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1 Introduction

A lot of progress has been made in recent years in understanding the gravity dual of en-

tanglement entropy in holographic conformal field theories [1–7]. So far, much of this work

has focussed on using the replica trick (except for [3], which leverages the symmetries of

ball-shaped regions in the vacuum), which in quantum field theories requires putting the

theory on a different background with a conical deficit at the entangling surface, together

with other subtle operations such as analytic continuation in the replica index. It is desir-

able to gain further understanding of holographic entanglement entropy using more direct

techniques, given that it should be computable directly within the original Hilbert space.

There are several motivations for this — firstly, it could potentially provide a clearer un-

derstanding of the meaning of subregions in quantum gravity (in AdS) and could provide

further insight into the microscopic origin of the Bekenstein-Hawking entropy, perhaps in

terms of counting of edge modes [8, 9]. Another motivation would be to give a more direct

derivation of the Ryu-Takayanagi (RT) formula, without using the replica trick. Finally,

there has been much work in recent years suggesting a deep connection between the emer-

gence of spacetime geometry and entanglement in the AdS/CFT correspondence [10–13].

For instance, it was shown in these papers that any asymptotically AdS spacetime which

computes the entanglement entropies for ball-shaped regions in the CFT using the Ryu-

Takayanagi formula for up to first order state deformations around the vacuum, necessarily
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satisfies the linearized Einstein equation around AdS. It is likely that understanding this

connection further will involve essentially new techniques.

One approach along these lines is entanglement (or modular) perturbation theory,

where one studies the entanglement entropy (or correlation functions of the modular Hamil-

tonian) perturbatively around a background state, for small deformations in the state or

shape of the subregion. This approach was first explored in [14], and later improved upon

in [15]. Since then, there have been many advances, especially when the perturbations

are shape deformations [16–29]. In addition to being computationally useful, entanglement

perturbation theory has found several interesting applications. For instance, [22] derived

the averaged null energy condition (ANEC) in Minkowski spacetime from the monotonicity

of relative entropy together with entanglement perturbation theory for shape deformations

(see also [30] for another proof of the ANEC using OPE techniques). Entanglement per-

turbation theory was also used [31, 32] to derive the gravitational equations of motion

from entanglement to second order around AdS. Importantly, much of this work so far has

focussed on special symmetric situations, such as for instance, deformations around ball-

shaped regions in the CFT vacuum, which in the holographic context only probes small

deformations around AdS spacetime. Further progress necessitates moving away from such

special cases.

In this paper, we will take the first steps in this direction by studying the shape

deformations of entanglement entropy for a general region R and a general state ψ (with

a smooth AAdS dual geometry g) in a holographic conformal field theory with Einstein

gravity dual (although our techniques can also be applied to higher-curvature theories).

More precisely, we will be interested in a double-deformation δδV S of the entanglement

entropy, where δV denotes a shape deformation of the subregion, while δ denotes a state

deformation around the reference state. From the CFT point of view, we have the following

boundary expression for this double deformation of the entropy:

δδV S = lim
B→0

∫ ∞
−∞

ds

4 sinh2( s+iε2 )

∮
∂RB

V µnνδ
〈
ρ
−is/2π
R : Tµν : ρ

is/2π
R

〉
(1.1)

where ∂RB is a small (Euclidean) tube of radius B which surrounds the entangling surface,

and V is the vector field parametrizing the shape deformation. This formula essentially

follows from the setup in [22] and will be explained in more detail in section 2, but at

this point we would like to highlight a few of its salient properties. Firstly, it contains

the evolution operator ρ
is/2π
R involving the density matrix of ψ reduced over R, which

generates what is commonly called modular flow ; this is crucial for the right hand side

to have a non-trivial limit as B → 0. Secondly, it depends on the integral of the stress

tensor on a co-dimension one surface ∂RB (which naively becomes co-dimension 2 as B →
0), which greatly facilitates rewriting it in terms of bulk gravitational variables. Finally,

equation (1.1) provides a purely field-theoretic constraint on a particular deformation of

the entropy (on the left hand side) in terms of the stress tensor expectation value (on the

right hand side), which we will see has an interesting manifestation in the bulk.

Indeed, for holographic theories dual to Einstein gravity, we expect this double-

deformation of the entanglement entropy to be computed by the change in the area of
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the bulk extremal surface:

δδV S =
δδVAext

4GN
. (1.2)

One of the goals of this paper is to derive (1.2) from (1.1). In fact, we will also derive

the quantum corrections to the above formula coming from the bulk entanglement en-

tropy [33], but these have been omitted here for simplicity. Our derivation below will use

two main ingredients: (i) a purely gravitational identity from the Hollands-Iyer-Wald for-

malism [34, 35] (which can be thought of as the gravitational equivalent of Gauss’ law),

which, upon using the extrapolate dictionary, allows us to rewrite the right hand side of

equation (1.1) in terms of bulk geometric quantities, and (ii) we will assume that for the

original (i.e., undeformed) reference state ψ and subregion R, boundary modular flow is

equivalent to bulk modular flow.1 These two ingredients, along with the bulk equations

of motion (linearized around the background geometry) will directly lead to a derivation

of equation (1.2). Since R and δψ were arbitrary, this equation can then be bootstrapped

to large shape-deformations. For instance, as a corollary to equation (1.2), we can give a

novel, perturbative, CFT derivation of the JLMS formula [36] for an arbitrary subregion

(with the topology of a ball) in the vacuum state, without using the replica trick.

In fact, we can also go in the opposite direction — assuming that the bulk geometry

satisfies equation (1.2), we will be able to give an argument that it must also satisfy the lin-

earized Einstein equation around the background g. Since g can be taken to be an arbitrary

AAdS solution to the Einstein equation, this then implies that any asymptotically AdS

spacetime which satisfies the Ryu-Takayanagi formula for arbitrary subregions, necessarily

satisfies the non-linear Einstein equation! Earlier papers on this subject [10–13, 31, 32]

derived the linearized Einstein equation around AdS (corresponding to vacuum state in

the CFT) where modular flow is local, and subsequently, this was pushed to second order

around AdS. But to our knowledge, the present work is the first discussion in the context

of the equations of motion from entanglement which deals with general bulk geometries

(corresponding to general coherent states in the CFT), where the modular hamiltonian

is non-local. Indeed, as we will see in more detail later, our derivation will involve an

interesting interplay between the equations of motion, extremality and modular flow.

Summary of results. For clarity, we will presently state our results and the assumptions

we will use to derive them. We will work with a general subregion and state (with a smooth

bulk dual) in a holographic conformal field theory. We will throughout assume: (i) the

extrapolate dictionary near the asymptotic boundary, and (ii) the equality between the

background (i.e., corresponding to the undeformed state and subregion) bulk and boundary

modular flows. With these assumptions, we can re-write the purely CFT expression (1.1) in

terms of bulk gravitational variables, as discussed in section 3. This general bulk expression

then has the following properties:

• If we assume the linearized bulk equations of motion around g, then we obtain a

derivation of the RT (JLMS) formula (for small state variations), upon requiring

1This is very natural as it essentially amounts to a matching of bulk and boundary symmetries in the

background.
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the perturbed surface to be extremal. For the special case of the vacuum, since

the equality between bulk and boundary modular flows for ball-shaped regions was

derived in [3], this is a first-principles derivation of the perturbative RT formula for

an arbitrary region (with the topology of a ball) in the vacuum. For more general

states, our resuts imply the perturbative RT formula for an arbitrary region assuming

the equality between modular flows for a reference region.2

• If we assume that the equality between bulk and boundary flows continues to hold

even for the shape-deformed subregion (together with the bulk equations of motion),

then we obtain a derivation of the extremality condition.

