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1 Introduction

The remarkable developments of astrophysical observations such as the detection of the

gravitational wave [1] or the Event Horizon Telescope project [2] could offer valuable guid-

ance to the correct formulation of the theory of quantum gravity (see, e.g., [3–7] for various

reviews from theoretical and observational points of views). Black holes provide an opti-

mal arena for studying quantum gravitational physics: they are mathematically simple

at the classical level yet require quantization for a complete and proper understanding.

In particular, the black hole information problem1 poses a challenge that will, once sur-

mounted, take us to the next chapter of understanding astrophysical black holes at a more

fundamental level.

Sometime ago interest in the black hole information problem was renewed by the Fire-

wall argument [17, 18] followed by various debates. One of the facts brought home —

perhaps more systematically than ever — by the Firewall observation is that our under-

standing of black holes and gravitational physics as a whole is as yet incomplete. The

Firewall proposal has challenged, among other things, the conventional view that a free-

falling observer would not experience anything out of the ordinary when passing through

the horizon: the observer should encounter trans-Planckian energy radiation. We have

recently proposed in [19] that quantum gravitational effects should be responsible for the

1See [8–10] and references therein for reviews; recent works include [11–16].
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production of high energy radiation, and ultimately, may well hold the key to the infor-

mation puzzle. Although the study of the information problem has a long history, two

critical ingredients that could have led to a firmer grip of the problem had not, in the past,

been quantitatively taken into account in the way they have been in our recent and present

works. They are quantum gravitational effects and non-Dirichlet boundary conditions. We

will examine them in detail in the main body by taking three cases of black hole spacetimes

and continuing the endeavor initiated in [19, 20] and [21]. In particular, we analyze the

quantum gravity-induced energy measured by an infalling observer near each horizon.

In the past, the apparent loss of information led to suspicion on a certain unknown

information bleaching mechanism and the potential relevance of the quantum gravitational

effects on the information problem was considered in the literature; see the review [8].

However, the idea was not pursued at a quantitative level (presumably because of the dif-

ficulty of seeing what process could possibly be responsible for such bleaching). In [19–22],

we have unraveled a potential mechanism: one facet of the quantum gravitational effects

should be as an information bleaching process.

The issue of the boundary conditions in gravitational physics seems profound. (See,

e.g., [23–25] for progress in boundary conditions and dynamics.) It awaits a more complete

and comprehensive treatment in the context of quantization. A meaningful observation

on the boundary conditions as a crucial component of the Hilbert space has recently been

put forth in loop quantum gravity works [26] and [27]. Although the widely-used Dirichlet

boundary conditions have been successful in non-gravitational areas, narrowing down to

the configurations with these boundary conditions in a gravity theory results in wipe-out

of much of the information as demonstrated in the recent works [19, 22, 28, 29]. The

surprising fact that the Dirichlet boundary condition is at odds with the information of

the system seems quite sophisticated, and must be due to the fact that the physical states

of a gravitational system happen to have their support at the boundary hypersurface, the

holographic screen, which in turn has its origin in the large amount of the gauge symmetry

of a gravitational system [30].

The aforementioned two ingredients are not independent but intricately intertwined.

As we will show, there exists a close influence of the quantum effects on the boundary

conditions and geometry, especially the time-dependent one. The influences among these

entities are mutual though we will take the quantum effect-centered view. The influence of

quantum effects on the geometry is quite natural [19, 21]. The way the boundary conditions

figure into the mutual relations has just been recognized [28, 29]. One of the focuses of the

present work is the manner in which the quantum effects and boundary conditions feed the

time-dependence of a solution.

There are several routes to probing the perturbative loop effects on the geometry and

physics. One of the approaches that can be taken with a reasonable amount of calcu-

lations is to study the deformation of the geometry analyzed through the 1PI effective

action [31, 32]. (See, e.g., [33] for a review of the 1PI effective action in the gravity con-

text.) A more effortful direction would be the one based on a wave-packet — more in the

conclusion. If one additionally works out the geodesics, it is straightforward to calculate the

energy measured by an infalling observer, although the algebra involved is usually heavy.

– 2 –



J
H
E
P
0
5
(
2
0
1
8
)
1
6
7

In [21], one-loop correction terms in the 1PI action were examined to see whether they

would lead to a trans-Planckian energy when evaluated in a time-independent background,

a Schwarzschild-dS background. They did not. The analysis was then repeated for the

time-dependent quantum-level background; there it was revealed that they do yield a trans-

Planckian energy.2 One of the key lessons learned through those (and the present) analyses

is that there exist circumstances, such as when nonperturbative physics are relevant, where

the quantum gravitational effects cannot be set aside as small. In the conclusion, we will

argue that such circumstances must be quite common rather than exceptional.

Two questions may arize. Firstly, in the case of the time-independent solution, could

it be the high degree of symmetry of the solution that suppresses the trans-Planckian

behavior? The time-independent background with less symmetry should be worth exam-

ining. Secondly, one may wonder whether or not the fact that quantum effects feed a

time-dependent solution would persist in other cases. Put differently, how generic is the

existence of time-dependent solutions fed by quantum effects? These questions will be

addressed in the main body.

The paper is organized as follows. In section 2 we start with some of the salient features

of quantization of gravity recently proposed in [30, 35, 36]. The quantization procedure

generically leads to a quantum-corrected and/or -generated cosmological constant that in

turn has a significant impact on solution generation: its presence contributes to a quali-

tatively different — in the sense that the solution is time-dependent — solution. This is

a non-perturbative effect, though the 1PI action is obtained perturbatively, through the

back reaction of the metric and matter fields. Certain conceptual as well as technical as-

pects of the quantization procedure are essential: they not only provide the foundation on

which the subsequent analysis is laid but also reveal some crucial aspects of the cosmolog-

ical constant. The main theme of the present computation is the energy measured by an

infalling observer. Because the tasks involved require intensive analyses, we illustrate the

procedure with a simpler background, a Schwarzschild-Melvin solution. Then we consider

another more complex stationary background; it is the recently constructed generalization

of Schwarzschild-Melvin solution [37]. After recalling the findings in the previous works

of [28, 29] and [21], we consider a time-dependent black hole spacetime in section 3. It is

an extension of the time-dependent black hole solution previously obtained in [38]. The

same kind of the trend as observed in [21] is also observed: whereas the classical terms do

not give the Firewall energy, the quantum effects do lead to a trans-Planckian energy. In

the conclusion, we end with further remarks and future directions.

2 Time-independent cases

In this section we demonstrate the steps of the energy computation with time-independent

black holes. For calculating the one-loop-corrected energy measured by an infalling ob-

server, one needs to obtain the one-loop geodesic as well as the stress-energy tensor in

the background under consideration. This has been carried out in [21] for the case of a

2In [12] (see also the earlier related work [34]), it was observed in a time-dependent setup that the

quantum stress-energy tensor inside the black hole reaches a near-Planckian value.
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Schwarzschild-dS background: although the Schwarzschild-dS background itself did not,

at least at one-loop, lead to a trans-Planckian energy, its time-dependent quantum exten-

sion did lead to a trans-Planckian energy. Here we are to look into the possibility that a

time-independent solution with less symmetry might lead to a trans-Planckian energy. The

result again yields a negative answer up to a certain subtlety that we will discuss below

(and we turn to a time-dependent case and find an affirmative answer in section 3).

