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1 Introduction

The idea of bootstrapping scattering amplitudes from their analytic properties goes back

to the analytic S-matrix program [1]. When a perturbative expansion is available, for

example when perturbative QCD is applicable, the constraints coming for example from

perturbative unitarity and from the expected behavior in kinematic limits can be made

very concrete. At the one-loop level, the relevant function space has been known for

a long time. Combining this insight about one-loop Feynman integrals with the above

universal properties turned out to be extremely powerful. This culminated in the analytic

determination of entires classes of n-particle one-loop scattering amplitudes [2].
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For many years, a big obstacle was the fact that two-loop Feynman integrals are far

less explored than their one-loop counterparts, and most analytically known results were

for four-particle integrals in various kinematical configurations.

It was realized that a large class of Feynman integrals are represented by iterated inte-

grals, the latter being natural generalizations of the logarithms and dilogarithms appearing

in the one-loop case. While these functions had appeared previously in many special cases,

the realization that they can be effectively discussed using the so-called symbol [3] opened

the door to further progress. The symbol encodes the way in which the functions are de-

fined from elementary integrands, the latter being called the alphabet. The symbol and

alphabet together encode the analytic structure of the loop integral.

Further, it was realized that by studying the leading singularities of loop integrals [4]

allows one to defined certain pure integrals. The latter have a uniform transcendental

weight, i.e. a fixed number of integrations, and involve only numbers as prefactors. In

other words, they do not contain any kinematic prefactors accompanying the transcendental

functions. This concept also turned out to be important for very practical aspects, as pure

functions satisfy canonical differential equations [5]. From the latter, the properties of the

integrals can be read off conveniently.

Once one has an idea of what the symbol alphabet of a certain scattering amplitude is,

this is a very powerful constraint on the answer. It reduces the problem to finding a fixed

(albeit sometimes large) number of coefficients. Combining this with other information,

for instance about the known structure of amplitudes in soft/collinear or Regge limits,

can sometimes fix the answer completely. This modern amplitude bootstrap program was

started in [6, 7], where several planar six-particle amplitudes in N = 4 super Yang-Mills

were bootstrapped. To date, this program has been pushed to much higher loop orders [8–

10], and has also been applied to seven-particle amplitudes [11, 12]. In most of these cases,

the symbol alphabet is conjectured, although supporting evidence comes from explicit

calculations of certain loop integrals, and from observed cluster algebra properties of these

scattering amplitudes [13]. One can also glean insights about the symbol alphabet from an

analysis of the Landau equations of Feynman graphs [14].

So far, this bootstrap program has been limited to planar amplitudes in N = 4 super

Yang-Mills. The main reason for this is that the latter have a dual conformal symmetry,

which considerably simplifies the kinematic dependence of the amplitudes. In fact, after

taking into account the infrared structure and dual conformal Ward identity, the four- and

five-particle amplitudes are essentially predicted, so that six- and seven-particle amplitudes

are the first interesting cases.

In this paper, we initiate the bootstrap program for the generic QCD case, starting with

five-particle amplitudes, both for the planar and non-planar case.1 The most important

input into the bootstrap program is the function alphabet. Our starting point is [15],

where all functions relevant for planar two-loop five-particle scattering were computed (see

also [16–19] for related work). The planar function space is described by an alphabet AP

1In principle, one could also attempt to bootstrap for four-particle amplitudes, however the bootstrap

becomes more powerful with more external legs, as this allows one to probe various kinematic limits.
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of 26 letters. In this paper, we propose that the corresponding non-planar alphabet ANP

is given by a set of 31 letters, which is obtained from permutations of the letters of AP.

We introduce a second generalization of the bootstrap program. While previously the

bootstrap was mostly applied to entire amplitudes, we show how to use it in order to

compute individual Feynman integrals.

One important refinement of the bootstrap program was to incorporate the Steinmann

relations, which forbid discontinuities in overlapping kinematic channels. These relations

effectively lead to a constraint on the second entry of the symbol. In the five-particle

case, to the best of our knowledge it is not known whether the Steinmann relations imply

constraints beyond the Regge limit [20]. Here, we make an observation, based on the planar

case, that a certain second-entry condition seems to be valid.

When applying the bootstrap method to individual integrals, we can no longer rely

on universal properties in kinematic limits. Nonetheless, these limits turn out to be very

useful. We extract the information about the limits from Mellin-Barnes representations

of the integrals [21–23]. Although the latter are in general rather complicated, it turns

out that they simplify considerably in suitably defined limits. The key point is that it is

sufficient to take rather simple limits, reminiscent for example of multi-Regge limits, to

fix the parameters in the ansatz. In the limit, the number of Mellin-Barnes integrals is

reduced considerably, and the remaining integrals can easily be resummed [24].

We also introduce a further new tool for extracting information from the Mellin-Barnes

representations. We show how to compute single and multiple discontinuities of the lat-

ter. As the resulting functions have lower transcendental weight, they are much easier

to compute.

The outline of the paper is as follows. In section 2, we present our conjecture for the

non-planar pentagon alphabet, and discuss its properties. In section 3, we recall how to

derive MB representations, and how asymptotic limits and discontinuities can be extracted

from them. In section 4 we apply the above ideas to the calculation of a pair of two-loop

non-planar five-point integrals. We conclude in section 5.

2 The non-planar pentagon function alphabet

Symbols of functions. Our ultimate goal is to present the results of the pertagon

Feynman integrals I in terms of suitable functions such as polylogarithms. Almost as good

is to compute the symbol SB[I] of the Feynman integral. We define symbols as follows.

Given a set of functions f1, . . . , fr (the alphabet) of the kinematic variables x = (x1, . . . , xs),

one defines the weight n symbol [fi1 , . . . , fin ] iteratively as

[fi1 , . . . , fin ](x) =

∫
d log fin(x′)[fi1 , . . . , fin−1 ](x′) , (2.1)

over some suitable integration path. The symbol does not contain the information of the

integration contour or of the values that the iterated integral has to take at the boundary

points. These integration constants have to be provided once the symbol is known and

it then becomes in principle possible to express the function itself in terms of explicit

functions such as polylogarithms.

– 3 –
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Writting a given function G(x) as an iterated integral as in (2.1), we denote its symbol

by SB[G(x)]. We refer to the article [25] for a more in-depth introduction on symbols.

The advantage of symbols is their ability to capture the main combinatorial and analytical

properties of iterated integral functions like polylogarithms, while being significantly easier

to deal with. In particular, if the function G is defined via a differential equation, its

symbol SB[G] is in a sense the general solution to the differential equation.

As an example, let us consider the dilogarithm function Li2(x). We have (beware the

order inversion)

Li2(x) = −
∫ x

0

log(1− y)

y
dy = −

∫ x

0
d log(x′)

∫ x′

0
d log(1− x′′) ,

=⇒ SB[Li2(x)] = −[1− x, x] .

(2.2)

We remark that the first entry of the symbol contains information on the its discontinuities

(see also section 3.4), while derivatives in act on the last entry, for instance ∂xSB[Li2(x)]

is given by −[1− x]∂x log(x) = − 1
x [1− x].

