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1 Introduction

The AdS/CFT correspondence prescribes that the computation of Wilson loops correlators

can be accomplished, in the large ’t Hooft coupling limit, in terms of minimal area world-

sheets in AdS [1, 2]. In particular, a classical world-sheet stretching between two loops can

be related to the connected correlation function of two Wilson loops with opposite spatial

orientations [3, 4]. The concomitant existence of connected and disconnected world-sheets

between the two loops led to the prediction of a phase transition in the dual correlator

of Wilson loops [3]. This problem, for the case of concentric circular Wilson loops in

N = 4 super Yang-Mills has been extensively studied since the early days of the AdS/CFT

correspondence proposal, either by string theory or field theory means [5–12]. Similar

problems in other alternative setups have also been considered [13–22].

Since generically the correlator is not supersymmetric, one cannot obtain exact results

that could be taken to the strong ’t Hooft coupling limit in order to compare with string

theory results. The aim of this paper is to explore different regimes for the parameters

characterizing the correlator of circular Wilson loops, looking for situations in which it

makes sense to compare string theory with gauge theory results.

From the gauge theory perspective, the perturbative contributions to the correlator of

two Wilson loops can be classified into interaction Feynman diagrams and ladder Feynman

diagrams, depending on whether they contain vertices or not. While the computation of

interaction diagrams is more complicated, ladder diagrams are easier to evaluate and can

even be explicitly resummed in certain cases. In particular we will consider correlators

of Wilson loops with different internal space orientations parametrized by an additional

parameter γ. Then, by considering an analytic continuation of this parameter we will access

a regime in which ladder diagrams dominate and interaction diagrams can be dismissed.
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This kind of limit was originally proposed in [23] for the cusp anomalous dimension and

further investigated in [24–30]. More precisely, to access this ladder limit we need to

consider cos γ � 1. In this limit, to any given perturbative order `, ladder diagrams contain

a factor cos` γ while all interaction diagrams would come with lower powers of cos γ [23].

This suggests that in this limit, the resummation of ladder diagrams will dominate the

full answer and should agree, in the strong coupling limit, with the dual string theory

computation.

The world-sheet dual to the correlator of concentric circular Wilson loops of radii R1

and R2 and separated by a distance h was found in [7]. In order to study the connected

correlator in a ladder limit we take the Wilson loops in the correlator with different internal

space orientations. As mentioned above, this introduces an additional dependence on the

parameter γ that accounts for the internal space separation. Exploring the dependence of

the correlator on this additional parameter γ will turn out to be very interesting when it

comes to compare string theory with field theory computations.

Different internal space orientations for the Wilson loops in the correlator are realized,

in the dual description, in terms of strings that are also extended an angle γ in an S1 ⊂ S5.

Indeed, Drukker and Fiol found this kind of string solutions for the case of strings ending on

concentric circular loops of radii R1 and R2 on the same plane [10]. In the next section we

will generalize their result for the case in which the loops are also separated by a distance h.

The paper is organized as follows. In section 2 we review the connected string configu-

ration and generalize it for the case of arbitrary radii, spatial and internal space separations.

We also study the Gross-Ooguri phase transition for the connected correlator and discuss

some possible analytic extensions of the on-shell action. In section 3 we study the con-

tribution of ladder diagrams to the corresponding connected correlator of Wilson loops.

In this way, we generalize the previous analysis of [6] by introducing and internal space

separation γ between the two Wilson loops and analyze how the phase transition in the

ladder contribution is affected by it. Finally, we study the ladder diagrams contribution

for the same analytical extension of the parameters presented in the previous section and

discuss its comparison with string theory results.

2 String solutions between concentric circles

Let us now consider a string whose world-sheet stretches between two concentric circles

of radii R1 and R2 separated by a distance h along a cartesian coordinate section of

Euclidean AdS5 and by an angle γ in the S5. Such string provides a generalization of some

configurations found in previous articles [7, 10]. Indeed, from our set of solutions one can

recover the configurations found in [7] by setting γ = 0. Moreover, we can also recover the

configurations presented in [10] by setting h = 0, although our configuration is not strictly

a generalization of this case since both settings are related by a conformal transformation.

To look for the aforementioned string configuration we consider the following Eu-

clidean metric

ds2 =
L2

z2
(dz2 + dr2 + r2dϕ2 + dx2) + L2dφ2 , (2.1)
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and make the following rotational invariant ansatz for the string embedding:

x = σ , ϕ = τ , r = r(x) , z = z(x) , φ = φ(x) . (2.2)

The Nambu-Goto action for the string becomes1

SNG =
√
λ

∫
dx

r

z2

√
1 + r′2 + z′2 + z2φ′2 . (2.3)

The fact that the Lagrangian does not depend explicitly on φ and that it is invariant under

translations of x gives rise to two constants of motion

r

z2
√

1 + r′2 + z′2 + z2φ′2
= Kx ,

rφ′√
1 + r′2 + z′2 + z2φ′2

= Kφ , (2.4)

while the equations of motion for the remaining variables become

r′′ − r

z4K2
x

= 0 ,

z′′ +
2r2

z5K2
x

−
K2
φ

K2
xz

3
= 0 .

(2.5)

It is straightforward to obtain, using (2.4) and (2.5), the following condition(
r2 + z2

)′′
+ 2 = 0 , (2.6)

which, when integrated, gives

r2 + z2 + (x+ c)2 = a2 . (2.7)

By imposing the boundary conditions r(0) = R1, r(h) = R2 and z(0) = z(h) = 0, the

integration constants a and c are determined:

c =
R2

1 −R2
2

2h
− h

2
,

a =
√
c2 +R2

1 .

(2.8)

As done in [5, 7] eq. (2.7) can be parametrized in terms of a trigonometric angle θ(x)

r =
√
a2 − (x+ c)2 cos θ(x) ,

z =
√
a2 − (x+ c)2 sin θ(x) .