Let us consider the Einstein-Maxwell action,

S =

∫ √
−g
(

1

κ2
R− 1

4
F 2
µν

)
(2.1)

The metric field equation is

Gµν = 8πGTµν (2.2)

where G is the Newton’s constant with κ2 ≡ 16πG; the Einstein tensor and the stress-

energy tensor are defined respectively by

Gµν ≡ Rµν −
1

2
gµνR (2.3)

and

Tµν =

(
FµρFν

ρ − 1

4
gµνF

2

)
(2.4)

2.1 One-loop stress-energy tensor

Although presenting a thorough analysis of the quantization procedure is not one of the

present goals (because only the final outcomes will be needed for the analysis in the subse-

quent sections3), it will be useful to have a quantum-level perspective. Before getting into

the interwoven relationships among the quantization procedure, boundary conditions, loop

effects and time-dependent solutions, we start with a brief account of the salient features of

the quantization for the Einstein-Maxwell system. The content of this section is essential

for the correct overall picture.

The quantization procedure brings to light a number of conceptual and technical issues

not perceived in the past. Let us start with the boundary terms and conditions. The issue

of the boundary conditions has recently turned out to be much subtler than previously

thought. The surface terms are important in several ways both at the classical and quantum

levels. Here we focus on their quantization-related aspects, returning in what follows to

the (better-known) subtleties in the definition of the classical stress-energy tensor. In

conducting the action principle, one normally adds Gibbons-Hawking-type boundary terms

by way of imposing the Dirichlet condition. It has recently been revealed that the Dirichlet

boundary condition is just one of the possibly many boundary conditions to be collectively

3Not all the steps of the quantization scheme of [30] are needed because we are only interested in the

one-loop analysis. For example, reduction of the physical states is not necessary to establish the one-loop

renormalizability: the conventional method is sufficient in the presence of the cosmological constant [36].

Also, it is not obvious whether or not the quantization scheme could be applied to the three backgrounds

considered in this work since the time-independent backgrounds are not, for example, asymptotically flat;

more work is required to settle this matter.
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considered for the sake of a proper treatment of the entire Hilbert space. The status of

this matter has several implications. One obvious implication is that it is now necessary

to explore other types of boundary conditions. For instance, it was illustrated in [39] with

the Einstein-Hilbert action that the boundary terms can be removed by the physical state

conditions. Since this could be achieved without adding the Gibbons-Hawking term, the

boundary condition was not restricted to the Dirichlet. Another not-so-obvious implication

is that one must check whether or not the classical-level boundary conditions are honored

by the quantum corrections [28]. (In section 3 we will push further along this direction.)

A quite serious technical obstacle in the effective action computation is the complexity

of the propagators associated with the curved backgrounds:4 they are known in closed

forms only for a very limited number of cases. Thus it is difficult to conduct the pertur-

bation theory around the actual curved background under consideration. Although not a

stalemate, it makes it necessary to employ some additional measures such as covariance

and dimensional analysis in order to determine the forms of the terms in the 1PI effective

action. Also, since we are mostly interested in the ultraviolet divergences the flat space

propagator can be employed to capture them. One recent undertaking was the construc-

tion of the propagator out of the traceless components of the fluctuation metric [40]. The

necessity of employing the “traceless” propagator is that the 4D covariance is maintained

only when the traceless propagator is employed [40]. An earlier related observation can be

found, e.g., in [41]. The construction of the traceless propagator has been achieved in a

manner convenient for the perturbative analysis. For a gravity-scalar system, the explicit

one-loop analysis via employment of the traceless graviton propagator has been carried out

in [36]. Similarly, the forms of the counter-terms in the case of the Einstein-Maxwell can

be rather easily determined by a combination of direct computation, dimensional analysis

and 4D covariance. With all these, one important aspect of the quantum effects is that

the cosmological constant term is quite generically generated, regardless of the background

under consideration [40].

At the quantum level, the stress-energy tensor computation should be done by starting

with the renormalized action:

S =

∫ √
−gr

(
1

κ2r
Rr −

1

4
F 2
rµν

)
(2.5)

where the renormalized quantities are indicated by the subscript r. After the one-loop

analysis, the form of the 1PI effective action with the counter-terms takes (see [40] for

details;5 earlier related analyses can be found, e.g., in [42–44])

S =
1

κ2

∫ √
−g
[
R− 2Λ

]
− 1

4

∫ √
−g FµνFµν +

∫ √
−g
[
c1R

2 + c2RµνR
µν + · · ·

]
(2.6)

4To make matters worse, the effective action contains nonlocal terms in general. Such nonlocal terms

could be important for the black hole physics at hand [32]. They will not be considered in the present work

for simplicity.
5The counterterm computation of the Einstein-Maxwell action was of course done long ago. However,

our recent finding shows that the correct determination of the coefficients requires use of the traceless

propagator.
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where c’s are constants — whose explicit values are not important for our purpose —

that can be determined once the renormalization conditions are fixed.6 The cosmological

constant has a purely quantum origin since the classical part was absent in (2.5). The part

in the ellipsis contains the correction terms involving the Maxwell fields as well. In the

presence of the cosmological constant, the one-loop renormalizability can be established

along the line of the conventional framework.

Above, the Riemann tensor square term, RµνρσR
µνρσ, appearing among the one-loop

terms has been replaced by RµνR
µν and R2 through the Euler-Gauss-Bonnet topological

identity

RµνρσR
µνρσ − 4RµνR

µν +R2 = total derivative (2.7)

As for the stress-energy tensor, there have been longstanding debates, even at the classical

level, on its definition (see, e.g., [45, 46]). In general the surface terms matter for the

stress-energy tensor, and they are responsible for part of the complications associated with

its definition. A systematic treatment of the surface terms deserves work dedicated to itself

and we will not attempt it here. One subtlety not as complicated is whether or not the

one-loop-generated terms such as R2, R2
µν should be included in the stress-energy tensor on

the right-hand side of the metric field equation. Considering the Bianchi identity associated

with the Einstein tensor, it seems reasonable to place all of the quantum correction terms

together with the matter part:7 the stress-energy tensor is obtained by taking the functional

derivative of the matter part of the action with respect to the metric:

Tµν =− 2

κ2
Λgµν+gµν

[
−1

4
F 2+

(
c1R

2−(4c1+c2)∇2R+c2RαβR
αβ
)]

(2.8)

+
[
FµρFν

ρ−2
(

2c1RRµν−(2c1+c2)∇µ∇νR−2c2Rκ1µνκ2R
κ1κ2 +c2∇2Rµν

)
+· · ·

]
In what follows we consider two backgrounds. The first is a Schwarzschild-Melvin so-

lution [48]; the second is the recently found generalization of the Schwarzschild-Melvin

solution [37]. Because the latter solution is more complex and less symmetric than the

Schwarzschild-Melvin solution, it should provide a good test bed for one of the questions

raised in the introduction. (The third case, to be considered in section 3, is an extension

of the time-dependent AdS black hole analyzed at the classical level in [38] and at the

quantum level in [28] and [29].)