For another example of symbols, applying the definition (2.1) to the harmonic polylogs

(HPL) of appendix B, we find that their symbols are given by

SB[Ha1,...,an(x)] = [x− an, x− an−1, . . . , x− a1] . (2.3)

The pentagon alphabet. The scattering process of five massless particles with momenta

pi is described by five kinematical invariants vi. We introduce the notations:

vi = si,i+1 = 2pi · pi+1 , a1,2,3,4 = v1v2 − v2v3 + v3v4 − v1v5 − v4v5 ,

∆ = det(2pi · pj) .
(2.4)

The indices are cyclic, meaning that we set vi+5 ≡ vi and a···(i+5)··· ≡ a···i··· for all i. We

remark that a1,2,3,4 = tr[/p4/p5/p1/p2
] and ∆ = (tr5)2 with tr5 = tr[γ5/p4/p5/p1/p2

]. We thus also

use
√

∆ = tr5. Using the variables vi has its advantages, though it is often convenient to

switch to the β-variables of [26], which have the property that
√

∆ can be expressed in

them using only rational functions.

The alphabet AP used for the planar five-point amplitudes and integrals was introduced

in [15]. It is made out of the 26 letters AP = {W1, . . . ,W20} ∪ {W26, . . . ,W31} where the

even letters are (we let the index i run over 1, . . . , 5)

Wi = vi = 2pi · pi+1 , W5+i = vi+2 + vi+3 = 2pi+3 · (pi+2 + pi−1) ,

W10+i = vi − vi+3 = 2pi+2 · (pi+3 + pi−1) , W15+i = vi + vi+1 − vi+3 = −2pi · pi+2 ,

(2.5)

while the odd ones read

W25+i =
ai,i+1,i+2,i+3 −

√
∆

ai,i+1,i+2,i+3 +
√

∆
, for i = 1, . . . , 5 , (2.6)

with the last letter being W31 =
√

∆. We remark that in the β variables of [26], all the

letters Wi become rational functions.

– 4 –
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In this article we call even the letters {Wi}25
i=1 (but not W31) and odd the letters

{Wj}30
j=26. When the momenta pi are real and we use the Minkowski metric, then the

complex conjugation is realized as follows: (
√

∆)∗ = −
√

∆. Consequently, (Wj)
∗ = W−1

j

for j = 26, . . . , 30 and symbols containing an odd number of odd letters change sign.

For the non-planar alphabet ANP, we need to close AP under permutations. The odd

letters are closed under permutation but the even ones are not. The minimal option is to

simply introduce five additional even letters {W21, . . . ,W26} given by

W20+i = v2+i + v3+i − vi − vi+1 = 2pi+2 · (pi + pi+3) , where i = 1, . . . , 5 . (2.7)

Thus, the non-planar alphabet is defined as ANP = {Wi}31
i=1. In the appendix A, we

describe the action of the group S5 on the alphabet ANP.

Lastly, we remark that only the 10 letters {Wi}5i=1 ∪ {Wj}20
i=16 = {sij}5i<j=1 appear in

the first entries of the non-planar symbols. This is the well-known first entry condition,

see [27] for an explanation. In the planar case, while all the {Wi}5i=1 ∪ {Wj}20
i=16 remain

allowed letters, only the first five {Wi}5i=1 are then allowed first entries.

The integrable symbols. Given the non-planar alphabet ANP we are interested in

determining the set of integrable symbols of given weight that are subject the first entry

condition as well as other additional conditions as the case requires.

We remind that a symbol S, written in our alphabet as

S =

31∑
i1,...,in=1

ci1···in [Wi1 , . . . ,Win ] , (2.8)

where the ci1···in are constants, is called integrable if it satisfies the following integrability

condition

0
!

=
31∑

i1,...,in=1

ci1···in

{
∂ logWik

∂va

∂ logWik+1

∂vb
− (a↔ b)

}
[Wi1 , . . . , Ŵik , Ŵik+1

,Win ] , (2.9)

for all k = 1, . . . , n − 1 and all a, b = 1, . . . , 5. In the above, ·̂ indicates omission. The

integrability condition guarantees that the iterated integral (2.1) for the symbol S is inde-

pendent of infinitesimal variations of the integration path.

The other conditions that we impose on the symbol S are:

1. the first entry condition which stipulates that in (2.8) the index i1 only runs over the

set {1, . . . , 5} for AP and over {1, . . . , 5} ∪ {16, . . . , 20} for ANP.

2. the second entry condition. This condition is more hypothetical, which is why we

also performed the integrable symbol classification without it. It corresponds to

forbidding the appearance in (2.8) of the terms [W1,W8, · · · ], [W5,W8, · · · ] and their

permutations. Such terms could in principle appear in the planar integrable symbols,

but happen to not appear in planar Feynman integrals. We conjecture that they are

also absent from the non-planar Feynman integrals. Explicitly, the forbidden pairs

– 5 –
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Weight 1 2 3 4

# of integrable symbols for AP 5 | 0 25 | 0 125 | 1 635 | 16

after 2nd entry condition 5 | 0 20 | 0 80 | 1 335 | 11

# of integrable symbols for ANP 10 | 0 100 | 9 1000 | 180 9946 | 2730

after 2nd entry condition 10 | 0 70 | 9 505 | 111 3736 | 1191

Table 1. We list here the number of independent integrable symbols of given weight for the planar

and the non-planar alphabets. In each case, we indicate the number of even | odd symbols.

of indices are

{1,8} ,{1,9} ,{1,14} ,{1,15} ,{1,24} ,{1,25} ,{2,9} ,{2,10} ,{2,11} ,{2,15} ,{2,21} ,{2,25} ,
{3,6} ,{3,10} ,{3,11} ,{3,12} ,{3,21} ,{3,22} ,{4,6} ,{4,7} ,{4,12} ,{4,13} ,{4,22} ,{4,23} ,
{5,7} ,{5,8} ,{5,13} ,{5,14} ,{5,23} ,{5,24} ,{16,8} ,{16,10} ,{16,11} ,{16,14} ,{16,21} ,
{16,24} ,{17,6} ,{17,9} ,{17,12} ,{17,15} ,{17,22} ,{17,25} ,{18,7} ,{18,10} ,{18,11} ,
{18,13} ,{18,21} ,{18,23} ,{19,6} ,{19,8} ,{19,12} ,{19,14} ,{19,22} ,{19,24} ,{20,7} ,
{20,9} ,{20,13} ,{20,15} ,{20,23} ,{20,25} .

(2.10)

The results of the classification of the integrable symbols in the alphabets AP and ANP are

presented in table 1.

3 Mellin-Barnes technology

In this section, we introduce several tools involving Mellin-Barnes integrals that we will

then make use of in section 4 in order to compute an explicit Feynman integral.

3.1 Mellin-Barnes representations for non-planar Feynman integrals

Deriving Mellin-Barnes (MB) representations for Feynman integrals is a very standard

procedure, see e.g. [21, 28]. One starts from a Feynman parametrized form of the answer,

factorizes the integrand with the help of the basic Mellin-Barnes integral formula,

1

(X + Y )a
=

1

Γ(a)

∫ c+i∞

c−i∞

dz

2πi
Γ(−z)Γ(a+ z)XzY −a−z , (3.1)

where the z-integration goes along the vertical axis with real part c ∈ (−a, 0) and then

finally carries out the Feynman parameter integrals.

The resulting Mellin-Barnes representation is not unique and for example the number

of integration parameters can depend on the way the representation is introduced. For

example, in the planar case, it is often advisable to proceed loop-by-loop, to obtain a

low-dimensional representation.

In the non-planar case, special care has to be taken to obtain an MB representation

with good convergence properties. The issue is that factors such as (−1)z can lead to

bad convergence properties in the complex plane [29], and it is better to avoid them.