(2.9)

The equations of motion further simplify to

θ′ = ± a

(a2 − (x+ c)2)

√
cos2 θ −K2

φ sin2 θ

K2
xa

2 sin4 θ
− 1 . (2.10)

1We use
√
λ = L2

α′ .
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The function θ grows from 0 (at x = 0) to θ0 (at some x = x0), so the + sign corresponds

to the interval 0 ≤ x ≤ x0, while the − sign corresponds to the interval x0 ≤ x ≤ h. The

maximum value attained by θ satisfies

sin2 θ0 =

√
(1 +K2

φ)2 + 4a2K2
x − (1 +K2

φ)

2a2K2
x

, (2.11)

and its position x0 is simply obtained demanding θ′(x0) = 0. Eq. (2.10) can be separated

Kxa sin2 θ dθ√
cos2 θ −K2

φ sin2 θ −K2
xa

2 sin4 θ
= ± adx

(a2 − (x+ c)2)
, (2.12)

and integrated between 0 and x0 and between x0 and h giving,

1

2
log

(
a+ x0 + c

a− x0 − c

)
− 1

2
log

(
a+ c

a− c

)
=

∫ θ0

0
dθ

Kxa sin2 θ√
cos2 θ −K2

φ sin2 θ −K2
xa

2 sin4 θ
,

(2.13)

1

2
log

(
a+ h+ c

a− h− c

)
− 1

2
log

(
a+ x0 + c

a− x0 − c

)
=

∫ θ0

0
dθ

Kxa sin2 θ√
cos2 θ −K2

φ sin2 θ −K2
xa

2 sin4 θ
.

(2.14)

As we shall see, from (2.10) and (2.11) it is possible to obtain the internal space separation

γ, the on-shell action and the integrals in (2.13) and (2.14) in terms of elliptic functions.

In order to simplify the expressions it is convenient to introduce a coordinate

y =
sin θ

sin θ0
, (2.15)

and the parameters

s = sin2 θ0 =

√
(1 +K2

φ)2 + 4a2K2
x − (1 +K2

φ)

2a2K2
x

, t = a2K2
xs

2 . (2.16)

With these definitions, if we combine (2.13) and (2.14) to eliminate x0, we get

f(a, c, h) :=
1

4
log

(
a+ c+ h

a− c− h

)
− 1

4
log

(
a+ c

a− c

)
= F (s, t)

=

∫ 1

0
dy

√
st y2√

1− y2
√

1− sy2
√

1 + ty2
. (2.17)

We can express the internal space separation using (2.4) and (2.9)

γ =

∫ h

0
dx φ′ =

∫ h

0
dx
Kφ

Kx

1

[a2 − (x+ c)2] sin2 θ(x)
, (2.18)
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which in terms of the y variable becomes

γ = G(s, t) =

∫ 1

0
dy

2
√

1− s− t√
1− y2

√
1− sy2

√
1 + ty2

. (2.19)

The on-shell Nambu-Goto action (2.4) gives the area of the world-sheet and is divergent

as it approaches the boundary of AdS. This divergence is canceled by an appropriate

boundary term [31]. Equivalently, in Poincaré coordinates, the regularized action can be

obtained by imposing the boundary condition z(0) = z(h) = ε, expanding for small ε and

throwing the term order 1
ε . For the regularized on-shell action we finally get

Sreg(s, t) = 2
√
λ

∫ 1

0

dy

y2
√

1− y2
1√
s

(√
1− sy2√
1 + ty2

− 1

)
. (2.20)

The integrals characterizing the classical solutions can be written in terms of elliptic

functions

F (s, t) =

√
t√
s

1√
1 + t

[
K
(
s+t
1+t

)
− (1− s) Π

(
s
∣∣∣ s+t1+t

)]
, (2.21)

G(s, t) =2

√
1− s− t√

1 + t
K
(
s+t
1+t

)
, (2.22)

Sreg(s, t) =− 2
√
λ√
s

1√
1 + t

[
(1 + t)E

(
s+t
1+t

)
− (1− s)K

(
s+t
1+t

)]
(2.23)

At this point, we should analyze the domain of parameters s and t for which one

obtains real string configurations. From their definitions (2.4), the constant of motions

are positive real numbers, which implies that 0 ≤ s ≤ 1 and t ≥ 0. Moreover, demanding

γ to be real requires t ≤ 1 − s as well. However, and as motivated in the Introduction,

we eventually would like to analytically continue the string configurations presented here

outside the real string domain, such that cos γ can take any real value.

Before proceeding in this direction, let us review some aspects of the configurations in

the real string domain 0 ≤ s ≤ 1 and 0 ≤ t ≤ 1− s, thus generalizing specific cases already

discussed in [5, 7, 10, 12].

To begin with, we analyze figure 1 where we plot curves for constant γ and h, in

the case R1 = R2 = R. The red curve represents some constant value for the angular

separation γ while the other curves represent different values of the spatial separation h,

growing from blue to green tones. For the lower values of h there are two intersections

with the constant γ curve, indicating the existence of two solutions with the same values

of γ and h. However, as discussed in [5, 7, 10, 12], only one of them is stable and in our

conventions it is the solution with larger t. As h grows we reach a point where the two

solutions coalesce, constituting a critical h (for every value of γ) above which the connected

world-sheet does no longer exist.