2.2 Schwarzschild-Melvin case

The Schwarzschild-Melvin solution of the action

S =

∫ √
−g
(

1

κ2
R− 1

4
F 2
µν

)
(2.9)

6Although the divergences can be determined by using a flat space propagator, the proper curved

space propagator must be employed for the finite parts of the Feynman diagrams. The finite parts of the

renormalized coefficients can then be fixed with a specific choice of a set of the renormalization conditions.
7This is also consistent with the definition of a stress-energy tensor given in [47] in the context of the

higher derivative gravity.
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represent a Schwarzschild black hole immersed in an external magnetic field. It is given by

ds2 = −fV 2dt2 +
V 2

f
dr2 + r2V 2dθ2 +

r2 sin2 θ

V 2
dφ2 (2.10)

where

f = 1− 2M

r
, V = 1 +B2r2 sin2 θ; (2.11)

the vector field is given by

A =
B

2κ

1

V (r, θ)
r2 sin2 θ dφ (2.12)

Since the solution represents a black hole inside a magnetic field of an infinite extent, it

will be physical only when the combination B
κ is small. The coordinates (t, φ) are cyclic

and lead to the following first integrals:

ṫ =
E

fG2
, φ̇ =

lV 2

r2 sin2 θ
(2.13)

where the dot means ˙ ≡ d/du; E, l are constants representing the conserved energy and

angular momentum. The geodesic Uµ satisfies the normalization UµUµ = s where s is

s = 0,−1 for null and timelike geodesics, respectively. The remaining second-order geodesic

equations are presented in appendix. The normalization can be written as

V 2

f
ṙ2 − fV 2ṫ2 +

r2 sin2 θ

V 2
φ̇2 + V 2r2θ̇2 = s (2.14)

In principle, one should compute the geodesic up to (and including) the first subleading

order in κ2. For the leading order, however, the quantum correction piece of the geodesic

does not contribute when contracted with the stress-energy tensor, and one can therefore

focus on the classical geodesic equations.

Let us consider the θ = π/2 case for which the equation above becomes substantially

simplified. (The qualitative conclusion on the energy is not expected to change in more

general cases.) With θ = π/2, eq.(A.5) is satisfied and one can show

ṙ2 =
sf

V 2
(
r, π2
) +

E2

V 4
(
r, π2
) − fl2

r2
(2.15)

We are now up to the task of computing the energy density as measured by a free-falling

observer:

ρ ≡ TµνUµKU
ν
K (2.16)

where UρK denotes the four-velocity of an infalling observer in the Kruskal coordinates.

Tµν ≡< K| TKµν |K > denotes the quantum-corrected stress tensor (2.8) (reviews on the

quantum-level stress tensor can be found in [49–52]): TKµν represents the operator corre-

sponding to the classical stress-energy tensor and |K > denotes the Kruskal (i.e., Hartle-

Hawking) vacuum.8

8The Schwarzschild vacuum (i.e., Boulware vacuum) was taken in [20] for the Schwarzschild observer-

oriented view. Here the energy computed by taking |K > will represent the energy measured by the infalling

observer.
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Let us examine the terms in (2.8) to see whether or not they yield a high energy upon

being contracted with the four velocities. Although the cosmological constant term comes

with 1
κ2

, its contribution to ρ should be small because of the small value of Λ. Let us first

consider the matter sector of the stress-tensor. Upon evaluated at the classical background,

the F 2 term in the stress-tensor yields

F 2 =
2B2

κ2
(r − 2M)

r (B2r2 + 1)4
(2.17)

and thus vanishes as r → 2M . As for the FµρFν
ρ term, one can show that

FµρFν
ρUµUν =

B2

κ2

(
E2r − s

(
B2r2 + 1

)2
(2M − r)

)
r (B2r2 + 1)6

(2.18)

thus

FµρFν
ρUµUν → B2

κ2
E2

(4B2M2 + 1)6
as r → 2M (2.19)

Most of the gravity sector terms either identically vanish or vanish at the horizon. For

example, one gets

R = 0 , RµνR
µν =

64B4(−2M + r)2

r2 (B2r2 + 1)8
, Rκ1µνκ2R

κ1κ2 = 0 (2.20)

when evaluated at the classical background. As previously stated, the configuration is

physical only when B2

κ2
is small and the energy encountered by an infalling observer will be

moderate.

2.3 Generalized Schwarzschild-Melvin case

A new black hole solution with an asymptotically uniform magnetic field has been con-

structed in [37] by utilizing the so-called lightcone gauge. It is a two-parameter generaliza-

tion of the Schwarzschild-Melvin solution and reduces to the Schwarzschild-Melvin space-

time in a certain parameter limit. Evidently it is more complex than the Schwarzschild-

Melvin solution and should provide a test bed for examining the potential presence of the

trans-Planckian energy.

The solution is obtained as a perturbation around the Schwarzschild black hole9

ds2 = −f(r)dv2 + 2dvdr + r2dΩ2
(2) with f(r) = 1− 2M

r :

gvv = −f(r) + g̃vv(r, θ), gvr = 1, gvθ = g̃vθ(r, θ)

gθθ = r2 + g̃θθ(r, θ), gϕϕ = r2 sin2 θ + g̃ϕϕ(r, θ) (2.21)

Just as in the Schwarzschild-Melvin case, it is useful to find the first integrals. For this,

note that the coordinates t, φ are again cyclic, leading to the following first integrals:

E = −gvvv̇ − gvr ṙ − gvθθ̇, (2.22)

l = gϕϕϕ̇. (2.23)

9We follow [37] and use the Eddington-Finkelstein light-cone advanced coordinate dv = dt + dr∗ ≡
dt+ dr/f(r). The exact form of g̃µν can be read off from eqs. (3.43)–(3.47) therein.

– 8 –
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where again ˙ ≡ d/du and E, l are constants. The remaining geodesic equations can be

found in appendix A. The geodesic normalization condition reads, to the first order in the

perturbed metric,

gµνU
µUν = (−f(r)+g̃vv)v̇

2+2v̇ṙ+2v̇θ̇g̃vθ+(r2+g̃θθ)θ̇
2+(r2 sin2 θ+g̃ϕϕ)ϕ̇2 = s (2.24)

Things get quite simplified by choosing θ = π/2; after some algebra (more details in

appendix) one gets

ṙ2 = E2 + s(f − g̃vv)−
l20
r2

(
f − g̃vv −

f

r2
g̃ϕϕ

)
+O(g̃2) (2.25)

With the help of the Mathematica package diffgeo.m, it is checked that the computation

of ρ does not yield a trans-Planckian energy in this case. For example, one gets, for the

FµρFν
ρ term,

FµρFν
ρUµUν → E2B

2

κ2
as r → 2M (2.26)

As before the presence of the small parameter B2

κ2
makes this contribution small.

