.9) it follows then, that7

b(u) + b(u+ i) =
1

uQ[1]Q[−1]
. (4.10)

To solve this difference equation we will use the empirically guessed identity

1

uQ[1]Q[−1]
=

(−1)S

u
+ i(−1)S

bS−1
2 c∑

k=0

1

S − k

×

(
Q
(
S − 1− 2k, u− i

2

)
Q
(
S, u− i

2

) +
Q
(
S − 1− 2k, u+ i

2

)
Q
(
S, u+ i

2

) )
. (4.11)

Then we see, that

b(u) + b(u+ i) =
(−1)S

u
+

[
i(−1)S

bS−1
2 c∑

k=0

1

S − k
Q
(
S − 1− 2k, u− i

2

)
Q
(
S, u− i

2

) + (u→ u+ i)

]
.

(4.12)

Introducing Hurwitz function η−1(u) defined as

η−1(u) =
∞∑
n=0

(−1)n

u+ in
=
i

2

(
ψ
(
−iu

2

)
− ψ

(
−iu+ i

2

))
, (4.13)

where ψ(u) is polygamma function and noting, that

η−1(u) + η−1(u+ i) =
1

u
, (4.14)

we see that the solution for b(u) function is given by

b(u) = (−1)Sη−1(u) + i(−1)S
bS−1

2 c∑
k=0

1

S − k
Q
(
S − 1− 2k, u− i

2

)
Q
(
S, u− i

2

) . (4.15)

Finally the expression for second solution with polynomial asymptotic, which we will denote

by Z(S, u) is given by8

Z(S, u) = iσ

bS−1
2 c∑

k=0

1

S − k
Q (S − 1− 2k, u) + ση−1(u+ i/2)Q (S, u) . (4.16)

Once this solution is found, one can check directly that it satisfies the homogeneous part

of eq. (4.2), using the generating function found in appendix B.

7Of course, b(u) is defined up to arbitrary multiplicative periodic and additive anti-periodic constants

which is taken into account in eqs. (4.17), (4.18).
8For a rigorous proof that Z(S, u) is a solution see appendix B.
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The general solutions of first and second homogeneous Baxter equations are then

given by

qhom
1 (S, u) = Φ1,perQ(S, u) + Φ1,antiZ(S, u) , (4.17)

qhom
2 (S, u) = Φ2,antiQ(S, u) + Φ2,perZ(S, u) , (4.18)

where Φi,per and Φi,per are arbitrary periodic and anti-periodic functions in spectral param-

eter u. Otherwise they are arbitrary functions of spin S to be determined from consistency

conditions as described in previous section. We will parametrize their u dependence similar

to [64, 65] with the basis of periodic and anti-periodic combinations of Hurwitz functions

defined as

Pk(u) = ηk(u) + ηk(i− u) = sgn(k)Pk(u+ i) , k 6= 0 ∈ Z , (4.19)

where

ηa(u) =

∞∑
k=0

(sgn(a))k

(u+ ik)|a|
, (4.20)

and bar over η denotes complex conjugation. Note that Pk(u) can be expressed via ele-

mentary functions:

Pk(u) =
(−∂u)|k|−1

(|k| − 1)!

{
π coth(πu) k > 0

π/ cosh(πu) k < 0
. (4.21)

Then the functions Φper
a and Φanti

a are written as

Φper
a (u) = φper

a,0 +

Λ∑
j=1

φper
a,jPj(u) , Φanti

a (u) =
Λ∑
j=1

φanti
a,j P−j(u) , (4.22)

where Λ is a cutoff dependent on the order of perturbation theory.

4.2 Inhomogeneous solution

Let us now proceed with the solution of inhomogeneous Baxter equations.