Now, the on-shell action for every value of the angular separation γ grows with the

spatial separations h, so at certain critical value of h the area of the connected solution

becomes larger than 2
√
λ, the value of the on-shell action of the disconnected world-sheet

– 5 –



J
H
E
P
0
5
(
2
0
1
8
)
1
6
8

s10

t

1

0

γ = 2.17 h = 0.2R

h = 0.3R
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Figure 1. For a given γ and different values of h, black and white bullets represent stable and

unstable solutions respectively. The yellow bullet represent a critical case for which constant γ and

constant h becomes tangent.
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s10

t

1

0

disconnected
minimal area

connected
minimal area

γ = 0

γ = 2π
5

γ = 3π
5

γ = 4π
5

h = 0.905R

h = 0.659R

h = 0.412R

h = 0.160R

1.045R

h

0

0 π γ

Figure 2. Connected and disconnected world-sheet phases in the real string domain. The dashed

line represents another critical behavior. Below it no stable connected solution exist.

solution. In figure 2 we depict the connected and disconnected phases in the real string

domain. The plot in the left contains a representation of the phases in the s-t plane. The

dashed line represent the other critical behaviour: below it no stable connected solution

exist. The plot on the right represents the same but in terms of γ and h.

2.1 Analytical continuation of the string solutions

With the possibility of implementing a ladder limit in mind, we consider certain analytical

continuations of the solution (2.21)–(2.23). Generically we could consider s and t to be

complex parameters, which would correspond to complex values of the string parameters

γ, h, R1 and R2. However, and for the sake of definiteness, we will restrict our analysis

– 6 –
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to values of s and t for which only the internal separation γ is analytically continued, in a

way such that cos γ can take any real value.

We shall first focus on the analytical continuation of the solution (2.21)–(2.23) to the

region t > 1− s, and in particular take the limit t→∞. By expanding (2.22) we obtain

γ = i log

(
16t

1− s

)
+O(t−1 log t) , (2.24)

which corresponds to

cos γ ≈ 8t

1− s
. (2.25)

At this point it is already apparent that the large t limit can be associated with the ladder

limit motivated in the introduction. Large t and 0 ≤ s ≤ 1 implies cos γ � 1. Similarly, if

we now expand (2.21) we obtain

F (s, t) = arctanh(
√
s) +O(t−1)

=
1

4
log

(
1 + 2

√
s

1+s

1− 2
√
s

1+s

)
+O(t−1) . (2.26)

Since f(a, c, h) can be re-written as

f(a, c, h) =
1

4
log

(
1 + ah

a2−c2−ch

1− ah
a2−c2−ch

)
, (2.27)

one can find the relation

s =
h2 + (R1 −R2)

2

h2 + (R1 +R2)2
. (2.28)

Finally, we evaluate the regularized on-shell action in the limit t→∞ and get

Sreg(s, t) = −2
√
λ

√
t

s
+O(t−1/2) . (2.29)

Putting together all the parameters (2.28), (2.24) we obtain

Sreg(s, t) ≈ −
√
λe−

iγ
2

√
R1R2

h2 + (R1 −R2)2
, for cos γ � 1 . (2.30)

Thus, according to the AdS/CFT prediction this result corresponds to the strong

coupling limit of the correlator of Wilson loops

log (〈W (C1, C2)〉c) '
√
λe−

iγ
2

√
R1R2

h2 + (R1 −R2)2
. (2.31)

where C1 and C2 are concentric circles specified by the boundary of the world-sheet.

If we consider now the limit t → −∞, the same expansions (2.24), (2.25), (2.26)

and (2.29) hold, thus corresponding to cos γ � −1. However, since the action is imaginary,

the disconnected world-sheet would dominate over the analytical extension in this case.

– 7 –
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Let us conclude this section with a very particular case among the possible analytical

continuations. By considering (2.20) it is evident that setting t = −s the regularized action

becomes vanishing,

Sreg(s,−s) = 0 . (2.32)

The area of the connected world-sheet is then well above the disconnected one so

the connected correlator is dominated by the latter. Nevertheless, a vanishing regularized

action is as usual an interesting case to consider. Let us determine what relation implies

t = −s on the angular and spatial separation parameters. For the angular separation we

simply get

γ(s,−s) =
π√

1− s
, (2.33)

while for the function that can be related to the spatial separation and the radii we obtain

F (s,−s) = ± i
2

(π − γ) . (2.34)

Now using eq. (2.17),
(a+ c+ h)(a− c)
(a− c− h)(a+ c)

= e±2γ , (2.35)

from which the following relation is derived

cos γ = −h
2 +R2

1 +R2
2

2R1R2
. (2.36)

In next section it will become evident why keeping this particular relation between angular

and spacial parameter is an interesting case to consider.

3 Ladder contribution to the Wilson loop correlator

We consider now Wilson loop operators in the fundamental representation of U(N) [1, 5, 9]

W (C) = trP exp

[∮
C
dτ
(
iAµ(x)ẋµ + Φin

i|ẋ|
)]

, (3.1)

where C is a curve in spacetime and ni(τ) an arbitrary trajectory in the internal space. We

shall be interested in the connected correlator of two circular Wilson loops:

〈W (C1, C2)〉c = 〈W (C1)W (C2)〉 − 〈W (C1)〉〈W (C2)〉 , (3.2)

where we take C1 and C2 to be concentric circles of radii R1, R2 respectively separated

by a distance h, with opposite spatial orientation and different constant orientation in the

internal space

C1 : xµ(τ1) = (R1 cos τ1, R1 sin τ1, 0, 0) , ni(τ1) = (1, 0, 0, 0, 0, 0) ,

C2 : yµ(τ2) = (R2 cos τ2,−R2 sin τ2, h, 0) , ni(τ2) = (cos γ, sin γ, 0, 0, 0, 0) .
(3.3)
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planar non-planar

Figure 3. Red and blue lines represent ladder and rainbow propagators respectively. Rainbow

propagators passing over the endpoints of another propagator, as in the picture on the right, render

the diagram non-planar, which is suppressed in the large N limit.