• On the other hand, if we do not assume the equations of motion and instead assume

the RT formula (or equivalently JLMS), then the bulk expression for (1.1) is only

compatible with JLMS if the linearized equations of motion around g are satisfied

along the RT surface. This gives a derivation of the linearized equations of motion

around an arbitrary AAdS background.

The rest of the paper is organized as follows. In section 2 we will introduce the

necessary background material and set up notation. In section 3, we will present our results

about the gravitational dual of (1.1). We will then use it to prove equation (1.2), and also

explain the various implications for JLMS, extremality, bulk equations of motion etc. We

finish with some closing comments in section 4. In order to avoid cluttering the main body

of the paper, we defer most of the detailed calculations to the various appendices.

2 Preliminaries

In this section, we will review some of the prerequisite background material and set up

notation which will be used through the rest of the paper.

2.1 Perturbative approach to entanglement

Let us begin by considering a general state ψ in a relativistic quantum field theory, and let

R be a general subregion on a Cauchy surface Σ. Assuming that the Hilbert space of the

theory on Σ factorizes, the reduced density matrix corresponding to ψ on the subregion R

is given by

ρψ,R = TrRc |ψ〉〈ψ|. (2.1)

The entanglement entropy is then defined as the von Neumann entropy of this density ma-

trix:

S(ρψ,R) = −TrR (ρψ,R ln ρψ,R) . (2.2)

It is also convenient to define the modular Hamiltonian as

Hψ,R ≡ − log ρψ,R, (2.3)

2As we will explain later, the equality between modular flows is a statement about the locality of the

holographic mapping and it doesn’t require any reference to the area of the surface.
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in terms of which the reduced density matrix takes the thermal form ρψ,R = e−Hψ,R . In

special circumstances, the modular Hamiltonian is local, i.e. its action on local operators

is local and geometric. For instance, if R is a half-space in the vacuum of a relativistic

quantum field theory, then

i [Hψ,R,Oµ1,··· ,µn(x)] = ξν(x)∂νOµ1,··· ,µn(x) + wOOµ1,··· ,µn(x), (2.4)

where ξµ is the vector field corresponding to boosts around the entanglement cut, and wO
is the modular weight of the operator O. Consequently, in this case ρ

is/2π
ψ,R = e−i

s
2π
Hψ,R

generates a geometric modular flow. Note however, that this is only true in very special

situations, and for the case of general ψ and R which is of interest in the present paper,

the modular Hamiltonian is not local. Nevertheless, modular evolution maps the algebra

of operators inside R into itself. In order to avoid cluttering notation, we will henceforth

drop the subscript ψ on the density matrix and simply write ρR.

Entanglement perturbation theory is a useful tool for computing the entanglement

entropy perturbatively for small deformations around a reference state/subregion [14]. For

example, given a small deformation of the reference state δ|ψ〉 (and the corresponding

change δρR in the reduced density matrix), the first order change in the entanglement

entropy is given by

δS = TrR (δρRHR) ≡ 〈HR〉δψ. (2.5)

This is known as the first law of entanglement entropy, and has found many interesting

applications [12, 37, 38]. Consider now, a second order variation of the entropy δ1δ2S,

where δ1 and δ2 denote the two (generically different) variations. From the definitions (2.2)

and (2.3), we obtain:3

δ1δ2S = 〈HR〉δ1δ2ψ + 〈δ1HR〉δ2ψ. (2.6)

The first term on the right hand side is similar to the contribution we found at first order.

The latter containing δ1H is more subtle and interesting. In fact, this term is equal to the

relative entropy between the two density matrices ρ̃R = ρR + δ1ρR + δ2ρR and ρR:

Srel(ρ̃R|ρR) ≡ 〈HR〉δ1δ2ψ − δ1δ2S(ρR) = 〈δ1HR〉δ2ψ, (2.7)

and as such is symmetric between δ1 and δ2, despite appearances. Relative entropy in

quantum field theory is generally expected to be free of the ultraviolet (UV) divergences

typically found in the entanglement entropy. Because of this fact, we expect terms of the

form 〈δ1HR〉δ2ψ to be UV finite, which is an extra motivation to study them. Such terms

will be our central focus in the present paper.

In order to proceed, we need to compute δHR in terms of δρR. Since HR = − ln ρR,

we can use the Baker-Campbell-Hausdorff formula to compute δHR (see [22]):

δHR =

∫ ∞
−∞

ds
1

4 sinh2
(
s+iε

2

)ρ−is/2πR ρ−1
R δρR ρ

is/2π
R . (2.8)

3Note that we want the state to be normalized, which is equivalent to tr(ρδ ln ρ) = trδρ = 0, for any δ, so

there is no such contribution in the expansion. In equation (2.6), we have used this after the first variation.
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The parameter s denotes “modular flow” — when the modular hamiltonian is local, for

instance in the case of a half-space in the vacuum, s parametrizes Rindler-time evolution.

More generally, this internal evolution is very non-local and hard to compute explicitly,

but it is nonetheless a useful construct [39], among other reasons because it is a well

defined operation even in the continuum limit. This can be seen by considering the full

modular hamiltonian:

Hf
∂R ≡ HR −HRc . (2.9)

This operator is well defined: it does not present the ambiguities near ∂R which the

entropy has and the modular flow is more generally defined as being generated by the full

modular Hamiltonian:

O(s) ≡ ei s2πHf
∂R O e−i

s
2π
Hf
∂R . (2.10)

With equation (2.8), one can in principle re-write and compute (2.6) in terms of cor-

relation functions in the reference state ψ, provided the modular evolution in (2.8) can be

carried out explicitly, as was done, for instance, in [15, 21]. However, since we are interested

in the general situation where modular flow is not local, we will not have this luxury. In

order to make progress in this situation, we will consider the particular case where one of

the variations — which we will henceforth call δV — is a deformation of the shape of the

entangling surface. The other variation — which we will simply call δ — will be taken to be

a state deformation, which in the holographic context corresponds to a small deformation

of the bulk geometry.

2.2 Shape deformations

In this section we review several details about the shape dependence of entanglement

entropy and modular Hamiltonians, first for a general CFT and then from a gravitational

perspective for holographic CFT’s with Einstein gravity duals.

CFT perspective: as was discussed, for example in [16, 22], we can think of a shape

deformation in terms of shifting the background metric by a pure diffeomorphism; we will

now briefly review this argument. We can construct the reference state ψ by performing the

Euclidean path-integral on the lower half-space in Euclidean signature (x0 < 0, where x0 is

Euclidean time), with some (not necessarily local4) operator insertion Ψ away from x0 = 0:

〈ϕ(x)|ψ〉 =

∫ φ(x0=0,x)=ϕ(x)

[Dφ]e−SCFT [φ] Ψ, (2.11)

where φ collectively denote the elementary fields which are integrated over in the path-

integral, and ϕ denote the boundary conditions on the Cauchy surface x0 = 0 (with x

being spatial coordinates on this surface). Note that for states in holographic CFTs dual

to smooth bulk geometries, it might be more natural to consider coherent states, where we

turn on (not necessarily small) sources for single-trace, primary operators in the Euclidean

path-integral [40–42]. As long as the sources only have support far from x0 = 0, our

4For instance, we could choose Ψ =
∑
α cαOα(x0

α,xα), where x0
α < −t, ∀ α, or even consider states

prepared by turning on Euclidean sources for certain operators.
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arguments carry over in this case as well. The reduced density matrix ρR can then be ob-

tained by gluing this path-integral with its image under time-reversal along the complement

region Rc:

〈ϕ−R(x)|ρR|ϕ+
R(x)〉 =

1

Z

∫ φ(x0=0+,x)=ϕ+
R(x)

φ(x0=0−,x)=ϕ−R(x)
[Dφ]e−SCFT [φ] Ψ†Ψ, (2.12)

where now ϕ±R are boundary conditions over and under the cut along R, and Z normalizes

the density matrix. Let V denote the vector field which parametrizes the deformation of

the entangling surface; V is a priori defined on ∂R, but we can pick some smooth extension

to a neighborhood of ∂R. Now, by performing a diffeomorphism xµ → xµ − V µ, we can

map the deformed entangling surface to the original one. Of course, the diffeomorphism

acts non-trivially on the background metric:

δV gµν = 2∂(µVν), (2.13)

and so in this way we can trade the shape-deformation of the entangling surface with a

metric deformation:

ρR+δV R,η = U †ρR,η+δV gU (2.14)

where U is a unitary map from the Hilbert space of the subregion R+ δVR to the hilbert

space in the subregion R. Consequently, the variation of the modular hamiltonian has two

contributions: (i) from the variation of − ln ρR,η+δV g coming from the change in the metric

δV g, and (ii) from the unitary transformation U (which also depends on V ).