4.2.1 LO

At leading order V
(0)

1 = 0 and LO order solution of the first Baxter equation is given by

the solution of homogeneous equation:

Ψ
(0)
1 = α(z̄ − z)S , q

(0)
1 (u) = αQ(S, u) , (4.23)

with α given by equation (3.20). The leading order second Baxter equation is already

inhomogeneous with V
(0)

2 , after substitution of the anzats for P-functions, given by

V
(0)

2 = iσ

[
A

(0)
3

(
3u2 − 1

4

)
+ 2k

(0)
2 u+ k

(0)
1

]
q

(0)
1 , (4.24)

Ṽ2(z) = iσ

[
A

(0)
3

(
3û2 − 1

4

)
+ 2k

(0)
2 û+ k

(0)
1

]
Ψ

(0)
1 , (4.25)
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and the particular solution for Ψ
(0)
2 is given by (4.6):

Ψ
(0)
2 (z) = −σ (z̄ − z)−S−1

∫
(z̄ − z)S

[
A

(0)
3

(
3û2 − 1

4

)
+ 2k

(0)
2 û+ k

(0)
1

]
Ψ

(0)
1 dz

= −σα (z̄ − z)−S−1
∫

(z̄ − z)S
[
A

(0)
3

(
3û2 − 1

4

)
+ 2k

(0)
2 û+ k

(0)
1

]
(z̄ − z)S dz .

(4.26)

Acting by û operator (see eq. (A.7)), we obtain

Ψ
(0)
2 (z) = σ

1

2
α (z̄ − z)−S−1

∫
d (z̄ − z) (z̄ − z)S

[
− 1

4
A

(0)
3

(
3 (S + 2) (S + 1) (z̄ − z)S+2

−2
[
3S2 + 3S + 1

]
(z̄ − z)S + 3S (S − 1) (z̄ − z)S−2

)
+ik

(0)
2

[
(S + 1) (z̄ − z)S+1 − S (z̄ − z)S−1

]
+ k

(0)
1 (z̄ − z)S

]
= σ

1

2
α

[
C (z̄ − z)−S−1 − 1

4
A

(0)
3

(
3 (S + 2) (S + 1)

(z̄ − z)S+2

2S + 3

−2
[
3S2 + 3S + 1

] (z̄ − z)S

2S + 1
+ 3S (S − 1)

(z̄ − z)S−2

2S − 1

)
+
i

2
k

(0)
2

[
(z̄ − z)S+1 − (z̄ − z)S−1

]
+ k

(0)
1

(z̄ − z)S

2S + 1

]
. (4.27)

The requirement that Ψ
(0)
2 (z) is polynomial fixes constant C = i

2k
(0)
2 δS,0 and we finally get9

q
(0)
2 = σ

α

2

[
− 1

4
A

(0)
3

(
3 (S + 2) (S + 1)

2S + 3
Q (S + 2, u)− 2

3S2 + 3S + 1

2S + 1
Q (S, u)

+
3S (S − 1)

2S − 1
Q (S − 2, u)

)
+
i

2
k

(0)
2 [Q (S + 1, u)− δS 6=0Q (S − 1, u)]

+k
(0)
1

1

2S + 1
Q (S, u)

]
. (4.28)

4.2.2 NLO

At NLO the inhomogeneous part of the first Baxter equation after substitution of the

anzats for P-functions is given by

V
(1)

1 =
4iσq

(0)
2 (u)

1 + 4u2
+

(
c

(0)
1,1 +

2

2u+ i

)
q

(0)
1 (u+ i)−

(
c

(0)
1,1 +

2

2u− i

)
q

(0)
1 (u− i)

+σ

{
iA

(1)
0 −

4i

1 + 4u2
(c

(0)
0,1 − c

(0)
1,1m

(0)
0 )

}
q

(0)
1 (u) . (4.29)

To convert it to Mellin space we need the following expressions

˜
q

(0)
1 (u+ i)

u+ i/2
= α [iz̄∂zz]−1

[
− z̄
z

(z̄ − z)S +
1

z

]
= i

α

z
∂−1
z z−1

[
(z̄ − z)S − 1

z̄

]
= i

α

z

∫ z

0

dx

x

[
(x̄− x)S − x̄−1

]
= i

α

z
[ln z̄ +G (S, z)] , (4.30)