The 1-loop contribution, i.e. the leading contribution when the ’t Hooft coupling λ =

g2N � 1, is simply obtained from the free propagators in the Feynman gauge

〈Φa
i (x)Φb

j(y)〉 =
g2

4π2
δabδij

(x− y)2
, 〈Aaµ(x)Abν(y)〉 =

g2

4π2
δabδµν

(x− y)2
. (3.4)

Note that the connected correlator (3.2) only takes into account diagrams that have

at least one leg in each circle, so for the trajectories (3.3) we have2

〈W (C1, C2)〉(1−loop)c =
λ

8π2

∫ 2π

0
dτ1

∫ 2π

0
dτ2

1

2

cos γ + cos(τ1 − τ2)
h2+R2

1+R
2
2

2R1R2
− cos(τ1 − τ2)

, (3.5)

where the trace was taken in the fundamental representation of U(N), using for the nor-

malization of its generators tr(TaTb) = 1
2δab.

In general, to higher loop orders, contributions to the correlator can be classified into

interaction and ladder diagrams, depending on whether they contain vertices or not. In

this section we will be concerned with the resummation of ladder diagrams. These kind

of diagrams are built exclusively with non-renormalized propagators, and we will refer

to them as rainbow or ladder propagators depending on whether they extend between

the same circle or they connect C1 with C2. Each rainbow propagator behaves as in the

case of the 1/2 BPS circular Wilson loop and contributes with a constant factor to the

correlator [32, 33]. On the other hand, ladder propagators are non-trivial functions that

have to be integrated. As we will see, it is convenient to organize the resummation in terms

of the number of ladder propagators and to this end it is useful to define a kernel K(ϕ):

K(ϕ) =
1

2

cos γ + cos(ϕ)
h2+R2

1+R
2
2

2R1R2
− cos(ϕ)

. (3.6)

We would like to retain only planar contributions. This requires that ladder propagators

do not cross over each other and that rainbow propagators do not pass over the endpoints

of a propagator, as for example, the diagram in the right of the figure 3.

Consider for instance a diagram with n ladder propagators such that the two circles

are split into n arcs. Since each rainbow propagator contributes with a constant factor,

2We changed variable τ2 → 2π − τ2.

– 9 –
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the resummation of rainbows in a given arc is reduced to a matrix model problem. The

resummation of rainbows in an arc of length s is [6]

W (s) =
4π√
λs
I1

(√
λs

2π

)
, (3.7)

where I1 is a modified Bessel function. Then, the connected correlator can be expanded as

〈W (C1, C2)〉c =

∞∑
n=1

(
λ

8π2

)n
Wn , (3.8)

where Wn is the resummation of all diagrams with n ladders and is given by3

Wn =

∫
dt1

∫
dt2· · ·

∫
dtn

0<t1<t2<···<tn<2π

∫
ds1

∫
ds2 · · ·

∫
dsn

0<s1<s2<···<sn<2π

n∑
j=1

n∏
a=1

K(ta − sa+j) (3.9)

×W (t2 − t1) · · ·W (tn − tn−1)W (2π − tn + t1)

×W (s2 − s1) · · ·W (sn − sn−1)W (2π − sn + s1) ,

where we identify sb with sb−n, whenever b > n.

We would like to have some exact evaluation of the resummation (3.8) and eventually

consider it in the strong coupling limit. This problem, for the particular case γ = 0,

was already studied in [6] by writing a Dyson equation which can be solved in the strong

coupling limit. In principle, we could simply take this strong coupling result and replace

its kernel by the γ dependent one (3.6).

However, we have found some discrepancy of the expansion (3.9) with the expansion of

the Dyson equation proposed in [6]. We emphasize that this inconsistency does not affect

the strong coupling description nor the conclusions about the phase transition made in [6].

Nevertheless, and given that we are interested not only in the strong coupling limit, we

would like to carefully account for the expansion (3.8).

The sum of n terms in Wn is due to the existence of n inequivalent planar ways

of setting the ladder propagators, but we can collect all of them into a single term by

appropriate changes of coordinates. Let us consider the following set of change of variables

ta =


t̃n − t̃i−a if 1 ≤ a ≤ i− 1

t̃n if a = i

t̃n − t̃n+i−a + 2π if a > i

(3.10)

For i = 1, · · · , n they constitute n different changes of variables. The new variables are

ordered as follows

t̃1 < · · · < t̃i−1 < t̃n < t̃i < · · · < t̃n−1 ,

so variables from t̃1 to t̃n−1 maintain the same relative order as the original variables, but

the variable t̃n is located in the interval [t̃i−1, t̃i].

3As in (3.5), we change variables sa → 2π − sa to deal with more symmetric expressions.
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Similarly, we can define n changes of variables for the sa variables

sa =


s̃n − s̃i−a if 1 ≤ a ≤ i− 1

s̃n if a = i

s̃n − s̃n+i−a + 2π if a > i

(3.11)

We now consider each term in Wn, labelled by j, and change the coordinates ta to t̃a
using (3.10) for i = n and sa to s̃a using (3.11) for i = j. For the n terms we obtain the

same integrands but different domains of integration for the variables s̃a. The resulting

domains of integration are such that, when collecting the n terms together, the variable s̃n
is integrated from 0 to 2π independently of the others. Thus,

Wn =

∫
dt̃1

∫
dt̃2· · ·

∫
dt̃n

0<t̃1<t̃2<···<t̃n<2π

∫
ds̃1

∫
ds̃2 · · ·

∫
ds̃n−1

0<s̃1<s̃2<···<s̃n−1<2π

∫ 2π

0
ds̃n K(t̃n − s̃n)

×
n−1∏
a=1

K(t̃n − s̃n − t̃a + s̃a)

×W (t̃1)W (t̃2 − t̃1) · · ·W (t̃n−1 − t̃n−2)W (2π − t̃n−1)
×W (s̃1)W (s̃2 − s̃1) · · ·W (s̃n−1 − s̃n−2)W (2π − s̃n−1) . (3.12)

Analogous manipulations allow to obtain similar expressions, now with different do-

mains of integration for the variables t̃a. Then, at the expense of a 1
n factor we get an

expression where the variable t̃n is also integrated from 0 to 2π independently of the others.