For contributions of type (i), the variation of the density matrix δgρR with respect to

the Euclidean metric deformation (2.13) can be read off from equation (2.12):

〈ϕ−R|δgρR|ϕ+
R〉 =

1

Z

∫ φ(x0=0+)=ϕ+
R

φ(x0=0−)=ϕ−R

[Dφ]e−SCFT
1

2

∫
ddx δV g

µν(x) : Tµν : (x) Ψ†Ψ, (2.15)

where we have defined

: O :≡ O − 〈O〉ψ. (2.16)

The upshot of this discussion is that inside the path-integral, we can make the following

replacement for ρ−1
R δgρR:

ρ−1
R δgρR =

∫
ddx ∂µV ν(x) : Tµν : (x), (2.17)

where note that Tµν is inserted in Euclidean time, and hence should be interpreted as a

non-local, Heisenberg operator in terms of the operator-algebra on R. Now we can integrate

by parts in x. In [22], it was shown that this gives two contributions: one from a (d − 1)

dimensional tube ∂RB of radius B which surrounds the entangling surface, and another

contribution from the cut along the region R on the x0 = 0 slice (see figure 1). In fact, this

latter contribution coming from the cut exactly cancels the contribution of type (ii) above,

coming from the unitary transformations U . Therefore, the final change in the modular

hamiltonian is given by:

〈δVHR〉δψ = lim
B→0

∫ ∞
−∞

ds

4 sinh2( s+iε2 )

∮
∂RB

V µnν〈ρ−is/2πR : Tµν : (B, θ, y) ρ
is/2π
R 〉δψ, (2.18)
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Figure 1. An illustration of the Euclidean path integral representation of the reduced density

matrix. The solid blue line denotes the region R, the dashed blue line is Rc, and the solid black

dot is ∂R. Also shown are the cylindrical tube surrounding the entangling surface ∂RB , and the

cut at θ = 0.

where y denotes the coordinates along the entangling surface, ∂R, and θ is the angular

coordinate around the tube (see figure 1 for an illustration). Note that ∂RB has a cut

along θ = 0 (i.e. ε ≤ θ ≤ 2π − ε) and B should be regarded as much smaller than any

of the curvature scales in the CFT, because, we are interested in the limit B → 0. Note

that equation (2.18) is true for general subregions and does not require a U(1) rotation

symmetry around the entanglement cut (although reference [22], where it was derived,

focused on situations where such a symmetry is present5).

Additionally, there is an extra contact term at the entangling surface that should

be added to the δVHR operator, which is discussed in appendix A of [22]. This term is

important and it is the only contribution to the change in the entropy due to a shape

deformation [16]. However, since our double-deformation is unambiguous, it should not

depend on this contact term; in other words, we expect this contact term to be state-

independent.6 Further, this contact term should cancel out in the case of the full modular

Hamiltonian δVH
f
∂R, while the right hand side of (2.18) will survive even in the full mod-

ular Hamiltonian.

Coming back to (2.18), naively it might seem that this term vanishes in the B → 0 limit,

but in fact the s-integral gives an enhancement from the integration regions s ∼ ± lnB,

5We are using a definition for δVHR where this operators live in the hilbert space of the subregion

R+δVR, which is more convenient for our purposes. In particular, 〈δVH〉ψ 6= 0 and this term is responsible

for the change in the entropy, via the contact term described in the next paragraph. This definition of δVHR

is directly connected with the area operator, since it is a state independent operator, but its shape variation

is non-zero (it changes the boundary conditions).
6This contact term is related with the TµνHR OPE. In holographic theories, we can rewrite this term

in terms of bulk gravitational variables (by using techniques to be discussed later), and the only way it can

survive is if we encounter bulk UV divergences to counter the suppression in the B → 0 limit. However,

since HR is a UV finite operator from the bulk point of view, we expect this not to happen. From the point

of view of the change in the area, we can understand this state independence as the fact that there is a

boundary term in the asymptotic AdS boundary which is non-zero in the background state but vanishes

upon doing a state deformation, see appendix B for more details.
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thus leading to a finite result [22].7 To see this in more detail, let us consider a general

integral of the form

I±;µ1,···µm = lim
B→0

∫ ∞
−∞

ds

4 sinh2( s+iε2 )

∮ 2π

0
B dθ e±iθρ

−is/2π
R Oµ1···µm(B, θ, y) ρ

is/2π
R . (2.19)

We now wish to perform the θ-integral, which looks like a daunting task in a general

reference state ψ. However, note that operator O is approaching the entangling surface in

the B → 0 limit, and we can therefore use the following important fact: in an infinitesimal

Euclidean neighborhood of the entangling surface (much smaller than the scale associated

with the extrinsic curvature of the entangling surface, or other scales associated with ψ),

we can treat Euclidean modular evolution as being local, even for a non-trivial state and

subregion! See [39, 43] for discussion about this.8 In other words, in the B → 0 limit we

can approximately re-write the operator Oµ1,··· ,µm(B, θ, y) as:

Oµ1··· ,µm(B, θ, y) ' e−iwθρ−θ/2πR Oµ1··· ,µm(B, 0, y)ρ
+θ/2π
R , (2.20)

where w is the modular weight of O, which can be defined in terms of holomorphic and

anti-holomorphic coordinates x± = re±iθ near the entangling surface, as the number of +

indices minus the number of − indices on O. By shifting the s contour by s→ s+ iθ, we

can rewrite equation (2.19) as

I±,w = lim
B→0

∫ ∞
−∞

dsB

∮ 2π

0
dθ

1

4 sinh2( s+iθ2 )
ei(−w±1)θρ

−is/2π
R Oµ1···µm(B, 0, y) ρ

is/2π
R . (2.21)

We can now perform the θ integration, by using∮ 2π

0
dθ

1

4 sinh2( s+iθ2 )
e±imθ = 2πme∓msΘ(±s) + · · · , (2.22)

where the · · · denotes potential contact terms which have delta function support at s = 0,

and will not be relevant presently, as these contributions vanish in the B → 0 limit. Now

let us specialize to a two-index tensor Oµ1µ2 . To see the potential enhancement, consider,

for instance, I−,w=−2 which corresponds to O−−:

I−,w=−2 = 2π lim
B→0

∫ ∞
0

dsBe−sρ
−is/2π
R O−−(B, 0, y) ρ

is/2π
R . (2.23)