9The homogeneous piece at this order is zero as could be seen from the consistency constraints considered

in previous section.
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˜
q

(0)
1 (u− i)
u− i/2

= α [iz∂z z̄]−1

[
− z

z̄
(z̄ − z)S +

σ

z̄

]
= −iαz̄−1∂−1

z̄

[
1

z̄
(z̄ − z)S − σ

zz̄

]
= −iσα

z̄
[ln z +G (S, z̄)] , (4.31)

where

G (S, z) =

∫ z

0

dx

x

[
(x̄− x)S − x̄−1

]
− ln z̄

=

∫ z

0

dx

x

[
(x̄− x)S − 1

]
= ∂−1

z z−1
[
(z̄ − z)S − 1

]
. (4.32)

The introduced G-function satisfies the following recurrence relation

G (S, z)−G (S − 1, z) = −2

∫ z

0
dx (1− 2x)S−1 =

1

S

(
(z̄ − z)S − 1

)
, G (0, z) = 0 .

(4.33)

So, we may write it as

G (S, z) =
S∑
j=1

1

j

(
(z̄ − z)j − 1

)
. (4.34)

The contribution of the term proportional to q
(0)
2 (u) is determined using partial fractioning

4i

1 + 4u2
=

1

u− i/2
− 1

u+ i/2
, (4.35)

so that

˜4iQ (S, u)

1 + 4u2
= −i

[
(−1 + z̄∂z)

−1 z−1 − (1 + z∂z)
−1 z̄−1

]
(z̄ − z)S

= −i
{
z̄−1G (S, z)+σz−1G (S, z̄)+z̄−1 ln z+σz−1 ln z̄+

(
z̄−1+z−1σ

)
B1 (S)

}
.

(4.36)

The underlined term is integration constant chosen in order to get rid of singularities at

z = 0 and z = 1. Using the above expressions together with the values of constants known

at this stage we get

Ṽ
(1)

1 (z)

α
=

i

2

[
(2S − 1) (z̄ − z)S+2 − (2S + 3) (z̄ − z)S (z̄ − z)(σ − 1) + (1 + σ)

] B1 (S)

(zz̄)

+
i

2
(zz̄)−1 ((1 + σ)(z̄ − z) + (1− σ)) δG (S, z) + iσA

(1)
0 (z̄ − z)S , (4.37)

where

δG(S, z) ≡ G(S, z)−G(S, z̄) =
S∑
j=1

1− (−1)j

j
(z̄ − z)j . (4.38)

Rewriting the above expression as

1

zz̄
δG(S, z) = H(S, z)−H(S, z̄) +

(
1

z
− 1

z̄

)
B1(S) , (4.39)

z̄ − z
zz̄

δG(S, z) = H(S, z) +H(S, z̄) +

(
1

z
+

1

z̄

)
B1(S) , (4.40)
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where

H(S, z) =
S∑
j=1

1− (−1)j

jz

(
(z̄ − z)j − 1

)
= −2

S−1∑
k=0

(z̄ − z)k {B1(S)−B1(k)} , (4.41)

we may get rid from z, z̄ in the denominator and the final expression for Ṽ
(1)

1 (z) takes the

form (w = z̄ − z):

Ṽ
(1)

1 (z)

αi
= wS(σA

(1)
0 − 2(2S − 1)B1(S)) + 2

S∑
k=1

(1 + (−1)k) {B1(S) +B1(S − k)}wS−k ,

(4.42)

Then the particular solution is given by (4.5):

Ψ
(1)
1 (z) =

α

2

(
σA

(1)
0 − 2(2S − 1)B1(S)

)
wS logw

− α
S∑
k=1

1 + (−1)k

k
wS−k {B1(S) +B1(S − k)} , (4.43)

For the Mellin transformed10 to u-space particular solution plus homogeneous piece with

at maximum first order poles in u as required by QSC analyticity constraints we then get11

q
(1)
1 (u) =

α

2

(
σA

(1)
0 − 2(2S − 1)B1(S)