Wn =
1

n

∫
dt̃1

∫
dt̃2· · ·

∫
dt̃n−1

0<t̃1<t̃2<···<t̃n−1<2π

∫ 2π

0
dt̃n

∫
ds̃1

∫
ds̃2 · · ·

∫
ds̃n−1

0<s̃1<s̃2<···<s̃n−1<2π

∫ 2π

0
ds̃n K(t̃n − s̃n)

×
n−1∏
a=1

K(t̃n − s̃n − t̃a + s̃a)W (t̃1)W (t̃2 − t̃1) · · ·W (t̃n−1 − t̃n−2)W (2π − t̃n−1)

×W (s̃1)W (s̃2 − s̃1) · · ·W (s̃n−1 − s̃n−2)W (2π − s̃n−1) , (3.13)

If we striped off the factor 1
n

Wn =
1

n
W̃n , (3.14)

the W̃n would correspond to the iterative approximations to the Dyson equation written

in [6]. More precisely,

W̃ =
λ

8π2

∫ 2π

0
dt

∫ 2π

0
ds Γ(2π, 2π; t− s)K(s− t) , (3.15)

where

Γ(s, t;ϕ) = W (s)W (t)+
λ

8π2

∫ s

0
ds′
∫ t

0
dt′W (s−s′)W (t−t′)K(s′−t′+ϕ)Γ(s′, t′;ϕ) , (3.16)

with the given boundary condition

Γ(0, t;ϕ) = Γ(s, 0;ϕ) = 1 . (3.17)
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Because of the discrepancy between W̃n and Wn, the quantity W̃ is not the connected

correlator. However, W̃ can be easily related to it. Adding a factor εn to every Wn we

can define

W(ε) =

∞∑
n=1

(
λ

8π2

)n
εnWn , (3.18)

which can be given by the solution of the Dyson equation (3.15)–(3.17) through

W(ε) =

∫ ε

0

W̃(ε′)

ε′
dε′ . (3.19)

Eventually, to get the connected correlator we set ε = 1

〈W (C1, C2)〉c =W(1) . (3.20)

The advantage of W̃ over W is that the Dyson problem (3.15)–(3.17) can be mapped

to a Schrödinger-like equation as shown in [6] and reviewed in the appendix. In the strong-

coupling limit the Schrödinger problem further simplifies due to the rapidly oscillating

behavior of the energy eigenvalues and the corresponding expectation value is saturated

by the singularities of the energy distribution thus obtaining

W̃(ε) ' e2
√
λω0(ε) , (3.21)

where ω0(ε) is the singularity of the integrand (A.13) with largest real part. In the strong

coupling limit this singularity is either ω0(ε) = 1, that originates from a square root branch

point in the rainbow diagrams, or the value of ω for which the ground state of the operator

Ĥω (A.10) vanishes, which can be obtained by solving the following equation [6]

E0(ω) ≈ 1

4

(
ω +

√
ω2 − 1

)2
− ε

2
K(ϕmin) = 0 (3.22)

where − ε
2K(ϕ) = V (ϕ) plays the role of the potential in the Schrödinger problem and has

to be evaluated at its minimum ϕmin, which of course will depend on the internal space

separation γ. Equation (3.21) shows the large λ behavior we have expected from a string

theory computation. In the strong coupling limit, the function W(ε) should behave as

e2
√
λv(ε) so, from the derivative of the relation (3.19) with respect to ε,

e2
√
λv(ε)2

√
λv′(ε) ' 1

ε
e2
√
λω0(ε) .

Therefore, to leading order in the large λ limit, e2
√
λv(ε) ' e2

√
λω0(ε) and there is no differ-

ence between W̃ and W.

When it comes to identify the minimum of the potential, a critical relation is observed

between the internal space separation γ and spatial separation h. If we define

cos γ∗ = −
(
h2 +R2

1 +R2
2

2R1R2

)
, (3.23)

it is easy to see, as depicted in figure 4, that the minimum of the potential V is at

ϕmin = 0 when cos γ > cos γ∗ and at ϕmin = π when cos γ < cos γ∗. For the critical
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V

−π π ϕ

cos γ < cos γ∗
cos γ = cos γ∗
cos γ > cos γ∗

Figure 4. Form of the Schrödinger potential for different relations between cos γ and cos γ∗. The

value of ϕmin shifts from 0 to π depending on the aforementioned relation.

value cos γ = cos γ∗ the potential becomes constant and the resummation of ladders re-

duces to a combinatorial problem. In this critical case the contribution of ladder diagrams

can be computed exactly as a function of the ’t Hooft coupling λ, as we do in the next

section.

For real values of the parameters γ and h we are always in the case cos γ > cos γ∗, so

the vanishing of the minimum energy takes the form

1

4

(
ω +

√
ω2 − 1

)2
+

1

4

1 + cos γ

1 + cos γ∗
= 0 . (3.24)

Since cos γ∗ < −1 in this case, the second term in (3.24) is negative, but to have a real

solution it has to be smaller than −1/4. Then, the solution to (3.24) is real for cos γ >

− cos γ∗ − 2 and imaginary for cos γ < − cos γ∗ − 2. In the latter case, the singularity with

largest real part is 1. Therefore,

ω0 =



1 if cos γ < − cos γ∗ − 2

h2+R2
1+R

2
2

2R1R2
+ cos γ

2
√

1 + cos γ

√
h2+R2

1+R
2
2

2R1R2
− 1

if cos γ > − cos γ∗ − 2

(3.25)

In analogy with the Gross-Ooguri phase transition, the ladder contribution to the

connected correlator presents a phase transition as well. When

h > hc =
√
−(R1 −R2)2 + 2R1R2(1 + cos γ) , (3.26)

rainbow diagrams dominate over the diagrams connecting the two circles.