7For instance in the case of a half-space in the vaccum of a relativistic quantum field theory, equa-

tion (2.18) becomes δVH = −2π
∫
H+ V

+T++ + 2π
∫
H− V

−T−−,where H± are respectively the future and

past Rindler horizons corresponding to the half-space. This fact, together with the monotonicity of relative

entropy, was used in [22] to prove the averaged null energy condition in general relativistic quantum field

theories on Minkowski spacetime.
8A heuristic argument for this is that in the B → 0 limit, we can zoom-in to an infinitesimal neighborhood

of the entangling surface (much smaller than the scale of extrinsic curvature of the entangling surface, and

away from the other sources and operator insertions in the path-integral). In this region, ξ = ∂θ is a

symmetry of the Euclidean path-integral. We thank Tom Faulkner for multiple discussions about applying

the methods of [22] to non-local modular hamiltonians.
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Using locality of modular flow for Bes � `K (where `K is the length-scale associated with

the extrinsic curvature of the entangling surface), the modular flow on O gives a Jacobian

factor of e2s, resulting in an overall Bes inside the integral, which becomes O(1) when

s ∼ lnB. Hence, the s-integral gives an enhancement in this limit. Of course, we have

no control over modular flow beyond this region of integration, and therefore we cannot

do the integral explicitly — but at the very least, the above enhancement is guaranteed

to give a finite contribution from the region s ∼ lnB, Bes � `K . We can similarly argue

that I+,w=+2 (corresponding to O++) also gets enhanced. On the other hand, we find

that all the other components of O (such as O+−, O±i, Oij) do not show enhancement

in the accessible region of integration, and we expect that they do not receive enhanced

contributions from the non-local region Bes � `K either.9 At any rate, for now we will

leave equation (2.18) as it is, without performing the θ-integral etc. — the purpose of

the above discussion was only to convince the reader that the operator δVHR is in general

non-vanishing in the B → 0 limit. However, the above enhancement arguments will be

crucial in section 3, where will apply them to bulk modular flow in the holographic setup.

A couple of further comments are in order. Firstly, note that the authors of [22]

included the unitary in the definition of the state while we consider it to be part of the

definition of the modular hamiltonian. With this definition δV ψ = 0, because the state

doesn’t change under a surface translation and we get that the entropy variation is just:

δδV S(ρR) = 〈δVHR〉δψ. (2.24)

Secondly, we emphasize that while the shape deformation of the entangling surface is

implemented by a Euclidean deformation of the metric, equation (2.18) ultimately yields a

Lorentzian operator — the Euclidean angular dependence, θ, should be interpreted in the

Heisenberg picture, and so T (B, θ, y) represents a non-local operator on R, at x0 = 0.

Bulk perspective: we now turn to shape deformations of the entangling surface for a

holographic CFT with an Einstein gravity dual. In the bulk, this quantity is simple to

compute — using the Ryu-Takayanagi formula and its covariant generalization, it is given

by the second variation of the area of the extremal surface:

δδV S(ρR) =
1

4GN
δδVAext, (2.25)

where as before, δV represents the shape deformation of the boundary entangling surface,

and now δ represents the change in the bulk geometry as a result of the state deformation

in the CFT. In computing the right hand side, it is important that we account for the

fact that the bulk extremal surface changes under a shape deformation, because we are

simultaneously also considering a metric deformation. Let g be the asymptotically AdS bulk

metric dual to the state ψ, and let S be the original bulk extremal surface corresponding

to the boundary region R. Further, let vI(yi) be the bulk vector field (a priori defined

on S) which parametrizes the deformation of the bulk extremal surface under a shape

9This follows from the usual expectation that correlators decay at large modular flow, see [39] for example.
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deformation V of the boundary subregion. The vector field vI satisfies the extremality

condition10 (see appendix A for further details):

δVKI = −ηIJγij∇i∇jvJ + γijRi(I;L)jv
L −KI;ijK

ij
L v

L = 0, (2.26)

on the original extremal surface at S, and approaches V I at the asymptotic boundary and

KI
ij is the extrinsic curvature of S. It is in principle possible to solve the above differential

equation on S subject to the asymptotic boundary condition to obtain vI in terms of V I .

Returning to equation (2.25), the change in the area of the extremal surface under the

deformation vI is captured by the extrinsic curvature (up to boundary terms which are not

important for our discussion):

δVA =

∫
S
dd−1y

√
γ KIv

I , KI ≡ γijLvIγij . (2.27)

In this way, the second variation δδVAext of the area of the bulk extremal surface is given

by11(see appendix A for further details):

δδVAext =

∫
S
dd−1y

√
γδKIv

I , (2.28)

where vI satisfies equation (2.26).

So far we have only considered the classical Ryu-Takayanagi entropy, but in what

follows we will also be considering quantum deformations. In this case, the quantum

corrections to Ryu-Takayanagi should be included:

δδV S(ρψ,R) =
δδVA

4GN
+ δδV S(ρbulk,r), (2.29)

where r is the bulk subregion enclosed between the boundary subregion R and the extremal

surface S, and S(ρbulk,r) is the von Neumann entropy of the bulk quantum fields in r. Using

arguments similar to those given around (2.24), we therefore arrive at

〈δVHR〉δψ =
δδVA

4GN
+ 〈δVHbulk,r〉δψbulk

, (2.30)

where δψbulk denotes the change in the quantum state of the bulk fields resulting from the

boundary state deformation δψ. Of course, this is equivalent to the JLMS formula [36]

10We are using Gaussian normal coordinates (xI , yi) adapted to the original extremal surface S in the

bulk. Here, yi (i = 1, · · · , d − 1) are coordinates along S and xI (I = 1, 2) label directions orthogonal to

it. In these coordinates, the original extremal surface S sits at xI = 0. Additional details can be found in

appendix A.
11More explicitly, we have

δδVAext =

∫
S
dd−1y

√
γ

(
1

2
γijvI∇Iδgij + γijδgIj∇ivI

)
,

which is equivalent to equation (2.28) up to unimportant boundary terms.
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relating the boundary modular Hamiltonian to the sum of the bulk modular Hamiltonian

and the area operator:12

HR =
Â

4GN
+Hbulk,r. (2.31)

This formula is valid to order G0
N and should be thought as being evaluated in states ψ+δψ

which are small deformations around a background state. At this point it might be worth

noting what we mean by δψ. In this setting, we have in mind deformations of the state

which are semi-classical — these deformations can involve turning on a boundary source

directly for the stress tensor13 or other fields or just inserting some particles, as long as

the overall change in the boundary stress tensor is small compared with 1
GN

. If we focus

on classical gravity, we want δ〈Tbdy〉 ∼ λG−1
N , λ� 1, but we might also consider quantum

corrections, whose energy is O(1). Given any semi-classical change in the state, we will have

a corresponding classical change in the metric δg. In [36], it was also argued from (2.31)

that the boundary modular flow in R and the bulk modular flow in r are equivalent, a fact

which will play a crucial role in section 3.

The goal of this paper is to prove equations (2.29), (2.30) from equation (2.18), without

using the replica trick. The reason why this will be possible is that in (2.18), the stress

tensor is integrated on a codimension-1 surface (instead of on the whole spacetime), which

leads to a simple holographic dual for this operator. To understand how this works, we

need one last ingredient — a gravitational identity from the Hollands-Iyer-Wald formalism.

2.3 Hollands-Iyer-Wald formalism

In order to make further progress in understanding the bulk-dual of (2.18), we will need to

recall the Hollands-Iyer-Wald (HIW) formalism [34, 35] (see also [44]), which can be used to

relate “gravitational” quantities in the boundary CFT (i.e., involving the boundary stress

tensor) with bulk quantities. Let εm1···mn be the (d+ 1− n)-form

εm1···mn =
1

(d+ 1− k)!