– 6 –
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While special tricks may work for individual cases, in general it seems best to start with

the global Feynman parametrization, as opposed to the loop-by-loop approach [23, 28].

Moreover, ref. [23] suggests that one can make a suitable choice of the projective delta

function in the Feynman parametrization in order to arrive at a relatively low-dimensional

MB integral.

Another new feature of the non-planar case is the appearance of new kinematic in-

variants. For example, in the four-point case, one obtains a MB representation of the

type [30] ∫
dzi(−s)z1(−t)z2(−u)z3g(zi) . (3.2)

Here p2
i = 0,

∑4
i=1 pi = 0, s = 2p1 · p2, t = 2p2 · p3 and u = 2p1 · p3. Since s+ t+ u = 0, at

least one of the factors in the integrand leads to a negative power of −1. For this reason,

it is better to start the calculation in a more general kinematic regime, where s, t, u are

considered independent, and only at the end of the calculation impose s + t + u = 0 [30].

As we will see later, similar features occur for our non-planar pentagon integrals.

For example, consider the Feynman diagram of topology (c) of table 3 of [31], see also

figure 2. Deriving the global Feynman representation, it is clear that one can find a MB

representation of the type (3.2), with exponentials of the following factors:

{−s12,−s23,−s34,−s45,−s15,−s35,−s14} . (3.3)

Similarly to the four-point example, only five of these variables are independent. In the

present case, one can however directly use an independent set of variables, while not having

any exponentials of (−1) in the MB integrand. This can be seen as follows. If we choose

{s34, s45, s15, s14, s35} as independent, then we have s12 = s34+s35+s45 , s23 = s14+s15+s45.

Therefore, we can consider a kinematic region where all factors in eq. (3.3) are positive.

This point will also be important when considering kinematic limits and discontinuities.

3.2 Suitable kinematic limits

Thanks to our bootstrap hypothesis, we do not need to compute the complicated MB

integral, but rather it is sufficient to extract some information from it. To this end we can

define kinematic limits that considerably simplify the integrals.

In the case of scattering amplitudes, a useful limit is the multi-Regge limit, where the

kinematic variables are rescaled according to

s12 → t1 , s23 → t2 , s34 → s2/ρ , s45 → s1/ρ , s15 → s/ρ2 , (3.4)

with ρ→ 0. Analyzing the limit at the level of the symbol, we see that the alphabet ANP

simplifies to

{ρ, s, s1, s2, s1 + s2, t1, t2, t1 + t2} (3.5)

It is obvious that this alphabet decomposes into smaller independent alphabets. This

implies that the result will be given by products of simpler functions. The only non-

trivial type of function, corresponding to the is the 3-letter alphabet {s1, s2, s1 + s2} (and

– 7 –
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similar for s↔ t) gives rise to harmonic polylogarithms [32]. The latter are single-variable

functions that can usually be obtained in a relatively simple way by transforming the MB

integrals into sums (see section 3.3).

Similarly, we can take limits reminiscent of soft limits, by setting ρ→ 1/ρ before taking

the limit. Moreover, we can consider permutations of those limits, and in this way obtain

additional information.

Considering that we are not using any information from the expected properties of

amplitudes in the limit, but rely on the MB representation to extract that information,

we are free to consider other limits as well. For example, in the case of integral topology

(i) of table 3 of [31], discussed in section 4, it turns out that one can find a nice MB

representation depending on the independent variables {s12, s13, s23, s24, s34}. In this case

one can consider a limit analogous to (3.4), but where the si,i+1 are replaced by those

variables, see section 4.3.

Since we only need to determine a limited number of information, we can choose the

limits that are most accessible. Of course, further limits can be used as valuable cross

checks, thereby giving additional support to the bootstrap hypothesis. We find that in

most cases it is sufficient to compute the limits to leading power of the expansion, matching

the logarithmically enhanced terms logk(ρ) and the finite part in the ρ→ 0 limit with the

ansatz. In principle, one can also consider power suppressed terms to provide additional

information (see section 4 for an example of this).

3.3 Resumming Mellin-Barnes integrals

One dimensional Mellin-Barnes integrals of only one scale can often be evaluated explicitly

in terms of harmonic polylogarithms (HPL) and rational functions. The procedure works

as follows. We use the package MBsums provided by [24]. The contour is closed in such a

way as to have the resulting sum be a Laurent expansion around x = 0. This means that

if the scale x enters the MB integral over z as xz, then we have to close the contour to the

right and if it appears as x−z, then we close to the left. As an example, consider one of

the typical MB integrals that appear

Iexample =

∫ − 1
2

+i∞

− 1
2
−i∞

dz

2πi
xz

Γ(1− z)Γ(−z)Γ(z + 1)ψ(−z − 1)

Γ(−z − 1)
, (3.6)

where ψ is the digamma function. Using MBsums and closing the contour to the right, we

obtain the sum representation

Iexample = 1 +

∞∑
k=2

(−1)kk!

(k − 2)!
xk−1 (hk−2 − 2hk − log(x) + γE) , (3.7)

where hk =
∑k

`=1
1
` are the harmonic numbers. We can now very easily expand Iexample

to arbitrary order around x = 0. By matching terms with an ansatz of the type

– 8 –
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pi(x)HPL(A, x), we can evaluate the sum.2 The prefactors pi(x) are of the type

pi(x) ∈ Pn,m ≡
{
Pn(x)

Qm(x)
:
Pn is a polynomial of degree n and

Qm = xa(x− 1)b(x+ 1)c with max(a, b, c) ≤ m

}
. (3.8)

We increase n, m and the HPL weight A until we find a solution. We observe that a linear

basis of the space of prefactors Pn,m is given by

Pn,m = span

(
1, x, . . . , xn, x−1, . . . , x−m,

1

x− 1
, . . .

1

(x− 1)m
,

1

x+ 1
, . . .

1

(x+ 1)m

)
. (3.9)

For the example at hand, we obtain finally the result

Iexample =
1

(1 + x)3

(
1 + γE − 3x− x2 + 2xH−1(x)− 2xH0(x)

)
. (3.10)

For the evaluation and series expansion of the harmonic polylogarithms, we use the package

HPL of [35]. The methods described in this section can be generalized to multiple MB

integrals of a single scale, though in that case a better approach than using MBsums is to

use the package3 MBasymptotics.

3.4 Discontinuities

Consider a function f(x) that is real-valued for x > 0, and that may have a branch

cut starting somewhere along the negative real axis. Then we define the discontinuity

according to

Discxf(x)x=−y :=
1

2πi

[
f(ye−iπ)− f(yeiπ)

]
, y > 0 . (3.11)

Given a MB representation f(x) =
∫
dz xzg(z), this yields

Discxf(x)x=−y = −
∫
dz yz

g(z)

Γ(−z)Γ(1 + z)
. (3.12)

By definition, the r.h.s. is only defined for y > 0. Let us see how this works in a few

examples. First, we have the identity − 1
1−x log x =

∫
dz
2πix

zΓ2(−z)Γ2(1 + z). Taking a

discontinuity, we obtain

Disc

(
− 1

1− x log x

)
x=−y

= − 1

1 + y
= −

∫
dz

2πi
yzΓ(−z)Γ(1 + z) . (3.13)

For the second example, we want to distinguish the cases where the branch cut starts from

0 from those where it starts somewhere else on the negative real axis. This is important to

distinguish symbol terms such as e.g. [x, . . .] and [1 + x, . . .]. Consider for instance

g(x) = − 1

1 + x
log(1 + x) =

∫
dz

2πi
xzΓ(−z)Γ(1 + z) (ψ(1 + z) + γE) , (3.14)

2We would be remiss not to mention the powerful package Xsummer, see [33] or Sigma, see https:

//www.risc.jku.at/research/combinat/software/Sigma/ and [34], that can also help one perform the sum.