){
Q(S, u) (γE + log 2− iη1(u+ i/2)

−H1(S) + iπ tanh(πu)) +

S∑
k=1

1 + (−1)k

k
Q(S − k, u)

}

− α
S∑
k=1

1 + (−1)k

k
(B1(S)+B1(S − k))Q(S − k, u)

+ φper
1,0Q(S, u) + φper

1,1P1(u+ i/2)Q(S, u) . (4.44)

The solution of second Baxter equation at NLO goes along the same lines, but the

expressions become more cumbersome. So, here we will present only the expression for

q
(1)
2 (u) without derivation. The latter including homogeneous piece with at maximum first

order poles in u as required by QSC analyticity constraints is given by

q
(1)
2 (u)

α

= A
(1)
3

(
σ
(
3S2 + 3S + 1

)
QS

4(2S + 1)
− 3σ(S − 1)SQS−2

8(2S − 1)
− 3σ(S + 1)(S + 2)QS+2

8(2S + 3)

)

+ 2(2S+3)B1(S)

{(
1

2
⌊
S+1

2

⌋
−1

+σ

)
QS−2+

(1−σ(2S−1))QS
2S + 1

}
−4B1(S)G3(S)

10See the details of transformation in appendix C.
11Here we have dropped the piece with non-polynomial asymptotic in the particular solution contribution.

The latter is defined up to a homogeneous solution and we may use this freedom to ensure that the ansatz

for overall solution has correct polynomial asymptotics we are looking for.
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− k
(0)
1 σ(2S + 3)B1(S)QS

(2S + 1)2
+

(
σ(2S−1)(2S+3)

(
3S2+3S+1

)
B1(S)

3(2S + 1)
− k

(0)
1 σ

2(2S+1)

)
×
{

2B1(S)G6(S) +G4(S)− α−1Φper
1 (u)QS

}
+

1

4
ik

(1)
2 σ (QS+1 − δS 6=0QS−1)

− 1

2
σ(S − 1)S(2S + 3)B1(S)

{
(2B1(S)G6(S − 2) +G4(S − 2)− α−1Φper

1 (u)QS−2

}
− 1

2
σ(S+1)(S+2)(2S−1)B1(S)

{
2B1(S)G6(S + 2)+G4(S + 2)−α−1Φper

1 (u)QS+2

}
+ σ(2S−1)(2S+3)B1(S)2

{(
6S3−3S2−11S−3

)
QS

3(2S+1)2
−
(
2S3−3S2−23S−22

)
QS+2

2(2S + 3)2

− (S − 1)S(2S + 3)QS−2

2(2S − 1)2

}
+

k
(1)
1 σQS

2(2S + 1)
+ α−1φper

2,0ZS + α−1φanti
2,0 P−1

(
u+

i

2

)
QS ,

(4.45)

where QS ≡ QS(u) ≡ Q(S, u), ZS ≡ Z(S, u) and the following functions were introduced:

G3(S) ≡ G3(S, u) =

2S+1∑
k=S+1

(1− (−1)k)Qk−S−1(u)

k
, (4.46)

G4(S) ≡ G4(S, u) =−
S∑
k=1

(1 + (−1)k)QS−k(u)

k
(B1(S)−B1(S − k)) , (4.47)

G6(S) ≡ G6(S, u) =−
S∑
k=1

(1 + (−1)k)QS−k(u)

k
(4.48)

− 2QS(u)
{
γE + log 2−H1(S)− iη1(u+ i/2) + iπ tanh(πu)

}
.