√
g εm1···mnmn+1···md+1

dxmn+1 ∧ · · · ∧ dxmd+1 , (2.32)

where we will use boldface notation for differential forms. For our purposes, the most im-

portant aspect of the HIW formalism is that the symplectic form ω of the bulk gravitational

theory satisfies the following purely gravitational identity:∫
Σ
ω(δg,LXg) =

∫
∂Σ
χ(δg,X)−

∫
Σ
E(g, δg,X), (2.33)

where Σ is an arbitrary codimension-1 Cauchy surface in the bulk, and X is an arbitrary

vector field. Further, χ is a (d− 1) form (to be defined below), and we have

E(g, δg,X) = −Xcεcδg
abEab(g) + 2Xaδ

(
Eab(g)εb

)
, (2.34)

12The statement trδHρ = 0 is still true for the JLMS hamiltonian: HR,ψ = Aψ Î +
∫ √

γγab(γ̂ab − Îγψab).
However, note that this operator is state independent, it stays the same under a shift in the background:

δHR,ψ = δAψ −
∫ √

γγabδγψab = 0, so 〈δHψ〉ρ = trδρ = 0.
13For simplicity we want to keep the boundary metric at x0 = 0 fixed.
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where Eab(g) is proportional to the non-linear equation of motion (including the cosmo-

logical term) for the bulk metric g. Equation (2.33) expresses gravitational quantities on

Σ in terms of the gravitational “charge” on ∂Σ and is the analog of Gauss’ law for gravity.

At no point have we used the equations of motion here. The bulk surface Σ is in principle

arbitrary. Finally, note that since this whole equation is linear in δg, we can write it as an

operator equation by changing δg → δ̂g.

In this paper, we will set up formalism which works for a holographic CFT with a

general gravity dual, but for concreteness we will focus on the case of Einstein gravity in

the bulk. In this case, we can give explicit formulas for the various quantities appearing

in equation (2.33). The covariant gravitational symplectic 2-form density ω in Einstein

gravity is given by14

ω(δ1g, δ2g) =
1

16πGN
εaP

a(bc)d(ef)[g] (δ1gbc∇dδ2gef − δ2gbc∇dδ1gef ) , (2.35)

where P is the following tensor built out of the background metric:

P abcdef [g] = gdcgeagfb − 1

2
gdagebgfc − 1

2
gdcgefgab − 1

2
gdfgeagbc +

1

2
gdagefgbc. (2.36)

The (d− 1)-form χ given by

χ(δg,X) = δQX − iXΘ(δg) (2.37)

=
1

16πGN
εab

(
δgac∇cXb − 1

2
δgcc∇aXb +Xc∇bδgac −Xb∇cδgac +Xb∇aδgcc

)
,

where, as before, X is an arbitrary vector field. Finally, we have

Eab =
1

16πGN

(
Rab −

1

2
Rgab + Λgab

)
. (2.38)

In the next section, we will see that by picking Σ to be a suitable cylindrical tube

which ends on ∂RB at the asymptotic boundary, we can “integrate in” equation (2.18) into

the bulk, thereby constructing a bulk-dual for δVHR.

3 Integrating in the modular hamiltonian

In this section, we will present our main calculation. As explained previously, we consider

a general (not necessarily ball-shaped) subregion R in a general state ψ of a holographic

CFT dual to a smooth AAdS bulk geometry g. We will now prove equation (2.30):

〈δVH〉δψ =
1

4GN
δVAext + 〈δVHbulk,r〉δψbulk

, (3.1)

where as before, δV denotes the shape deformation and δψ is a state deformation (such that

the backreaction in the bulk is small). In proving equation (3.1), we are going to assume:

14This is equivalent, up to unimportant boundary terms, to the canonical symplectic form [45], which is

essentially the gravitational version of the usual symplectic form w = (δ1p δ2x − δ2p δ1x) in classical me-

chanics.
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⌃
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Figure 2. In the left panel is an illustration of the setup for constructing the bulk-dual of δVHR.

The cylindrical tube Σ surrounds the extremal surface S (red curve) in the bulk. The solid blue

line is the subregion R in the boundary. The dashed blue line is the cut along τ = 0 on Σ; its upper

and lower boundary is Σ+ and Σ− respectively as shown in the magnified picture in right panel.

(i) the extrapolate dictionary near the asymptotic boundary, and (ii) that the boundary

modular flow of R for the reference state ψ is equivalent to the bulk modular flow in the

bulk region r for ψbulk.

We emphasize that (ii) is only an assumption about the background modular flow

and in particular is weaker than the RT formula, since we do not need to mention the

area: the modular flow is generated by the full modular hamiltonian, in terms of which

the assumption reads Hf
∂R = Hf

∂r,bulk. For the special case of a ball-shaped region in the

vacuum, this assumption is the usual matching of bulk and boundary symmetries [3], and

for more general states and subregions was shown to follow from RT in [36]. However,

our approach here is to take this equality of the background bulk and boundary modular

flows as a starting point, and use it to prove equation (3.1). To highlight how weak this

assumption is, this is a property that can be checked completely in the realm of bulk

perturbation theory: it is a statement about an equivalence in the code subspace, while

the area contribution is not something calculable just from the code subspace, see [46]

for some discussion about this. In other words, it is a property similar to bulk locality,

in the sense which is present as long as there is a holographic dual, independently of the

corresponding gravitational theory.15

3.1 Calculation

Our starting point will be equation (2.18) in the boundary CFT. In order to proceed, we

wish to rewrite equation (2.18) in terms of the bulk gravitational variables using equa-

15By locality we mean that perturbative α′ corrections give rise to an effective local bulk Lagrangian and

a local entangling functional. As is usual in this context, we work in the regime where we consider quantum

corrections, but not stringy corrections.
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tion (2.33): ∫
Σ
ω(δ̂g,Lvg) =

∫
∂Σ
χ(δ̂g, v)−

∫
Σ
E(g, δ̂g, v), (3.2)

where we have used linearity in δg to write this as an operator equation. For most of

the calculation below we can be general and take Σ to be a cylindrical tube surrounding

some bulk surface S, and ending on ∂RB. Consistency with the boundary expression

requires S to be the codimension 2 surface invariant under modular flow and S satisfies

the condition that full boundary modular flow w.r.t. ∂R is equal to full bulk modular flow

w.r.t. S (as stated previously); then v will be the deformation of S under the boundary

shape deformation V (or more precisely, some smooth extension of this vector field around

S). Looking ahead, S will be the undeformed bulk extremal surface, but at this moment

we don’t need to impose this condition. We can describe this tube locally in Gaussian

normal coordinates adapted to S (see appendix A); in these coordinates the metric takes

the form:

g = dρ2 + ρ2dτ2 + γij(y)dyidyj + · · · (3.3)

where the surface S is located at ρ = 0, τ is the angular coordinate around S, and we

have neglected to write the O(ρ) corrections for simplicity, but they are important for all

calculations and can be found explicitly written out in appendix A. In these coordinates,

the cylindrical tube Σ will be taken to be the surface ρ = b, with a cut along τ = 0

(i.e., ε ≤ τ ≤ 2π − ε). Let us first focus on the boundary term on the right hand side of

equation (3.2). The boundary ∂Σ consists of three components: the piece at the asymptotic

boundary will be called Σ0,16 while the two boundaries along S at τ = ε and τ = 2π − ε
will be denoted by Σ+ and Σ− respectively (see figure 2). A simple calculation shows that

from Σ0, we get ∫
Σ0

χ(δ̂g, v) =

∮
Σ0

V µnν : Tµν : (B, θ, y), (3.4)

and so we may rewrite equation (3.2) as∮
Σ0

V µnν : Tµν : (b, θ, y) =

∫
Σ
ω(δ̂g,Lvg)−

∫
Σ+∪Σ−

χ(δ̂g, v) +

∫
Σ
E(g, δ̂g, v). (3.5)

Therefore, using equations (2.18) and (3.5), and picking Σ0 to coincide with ∂RB, we can

re-write δVHR as:

δVHR = lim
b→0

∫ ∞
−∞

ds

4 sinh2( s+iε2 )
ρ
−is/2π
R

{
−
∫

Σ+∪Σ−

χ(δ̂g, v) +

∫
Σ
vmT bulk

mn ε
n

+

∫
Σ
ω(δ̂g,Lvg) +

∫
Σ
Ẽ

}
ρ
is/2π
R , (3.6)

where we have defined Ẽ =
(
E − vmT bulk

mn ε
n
)
. We have almost managed to rewrite equa-

tion (2.18) in terms of bulk gravitational variables, except for the CFT modular flow in the