For our purposes, they were not needed.
3See https://mbtools.hepforge.org/.
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p5

p4

p1

p2
p3

ℓ− p5

ℓ

q − p2

q

q + ℓ + p1q + ℓ + p1

q + ℓ + p1,3

Figure 1. The 2-loop non-planar integral corresponding to topology (i) of [31].

where we remind that ψ is the digamma function. Then we have

h(y) = Discxg(x)|x=−y = −
∫

dz

2πi
yz (ψ(1 + z) + γE) . (3.15)

We can verify that we can rewrite this function as h(y) = θ(y−1)
y−1 . In fact, if 0 < y < 1, the

contour can be closed on the right, leading to a vanishing result. If y > 1, the contour can

only be closed on the left, and this leads to the expected result.

4 Explicit integrals from Mellin-Barnes representations

In this section we want to provide explicit applications of the symbol classification of table 1

by computing two different two-loop Feynman integral. Specifically, using the notation for

pentagon integrals of [31], we consider an integral of topology (i), see figure 1 and one of

topology (c), see figure 2.

4.1 Mellin-Barnes representations for the topology (i)

First, we want to derive Mellin-Barnes (MB) representations for the integral of topology

(i) of figure 1 in two ways.

The six kinematic invariants case. We introduce an auxiliary parameter α to combine

a pair of massless propagators with p2 = 0. A direct integration shows that

1

`2(`+ p)2
=

∫ 1

0

dα

(`+ αp)4
. (4.1)

Then we use this formula to rewrite the diagram of figure 1 as (D = 4− 2ε)

I(i) =

∫
dD` dDq

∫
dα1 dα2 dα3

(`− α1p5)4(q − α2p2)4(q + `+ p1 + α3p3)4
, (4.2)
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where the integrations α1, α2, α3 are over [0, 1]3. Then we straightforwardly integrate out

the loop momenta q and ` and obtain the result

I(i) =

∫
dα1dα2dα3 π

DΓ3(−ε)Γ(2 + 2ε)

Γ(−3ε)
F−2−2ε

(i),1 , (4.3)

where we have defined

F(i),1 = (−s12)α2 + (−s13)α3 + (−s15)α1 + α1α2(−s25) + α1α3(−s35) + α2α3(−s23) .

(4.4)

We can now introduce a fivefold MB representation for F(i),1 and integrate out the auxiliary

parameters α1, α2, α3. In this way, we find the following MB representation for I(i)

I(i) = πD
Γ3(−ε)
Γ(−3ε)

∫
[dz]

(2πi)5

5∏
j=1

Γ(−zj)Γ(2 + 2ε+ z1,2,3,4,5)

× Γ(−1− 2ε− z1,2,4)Γ(−1− 2ε− z1,3,5)Γ(1 + z1,4,5)

Γ(−2ε− z1,2,4)Γ(−2ε− z1,3,5)Γ(2 + z1,4,5)

× (−s15)z1 (−s12)z2 (−s13)z3 (−s25)z4 (−s35)z5 (−s23)−2−2ε−z1,2,3,4,5 ,

(4.5)

where we have used the shorthand zi1,··· ,in = zi1 + · · ·+ zin and [dz] = dz1 . . . dz5. This MB

integral depends on the following six kinematic invariants, not all of which are independent:

s13 = v4 − v1 − v2 , s25 = v3 − v1 − v5 , s35 = v1 − v3 − v4 ,

s12 = v1 , s23 = v2 s15 = v5 .
(4.6)

The five kinematic invariants approach. Again, we first use eq. (4.1) for two pairs

of propagators, namely those of the left and middle of the diagram. In this way we find

I(i) = π
D
2

Γ2(−ε)Γ(2 + ε)

Γ(−2ε)

∫ 1

0
dα2

∫ 1

0
dα3

∫
dD`

1

`2(`− p5)2(`+ p1 + α2p2 + α3p3)4+2ε

(4.7)

which is a triangle diagram with massless propagators (integrated over auxiliary parameters

α2, α3) and the external momenta p5, p1 + α2p2 + α3p3, and p4 + ᾱ2p2 + ᾱ3p3. Then we

introduce Feynman parameters x1, x2, x3 in a standard way for the triangular diagram and

find after some manipulations the five-fold MB integral representation

I(i) = πD
Γ3(−ε)

Γ(−2ε)Γ(−3ε)

∫
[dz]

(2πi)5

5∏
j=1

Γ(−zj)Γ(1 + z1,2)Γ(1 + z2,3)Γ(1 + z1,2,3)

× Γ(2 + 2ε+ z1,2,3,4,5)Γ(−1− 2ε− z1,2,3)Γ(−1− 2ε− z1,2,3,4)

× Γ(−1− 2ε− z1,2,3,5)Γ−1(−2ε− z1,4)Γ−1(−2ε− z3,5) (−s12)z1 (−s13)z3

× (−s24)z4 (−s34)z5 (−s23)−2−2ε−z1,3,4,5

(4.8)

This MB depends on five kinematic invariants which can be taken as independent variables.
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Weight 2 3 4

# of odd symbols for the topology (i) 9 180 2730

only first entries of (4.10) 1 13 143

S2 × S3 symmetry 1 4 21

second entry condition 1 3 12

Table 2. We list here the number of independent symbols of given weight that can contribute to

the integral of topology (i).

4.2 The symbol for the topology (i)

Classification. The leading singularity analysis of [31] finds just one leading singularity

of the integral I(i), namely 1√
∆

. This suggests that the diagram of figure 1 can be written as

I(i) =
1√
∆

∑
i≥0

1

ε2−i
Pi+2 , (4.9)

where Pi is a pure function of weight i. Since
√

∆ is odd under complex conjugation and

I(i) is even, the functions Pi have to be odd. We work at symbol level, hence we need the

classification of symbols, specifically of the odd symbols of weight ≥ 2, see table 1. We read

off 9 integrable symbols at weight 2, 180 at weight 3 and 2730 at weight 4. The diagram

obviously has only the following seven nontrivial two-particle cuts

s12 = v1 , s34 = v3 , s45 = v4 , s15 = v5 , s13 = v4 − v1 − v2 , s24 = v5 − v2 − v3 . (4.10)

Thus, only these kinematic invariants can appear in the first entries of the symbols. Using

this, we find 1 integrable symbol at weight 2; 13 at weight 3; 143 at weight 4. We further

notice that the diagram has a discrete S2 × S3 permutation symmetry due to the permu-

tations of external points (1, 4) and (2, 3, 5). Imposing this condition, we find 1 integrable

symbol at weight 2; 4 at weight 3; 21 at weight 4. Finally, imposing the second entry

condition, we find 1 integrable symbol at weight 2; 3 at weight 3; 12 at weight 4. In the

following we will work with the symbol ansatz. We summarize the number of symbols

in table 2.

Computing the symbol. Having established the ansatz (4.9) for I(i), where the Pi are

linear combinations of the symbols of the penultimate row of table 2, we can now start

calculating the coefficients of these linear combinations. To compute the symbol of I(i), we

use the MB representation (4.5) and then take discontinuities (single and double) of the

MB representation and compare them with the discontinuities of the symbol ansatz (4.9).