Admittedly, the analogy with the Gross-Ooguri phase transition can only be quali-

tative, because ladder diagrams account for the connected correlator only partially. In

figure 5 we show the critical spatial separation for both phase transitions.
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π γ

hc

2R

Figure 5. Critical separation as a function of the internal space angle γ for the case R1 = R2 = R.

The blue curve represents the transition between connected/disconnected string configurations and

the red curve represents the transition in the ladder contribution.

3.1 Analytical continuation of the ladder resummation

More interesting is perhaps to consider an analytic continuation of the γ parameter such

that cos γ � 1. In this limit cos γ is well above of the critical case. Then, the leading

contribution to W̃ is given in terms of the ω0 specified in the second line of (3.25). Taking

cos γ � 1 we obtain for the ladder contribution to the connected correlator

log
(
〈W (C1, C2)〉ladderc

)
'
√
λe−

iγ
2

√
R1R2

h2 + (R1 −R2)2
. (3.27)

As we have expected, in this limit ladder diagrams overwhelm the interaction ones

and (3.27) precisely agrees with the string theory computation (2.31).

3.2 Exact resummation of ladders in a critical case

As we have already seen, there is a critical value of the internal space separation

cos γ = cos γ∗ , (3.28)

for which the kernel for the ladder diagrams (3.6) becomes constant

K(ϕ) = −1

2

cos γ + cosϕ

cos γ∗ + cosϕ
= −1

2
. (3.29)

This constitutes a major simplification, since all propagators connecting C1 with C2 con-

tribute with a constant factor −λ
4 . In addition, rainbow propagators in one circle or the

other contributes with a constant factor as well: λ
4 . Therefore, the problem of summing all

the connected ladder diagrams reduces to a combinatorial problem, which we would like

to solve in the planar limit. The ladder contribution to the connected correlator can then

be expanded as

〈W (C1, C2)〉ladderc =
∞∑
n=1

(
λ

4

)n
C(n) . (3.30)
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To a given perturbative order, we have to consider all possible ways of contracting a total

number n of propagators in the expansions of W (C1) and W (C2). If i, the number of ladder

propagators -connecting one circle with the other- is odd (even) the contribution is then

negative (positive). Thus, it is convenient to split the contribution from n propagators into

C(n) =

n∑
i=1

(−1)iC
(n)
i , (3.31)

where C
(n)
i is the contribution of diagrams with a total of n propagators, with i of them

being ladder propagators. Consider for example a diagram with j rainbow propagators in

C1 and n− i− j rainbow propagators in C2. Such diagram comes from the expansion of the

exponential in W (C1) to (2j + i)th order and the exponential in W (C2) to (2n − 2j − i)th

order, so they come with the inverse of (2j + i)!(2n − 2j − i)! as a factor. In order to

count planar diagrams, we only consider graphs where propagators do not cross and where

rainbows do not pass over the endpoint of ladder propagators. To find the coefficients C
(n)
i

we can think the i ladder propagators as defining i compartments in each circle, where one

has to planarly distribute n− i rainbow propagators.

To organize the computation we will first count in how many inequivalent ways we

can take i ladder propagators among the 2j + i points in C1 and the 2n− 2j − i points in

C2. This requires to choose a point in C1 and another in C2 to determine the first ladder

propagator, which brings a factor of (2j + i)(2n − 2j − i). That seems to conclude the

first part of the counting, because which other points of C1 and C2 would be connected is

determined by the number of rainbow propagators in each compartment. However, with

this reasoning we would be incurring in some overcounting. For instance, picking a point in

C1 for the first ladder propagator and filling the compartments with (k1, k2, · · · ki) rainbow

propagators produces the same diagram as if the first ladder propagator was moved k1 + 1

points and the compartments filling were (k2, · · · ki, k1). Then, we have to divide by i to

eliminate the overcounting due to this kind of cyclic redefinitions.4

To complete the computation, now we have to count S
(i)
j and S

(i)
n−i−j , the possible ways

of distributing planarly j rainbow propagators in the i compartments of C1 and n − i − j
rainbow propagators in the i compartments of C2 respectively. They will give

C
(n)
i =

n−i∑
j=0

1

(2j + i)!

1

(2n− 2j − i)!
(2j + i)(2n− 2j − i)

i
S
(i)
n−i−jS

(i)
j . (3.32)

We can express S
(i)
j in terms of Ak, that counts the number of planar ways of putting

k rainbow propagators in a single compartment

S
(i)
k =

k∑
j1=0

k−j1∑
j2=0

k−j1−j2∑
j3=0

· · ·
k−j1−···−ji−2∑

ji−1=0

Aj1Aj2 · · ·Ak−j1−···−ji . (3.33)

4There is an analogous factor from the cyclic redefinitions of compartments in C2 but this is compensated

with the factor from the ways of connecting planarly i points in each circle.
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The quantity Ak is the same as the number of planar rainbows diagrams out of k propa-

gators in a circular Wilson loop. This quantity satisfies a recursion relation [32]

Ak+1 =
k∑
j=0

Ak−jAj , (3.34)

that is solved by

Ak =
(2k)!

(k + 1)!k!
. (3.35)

Although numbers Aji are known, doing the successive finite sums in (3.33) is not

straightforward. Instead, S
(i)
k can be obtained from a recursive relation that follows from

the definition (3.33) and the relation (3.34)

S
(i)
k = S

(i−1)
k+1 − S

(i−2)
k+1 . (3.36)

Then, solving this recursive equation we get

S
(i)
k =

i(2k + i− 1)!

k!(k + i)!
. (3.37)

Replacing this in (3.32) we obtain,

C
(n)
i =

n−i∑
j=0

i

j!(j + i)!(n− i− j)!(n− j)!
=

i(2n)!