16In Fefferman-Graham coordinates, we can put a cutoff in the radial direction and pick the asymptotic

boundary to be at z = z0. Then, we want the asymptotic component of ∂Σ to match with ∂RB , which

requires B ∼ z0b.
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above equation. At this point, we assume that in the background, CFT and bulk modular

flows are equivalent, i.e., the action of the CFT modular flow in equation (3.6) on bulk

operators is equivalent to bulk modular flow. With this replacement, it is immediately clear

that the second term on the right hand side is equal to δVHbulk,r. We therefore rewrite

equation (3.6) as

δVHR = δVHbulk,r (3.7)

+lim
b→0

∫ ∞
−∞

ds

4sinh2( s+iε2 )
ρ−is/2πr

{
−
∫

Σ+∪Σ−

χ(δ̂g,v)+

∫
Σ
ω(δ̂g,Lvg)+

∫
Σ
Ẽ

}
ρis/2πr .

Now let us focus on the remaining terms individually. Firstly, the last term on the right

hand side above

Eflow ≡ lim
b→0

∫ ∞
−∞

ds

4 sinh2( s+iε2 )

∫
Σ
ρ−is/2πr Ẽ ρis/2πr , (3.8)

is proportional to the equations of motion for the background metric g and the linearized

equations for δg (including the bulk stress tensor), and so clearly this term vanishes on-

shell. However in the interest of generality, we will keep this term as it is for now. Next,

let’s consider the term with ω. Since this term is integrated over Σ, naively it might appear

to vanish in the b→ 0 limit; in fact, the only terms inside ω which survive in the b→ 0 limit

are terms which get enhanced by modular flow, coming from the region s ∼ ± ln b in the

s-integration. Following the discussion in section 2, the enhancement will only be sufficient

for terms which have 2 (or more) + or − indices on δ̂g. Therefore, it suffices to only keep

track of the terms proportional to δ̂g++,∇iδ̂g++,∇+δ̂g++ and δ̂g−−,∇iδ̂g−−,∇−δ̂g−−; the

remaining terms vanish in the b → 0 limit. Note that we have assigned modular weights

to covariant tensors, which transform nicely under coordinate transformations.17 We will

present the details of this calculation in appendix B. The result is:∫
Σ
ω(ĝ,Lvg) =

1

8πGN

∫
Σ
dd−1y b

(
e−iτ δ̂g−−δV (

√
γK+) + eiτ δ̂g++δV (

√
γK−)

)
+ · · · (3.9)

where δVK± can be written explicitly in terms of the original metric and vI as in (2.26)

and · · · denote terms which do not get enhanced and hence drop out in the b → 0 limit.

Crucially, the terms proportional to δg±± in equation (3.9) (which do survive as b → 0)

are proportional to the extremality condition for v±! Therefore, imposing the extremality

condition on v (and S) eliminates these terms. However, we will not impose extremality

at this stage — we will denote these two contributions collectively as δV Sflow.

Next, we move onto the χ terms in equation (3.7). A short calculation shows (see

appendix B for details)∫
Σ±

χ(ĝ, v) =
i

8πGN

∫
Σ±

dd−1y
√
γ
(
δ̂K−v

− − δ̂K+v
+ + δ̂gij∇ivj

)
(3.10)

17For example, there is a term proportional to V IKI;ijγ
ikγjl∇kδgl± in ω, which when expanded out

contains a term proportional to δg±±. However, we do not include this term because the covariant object

∇kδgl± has weight ±1 under modular flow.
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S

Re(s)

Im(s)

0

2⇡

Figure 3. The strip 0 ≤ Im(s) ≤ 2π in the complex s-plane. The contour C is shown in blue. The

black dots are the poles of the kernel sinh−2
(
s+iε
2

)
.

where recall that 〈δ̂KI〉 = δKI was defined in equation (2.26). Now once again using

the locality of bulk modular flow near S (i.e., using the fact that τ = 2π corresponds to

s = 2πi), we can rewrite the two terms (on Σ+ and Σ−) as

χ− term = −
∫ ∞
−∞

ds

4 sinh2( s+iε2 )

∫
Σ+∪Σ−

ρ−is/2πr χ(δ̂g, v)ρ+is/2π
r (3.11)

=

∫
C

ds

4 sinh2( s+iε2 )
ρ−is/2πr

∫
Σ+

χ(δ̂g, v)ρ+is/2π
r

where C is the following contour in the complex-s plane (see figure 3):

C = (−∞+ iε,∞+ iε) ∪ (∞+ i(2π − ε),−∞+ i(2π − ε)) . (3.12)

Using analyticity in the strip shown in figure 3 together with the residue theorem, this

contour integral picks up the double pole of sinh−2( s+iε2 ) as ε→ 0, whose residue is equal

to the commutator of Hbulk with the integrand inside the y-integral:

χ− term = −
[
Hbulk,r,χ(δ̂g, v)

]
(3.13)

Once again, the locality of the bulk modular flow near the RT surface implies that this

commutator is determined by the local boost weight, which is ±1 for δ̂K±,18 and 0 for δ̂gij ,

so we get:

χ− term =
1

4GN

∫
Σ+

dd−1y
√
γ
(
δ̂K−v

− + δ̂K+v
+
)

=
1

4GN
δV Â[S] + · · · (3.14)

where · · · denote terms localized on S which vanish when we take S to be extremal.

In conclusion, putting everything together, we find that

δVHR =
1

4GN
δVA[S] + δVHbulk,r + · · · (3.15)

where the · · · correspond to terms that vanish when the equations of motion and the

extremality conditions are satisfied and we have promoted this to an operator equation,

because the state deformation was arbitrary, albeit with the standard caveat of small back-

reaction. It is also useful to write down the corresponding equation for the full modular

hamiltonian:

δVH
f
∂R = δVH

f
∂r,bulk + δV Sflow,r − δV Sflow,r̄ + Eflow,r − Eflow,r̄. (3.16)

18This can also be seen by expanding this object in covariant derivatives of δ̂g.
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We emphasize that so far, the only assumptions we have made are that for the original

region R and reference state ψ, the bulk and boundary modular flows are equivalent,

together with the extrapolate dictionary.

3.2 Results

Now we are ready to consider the various consequences of these formulas.

• Let us begin by assuming that the bulk equations of motion are satisfied (by both

g and δg), S is the undeformed extremal surface, and v satisfies the extremality

condition equation (2.26). In this case, the · · · in equation (3.15) drop out, and

we get

δVHR =
1

4GN
δVAext + δVHbulk,r, (3.17)

which is the JLMS formula for the shape-deformed region. In particular, equa-

tion (3.17) implies that if the bulk and boundary modular flows are equivalent for

some subregion R (in some reference state ψ), and if the bulk geometry satisfies

Einstein’s equations, then a small shape deformation of the modular hamiltonian

will satisfy JLMS. We want to highlight here the difference between JLMS and the

equality of modular flows,19 because in the equality between modular flows there is

no reference to the area term in the modular hamiltonian. In fact, from a quantum

field theory perspective such a term localized on S can be pretty subtle. However,

in our result, it pops-out naturally in the bulk (from the minimal assumption of

equality of background modular flows), and in particular is well-defined. Further-

more, equation (3.17) implies that the equality between bulk and boundary modular

flows continues to be true even for the deformed subregion. Importantly, since we

assumed no special properties about the original subregion R (for example, R need

not be ball-shaped in our arguments), we can now bootstrap this result to generate

large shape deformations as well. This leads to an important corollary: if ψ is the

vacuum state, then [3] implies the equality of bulk and boundary modular flow for

all ball-shaped regions; a ball-shaped region is therefore a natural candidate for the

background subregion R. Since we can generate any compact subregion (with the

topology of a ball) by deforming such a ball-shaped region, equation (3.17) therefore

implies the JLMS formula for such subregions of arbitrary shape in the vacuum.