(4.49)

5 Anomalous dimensions

The expressions for the anomalous dimensions could be easily obtained from A
(0,1)
3 with

the help of (2.15). This way, up to four loops we got the following results for anomalous

dimensions of twist 1 operators

γ(S) = γ(0)(S)h2 + γ(1)(S)h4 + . . . (5.1)

where

γ(0)(S) = 4 (H1 −H−1) , (5.2)

γ(1)(S) = 16
{

3H̄−2,−1 − 2H̄−2,i − H̄−2,1 − H̄−1,−2 + 2H̄−1,2i − H̄−1,2 − 6H̄i,−2

+ 12H̄i,2i − 6H̄i,2 − 6H̄2i,−1 + 4H̄2i,i + 2H̄2i,1 − H̄1,−2 + 2H̄1,2i − H̄1,2

+ 3H̄2,−1 − 2H̄2,i − H̄2,1 + 2H̄−1,i,−1 − 2H̄−1,i,1 + 8H̄i,−1,−1 − 12H̄i,−1,i

+ 4H̄i,−1,1 − 16H̄i,i,−1 + 16H̄i,i,i + 4H̄i,1,−1 − 4H̄i,1,i + 2H̄1,i,−1 − 2H̄1,i,1

}
+ 8 (H−1 −H1) ζ2 , (5.3)
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and we introduced new sums

Ha,b,...(S) =

S∑
k=1

<[(a/|a|)k]
k|a|

Hb,...(k) , Ha,... = Ha,...(S) , H̄a,... = Ha,...(2S) , (5.4)

so that for real indexes these sums reduce to ordinary harmonic sums. Note that the

conventional harmonic sums of argument S can be expressed via our extended basis (5.4).

In particular, we have γ(0)(S) = 4 (H1 −H−1) = 4
(
H̄1 + H̄−1 − 2H̄i

)
.

Imaginary indexes correspond to the generalization of the harmonic sums with the

fourth root of unity factor (exp(iπ/2))n. We would like also to point out the appearance of

argument 2S and note, that these new sums could not be further reduced to cyclotomic or

other generalized harmonic sums of [90, 91]. From this expression we see, that the maximal

transcendentality principle12 [70, 71] also holds for anomalous dimensions of ABJM theory

with the account for finite size corrections. Next, the obtained expression respects shift

symmetry [65, 77], that is maximum transcendentality parts (ζ2 pieces in our case) of

anomalous dimensions of operators with (L, S) = (1, 2n) and (L, S) = (1, 2n− 1), n ∈ N+

are the same. It is also interesting to inspect the large spin S limit of our expressions. In

this limit we get

γ(0)(S) ∼ 4 log(S) + 4 (log 2 + γE) +O
(

1

S

)
, (5.5)

γ(1)(S) ∼ −8ζ2 log(S)− 8ζ2 (log 2 + γE)− 12ζ3 +O
(

log(S)

S

)
, (5.6)

which is in agreement with [77, 82], where it was shown that wrapping correction scales

as logS/S.

Let us now make some comments on the size of the basis of generalized harmonic

sums (5.4) at NNLO and higher. At weight w the number of all such sums is given by

4 · 5w−1 (3 · 4w−1 if we take into account the real part operator in (5.4)). However, similar

to S-sums [90, 102] these sums should obey additional relations similar to those following

from quasi-shuffle algebra together with differentiation and generalized argument relations

for S-sums. Indeed at NLO with weight 3 we expect in total 100 (48) such sums. However,

only 29 of them appear in our final answer (5.3). Similarly, at NNLO with w = 5 in general

we should have 2500 (768) sums which are expected to further reduce to several hundreds.

Also, in the case of ABJM model compared to N = 4 SYM the analyticity properties of

anomalous dimensions are fully unstudied at the moment and we can not use for example

such notion as Gribov-Lipatov reciprocity [103, 104] to further reduce sums basis, see for

example [76].