3 Trans-Planckian energy

Although a more systematic and complete study of boundary conditions is still to be carried

out in gravity quantization, it is nevertheless possible to probe the role of the boundary

modes in the dynamical evolution of the system. In this section we deepen our under-

standing of the case whose analysis has been carried out to some extent in [28] and [29]; it

was shown that the quantum gravitational effects and non-Dirichlet modes (to be defined)

lead to a time-dependent solution. After reviewing [28] and [29] in section 3.1, we extend

the analysis by focusing, for one thing, on the loop-corrected cosmological constant. The

trans-Planckian energy does not arise at the classical level. This very fact may not be so

surprising. However, the detailed manner in which this happens is surprising. We show

that the quantum-level solution does display a trans-Planckian energy.

The classical action we consider in this section is

S =
1

κ2

∫
d4x
√
−g
[
R− 2Λ

]
−
∫
d4x
√
−g
[

1

2
(∂µζ)2 +

1

2
m2ζ2

]
(3.1)

It admits an AdS black hole solution,

ζ = 0 , ds2 = − 1

z2

(
Fdt2 + 2dtdz

)
+ Φ2(dx2 + dy2) (3.2)

with

F = −Λ

3
− 2Mz3 , Φ =

1

z
, ζ = 0 (3.3)
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3.1 Time-dependent solution of gravity-scalar system

A gravity-scalar system was considered at the quantum level in [28] and [29]. The one-loop

1PI effective action after one-loop renormalization of the classical action (3.1) is

S =
1

κ2

∫
d4x
√
−g
[
R− 2Λ

]
−
∫
d4x
√
−g
[

1

2
(∂µζ)2 +

1

2
m2ζ2

]
(3.4)

+
1

κ2

∫
d4x
√
−g
[
e1κ

4Rζ2 + e2κ
2R2 + e3κ

2RµνR
µν + e4κ

6(∂ζ)4 + e5κ
6ζ4 + · · ·

]
where e’s are constants that can be fixed with fixed renormalization conditions. The metric

and scalar field equations that follow from (3.4) are

Rµν−
1

2
Rgµν+Λgµν−

1

2
gµν

(
− 1

2
κ2(∂µζ)2− 1

2
m2κ2ζ2

+e1κ
4Rζ2−2e1κ

4∇2ζ2+e2κ
2R2−(4e2+e3)κ

2∇2R+e3κ
2RαβR

αβ+e4κ
6(∂ζ)4+e5κ

6ζ4
)

− 1

2
κ2∂µζ∂νζ+e1κ

4Rµνζ
2−e1κ4∇µ∇νζ2+2e2κ

2RRµν−(2e2+e3)κ
2∇µ∇νR

−2e3κ
2Rκ1µνκ2R

κ1κ2 +e3κ
2∇2Rµν+2e4κ

6∂µζ∂νζ(∂ζ)2 = 0 (3.5)

∇2ζ−m2ζ+2e1κ
2Rζ−4e4κ

4
[
∇2ζ (∂ζ)2+2∇αζ (∇α∇βζ)∇βζ

]
+4e5κ

4ζ3 = 0

The field equations above can be solved by employing the metric ansatz [38]

ds2 = − 1

z2

(
F (t, z)dt2 + 2dtdz

)
+ Φ2(t, z)(dx2 + dy2) (3.6)

with the following quantum-corrected series

F (t, z) = F0(t) + F1(t)z + F2(t)z
2 + F3(t)z

3 + . . .

+ κ2
[
F h0 (t) + F h1 (t)z + F h2 (t)z2 + F h3 (t)z3 + . . .

]
Φ(t, z) =

1

z
+ Φ0(t) + Φ1(t)z + Φ2(t)z

2 + Φ3(t)z
3 + . . .

+ κ2

[
Φh
−1(t)

z
+ Φh

0(t) + Φh
1(t)z + Φh

2(t)z2 + Φh
3(t)z3 + . . .

]
(3.7)

where the modes with superscript ‘h’ represent the quantum modes. The quantum correc-

tions of the metric imply a deformation of the geometry by quantum effects [19, 21]. (See

also [10, 53, 54] for related works.) Similarly, for the scalar field,

ζ(t, z) = ζ0(t) + ζ1(t)z + ζ2(t)z
2 + ζ3(t)z

3 + . . .

+ κ2
[
ζh0 (t) + ζh1 (t)z + ζh2 (t)z2 + ζh3 (t)z3 + . . .

]
(3.8)

It was found that the Dirichlet boundary condition is not preserved by the quantum cor-

rections. Different boundary conditions can be adopted by adjusting the boundary modes.

For example, one imposes Φ0(t) = 0,Φh
0(t) = 0 and Φh

−1(t) = 0 for the Dirichlet boundary
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condition. The modes such as Φ0(t),Φ
h
0(t),Φh

−1(t) will be called the “non-Dirichlet modes”

for this reason. The following choice — which corresponds to a non-Dirichlet boundary

condition — was explored:

Φ0(t) 6= 0 , Φh
0(t) 6= 0 (3.9)

By analyzing the field equations expanded in the z-series, one can show, for the classical

modes,

m2 =
2Λ

3
, ζ0 = 0, F0 = −Λ

3
, Φ1 = 0, F1 = −F0Φ0 − ΛΦ0

Φ2 = 0, F2 =
1

4

(
4F0Φ0

2 − 8Φ̇0

)
ζ3 = 0, Φ3 = 0, F3 = const, ζ4 = 0, Φ4 = 0, F4 = −F3Φ0; (3.10)

for quantum modes

ζh0 = 0, F h0 = 0, Φh
1 = 0, F h1 =

2

3

(
3F h0 Φ0 + ΛΦ0Φ

h
−1 − ΛΦh

0 − 3Φ̇h
−1

)
,

Φh
2 = 0, F h2 =

1

3

(
2ΛΦ0

2Φh
−1 − 2ΛΦ0Φ

h
0 + 6Φh

−1Φ̇0 − 6Φ̇h
0

)
,

Φh
3 = 0, Ḟ h3 = −3F3Φ̇

h
−1, ζh3 = − 1

Λ

(
Λζh1Φ0

2 + 2Λζh2Φ0 + 3Φ0ζ̇
h
1 + 3ζh1 Φ̇0 + 3ζ̇

h
2

)
F h4 = F3Φ0Φ

h
−1 − F3Φ

h
0 − F h3 Φ0, Φh

4 = −3e2F3Φ0
2 + 3e2F5 − 2e3F3Φ0

2 + 2e3F5

ζh4 =
F3ζ

h
1

2Λ
+

12ζ̇h1 Φ̇0

Λ2
+

6Φ0ζ̈
h
1

Λ2
+

6ζh1 Φ̈0

Λ2
+

6ζ̈h2
Λ2

+
9Φ0

2ζ̇h1
Λ

+
9Φ0ζ̇

h
2

Λ
+

9ζh1 Φ0Φ̇0

Λ

+ 2ζh1 Φ3
0 + 3ζh2 Φ2

0 (3.11)