• Alternatively, we could drop the assumption that v satisfies the extremality condi-

tion (2.26), and instead assume that the boundary modular flow is equivalent to bulk

modular flow even in the deformed region R + δVR. This implies that the δV Sflow

terms in (3.16) have to vanish — this is because it is clear from the enhancement

arguments given in section 2 that δV Sflow would give a non-local operator with sup-

port in the bulk of r, so the equality between bulk and boundary modular flows

necessarily implies

δVKI = 0, (3.18)

19Namely, that we did not assume JLMS in the background, but merely the weaker statement that the

bulk and boundary modular flows are equal.
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i.e., extremality for the perturbed surface S + δV S. Since we can repeat these argu-

ments perturbatively in the boundary shape deformations, the equality of modular

flows does not allow for the corresponding deformations of the bulk surface S to

add extrinsic curvature with non-zero trace. We therefore expect that the extremal-

ity condition generally (for arbitrary subregions) follows from the equality between

bulk and boundary modular flows! This is certainly true for any subregion with the

topology of a ball in the vacuum, but for more general states we will leave it for

future study.

• Next, we drop the assumption that the equations of motion are satisfied by the bulk

metric deformation δg (while g still satisfies the background equation of motion),

but we assume that the JLMS formula is satisfied for arbitrary regions; equivalently

we may assume the Ryu-Takayanagi formula (including quantum corrections), which

implies JLMS. In this case, we deduce from equation (3.15) that we must have

Eflow ≡ lim
b→0

∫ ∞
−∞

ds

4 sinh2( s+iε2 )

∫
Σ
ρ−is/2πr

∮
Σ
dΣmvnE(1)

mn ρ
is/2π
r = 0, (3.19)

where E
(1)
mn is the linearized equation of motion, including the bulk stress tensor

term. On the other hand, the enhancement from modular flow guarantees that the

terms proportional to E
(1)
++ and E

(1)
−− in (3.19) are a priori non-trivial in the b → 0

limit.20 Given that the subregion R is completely arbitrary, we expect that the only

way equation (3.19) can be satisfied is if the null-null components of the linearized

equation of motion are satisfied:

E
(1)
±± = 0, (3.20)

although we have not attempted to prove this rigorously. If this can be shown, then

this would prove that any AAdS geometry which satisfies the Ryu-Takayanagi for-

mula (with quantum corrections) for first order state/metric deformations around

the background geometry g, necessarily satisfies the linearized equations of motion

E
(1)
±± = 0 around g. Since the background geometry g can be taken to be an arbi-

trary (not necessarily AdS) asymptotically AdS solution to the Einstein equation,

this would then constitute a derivation of the full non-linear Einstein equation from

entanglement in holographic conformal field theories! We end with the remark that

this argument seems quite closely analogous to the original argument of Jacobson

deriving the Einstein equation from the first law of thermodynamics [47].

4 Discussion

In this paper, we have combined the techniques of [22] with a purely gravitational identity

from the Hollands-Iyer-Wald formalism to study the properties of entanglement entropy

for subregions of arbitrary shape in conformal field theories with holographic duals. Start-

ing from the equality between bulk and boundary modular flows in the background, we

20For instance in the case of local modular flow, we would have Eflow ∼ −
∫
H+

bulk
v+E

(1)
++ +

∫
H−

bulk
v−E

(1)
−−,

where H±bulk are the bulk future and past horizons.
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derived (3.15) and (3.16), which upon the assumption of the equations of motion in the

bulk, gave us the extremality condition and JLMS for arbitrary shapes. In the reverse

direction, we were able to give an argument that any AAdS spacetime which satisfies the

Ryu-Takayanagi formula must necessarily satisfy the non-linear Einstein equation. More

precisely, we argued that the equation of motion integrated on an extremal surface should

vanish for equation (3.19) to be true, but we have not given a detailed argument for the

vanishing of the local equations of motion by “inverting” (3.19) — we leave this to future

work. Now, we would like to comment on some possible future directions or applications

of this work.

It from modular flow? In the previous section, we considered three cases where we

either assumed the bulk equations of motion and derived JLMS and extremality, or vice

versa. More generally, we expect the equality between modular flows in (3.16) to impose

δvSflow + Eflow = 0. It is not clear to us if this equation has any other solution other than

the two terms being individually zero. If there was a solution, it would be interesting to

understand it better. If there is none, then both extremality and the equations of motion

would follow form the equality of modular flows!

In a related but slightly different direction, if we focus on the leading order in GN
contribution around the RT surface (imposing equations of motion but not extremality for

the shape deformation), it would seem that:

δV ĤR =
δV Âext

4GN
+ δV Ŝflow. (4.1)

This object is more bulk non-local than just the area operator and it might be possible to

determine that δV Ŝflow is zero solely from comparing the properties of this object with the

boundary modular hamiltonian. For instance, this operator doesn’t seem to commute with

operators which are space-like separated from the RT surface. However, it seems hard to

make this statement more concrete.

At any rate, we seem to have a novel rewriting of the extremality condition in terms

of a certain modular flow integral of the symplectic flux in the bulk (somewhat analogous

to the discussion in [31]), and it would be interesting to explore its physical interpretation

further. Moreover, it is also of interest to give a more detailed derivation of the equations

of motion based on the argument given in this paper. Finally, at various points in this

paper we used the locality of modular evolution in an infinitesimal Euclidean neighborhood

of the entangling surface, for modular times which are large-but-not-too-large; it would be

useful to provide rigorous justifications.

Time dependent boundary time slices: we introduced the shape variation through

the Euclidean path integral, but we expect that in the boundary we can consider arbi-

trary Lorentzian Cauchy slices through analytic continuation. In these cases where the

Cauchy slice is not a Euclidean section, we expect that this analytic continuation carries

straightforwardly to the bulk: given a Lorentzian holographic mapping, we only need to

continue the neightbourhood of the fixed point of bulk modular flow slightly into euclidean

signature. We leave a more careful analysis of this for the future.
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Higher derivatives: our discussion above was quite general, and except for the explicit

computation of ω and χ, we expect that it might in principle be straightforward to gen-

eralize to other theories of gravity. This might provide an alternative derivation of the

formulas of [5, 6] which does not rely on the replica trick (see also [32] for progress along

these lines).

Quantum corrections: our discussion focused on the semiclassical regime, where gravi-

tons can be thought of as free, spin-2 fields. That is, we have been working to order O(G0
N )

in the entropy. Beyond that, we expect [48, 49] that the position of the surface is shifted

by a contribution proportional to the change in the bulk entanglement entropy. It would

be nice to understand these corrections from our approach. We also expect some correc-

tion to the equality between modular flows [49] and our approach could provide useful to

understand that better.

Bulk vs boundary contributions in the s integral: we would like to highlight a

feature of the calculation which might seem confusing at first.21 The boundary expression

for δVH naively vanishes as B → 0 but this suppression gets compensated by an enhance-

ment at large modular time s ∼ logB. In the bulk, there is a similar contribution from

ω, δvHbulk, where large modular times give rise to finite terms. However, there is also the

contribution from χ which is not suppresed in b, but, in the absence of modular flow, it

would be zero because the contribution from Σ± would cancel. After modular flow, the

non-trivial contribution of χ comes from the double pole (which occurs at small s). So,

when going from the boundary to the bulk, one finds that there is some mixing on which

modular times are contributing to the integral. This was already observed in [31] and

it might be related to the fact that the bulk solution might be “more regular” than the

boundary, in the spirit of [4]. This seems to be related with the fact that the area operator

is state independent, but we leave a more detailed analysis of this to the future.