Finally, it is instructive to compare our result with previously known expression [77, 82]:

γL=1,S = 4h2 (H1 −H−1)− 16h4
(
H−3 −H3 +H−2,−1 −H−2,1 +H−1,−2 −H−1,2

−H1,−2 +H1,2 −H2,−1 +H2,1 +H−1,−1,−1 −H−1,−1,1 −H1,−1,−1 +H1,−1,1

)
+ 4h4 (H1 −H−1)W(1, S) +O(h6) , (5.7)

12Similar considerations for the evaluation of Feynman diagrams first appeared in [99]. See also [100, 101].
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where

W(L, S) = − i

2

∞∑
M=1

(−1)M Res
q=iM

4LQ
(
q−i(M−1)

2

)
(q2 +M2)LQ

(
q−i(M+1)

2

)
Q
(
q+i(M−1)

2

)
Q
(
q+i(M+1)

2

)
×
M−1∑
j=0

Q
(
q−i(M−1)+2ij

2

)
Q
(
q−i(M−1)

2

)
2(

1

2j − iq −M
− 1

2(j + 1)− iq −M

)
(5.8)

and Q(u) = 2F1(−S, iu + 1/2; 1; 2). This expression is still too complex as it involves

“complex” hypergeometric functions and takes more time to get expressions for anoma-

lous dimensions compared to our representation in terms of generalized harmonic sums.

Moreover the representation in terms of sums makes the study of analytic properties of

anomalous dimensions much more simple.

6 Conclusion

In this paper we have shown how Mellin space technique could be used to solve multiloop

Baxter equations arising from N = 4 SYM or ABJM quantum spectral curves. As a par-

ticular example we have considered anomalous dimensions of twist 1 operators in ABJM

theory up to four loop order. The result could be expressed in terms of harmonic sums

with imaginary indexes, so that the maximum transcendentality principle holds. The pre-

sented Mellin space technique for the solution of multiloop Baxter equations arising within

quantum spectral curve method could be extended to higher loops at twist 1. Moreover, it

could be also applied to the twist 2 operators. In the latter case we will have an inhomo-

geneous second order differential equation in Mellin space, which could be further solved

using Abel’s reduction of order to find second homogeneous solution13 and variation of

constants to determine particular solution of inhomogeneous equation. However, the main

technical difficulty within the presented approach is related to finding Mellin and inverse

Mellin transforms of arising functions. Our preliminary results on the solution of multi-

loop Baxter equations directly in spectral parameter u-space for arbitrary spin values show

that such a direct approach could be much more effective both for having results at higher

loops and twists. So, next we are planning to concentrate on developing corresponding

u-space techniques.

Finally, we would like to note that the presented techniques could be also applied

for solving twisted N = 4 and ABJM quantum spectral curves, where P function will

have twisted non-polynomial asymptotic at large spectral parameter values. The latter

models are interesting in the connection with the recent progress with the so called fishnet

theories [105–112].
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A Mellin transformation

We define Mellin transformation and its inverse similar to [98], that is

f (u) =M[f̃ ] (u) =
1

K1 (u)

∫ 1

0
dz ziu−

1
2 z̄−iu−

1
2 f̃ (z) , (A.1)

f̃ (z) =M−1[f ] (z) =
1

2π

∫ ∞
−∞

du z−iu−
1
2 z̄iu−

1
2K1 (u) f (u) , (A.2)

where

K1 (u) = Γ
(

1
2 + iu

)
Γ
(

1
2 − iu

)
=

π

cosh (πu)
, (A.3)

and z̄ = 1−z. Next, it is easy to see, that the introduced transformations have the following

properties

ũf (u) (z) = ûf̃ (z) =
i

2
(z̄ − z + 2zz̄∂z) f̃ (z) , (A.4)

˜f (u+ i) (z) = − z̄

z
f̃ (z) +

1

z
f (i/2) = − z̄

z
f̃ (z) +

1

z
f̃(0), (A.5)

˜f (u− i) (z) = − z

z̄
f̃ (z) +

1

z̄
f (−i/2) = −z

z̄
f̃ (z) +

1

z̄
f̃ (1) . (A.6)

Eqs. (A.5) and (A.6) are valid when f (u) does not have singularities in the strip 0 < =u < 1

and −1 < =u < 0, respectively. It is also convenient to introduce the following shorthand

notations widely used in the main body of the paper

û =
i

2
(z̄ − z + 2zz̄∂z) =

√
zz̄i∂z

√
zz̄ , (A.7)

f [n] (u) = f (u+ in/2) . (A.8)

The Mellin transform and its inverse convert polynomials into polynomials. Moreover,

polynomials of degree k are converted into polynomials with the same degree. That is

1

K1 (u)

∫ 1

0
dz ziu−

1
2 z̄−iu−

1
2 zk =

Γ
(

1
2 + iu+ k

)
Γ
(

1
2 − iu

)
K1 (u) k!