An intriguing finding was that the quantum-level analysis actually imposes additional con-

straints on the classical modes. (The field equations have the terms of order ~ since all

of the coefficients e’s in (3.5) come with ~, and once the series ansatze (3.7) and (3.8) are

substituted, the classical modes such as ζ1, ζ2 come to appear in the parts of the equation

of ~ order, which leads to additional constraints among the classical modes. We will come

back to this in the conclusion.) Since this is an important point we elaborate: according

to the classical analysis [38], the modes ζ1, ζ2 are free and responsible for the entire dy-

namics as the higher modes are given in terms of ζ1, ζ2 and their derivatives. However, the

quantum-level analysis unravels that the two modes become constrained:

ζ1 = 0 = ζ2 (3.12)

On the contrary, the quantum-counterpart modes, ζh1 and ζh2 , are not constrained. As a

matter of fact, with Φ0(t),Φ
h
0(t) and Φh

−1(t) they determine the higher modes; namely, the

higher modes become functions of these modes.

Let us pause and ponder the implications of the results. Firstly, the solution repre-

sents the quantum-modified time-dependent black hole solution, and the quantum modes

above are the ones that feed the time-dependence of the solution. Secondly, the presence

of such modes implies that the quantum-corrected solution no longer satisfies the Dirichlet

condition. Their presence also implies nontrivial dynamics on the boundary where part of
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the system information is stored. The third implication is perhaps even more intriguing.

The time-dependence of the classical black hole solution with a Dirichlet boundary condi-

tion is an apparent phenomenon: were it not for the presence of the quantum modes, the

quantum-level constraints force the solution to reduce to a time-independent configuration,

namely, an AdS black hole when the classical non-Dirichlet mode Φ0 is absent.

Before we proceed, let us note a curious resemblance to the finding in [21] where the

time-dependent solution constructed in [55] was checked against a trans-Planckian energy.

There, elimination of the cosmological constant term made the time-dependence disappear.

In the case of [28] and [29] just reviewed, what feeds the time-dependent solution is the

non-Dirichlet modes. As we will soon see, it is not only the non-Dirichlet modes but also

the quantum-corrected cosmological constant that feeds the time-dependence which in turn

will be crucial for the trans-Planckian energy.

3.2 Extension by quantum cosmological constant

The analysis in [28] and [29] did not take the quantum corrections of the cosmological

constant. In other words, the cosmological constant Λ was taken to be entirely classical.

Here we extend the analysis by focusing on the effects of the loop-corrected cosmological

constant, writing it explicitly as Λ ≡ Λ0 +κ2Λ1 with Λ0,Λ1 classical and quantum, respec-

tively. With this, slightly modified mode relations are obtained; although the modifications

are modest, the implications are not insignificant and several interesting aspects of the dy-

namics are revealed. For instance, the quantum-induced cosmological constant contributes

to the time dependence of the solution.

The procedure of solving the field equations goes the same apart from having to include

the quantum correction piece of the cosmological constant. For the classical modes, one gets

m2 =
2Λ0

3
, ζ0 = 0, F0 = −Λ0

3
, Φ1 = 0, F1 = −F0Φ0 − Λ0Φ0

Φ2 = 0, F2 =
1

4

(
4F0Φ0

2 − 8Φ̇0

)
ζ3 = 0, Φ3 = 0, F3 = const, ζ4 = 0, Φ4 = 0, F4 = −F3Φ0; (3.13)

for the quantum modes,

ζh0 = 0, F h0 = −1

3
κ2Λ1, Φh

1 = 0, F h1 =
2

3

(
3F h0 Φ0 + Λ0Φ0Φ

h
−1 − Λ0Φ

h
0 − 3Φ̇h

−1

)
,

Φh
2 = 0, F h2 =

1

3

(
− κ2Λ1Φ0

2 + 2Λ0Φ0
2Φh
−1 − 2Λ0Φ0Φ

h
0 + 6Φh

−1Φ̇0 − 6Φ̇h
0

)
,

ζh3 = − 1

Λ0

(
Λ0ζ

h
1Φ0

2 + 2Λ0ζ
h
2Φ0 + 3Φ0ζ̇

h
1 + 3ζh1Φ̇0 + 3ζ̇

h
2

)
, Φh

3 = 0, Ḟ h3 = −3F3Φ̇
h
−1

F h4 = F3Φ0Φ
h
−1 − F3Φ

h
0 − F h3 Φ0, Φh

4 = −3e2F3Φ0
2 + 3e2F5 − 2e3F3Φ0

2 + 2e3F5

ζh4 =
F3ζ

h
1

2Λ0
+

12ζ̇h1 Φ̇0

Λ2
0

+
6Φ0ζ̈

h
1

Λ2
0

+
6ζh1 Φ̈0

Λ2
0

+
6ζ̈h2
Λ2
0

+
9Φ0

2ζ̇h1
Λ0

+
9Φ0ζ̇

h
2

Λ0
+

9ζh1 Φ0Φ̇0

Λ0

+ 2ζh1 Φ3
0 + 3ζh2 Φ2

0 (3.14)

Several salient features of the outcome are as follows. The result above shows that in or-

der for, e.g., F2 not to vanish, the presence of the non-Dirichlet mode Φ0(t) is important.
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To see things more clearly, let us set the entire quantum modes aside. As can be seen

from (3.13) there still exists a time-dependent solution (that can be consistently extended

to the quantum level) if one keeps the non-Dirichlet mode Φ0(t). The Dirichlet condition

tends to suppress the time dependence: suppose the quantum mode Φh
−1(t) and its deriva-

tive Φ̇h
−1(t) are absent. Then F h1 (t) would vanish if Φ0(t) is absent as well. This shows that

the non-Dirichlet modes and the quantum corrections together feed the time-dependence

of the solution. (More on the non-Dirichlet modes in the conclusion.) Also, Λ1 contributes

to F h2 ; this shows that the quantum-induced cosmological constant too contributes to the

time dependence of the solution.

The following will be important for the energy analysis in the next subsection. As

stated in the previous subsection the classical time-dependent solution of [38] is ‘demoted’

to an AdS black hole by the quantum-level constraints. The classical-level time-dependence

of the solution of [38] is not preserved at the quantum level: the quantum-level constraints

force the classical part of the resulting solution to become an AdS black hole that is time-

independent at the classical level. Put differently, additional constraints among the classical

modes arise at the quantum level. Once those constraints are enforced on the classical

part of the solution, the classical metric becomes that of the usual time-independent AdS

black hole.