(n!)2(n+ i)!(n− i)!
(3.38)

and with this

C(n) = − n

2(2n− 1)

(2n)!

(n!)4
. (3.39)

Now we can perform the sum (3.30) and therefore obtain the ladder contribution to

the connected correlator exactly as a function of λ, in terms of modified Bessel functions

〈W (C1, C2)〉ladderc = −1

2

(
λI0

(√
λ
)

2 −
√
λI1

(√
λ
)
I0

(√
λ
)
− λI1

(√
λ
)

2
)
. (3.40)

In the strong coupling limit (3.40) is

〈W (C1, C2)〉ladderc ' e2
√
λ , (3.41)

which is of course in agreement with (3.21) and (3.25) and matches the corresponding

string theory calculation since the disconnected world-sheet dominates over the connected

one.

This critical case is interesting, not only because the ladder contribution can be exactly

computed, but also because it is possible to argue that (3.40) exactly accounts for the

connected correlator in the planar limit. The reason for that is the fact that the correlator

of Wilson loops in the critical case is BPS, as we show in what follows.

Exact results for correlators of Wilson loops operators have been obtained before via a

matrix model calculations [33–38]. Our family of supersymmetric correlators includes the
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case R1 = R2 = R, h = 0 and γ = π, which has been studied with matrix model techniques.

In particular, (3.40) precisely agrees with eq. (8.31) in [38]. To argue that (3.40) can be

obtained from the same matrix model, derived with supersymmetric localization arguments,

we will show that our critical correlators are supersymmetric, invariant under the same set

of supersymmetry transformations that the case studied in [38].

In order to study the supersymmetry condition let us put the four spinors of N =

4 super Yang-Mills into a single ten-dimensional Weyl spinor Ψ. The supersymmetry

transformations of the bosonic fields are

δεAµ = Ψ̄Γµε ,

δεΦi = Ψ̄Γiε ,
(3.42)

where ΓA = (Γµ,Γi) are ten-dimensional Dirac matrices and the transformation parameter

ε is a ten-dimensional Weyl spinor, which can be split into Poincaré and superconformal

transformations. Indeed,

ε(x) = ε0 + xµΓµε1 , (3.43)

where ε0 and ε1 are constant Weyl spinors with opposite chiralities.

Now, the supersymmetry variations of the Wilson loop (3.1) vanishes, provided that

(iΓµẋ
µ + Γin

i|ẋ|)ε(x(τ)) = 0 , (3.44)

In we consider a circular Wilson loop with

xµ = (R cos τ,±R sin τ, h, 0) , ni = (cos γ, sin γ, 0, 0, 0, 0) , (3.45)

where ± stands for the orientation of curve, equation (3.44) becomes

(−iΓ1R sin τ ± iΓ2R cos τ + Γ5 cos γ+ Γ6 sin γ)(ε0 +R cos τΓ1ε1±R sin τΓ2ε1 +hΓ3ε1) = 0 .

(3.46)

Equation (3.46) is satisfied for any value of the curve parameter τ if

ε0 = [±iR (Γ5 cos γ + Γ6 sin γ) Γ12 − hΓ3] ε1 , (3.47)

We now consider the two Wilson loops with opposite orientations given by (3.3). For

them to share some fraction of the supersymmetry one has to simultaneously impose

ε0 = iR1Γ5Γ12ε1 , (3.48)

ε0 = [−iR2 (Γ5 cos γ + Γ6 sin γ) Γ12 − hΓ3] ε1 . (3.49)

By substituting (3.48) into (3.49) one finds[
1 +

R1

R2
(cos γ − sin γΓ56)− i

h

R1
Γ1235

]
ε0 = 0 . (3.50)

Non-trivial solutions to equation (3.50) can be found only if the determinant of the matrix

acting on ε0 vanishes. To see this we can work with a specific representation for the Dirac

matrices. If one chooses them to be hermitian, it is possible to adopt a basis in which

Γ56 = i116 ⊗ σ3 , Γ1235 = 116 ⊗ σ2 . (3.51)
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Thus

det

[
132 +

R1

R2
(cos γ132 − sin γΓ56)− i

h

R1
Γ1235

]
= det16

(
1 + R2

R1
e−iγ − h

R1

+ h
R1

1 + R2
R1
eiγ

)
(3.52)

=

(
h2 +R2

1 +R2
2 + 2 cos γR1R2

R2
1

)16

.

(3.53)

Therefore, the two Wilson loops have common supersymmetries only when5

cos γ = −R
2
1 +R2

2 + h2

2R1R2
, (3.54)

that corresponds to the constant potential (3.23) previously discussed.

4 Discussion

We have further developed the study of connected correlators between concentric circular

Wilson loops, by taking them with different internal space orientations. We have computed

the correlators in the strong coupling limit by calculating the regularized minimal area of

world-sheets stretching between concentric circles and using the AdS/CFT correspondence.

From a perturbative point of view we have focused in certain type of Feynman diagrams

known as ladder diagrams since its resummation can be related to a Schrödinger problem,

which can be approximatively solved in the large ’t Hooft coupling limit. In general the

strong coupling limit of the ladder diagrams resummation does not match the string the-

ory computation because one is not taking into account the contribution of interaction

diagrams. Nevertheless, there is a qualitative matching since the ladders resummation

presents a phase transition that resembles the Gross-Ooguri phase transition.

Then, we have shown that matching between string theory and ladder computations

can also be quantitative when we consider certain analytic continuation of the internal

space separation γ. One of our main results is the matching of the string theory computa-

tion (2.31) with the ladder resummation (3.27) when cos γ � 1. This is understood by the

fact that at every perturbative order the weight of ladder diagrams overwhelms the weight

of interaction diagrams.