=

(
1
2 + iu

)
k

k!
(A.9)

and
1

2π

∫ ∞
−∞

du z−iu−
1
2 z̄iu−

1
2K1 (u)uk = ûk1 =

[
i

2
(z̄ − z + 2zz̄∂z)

]k
1 . (A.10)

B Generating function and properties of Baxter polynomials

Let us define the generating function for Baxter polynomials as

W (x, u) =
∞∑
S=0

Q(S, u)xS . (B.1)

In order to obtain the differential equation for W (x, u), we use the relation

− a2
2F1(a+ 1, b; a+ b+ 1;−1) + (a+ b− 1)(a+ b) 2F1(a− 1, b; a+ b− 1;−1)

− (2b− 1)(a+ b) 2F1(a, b; a+ b;−1) = 0 . (B.2)
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Putting a = −S, b = 1
2 + iu we obtain the relation between the Baxter polynomials14

SQ (S − 1, u)− (S + 1)Q (S + 1, u)− 2iuQ (S, u) = 0 . (B.3)

Multiplying the above recurrence relation with xS and summing over S, we obtain

x∂xxW (x, u)− ∂xW (x, u)− 2iuW (x, u) = 0 . (B.4)

Solving this differential equation with the boundary condition W (0, u) = Q (0, u) = 1,

we have

W (x, u) = (1− x)−
1
2

+iu(1 + x)−
1
2
−iu =

e−2i(u−i/2) arctanhx

1− x
, (B.5)

We will use this generating function W (x, u) for two purposes. First, let us prove that

Z(S, u) = iσ

bS−1
2 c∑

k=0

1

S − k
Q (S − 1− 2k, u) + ση−1(u+ i/2)Q (S, u) (B.6)

is a solution of the homogeneous part of the second Baxter equation (4.2), i.e., that

(u+ i/2)Z(S, u+ i) + i(2S + 1)Z(S, u)− (u− i/2)Z(S, u− i) = 0 . (B.7)

Substituting (B.6) in the left-hand side, we obtain

(u+ i/2)Z(u+ i) + i(2S + 1)Z(u)− (u− i/2)Z(u− i) = Q (S, u+ i)−Q (S, u− i)

+ 2i

S−1∑
k=0

1− (−1)k+S

2k + 1
[(u+ i/2)Q (k, u+ i)− (u− i/2)Q (k, u− i)] (B.8)

We have used here the first Baxter equation to express Q(S, u) and Q(S − 1 − 2k, u) via

Q(S, u ± i) and Q(S − 1 − 2k, u ± i), respectively. We also used the identity η−1(u) +

η−1(u + i) = u−1. Now, to prove that the right-hand side of eq. (B.8) is zero, we sum it

over S with the weight xS . Then we have

∞∑
S=0

xS [r.h.s. of (B.8)] = W (x, u+ i)−W (x, u− i) (B.9)

+2i
∞∑
k=0

1

2k + 1
[(u+ i/2)Q (k, u+ i)− (u− i/2)Q (k, u− i)]

×
∞∑

S=k+1

xS
(

1− (−1)k+S
)

= W (x, u+ i)−W (x, u− i)

+
2i
√
x

1− x2

∫ x

0

dy
√
y

[(
u+

i

2

)
W (y, u+i)−

(
u− i

2

)
W (y, u−i)

]
.