3.3 Trans-Planckian energy

Let us compute the energy density measured by a free-falling observer, ρ ≡ TµνU
µUν ,

where Tµν denotes the quantum-corrected stress tensor (2.8) and Uµ the geodesic. As in

section 2, we first work out the geodesics. The geodesics for the classical AdS black hole

can be used for the purpose of computing ρ for the reason which will become clearer below.

The stress-energy tensor must be evaluated at the quantum-corrected solution. Since we

are ultimately interested in the energy near the horizon, we will, at some point, consider

the solution in the z − zEH series where zEH denotes the location of the classical horizon.

The classical part of the solution obtained in the previous subsection is time-dependent

in general due to the presence of the non-Dirichlet mode Φ0(t), and this causes unnecessary

complications in finding the geodesic. We thus choose

F3 = −2M and set Φ0(t) = 0 (3.15)

Since ζ1 = 0 = ζ2, the classical part of the full quantum-level solution is the same as the

well-known one given in (3.2). (Nevertheless, the overall solution will be a time-dependent

one due to the presence of the time-dependent quantum modes.) Although this is a special

case, it is expected to share the important features of a more general solution when it

comes to the trans-Planckian scaling of the energy. With this, the classical geodesic can

be computed straightforwardly. From the metric of the AdS black hole10

ds2 = − 1

z2

[
(1− 2Mz3)dt2 + 2dtdz

]
+

1

z2
(dx2 + dy2) (3.16)

10We have set Λ = −3 by following the common practice in the literature.
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where M is a parameter proportional to the mass of the black hole, the first integrals follow:

1

z2

[
(1− 2Mz3)ṫ+ ż

]
= E ,

1

z2
ẋ = l1 ,

1

z2
ẏ = l2 (3.17)

With these, the velocity normalization condition, U2 = s, takes

ż2 = sz2 + (E2 − l21 − l22)z4 − 2sMz5 + 2M(l21 + l22)z7 (3.18)

and one gets

ṫ =
1

1− 2Mz3

(
Ez2 +

√
sz2 + (E2 − l21 − l22)z4 − 2sMz5 + 2M(l21 + l22)z7

)
(3.19)

The one-loop stress-energy tensor is given by

Tµν = ∂µζ∂νζ − gµν
(

1

κ2
Λ +

1

2
(∂µζ)2 +

1

2
m2ζ2

)
+ κ2e1(−2Rµνζ

2 + 2∇µ∇νζ2) + e1κ
2gµν(Rζ2 − 2∇2ζ2) + · · · (3.20)

Let us focus on the leading order terms in the first line. (As before we disregard the

cosmological constant term in the stress tensor.) The second term in the first line is bound

by the geodesic normalization, UµU
µ = s, thus of subleading order. Given the structure of

ṫ above, the first term, namely the scalar kinetic term ∂µζ∂νζ can potentially yield a large

value of the energy. In other words, at least naively, a large value of the energy is expected

to come from the ṫ components of ρ since ṫ scales as ṫ ∼ 1
1−2Mz3

and the classical horizon

zEH is located at the vanishing of 1− 2Mz3, z3EH ≡
1

2M . It is possible at this point to see

why a classical, as opposed to one-loop, geodesic is sufficient for our purpose, a statement

made earlier. Let us examine the contribution of the first term in (3.20) to ρ, ∂µζ∂νζ U
µUν .

With ṫ ∼ 1
z−zEH it is the ζ̇ ζ̇ ṫṫ piece that will give the leading order energy. From this it

follows that the classical part of the geodesic is sufficient for obtaining one-loop ρ: because

the quantum-level field equations constrain ζ1, ζ2 such that ζ1 = 0 = ζ2, the time-dependent

part of the solution for the field equations is only the quantum correction piece. Since the

stress-energy tensor part — namely ∂µζ∂νζ — is already second order in ~ (that we have

been suppressing) and κ2, the geodesic for the classical AdS black hole is sufficient.

For the remainder of this subsection, we examine the κ-scalings of various quantities

to determine the scaling of the energy. At least to the orders analyzed in [29] and reviewed

above, the classical piece of the scalar field is absent: the original scalar field expansion

ζ(t, z) = ζ0(t) + ζ1(t)z + ζ2(t)z
2 + ζ3(t)z

3 + · · ·

+ κ2
[
ζh0 (t) + ζh1 (t)z + ζh2 (t)z2 + ζh3 (t)z3 + · · ·

]
(3.21)

reduces, on account of (3.10) and (3.11), to

ζ(t, z) = κ2
[
ζh1 (t)z + ζh2 (t)z2 + ζh3 (t)z3 + · · ·

]
(3.22)

where the modes ζh1 (t), ζh2 (t) are free (i.e., unconstrained) and the expression for, e.g., ζh3 (t)

can be found in (3.14). The vanishing of the classical piece will bear important implications
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for the energy so we run a double-check to ensure that it remains true to all orders in z, not

just to the first several orders explicitly checked. To this end and for a more transparent

understanding of the behavior of the scalar near the horizon, let us re-expand the z-series

solution in z − zEH . The re-expansion of (3.22) around zEH takes, a priori,

ζ(t, z) = ζ̃0(t) + ζ̃1(t)(z − zEH) + ζ̃2(t)(z − zEH)2 + ζ̃3(z − zEH)3 + · · ·

+ κ2
[
ζ̃h0 (t) + ζ̃h1 (t)(z − zEH) + ζ̃h2 (t)(z − zEH)2 + ζ̃h3 (z − zEH)3 + · · ·

]
(3.23)

Given ṫ ∼ 1
z−zEH , a potentially large value of the energy will arise from the term of the

(z − zEH)0 order, ζ̃0(t). As for the quantum mode ζ̃h0 (t), it comes with a κ2 factor and

is set aside for now (we will come back to it below); let us focus on the classical mode

ζ̃0(t). Since (3.23) is a re-expansion of (3.21), ζ̃0(t) will be given by sum of the original

modes ζn’s with n ≥ 0. By running the program that led to (3.13) and (3.14) but now in

the new series, one can show that ζ̃0(t) = 0.11 The fact that ζ̃0(t) vanishes implies that

the vanishing of the classical part of the scalar solution, although established to the first

several orders in the original z-series, remains valid to all orders. More specifically, the

finding that the higher modes ζn with n ≥ 3 are functions of ζ1, ζ2 must remain valid to

all orders, and thus all of the higher modes ζn vanish.