We do this for each term in ε, so we expand (4.5)

I(i) =
I(i),2

ε2
+
I(i),3

ε
+ I(i),4 +O(ε) , (4.11)

where each term I(i),n is given by a MB integral. This is easily done by using the Mathe-

matica packages MB.m of [29] and MBasymptotics.m, see https://mbtools.hepforge.org/.
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We will mostly deal with discontinuities of the MB integrals with respect to the kine-

matic invariants s at s ∼ 0 which appear in the MB integrand in the form (−s)z. Thus,

we can expand the MB integral at s ∼ 0 (that usually lowers the dimensionality of MB

integrations) and pick up the log(−s) terms. While not all discontinuities have this form,

already these easily accessible discontinuities provide many constraints.

At weight 4 however, this above approach shows its limits. In order to fix the weight

4 of the ansatz (4.9), we will also need to consider the discontinuities in s at finite s.

Furthermore, taking double discontinuities of weight four MB integrals, we obtain functions

of maximal weight 2. The corresponding MB integral can be rather easily evaluated using

Cauchy’s theorem and series summation formulae.

4.2.1 The 1/ε2 piece

At weight 2, we need to fix only one coefficient in the ansatz, i.e. the normalization coeffi-

cient c2. Explicitly, our ansatz for the P2-piece of (4.9) is

SB[P2] = c2

(
− [W1,W30]− [W3,W26] + [W4,W26] + [W4,W30] + [W5,W26]

+ [W5,W30]− [W16,W26]− [W17,W30]
)
.

(4.12)

We compute first a discontinuity in s12 at s12 = v1 → 0. To take the discontinuity in

v1 of the symbol we just replace [Wi, ∗] → δi,1[∗] where we remind that W1 = v1. In the

remaining expression we take v1 → 0. Applying this operation to the symbol ansatz (4.12)

we find

Discv1∼0 SB[P2] = −c2[W30] = c2

(
[v2 − v4] + [v3]− [v4]− [v5]

)
. (4.13)

In the limit v1 → 0 we have limv1→0

√
∆ = v2v3 − v3v4 + v4v5.

The MB integral (4.5) depends on six two-particle invariants, see (4.6), and they

cannot all be negative at v1 → 0. However we can forget for a moment about momentum

conservation and take discontinuities of the MB integral in s12 at s12 ∼ 0. To do it we just

expand (4.6) at s12 ∼ 0 and pick up the log s12 terms. The result is a two-fold MB integral

which involves only s13, s15, s23, s25. Now we reintroduce the momentum conservation and

in the limit v1 → 0 we find the kinematic variables

s13 = v4 − v2 , s25 = v3 − v5 , s23 = v2 , s15 = v5 , (4.14)

which all can be negative. This is what we want to avoid (−1)z issues with MB integrations.

Then we can easily take double discontinuity in any of these four variables (when it is

also small): s13 ∼ 0, s25 ∼ 0, s23 ∼ 0, or s15 ∼ 0. For instance, to take the discontinuity in

s15 at s15 → 0, we expand the two-fold MB integral at s15 ∼ 0 and pick up the log(−s15)

term which comes out to be a rational function. Explicity, we find

Discv5∼0Discv1∼0 I(i),2 =
−3

v3(v2 − v4)

!
= Discv5∼0Discv1∼0

SB[P2]√
∆

(4.13)
= − c2√

∆

∣∣
v5∼0
v1∼0

. (4.15)
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Recalling that
√

∆ = v3(v2 − v4) at v1, v5 → 0, we immediately fix the normalization

coefficient c2 = 3.4

We can check our result by computing a number of other discontinuities. For instance,

we find

Discv2∼0Discv1∼0 I(i),2 = Discs25∼0Discv1∼0 I(i),2 = 0 ,

Discs13∼0Discv1∼0 I(i),2 =
3

v2v5
,

(4.16)

which is obviously compatible with ansatz discontinuity (4.13). Let us note that we can

easily find discontinuities in v3 or v4 of the symbol (4.13) but not of the MB integral

Discs12∼0I(i),2. This is due to the fact that the latter depends explicitly on the set (4.14),

hence its MB integrand lacks a (−v3)z or (−v4)z factor.

The symbolic expression is a crucial step towards a functional representation for

an integral of uniform transcendentality. Once it is known, one can find the “beyond-

the-symbol” terms (or “boundary terms” in the language of the differential equations

method). For the symbol SB[P2] of (4.12) with c2 = 3, we find a particularly simple

functional expression

P2 = 6

[
Li2(W26) + Li2(W30)− Li2(W26W30)− 1

2
logW26 logW30 −

π2

6

]
. (4.17)

This result has also been cross checked numerically. Let us note that the function P2 and

its S5 permutations span the 9-dimensional odd subspace of weight 2 of the non-planar

pentagon functions, see table 1. Of course, acting with S5 permutations on (4.17) we

obtain many more different functions, hence they have to satisfy some identities. All of

them are simple dilogarithm identities, except for the 15-term identity which we present in

appendix C.

4.2.2 The 1/ε piece

We know from table 2 that we need to fix 4 coefficients in the odd weight 3 symbol ansatz

SB[P3]. Similarly to the case for the 1/ε2 symbol, we consider first a discontinuity in s12

at s12 → 0 of the MB integral I(i),3 of (4.11). This yields a two-fold MB integral involving

only s13, s15, s23, s25 (recall (4.14)) as well as a log(−s12) factor. We see that all these

two-particle invariants can be chosen negative. We then take a discontinuity in v5 of the

MB integral at v5 ∼ 0. After expanding the two-fold MB integral at s15 → 0 and picking

up the log(−s15) terms, the MB integrations disappear and we find

Discv5∼0Discv1∼0 I(i),3 = 6
log(−v1)− log(−v3) + log(−v5)

v3(v2 − v4)
. (4.18)

This is already sufficient to fix SB[P3] completely. The other discontinuities that we com-

pute are

Discs13∼0Discv1∼0 I(i),3 = 6
log(−v2)− log(−v1) + log(v2 − v4)

v2v5
, (4.19)

4A comment is due on the choice of branch for
√

∆. The functions Pi (and hence c2) change sign under

the choice of branch but as long as one is consistent, the final result for the integral I(i) is invariant.

– 14 –
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as well as

Discv1∼0Discv1∼0 I(i),3 = 6
log(−v4) + log(−v5)− log(−v3)− log(v2 − v4)

v2v3 − v3v4 + v4v5
. (4.20)

The explicit result for the symbol SB[P3] (as well as SB[P2] and SB[P4]) is provided in an

auxiliary file. The precise function expression of P3 is not yet known. A convenient way

of representing the full function is in terms of iterated integrals, in the spirit of [36]. This

can be done by specifying a boundary point in the iterated integral, and by matching the

boundary value against the limits presented here.

4.2.3 The ε0 piece

If we ignore the second entry condition, we need to fix the 21 coefficients in the odd weight

four symbol ansatz SB[P4].

Discontinuities in s12 at s12 → 0. Taking a discontinuity of I(i),4 in s12 at s12 ∼ 0

yields a two-fold MB integral involving only s13, s15, s23, s25 which are (4.14): s13 = v4−v2,

s25 = v3 − v5, s23 = v2 and s15 = v5 as well as the log(−s12), log2(−s12) factors. We can

then take a discontinuity in v5 of v5 ∼ 0. After expanding the resulting twofold MB

integrals at s15 → 0 and picking up the log(−s15) terms, the MB integrations disappear

and we find

Discv5∼0Discv1∼0 I(i),4 = −6
(log(−v1)− log(−v3) + log(−v5))2

v3(v2 − v4)
. (4.21)

In the above we have ignored terms proportional to π since we are working with symbols.