(B.10)

14There is another way to find this relation by noting the formal symmetry of the definition (4.8) with

respect to the substitution −S ↔ 1/2+iu and applying this substitution to the homogeneous part of Baxter

equation (4.1).
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Then, using the explicit form of W (x, u), eq. (B.5), we can check that the last expression

is zero.

Now, let us derive a closed expression for the derivatives of Baxter polynomials at

u = i/2. From (B.5) we have

∂nuW (x, u) |u=i/2 =
(−2i arctanhx)n

1− x
. (B.11)

The coefficient in front of xS is the n-th derivative of Q (S, u) at u = i/2. Using 1
1−x =

∑
xn

we obtain

Q(n) (S, i/2) = (−2i)n 〈(arctanhx)n〉S |x=1 , (B.12)

where

〈f (x)〉S =

S∑
k=0

f (k) (0)

k!
xk (B.13)

denotes the Taylor expansion of the function f(x) interrupted at S-th term. Using the

Taylor expansion of arctanh x, we have

Q(n) (S, i/2) = (−i)n
∑
i1,...,in

i1+...+in6S−n
2

n∏
k=1

1

ik + 1
2

. (B.14)

After a little algebra we obtain

inQ(n) (S, i/2) =
S−n∑
N=0

n
[
1 + (−1)N

]
N + n

in−1Q(n−1) (N + n− 1, i/2) . (B.15)

Since Q(n) (S, i/2) = 0 for S < n, we can replace the lower limit with −n+1 and then shift

N → N − n. Then we have

in

n!
Q(n) (S, i/2) =

S∑
N=1

1 + (−1)N+n

N

in−1

(n− 1)!
Q(n−1) (N + n− 1, i/2) . (B.16)

Finally, we obtain

Q(n) (S, i/2) = (−i)nn!Bn(S), (B.17)

where B0(S) = 1, B1(S) = H1(S) − H−1(S), and Bn>1 is defined recursively by the

symbolic formula

Bn = (O1 + (−1)nO−1)Bn−1 , (B.18)

where O±1 is a linear operator prepending index ±1 to harmonic sums, i.e. O±1Ha (S) =

H±1,a (S). In particular, we have

B2 = (O1 +O−1)B1 = H1,1 +H−1,1 −H1,−1 −H−1,−1 , (B.19)

B3 = (O1 −O−1)B2 = H1,1,1 +H1,−1,1 −H1,1,−1 −H1,−1,−1

−H−1,1,1 −H−1,−1,1 +H−1,1,−1 +H−1,−1,−1 , (B.20)

where we omitted the argument S for brevity.
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C Mellin transformations of arising functions

Let us present inverse Mellin images of the functions which arise in z-space.

M
[
wS log |w|

]
= Q (S, u)

[
γE+log 2−H1 (S)−iη1

(
u+

i

2

)
− sinh(πu)η−1

(
u+

i

2

)]
−i sinh(πu)

S∑
k=1

1− (−1)k

2S − k + 1
Q(S − k, u) +

S∑
k=1

1 + (−1)k

k
Q(S − k, u) ,

(C.1)

where w = z̄ − z. Note that the combination f(u) = −iη1

(
u+ i

2

)
− sinh(πu)η−1

(
u+ i

2

)
appearing in the above formula is an even function, f(u) = f(−u).

Similarly we obtained

M
[
wS log(1− w)

]
= Q(S, u)

[
γE + log 2− iη1

(
− u+

i

2

)
−H1(S)

]
+

S∑
k=1

(−1)k

k
Q(S − k, u) (C.2)

and

M
[
wS log(1 + w)

]
= Q(S, u)

[
γE + log 2− iη1

(
u+

i

2

)
−H1(S)

]
+

S∑
k=1

1

k
Q(S−k, u) .

(C.3)

During the calculation we also needed the expression for inverse Mellin transform of

P1(u+ i
2)Q(S, u) = π tanh(πu)Q(S, u):

M−1 [π tanh(πu)Q(S, u)] = i ln ((1 + w)/(1− w))wS − i
S∑
k=1

1− (−1)k

k
wS−k . (C.4)
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