The fact that the matter part of the action comes at higher order of κ2 translates into

the form of the metric field equation where the matter part starts with at κ2 order:

Rµν −
1

2
Rgµν + Λgµν +

κ2

2
gµν

(
1

2
(∂µζ)2 +

1

2
m2ζ2

)
− 1

2
κ2∂µζ∂νζ + · · · = 0 (3.27)

This implies that the solution generically takes a form of

ζ =
ξ

κ
(3.28)

where ξ represents the rescaled scalar field. Since the classical part identically vanish,

ξ(t, z) has the following series:

ξ(t, z) = κ2
[
ξ̃h0 (t) + ξ̃h1 (t)(z − zEH) + ξ̃h2 (t)(z − zEH)2 + ξ̃h3 (z − zEH)3 + · · ·

]
(3.29)

11For this, it is convenient to introduce

Z ≡ z − zEH (3.24)

and rewrite (3.6) as

ds2 = − 1

(Z + zEH)2

(
F̃ (t, Z)dt2 + 2dtdZ

)
+ Φ̃2(t, Z)(dx2 + dy2) (3.25)

with

F̃ (t, z) = F̃0(t) + F̃1(t)Z + F̃2(t)Z2 + F̃3(t)Z3 + . . .

+ κ2
[
F̃h0 (t) + F̃h1 (t)Z + F̃h2 (t)Z2 + F̃h3 (t)Z3 + . . .

]
Φ̃(t, z) = Φ̃0(t) + Φ̃1(t)Z + Φ2(t)Z2 + Φ̃3(t)Z3 + . . .

+ κ2
[
Φ̃h0 (t) + Φ̃h1 (t)Z + Φ̃h2 (t)Z2 + Φ̃h3 (t)Z3 + . . .

]
ζ̃(t, z) = ζ̃0(t) + ζ̃1(t)Z + ζ̃2(t)Z2 + ζ̃3(t)Z3 + . . .

+ κ2
[
ζ̃h0 (t) + ζ̃h1 (t)Z + ζ̃h2 (t)Z2 + ζ̃h3 (t)Z3 + . . .

]
. (3.26)
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which implies

ζ(t, z) = κ
[
ξ̃h0 (t) + ξ̃h1 (t)(z − zEH) + ξ̃h2 (t)(z − zEH)2 + ξ̃h3 (z − zEH)3 + · · ·

]
(3.30)

Let us consider the scalar kinetic term in the stress-energy tensor and its contribution to

ρ, ∂µζ∂νζ U
µUν . At the classical level, ṫ scales as

ṫ = − E

3M

1

z − zEH
+O((z − zEH)0) (3.31)

The location of the horizon at the quantum level, zqEH , will take a form of

zqEH = zEH +O(κ2) (3.32)

and this implies

ṫ ∼ O(κ−2) (3.33)

at z = zqEH . With this scaling it is the ζ̇ ζ̇ ṫṫ piece of ρ that will give the leading order

energy. As z → zqEH , one gets

∂µζ∂νζ U
µUν ∼ κ2[

˙̃
ξh0 (t)]2

κ4
∼ 1

κ2
(3.34)

Note that it is the “horizon quantum mode” ξ̃h0 (t) that led to this trans-Planckian energy.

What appears above is a time derivative of ξ̃h0 (t); a time-independent mode ξ̃h0 (t) = const

will not lead to a trans-Planckian energy. The boundary modes are the important part

of the physical degrees of freedom and must hold part of the system information. They

determine the bulk dynamics as analyzed in the previous subsections. More basically, they

are the building blocks of the time-dependence and represent the boundary dynamics and

deformations. The result above shows that being a part of the horizon mode, they are also

linked with the trans-Planckian energy.

4 Conclusion

In this sequel, we have further explored the intertwined relationships among boundary

conditions, quantum effects, and time-dependent solutions. Three black hole backgrounds

have been analyzed: a Schwarzschild-Melvin black hole, its generalization obtained in [37]

and the generalization of the time-dependent AdS black hole considered in [38] and [29]. A

pattern similar to that of [21] has again been found: the non-Dirichlet modes and quantum

effects are crucial for a quantum-modified time-dependent black hole solution. One of our

main focuses is on the quantum-induced cosmological constant and it is shown that it is one

of the agents that reinforce the time-dependence of the solution.12 The trans-Planckian

energy is obtained in the case of the time-dependent solution.

12The importance of the cosmological constant was discussed in a different context in [14] in which the

role of the back reaction of the vacuum energy in the black hole geometry was noted.
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It is confirmed that the time-dependence of the solution is at odds with the Dirichlet

boundary conditon. The boundary conditions are closely tied with quantization proce-

dure. It is rather surprising that adoption of such an innocuous boundary condition as

the Dirichlet leads to a (presumably highly) limited subset of the proper Hilbert space.

This phenomenon is in no way elementary: one does not have an analogous phenomenon

with a system where the metric is kept as non-dynamical. The limitation of the Dirichlet

boundary condition has its origin in the fact that the physical degrees of freedom of a

gravitational theory happens to be associated with the hypersurface at the boundary, and

thus get suppressed by the Dirichlet boundary condition.

We believe that the present work with the previous ones unequivocally shows that

the quantum gravitational effects cannot in general be disregarded, especially in time-

dependent circumstances, since they can be important for nonpertubative physics. It has

been shown that with the quantum-level constraints taken into account, the classical time-

dependent black hole solution “reduces” to the AdS black hole solution in the sense ex-

plained in the main body. Also, it is the quantum gravitational effects that lead to the

trans-Planckian energy as demonstrated in the main body.13

The phenomenon seen in (3.12) seems to have its origin in the subtlety of going to

classical limit [56]. In the present case, the subtley is manifest as follows. As the ~-order

parts of the field equations must vanish separately from the classical parts, one gets

~(· · · ) = 0 (4.1)

Inside the parenthesis, some of the classical modes come to appear. If one takes ~ → 0-

limit too early, the quantum-level constraint will be removed and this corresponds to the

“usual” classical limit. As our analysis explicitly shows, the full quantum-level analysis

can (and in our case, it does) introduce “order 1” changes to the classical solution through

the constraints coming from the part represented by the ellipsis.

Let us clarify another conceptual issue on matter- vs. graviton- loop effects. In the semi-

classical limit only the matter fields are treated at the quantum level. This may seem to

indicate that what’s important for the trans-Planckian energy is the overall quantum effects

— regardless of whether they come from matter or graviton fields — but not necessarily

the quantum gravitational effects. This is not so. The loops of the matter fields introduce

a cosmological constant term. Now one can consider the back reaction of the metric to

the quantum-induced cosmological constant through the existence of the time-dependent

solution. So strictly speaking, it is the quantum effects (regardless of whether they are the

matter- or graviton- originated) plus the metric back reaction that are important for the

trans-Planckian energy. The fact that one considers the metric back reaction reflects that

the metric is dynamical. Once one considers dynamical metric and matter quantum effect,

there is no rationale to exclude the graviton loop effect, hence the relevance of the quantum

gravitational effects. Related to this, the following can be said. The AMPS argument

in [17] is based largely on the semi-classical framework but nevertheless leads to the trans-

Planckian energy. Their argument certainly contains the matter quantum field-theoretic

13It will be interesting to see whether the quantum-induced trans-Planckian energy is responsible for

extreme high energy gamma rays from active galactic nuclei.
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ingredient. The metric is perceived as dynamical and plays a dynamical role in the AMPS

argument. By the same logic as above, the quantum gravitational ingredient is involved.