Comparing (4.21) with the ansatz for SB[P4], we fix 17 coefficients.

Then we can consider a discontinuity in v1, since there are log(−s12) factors in the MB

integral. This discontinuity is given by a two-fold MB integral. Evaluating it by summing

up the residues, we find a series which can be summed up explicitly to give

Discv1∼0Discv1∼0 I(i),4 =
6√
∆

(
2Li2(1− v4/v2) + 2Li2(1− v3/v5)

+ log2(1− v4/v2) + log2(−v1) log
v3

v5

(
1− v2

v4

))
,

(4.22)

where ∆ = v2v3 − v3v4 + v4v5 in the limit v1 → 0 and we have dropped any terms

proportional to π. Comparing (4.22) with the ansatz we fix one more coefficient.

We still need to fix two more coefficients. Discv2∼0Discv1∼0 as well as others easily

accessible discontinuities do give any further constraints, so we need to consider disconti-

nuities in s at finite values of s.

Discontinuities at finite values of the kinematic variables. Before taking double

discontinuities, we consider the asymptotics of J(i),4 = Discv1∼0I(i),4 at v5 → 0. This

results in 0-fold and 1-fold MB integrals. The 1-fold MB integrals involves nontrivially

only s13 and s23, i.e. (s13/s23)z. In the limit v1, v5 → 0 we have s13 = v4− v2 and s23 = v2.

So we can safely throw away the log(−s12), log(−s15), log(−s25) factors contained in the

– 15 –
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MB integral for they could not mix with the MB integrations. Now we want to calculate

Discs13J(i),4 at finite s13 as well as Discs23J(i),4 at finite s23. We define the discontinuity

as in (3.11) and evaluate the integrals using residues. We have to be cautious closing the

integration contour when we take a discontinuity in s13 since −s13 � −s23. Thus for

an integral containing (s13/s23)z we close the contour on the right. Let us stress that the

choice of the contour is important, closing the contour in the opposite way we would obtain

wrong results. Thus we obtain

Discs13Discv1∼0 I(i),4 = 6
(log(v2 − v4)− log(−v2))2

v3(v2 − v4)
, Discs23Discv1∼0 I(i),4 = 0 ,

(4.23)

up to terms proportional to π. Comparing the first of the previous equations with the

ansatz we find one more constraint.

In a very similar fashion, we obtain

Discv5Discv1∼0 I(i),4 = −6
(log(v5 − v3)− log(−v5))2

v4(v5 − v3)
, Discs25Discv1∼0 I(i),4 = 0 ,

(4.24)

again up to terms proportional to π. Comparing the first of the previous equations with

the ansatz for SB[P4] we fix the last two coefficients.

We remind that the explicit result for the symbol SB[P4] is provided in an auxiliary

file. Furthermore, we remark that the symbol of I(i) has also been computed using the

differential equation method in [37].

4.3 Limits of the Mellin-Barnes integrals

We can provide independent cross checks on the computation of the integral I(i) by taking

kinematic limits, as explained in section 3.2. For example, we can consider the soft-like limit

s12 = t1 , s13 = ρs2 , s23 = ρs1 , s24 = ρ2s , s34 = t2 , (4.25)

with ρ → 0. Starting from the five-fold MB representation (4.8) for the integral I(i), we

find that at most one-fold MB representations survive after taking the limit.

The remaining integrals are rather simple and can be evaluated analytically as de-

scribed in section 3.3. We types of integrals we encounter are∫ c+i∞

c−i∞
x−zΓ(−1−z)2Γ(1+z)2 =−x

[
H2,0(x)+H03(x)+2ζ2H0(x)

]
,∫ c+i∞

c−i∞
x−zΓ(−1−z)2Γ(1+z)2ψ(−1−z) =x

[
(ζ3+2γEζ2)H0(x)

+ζ2 (H02(x)−H2(x))+γE (H2,0(x)+H03(x))−H2,1,0(x)+H04(x)
]
.

(4.26)

with x = t1/t2 and −1 < Re(c) < 0. These integrals are needed at weight 3 and 4,

respectively. In this way, we obtain

lim
ρ→0

SB[I(i),2] = 12[ρ, ρ] + 3[ρ, s] + 6[ρ, s2]− 6[ρ, t1]− 3[ρ, t2] + 3[s, ρ] + 3[s, s2]

− 3[s, t1] + 6[s2, ρ] + 3[s2, s]− 3[s2, t2]− 6[t1, ρ]− 3[t1, s]

+ 3[t1, t2]− 3[t2, ρ]− 3[t2, s2] + 3[t2, t1] .

(4.27)
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p1

p2

p3

p5p4

k

q

Figure 2. The 2-loop non-planar integral I(c) with numerator (4.28).

We omit from writing out the 1/ε and ε0 terms of SB[I(i)] solely for reasons of space. This

limit alone determines the all coefficients in our ansatz at 1/ε and ε0. At ε0, it fixes 10/12

coefficients if one uses the second entry condition. The remaining coefficients are fixed by

the discontinuity calculation of section 4.2. Alternatively, we could have also considered

slightly more complicated limits to fix them.

4.4 The topology (c) integral with two magic numerators

Having computed I(i), let us turn our attention to a more complicated case, namely that

of the 4D non-planar integral I(c) of figure 2. It is a finite integral in four dimensions, since

its numerator is a product of two “magic” numerators (see [4])

numerator of I(c) = 〈 1|q(q − p1 − p2)|3 〉 〈 4|(k + q)k|5 〉 , (4.28)

and it has a single leading singularity. We want to introduce a Feynman parametrization

for this integral and we start with its box subdiagram. Since there are no divergences, we

only need its finite part. According to [38], it coincides with the 6D box integral (without

numerator) times a 〈45〉 factor carrying the helicity charge. Then we introduce a parametric

representation for the 6D two-mass-easy box and obtain

p5p4

k

q

= 〈45〉
∫ 1

0
dα

∫ 1

0
dβ

1

(q + αp4 + βp5)2
. (4.29)

We insert this subgraph in the 4D diagram of figure 2 and we obtain the 4D pentagon with

a magic numerator (three legs are massless and two legs are massive). Using [39], we find

p1

p2

p3
ᾱp4 + β̄p5

αp4 + βp5x1

x2

x3

x4

x5 =

∫
[dx]

x5

F 3
(c)

[45]
[
〈14〉〈53〉αβ̄ − 〈15〉〈43〉ᾱβ

]
, (4.30)
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where we have defined ᾱ ≡ 1− α, β̄ ≡ 1− β, the x1, . . . , x5 are Feynman parameters with

[dx] = δ(
∑

i xi − 1)
∏
i dxi and

F(c) = x1x3s12 + x1x4s45 + x2x4s23 + x1x5αβs45 + x2x5(αβs45 + αs14 + βs15)

+ x3x5(ᾱβ̄s45 + ᾱs34 + β̄s35) + x4x5ᾱβ̄s45 .
(4.31)

Thus, we finally obtain the Feynman parametrization for our diagram:

I(c) =

∫ 1

0
dα

∫ 1

0
dβ

∫
[dx]

x5

F 3
(c)

s45

(
〈14〉〈53〉αβ̄ − 〈15〉〈43〉ᾱβ

)
. (4.32)

We know that the leading singularity of I(c) is 1
[13][45] .