Finally we have considered in detail some critical value for the internal space separation

cos γ = −R2
1+R

2
2+h

2

2R1R2
. In that critical case the ladder contribution can be exactly resummed

and its strong coupling limit also matches the string theory computation. In this case, the

agreement should be presumably explained by a cancellation of interaction diagrams. As

shown at the end of our paper the correlator of Wilson loops becomes supersymmetric for

the critical internal space separation.

Concerning this case, it would be interesting if the 2-loop perturbative computation

of [9] could be generalized by an internal space separation between the Wilson loops and

verify if the interaction diagrams cancel for the critical value.

5The critical relation is satisfied for the concentric circles (1.7) considered in [34], which are invariant

under the same supersymmetry generator.
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A Schrödinger problem from the Dyson equation

We denote by W (s) the whole contribution of all rainbow diagrams within a circular arc

of length s, and by W (z) its Laplace transform,

W (z) =

∫ ∞
0

ds e−zsW (s) , W (s) =
1

2πi

∫ c+i∞

c−i∞
dz ezsW (z) , (A.1)

where c ∈ R is larger than the real parts of all the singularities of W (z). Since the

propagator between two points in the circular arc is constant the result can be computed

in terms of a Gaussian matrix model and reads

W (z) =
8π2

λ

(
z −

√
z2 − λ

4π2

)
, W (s) =

4π√
λ s

I1

(√
λ s

2π

)
. (A.2)

It is important to note that W (z) has a branch cut at z = ±
√
λ/2π.

Let us now consider the Dyson equation proposed in [6],

Γ(s, t;ϕ) = W (s)W (t) +
λ

8π2

∫ s

0
ds′
∫ t

0
dt′ W (s− s′)W (t− t′)K(ϕ+ s′ − t′) Γ(s′, t′;ϕ) ,

(A.3)

where K(ϕ) is the propagator connecting two points in different arcs with phase difference

ϕ. Upon Laplace transformation in both variables s, t this equation reads

Γ(z, w;ϕ) = W (z)W (w)

{
1 +

λ

8π2

∑
n∈Z

Kn e
inϕ Γ(z − in, w + in;ϕ)

}
, (A.4)

where Kn represent the Fourier coefficients of the periodic function K(ϕ). It is now con-

venient to perform the change of variables

z = ω + ip , w = ω − ip , (A.5)

and to define

L(ω, p;ϕ) = e
1
2
(w−z)ϕ Γ(z, w;ϕ) . (A.6)

Dyson equation (A.3) can then be written as

L(ω, p;ϕ)

W (ω + ip)W (ω − ip)
− λ

8π2

∑
n∈Z

Kn L(ω, p− n;ϕ) = e−ipϕ . (A.7)
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If we introduce the Fourier transformation

L(ω, θ;ϕ) =
1

2π

∫ ∞
−∞

dp eipθ L(ω, p;ϕ) (A.8)

we obtain

Ĥω L(ω, θ;ϕ) = δ(θ − ϕ) , (A.9)

where Ĥω is the operator

Ĥω =
1

W (ω + ip̂)W (ω − ip̂)
− λ

8π2
K(θ) (A.10)

and p̂ represents the differential operator −i∂θ. The solution to equation (A.9) can then

be written as

L(ω, θ;ϕ) =
∑
Eω

1

Eω
ψEω(θ)ψ∗Eω(ϕ) , (A.11)

where Eω, ψEω(θ) are the eigenvalues and eigenfunctions of the operator Ĥω. Finally, note

that L(ω, ϕ;ϕ) and Γ(s, s;ϕ) are related by a Laplace transformation, such that

L(ω, ϕ;ϕ) =

∫ ∞
0

ds e−2ωs Γ(s, s;ϕ) . (A.12)

In conclusion,

W̃ =
λ

8π2

∫ 2π

0
ds

∫ 2π

0
dt K(s− t) Γ(2π, 2π; s− t)

=
λ

4π

∫ c+i∞

c−i∞

dω

2πi
e4πω

∑
Eω

1

Eω

∫ 2π

0
dϕ K(ϕ) |ψEω(ϕ)|2 , (A.13)

where c ∈ R is larger than the real parts of all the singularities of L(ω, ϕ;ϕ) in the ω-

complex plane. As a matter of fact, the integral in ω collects the contributions of the

singularities of the integrand, which stem from the branch cut at ω = ±
√
λ/2π as well as

from those values of ω for which Ĥω admits a zero mode Eω = 0. Due to the exponential

factor, the leading behavior of W̃ in the strong coupling limit is given by the largest of

these singular values of ω.

Since there is a branch cut at ω = ±
√
λ/2π, in order to study these singularities in the

strong coupling limit it is convenient to rescale ω →
√
λω/2π; the operators W−1(ω ± ip̂)

then read

1

W (
√
λ ω
2π ± ip̂)

=

√
λ

4π

(ω ± 2πi
p̂√
λ

)
+

√(
ω ± 2πi

p̂√
λ

)2

− 1

 . (A.14)

Thus, for λ � 1 the kinetic term p̂ becomes irrelevant. Moreover, the largest value of ω

for which Ĥω has a zero mode corresponds to an operator whose lower bound vanishes,

E0(ω) =
λ

4π2

{
1

4

(
ω +

√
ω2 − 1

)2
− 1

2
K(ϕmin)

}
= 0 . (A.15)

– 20 –
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In this expression ϕmin minimizes the potential V = −1
2K(ϕ) in ϕ ∈ [0, 2π). In conse-

quence, the leading contribution to W̃ is

W̃ ∼ e2ω0

√
λ , (A.16)

where ω0 is either 1 or the solution of (A.15), depending on whether K(ϕmin) is smaller or

larger than 1/2, respectively.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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