The following are the questions that can be answered by further extending the line of

our recent research.14

The trans-Planckian energy results in a manner similar to that of [21] where the scalar

field scaling as ∼ 1
κ led to the energy of order 1

κ2
. Matter fields are present in both cases. It

will be of some interests to explore the question of whether or not a matter field is required

for a trans-Planckian energy in general, especially in the context of the distorted black hole

solutions of [60] and [61].

We believe that the trans-Planckian energy will typically occur in time-dependent

situations. Even the time-independent cases could actually translate into time-dependent

cases in a more realistic framework where one would consider an infalling wave-packet

in the second-quantized Schrodinger framework. In that approach to which the present

approach should be complementary, one would take |vac > to be a certain type of wave-

packet propagating in the background under consideration. The expectation value of the

stress-energy tensor would be computed with respect to the “wave-packet vacuum.” The

onshell value of the Hamiltonian density will describe the spacetime-dependent energy

density and the energy density around the packet will be time-dependent. This way, the

time-dependence will be naturally built-in and we anticipate that the energy density will

yield a trans-Planckian value around the packet as it approaches the horizon.

The course of our recent research repeatedly points to the importance of the boundary

dynamics in a gravitational theory. In the present work, it was the non-vanishing boundary

mode ζh0 (t) (more precisely, the horizon mode ζ̃h0 (t)) that led to the trans-Planckian en-

ergy. More primarily, incorporation of various boundary conditions is necessary for correct

identification of the whole Hilbert space of the theory [26, 27]. The widely-used Dirichlet

boundary condition may well be of measure zero among all possible non-Dirichlet bound-

ary conditions. We have analyzed the issue of the Dirichlet vs. non-Dirichlet boundary

condition in detail in [29]. It didn’t appear possible to interpret the boundary condition of

the quantum-level solution as a Neumann type. It might, however, be possible to interpret

it as a Neumann-type up to peculiarities of an AdS spacetime. It will be of some interest

to make this more accurate.

Closely tied with the boundary condition is the question of the stress-energy tensor.

The definition of the stress-energy tensor itself has a long history of debates. Most of these

debates were on the definition of the stress-energy tensor at the classical level [45, 46]. The

quantization procedure poses additional subtleties. One of the most serious issues should

again be the one associated with the boundary terms and conditions. A detailed analysis

of the stress-energy tensor incorporating the works on the boundary terms such as [62]

and [63] should be performed.

We will report on the progress in some of these issues in the near future.

14Another more serious issue in the perturbative analysis is the long-known gauge-choice dependence. It

is a more fundamental question [57–59].
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A Some details on geodesic equations

Here we present some details on solving the geodesic equations.

A.1 Schwarschild-Melvin case

The coordinates (r, θ) satisfy the following second order geodesic equations (see, e.g., [64]

for the detailed study):

r̈+

(
∂rΛ

Λ
− f ′

2f

)
ṙ2+

1

2
f

(
f ′+

2f∂rΛ

Λ

)
ṫ2+

fr(r∂rΛ−Λ)

Λ5
sin2 θφ̇2

−fr
(

1+
r∂rΛ

Λ

)
θ̇2+

2∂θΛ

Λ
θ̇ṙ= 0 (A.1)

θ̈− 1

fr2
∂θΛ

Λ
ṙ2+

f

r2
∂θΛ

Λ
ṫ2+2

(
1

r
+
∂rΛ

Λ

)
θ̇ṙ+

sinθ(∂θΛsinθ−Λcosθ)

Λ5
φ̇2+

∂θΛ

Λ
θ̇2 = 0 (A.2)

Upon substituting ṫ and φ̇ into (2.14), (A.1) and (A.2), one gets

Λ2

f
ṙ2 + Λ2r2θ̇2 − E2

fΛ2
+

l2Λ2

r2 sin2 θ
= s (A.3)

r̈ +

(
∂rΛ

Λ
− f ′

2f

)
ṙ2 − fr

(
1 +

r∂rΛ

Λ

)
θ̇2 +

2∂θΛ

Λ
θ̇ṙ

+
E2

2

1

Λ4

(
f ′

f
+

2∂rΛ

Λ

)
+ l2

f

r3 sin2 θ

(
r
∂rΛ

Λ
− 1

)
= 0 (A.4)

θ̈ − 1

fr2
∂θΛ

Λ
ṙ2 +

∂θΛ

Λ
θ̇2 + 2

(
1

r
+
∂rΛ

Λ

)
θ̇ṙ

+
E2

fr2
∂θΛ

Λ5
+

l2

r4 sin3 θ

(
sin θ

∂θΛ

Λ
− cos θ

)
= 0 (A.5)

With θ = π/2, eq.(A.5) is satisfied and eq.(A.3) can be solved and one gets for r̈:

r̈ = − 4E2B2r

(1 +B2r2)5
+ l2

(r − 3M)

r4
+ s

(M + 5MB2r2 − 2B2r3)

r4(1 +B2r2)3
(A.6)

A.2 Generalized Schwarschild-Melvin case

One can verify that E = −gvvv̇ − gvr ṙ − gvθθ̇ and l = gϕϕϕ̇ are the first integrals (energy

and angular momentum) for the ϕ and v geodesic equations

d2ϕ

du2
+ 2

(
1

r
+

csc2 θ

2r3
(r∂rg̃ϕϕ − 2g̃ϕϕ)

)
dr

du

dϕ

du

+2

(
cot θ +

csc2 θ

2r2
(∂θg̃ϕϕ − 2 cot θg̃ϕϕ)

)
dθ

du

dϕ

du
= 0, (A.7)

d2v

du2
+

(
f ′

2
− 1

2
∂rg̃vv

)(
dv

du

)2

− ∂rg̃vθ
dv

du

dθ

du

−
(
r +

1

2
∂rg̃θθ

)(
dθ

du

)2

−
(
r sin2 θ +

1

2
∂rg̃ϕϕ

)(
dϕ

du

)2

= 0. (A.8)
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for the metric (2.21). For instance, one can check that u-differentiation of

ϕ̇ =
l0

r2 sin2 θ + g̃ϕϕ
=

l0

r2 sin2 θ

(
1− g̃ϕϕ

r2 sin2 θ

)
+O(g̃2ϕϕ) (A.9)

results in eq.(A.7). The details are as follows. By taking the second derivative one gets

ϕ̈ = −2

r

(
l0

r2 sin2 θ
ṙ +

l0

r2 sin2 θ
cot θ rθ̇

)
+

1

r3 sin2 θ

(
4

l0

r2 sin2 θ
g̃ϕϕṙ + 4

l0

r2 sin2 θ
cot θ g̃ϕϕrθ̇

− l0

r2 sin2 θ
rθ̇∂θ g̃ϕϕ −

l0

r2 sin2 θ
rṙ∂r g̃ϕϕ

)
(A.10)

One arrives at eq. (A.7) by combining (A.9) and (A.10).
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