5 So we should have in total

I(c) =
1

[13][45]
f(c) , (4.33)

where f(c) is a pure function of weight four. In order to study the discrete symmetries of

f(c) we rewrite equation (4.32) in the following form:

f(c) = −s45

∫ 1

0
dα

∫ 1

0
dβ

∫
[dx]

x5

F 3
(c)

(
〈14〉[45]〈53〉[31]αβ̄ + 〈15〉[54]〈43〉[31]ᾱβ

)
. (4.34)

Let us define a pair of Z2 transformations that exchange the external momenta: σ : p4 � p5

and σ̃ : p1 � p3. Due to the numerator (4.28), the full integral I(c) changes sign when

acted upon with σ or σ̃. Furthermore, these transformations act of the F-polynomial as

σ(F(c)) = F(c)

∣∣
α�β

and σ̃(F(c)) = F(c)

∣∣
α�ᾱ,β�β̄,x1�x4,x2�x3

. Consequently, we observe that

f(c) is Z2 × Z2 symmetric, i.e. σ(f(c)) = σ̃(f(c)) = f(c). Independently of the this Z2 × Z2

symmetry, the pure function f(c) can be decomposed in parity even and odd pieces as

f(c) = f even
(c) + fodd

(c) . Introducing the integrals

Ja = s45

∫ 1

0
dα

∫ 1

0
dβ

∫
[dx]αβ̄

x5

F 3
(c)

, Jb = s45

∫ 1

0
dα

∫ 1

0
dβ

∫
[dx]ᾱβ

x5

F 3
(c)

, (4.35)

that are related to each other as σ(Ia) = Ib, we obtain for the parity odd/even pieces6

fodd
(c) =

√
∆

2
(Ja − Jb) ,

f even
(c) =

1

2

[
(s14s35 − s15s34 + s13s45)Ja + (s15s34 − s14s35 + s13s45)Jb

]
.

(4.36)

Since the F-polynomial F(c) contains 11 terms, we expect to get a 10-fold MB representation

for Ja/b. However, introducing the MB integral in a naive way we find zero due to a factor

5This follows from the fact that the leading singularity of the box sub-diagram is 1
[45]

. Inserting this

leading singularity in the whole diagram we obtain again the box with magic numerator whose leading

singularity is 1
[13]

.
6We remind of the relation 〈ij〉[jl]〈lm〉[mi] = 1

2

(
sijslm − silsjm + simsjl − 4iε(i, j, l,m)

)
, where

ε(i, j, l,m) = εµνρσp
µ
i p
ν
j p
ρ
l p
σ
m is completely antisymmetric. Due to our sign conventions of resolving the

square root we have 4iε(1, 4, 5, 3) =
√

∆.
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Weight 4 odd Weight 4 even

# of integrable symbols 2730 9946

after the first entry condition for I(c) 220 2435

after the second entry condition 106 970

S2 × S2 symmetry 23 272

Table 3. We list here the number of independent integrable symbols that contribute to the integral

of topology (c).

of 1/Γ(0) = 0. To avoid this, we use an analytic regularization in (4.35), substituting

F−3
(c) → F−3−ε

(c) . Following this, we introduce an MB representation and after resolving the

singularities in ε, we obtain a 6-fold MB integral. However, it turns out to be more useful

to derive a MB representation that has only five different kinematic invariants. Simply

expressing everything in (4.31) in terms of s14, s15, s34, s35 and s45, we obtain then the

following 10-fold MB representation

Ja =

∫
[dz]

(2πi)10

(−s14)−1+z7−z8,9,10(−s34)−1−z2,3,4,5(−s45)z3,4,8,9−z6,7(−s35)z2,5(−s15)z6,10

Γ(1− z5,10)Γ(3 + z1,2,3,4,5,8,9,10)

×
10∏
j=1

Γ(−zj)Γ(1− z10)Γ(−z5)Γ(−z1,2,3)Γ(1 + z8,9,10)2Γ(z6,7 − z9) (4.37)

× Γ(1 + z1,2,3,9)Γ(1 + z1,2,3,4,5)Γ(2 + z1,2,3,4,5) ,

with a similar expression for Jb.

4.5 Computing the symbol of topology (c)

Having computed in the previous section the MB representations of the functions f
odd/even
(c) ,

we now want to compute their symbols SB[f
odd/even
(c) ]. We begin by imposing the first entry

condition specific to the integral I(c), followed by the second entry condition and finally

the S2 × S2 discrete symmetries of the maps σ and σ̃. In table 3 we show the number of

integrable symbols remaining after each condition is applied. The last line contains the

number of integrable symbols that enters in the next part of the computation.

In general, our strategy can be summarized as follows. We want to take sufficiently

simplifying limits of the MB integral representations of f
odd/even
(c) and compare with the

same limit of the symbol ansatz from the last row of table 3. In order to make the limits

calculable, we want to take some of the sij to either 0 or 1 in order to simplify the alphabet

and bring it either to the HPL alphabet {1 + x, x, 1 − x} (see appendix B and [35]) or to

a 2dHPL alphabet7 depending on two variables x and y, see [40]. This allows us to easily

convert symbols to functions, ignoring irrelevant boundary terms proportional to ζ-values.

We know how to obtain the asymptotic expansions of these functions, which means that we

7This nice set of functions can be obtained by using the alphabet {x, 1 + x, y, 1 + y, x + y, 1 + x + y},
classifying the integrable symbols up to weight 3 and obtaining their functional realization using just the

log, Li2 and Li3 functions. For our purposes here, weight 3 is enough, because we can take derivatives of

the weight 4 symbols in order to catch subleading terms.
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can also obtain the asymptotic expansions of the symbol ansatz. This allows us to compare

the ansatz with the limit of the MB integral. In particular, we find many homogeneous

constraints by comparing log-pieces of the asymptotics, i.e. logs that are present in the

expansion of the ansatz but absent in the MB integral.

Soft and Regge limits. Specifically, a set of homogeneous equations for the integral I(c)

can be obtained by considering soft-like and Regge-like limits of the kinematic invariants as

in section 3.2. Specifically, like in (3.4), we perform replacements like s14 → t1, s15 → t2,

s34 → s2/ρ, s35 → s1/ρ, s45 → s/ρ2 (as well as all possible 120 permutations thereof) and

then consider the limit ρ → 0 (soft) or ρ → ∞ (Regge). In such limits, the MB integrals

simplify, but are still too involved to compute easily. Nevertheless, by just looking at which

kinematic invariants and which powers of log(ρ) are still presents in the limit of the MB

integral, we can obtain many constraining equations for the symbols SB[fodd
(c) ].

Inhomogeneous constraints. For the odd function fodd
(c) , the homogeneous constraints

obtained by the above approach are sufficient to fix all coefficients up to a normalization,

which can then be computed using an inhomogeneous equation. An inhomogeneous con-

straint can for example be obtained by taking the MB representation, setting s45 = tu
1
2

and s14 = tu−
1
2 and then taking in sequence the limits s15 → 0, s34 → 0 and t → 0. The

resulting 2-fold MB integral can be expanded in a power series in u using MBasymptotics.

Reconstructing the power series into HPL functions as in section 3.3, we find in that limit

for both the odd and the even function

lim f
even/odd
(c) = −

[
H−3(u)−H−2,−1(u)− ζ2H−1(u)

]
×
[
H0(s15)−H0(t) +

1

2
H0(u)

]
+ ζ2H−1(u)

(
H0(s34)−H0(s35)

)
+W

even/odd
4 (u) ,

(4.38)

whereW
even/odd
4 (u) are weight four functions that depend only on u and have no logarithmic

singularities at u→ 0. This condition is then sufficient to fix SB[fodd
(c) ]

To finish the calculation of the symbold of the even function f even
(c) , we have to do a bit

more and compute other limits similar to (4.38). The computations become harder and

we have to consider limits of the MB integral in which we can only obtain the first few

terms in a power series expansion. One such limit is attained by first taking s14 → 0, then

s15 → 0, followed by setting s34 = s35 =
√
x and s45 = 1√

x
. After taking that limit, we can

compute the first few terms in the power series expansion using MBasymptotics and the

PSLQ algorithm:

lim f even
(c) = x

(
log2(x)− 6 log(x) + 12

)
+

1

4
x2
(
7 log2(x)− 2 log(x)− 23

)
+

1

36
x3
(
−110 log2(x)− 139 log(x) + 372

)
+O

(
x4
)
,

(4.39)

up to factors proportional to ζ2, ζ3 and ζ4. Comparing the above expansion with corre-

sponding limit of the symbol ansatz allows us to fix many coefficients. Using many such

laborious steps, we can fix the symbol SB[f even
(c) ] exactly. The answer is provided in an

ancillary file.
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5 Conclusions and outlook

In this article, we presented a conjecture for the alphabet ANP of non-planar pentagon func-

tions. We expect that these functions describe on-shell five-particle scattering amplitudes

at two loops, and possibly also at higher loop orders.

Based on experience with the planar case, we presented a conjectural second-entry

condition for the symbol alphabet. The latter considerably reduces the space of allowed

functions. It would be interesting if this condition could be proven, perhaps by some variant

of the Steinmann relations.

As a first application, we bootstrapped the symbols SB[I(i)] and SB[I(c)] of two non-

planar two-loop integrals. These integrals are needed for the computation of the non-planar

scattering amplitudes in N = 4 sYM. They depend in an intricate way on the five-particle

kinematics. The fact that the symbols are consistent with all discontinuities and limits

considered is a strong consistency check that the answer is correct. For the integral I(i),

we also independently verified the solution by comparing against results from the differ-

ential equation approach [37]. We anticipate that the method can also be effectively used

to bootstrap integrals with more propagator factors. It would be interesting to push this

method of calculating Feynman integrals further and to compute the remaining topolo-

gies of [31].

A natural further avenue of future research is to bootstrap full amplitudes starting

from the function space. Possible applications include non-planar Yang-Mills or (su-

per)gravity theories. Doing so requires having a good control over the space of ratio-

nal functions multiplying the symbols in the amplitude. One can in principle obtain

these rational functions by computing the leading singularities of the corresponding Feyn-

man diagrams.
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A The permutation group

The permutation group S5 has 7 irreducible representations labeled by Young diagrams

(YD). We also label them by their dimension

• The trivial representation 1 of YD [5].

• The sign representation 1′ of YD [1, 1, 1, 1, 1] = [15].

• The standard representation 4 of YD [4, 1].

• The standard representation tensored with the sign representation of YD [2, 1, 1, 1] =

[2, 13]. We label it by 4′.

• The five dimensional representation 5 of YD [3, 2].

• The five dimensional one 5′ of YD [2, 2, 1], given by the tensor product of the 5 with

the 1′.

• The 6 (given by the exterior tensor product of [4, 1] with itself) with YD [3, 1, 1].

The characters tables of S5 are well-known and it is hence a rather simple exercise to

compute the projection matrices and the decomposition of a given representation if one

knows how the transpositions Pi,i+1 for i = 1, 2, 3, 4, act.

It is also useful to consider the action of the permutation group S5 on the external

momenta p1, . . . , p5, which then implies that the space of 31 letters ANP of section 2 de-

composes into representation of S5. The action of S5 on the letters Wi is non-linear but it

is linear on the space spanned by the symbols [Wi]. The representations are as follows:

• The ten first entry symbols {[Wi]}5i=1 ∪{[Wj ]}20
j=16 are all related by permutations in

S5. They decompose in the 1 + 4 + 5 representations of S5.

• The fifteen symbols {[Wi]}15
i=6 ∪ {[Wj ]}25

j=21 are all related by permutations S5. They

decompose in the 1 + 4 + 5 + 5′ representations.

• The five odd symbols {[Wi]}30
i=26 transform in the irreducible 5′ representation of S5.

• Finally, [W31] is invariant under S5.

B Harmonic polylogarithms

The harmonic polylogarithms (HPL) form a very useful set of iterated integrals in one

variable. We refer to [35] as a convenient reference on the HPL functions. A HPL of

weight n in the variable x is of the form Ha1,...,an(x), where ai ∈ {−1, 0, 1}. They are
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defined iteratively by first setting

H1(x) =

∫ x

0
f1(t)dt = −

∫ x

0
d log(1− t) = − log(1− x) ,

H0(x) =

∫ x

f0(t)dt =

∫ x

d log(t) = log(x) ,

H−1(x) =

∫ x

0
f−1(t)dt =

∫ x

0
d log(1 + t) = log(1 + x) ,

(B.1)

and then defining

H0n(x) ≡ H0, . . . , 0︸ ︷︷ ︸
n−times

(x) =
logn(x)

n!
, Ha1,...,an(x) =

∫ x

0
dtfa(x

′)Ha2,...,an(x′) . (B.2)

We refer to [35] for an introduction to the short-hand notation for the HPL functions

Ha1,...,an with |ai| > 1.

C The odd weight two pentagon functions

In this appendix we provide functional basis of the nine dimensional subspace V2,odd of

odd weight 2 non-planar pentagon functions, see table 1. As we have already mentioned

after (4.17), by acting with permutations on the function (4.17) we obtain 30 different

but linearly dependent functions which cover V2,odd. However, we want to instead provide

a smaller set of 10 functions which satisfy just one linear relation. For this, we use the

following single-valued function

D2(z, z̄) = Li2(z)− Li2(z̄) +
1

2
log(zz̄) (log(1− z)− log(1− z̄)) (C.1)

and use the shorthand notation D2(z) ≡ D2(z, z∗). We define the function F2 via the

linear combination

F2(v1, . . . , v5) = D2(W26) + D2(W30)−D2(W26W30) (C.2)

We remind that in Minkowski kinematics we have (Wj)
∗ = W−1

j for j = 26, . . . , 30. The

function F2 has the same symbol (up to a factor 3) as (4.17). Acting by S5 permuta-

tions onto F2 we obtain 10 different functions. They satisfy one linear relation which is

equivalent to ∑
σ∈S5

D2(σ(W26)) = 0 ,

or more explicitly

5∑
j=1

[
D2 (Uj) + D2

(
1

UjUj+1

)
+ D2

(
UjUj+1

Uj+3

)]
= 0 , (C.3)

where the in the above equation we have cyclically identified the odd letters, i.e. Uj = W25+j

for j = 1, . . . , 5 with the relation Uj+5 ≡ Uj .
Polylogarithm identities similar to the 15-term one (C.3) are intensely investigated in

the literature [41, 42]. We do not know if (C.3) is a new identity of if it follows from already

known ones.
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