Modular flow versus replica trick: our approach had some similarities with the replica

trick approach of [4] — there one assumed that the replica symmetry extended into the

bulk, and here we assumed that the modular flow extends naturally into the bulk. Our

surface S was defined in terms of the fixed point of this symmetry while in [4] the RT surface

is defined as the analytic continuation of the fixed point of replica symmetry. However,

when doing the replica trick, one considers variations of the metric which look very singular,

while our deformations have been rather mild, which makes it less constraining.

Also, note that the our double-deformation of the entropy with respect to the state

and shape morally resembles that of [49], where they studied the dual of a different double

deformation, i.e., a state variation together with a deformation of the Renyi parameter,

which could also be integrated into the bulk. However, the integral in [49] was on a

codimension-0 surface instead of codimension-1 because they had to integrate it in through

the action. Nevertheless, it might be fruitful to better understand the connections between

the two approaches.

21We thank Tom Faulkner for discussions about this.
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A Gaussian normal coordinates

In the main text, we picked Gaussian normal coordinates adapted to the extremal surface

for the background metric; here we will list some further details about these coordinates.

Note that we are not fixing any particular gauge for the metric perturbations — these will

in general not preserve the form of the metric in Gaussian normal coordinates, but this

choice of coordinates for the background simplifies the calculations.

Given a codimension 2 surface S with intrinsic coordinates yi, we can denote the

geodesic distance away from this surface by ρ. For small ρ, constant ρ surfaces are tubes

which we can parametrize by an angle τ and (d−2) coordinates y. Our choice of the metric

sets gρτ = gρi = 0 everywhere on S. Furthermore, the fact that this is a codimension 2

surface, forces gττ = ρ2 + O(ρ4) and gτi = O(ρ2). It will be convenient to work with null

coordinates, x± = ρe±iτ .

In these coordinates, the metric takes the general form

g = δIJdx
IdxJ + ai(y)εIJx

I
(
dxJdyi + dyidxJ

)
+
(
γij(y) + 2xIKI;ij(y)

)
dyidyj

− 1

3
RIK;JL(y)xKxLdxIdxJ +

1

3
RiK;LM (y)εIJε

LMxIxK
(
dxJdyi + dyidxJ

)
+
(
−4δIJaiaj +Ri(I;J)j(y) +K`

I;jKJ ;i`

)
xIxJdyidyj +O(x3) (A.1)

where I, J · · · = +,− denote indices perpendicular to S and i, j · · · = 1, 2, · · · , d− 1 denote

indices along S. Further, δIJ =

(
0 1/2

1/2 0

)
, and γij(y) is the metric in the directions

parallel to S. The undeformed extremal surface is located at xI = 0, with the extremality

condition imposing γijKI;ij = 0. (The calculation can be carried out more generally with-

out imposing this condition, but since we are ultimately interested in extremal background

surfaces, we will take γijKI;ij = 0 for simplicity).

Some useful Christoffel symbols evaluated at x± = 0 are:

ΓmIJ |x=0 = 0,

ΓI iJ
∣∣
x=0

= aiδ
IKεJK ,

ΓI ij
∣∣
x=0

= −δIJKJ ;ij

ΓiIj
∣∣
x=0

= γikKI;kj

Γijk
∣∣
x=0

= Γ̂ijk =
1

2
γil (∂iγlj + ∂jγli − ∂lγij) . (A.2)
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B Extremality condition in Gaussian normal coordinates

In this appendix, we derive the extremality condition and change in the area of the extremal

surface (to first order in the both the shape and state deformation) in Gaussian normal

coordinates for a general subregion in a general AAdS spacetime.

As explained in the main text, the shape deformation of the area and the extremality

condition under a shape deformation are equivalent to:

δδVA =

∫
dy
√
γ

(
δKI +

1

2
γijδγijK

I

)
V I ; δV (

√
γKI) = 0 (B.1)

where if the background is of the previous form, the extrinsic curvature terms are given by:

δKI = −Kij
I δgij +

1

2
γij∂Iδgij − γij∇̂iδgjI =

1

2
∇Iδgii −∇iδgiI +Kijδg

ij (B.2)

In particular, when δgmn = 2∇(mvn) is a diffeomorphism, we can manipulate the covariant

derivatives to write it in terms of the extrinsic curvatures, Riemann tensor and covariant

derivatives of v in the tangential direction.

In this appendix, we will show this by explicit computation. In [50, 51], a similar

expansion of the area was also considered.

Extremality condition. Let us first derive the extremality condition. In the interest

of generality, we will begin by picking arbitrary coordinates (xI , yi) for now, with the only

requirement that the original extremal surface is located at xI = 0. Let the new extremal

surface be located at xI = vI(y). The induced metric is given by

hij = gIJ(v, y)∂iv
I∂jv

J + 2g(iJ(v, y)∂j)v
J + gij(v, y). (B.3)

We can expand the induced metric for small v as:

hij = gIJ(0, y)∂iv
I∂jv

J + 2g(iJ(0, y)∂j)v
J + 2∂Kg(iJ(0, y)vK∂j)v

J + gij(0, y)

+ ∂Kgij(0, y)vK +
1

2
∂K∂Lgij(0, y)vKvL + · · · (B.4)

Note that we have dropped O(v3) terms above, because we are interested only in shape

perturbations to linear order. We can make the following gauge choice here for convenience:

giJ(0, y) = 0. (B.5)

This is always possible; for instance, this is one of the conditions satisfied in the Gaussian

normal coordinates we will use momentarily. Then the induced metric becomes

hij = gIJ(0, y)∂iv
I∂jv

J + 2∂Kg(iJ(0, y)vK∂j)v
J + gij(0, y)

+ ∂Kgij(0, y)vK +
1

2
∂K∂Lgij(0, y)vKvL + · · · (B.6)

In order to ensure extremality, we need to vary with respect to v; the change in the induced

metric is given by

δvhij = 2gIJ(0, y)∂iδv
I∂jv

J + 2∂Kg(iJ(0, y)δvK∂j)v
J + 2∂Kg(iJ(0, y)vK∂j)δv

J

+ ∂Kgij(0, y)δvK + ∂K∂Lgij(0, y)δvKvL + · · · (B.7)
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In addition, we also need the relations

hij = gij − vK(∂Kgi′j′)g
ii′gjj

′
+ · · · (B.8)√

dethij =
√

det gij

(
1 +

1

2
gij∂Kgijv

K + · · ·
)

(B.9)

From here, we obtain

δVA =

∫
dd−1yi

√
det g

{
gij
(
2gIJ∂iδv

I∂jv
J + 2∂Kg(iJδv

K∂j)v
J

+ 2∂Kg(iJv
K∂j)δv

J + ∂Kgijδv
K + ∂K∂Lgijδv

KvL
)

+
1

2
(gij∂Kgijv

K)(gkl∂Lgklδv
L)− gikgjl∂Kgij ∂LgklvKδvL)

}
. (B.10)

Clearly, requiring that v = 0 be an extremal surface requires gij∂Kgij = 0. This simplifies

the above expression, and we obtain

δVA =

∫
dd−1yi

√
det g

{
gij
(
2gIJ∂iδv

I∂jv
J + 2∂Kg(iJδv

K∂j)v
J

+ 2∂Kg(iJv
K∂j)δv

J + ∂K∂Lgijδv
KvL

)
− gikgjl∂Kgij ∂LgklvKδvL)

}
. (B.11)

Now using Gaussian normal coordinates, we get the following extremality condition:

− 2δIJ∇̂2vJ + 2γij(∂IgiJ)∂jv
J − 2γij∇̂j

(
∂KgiIV

K
)

+ γij(∂I∂Lgij)v
L − γikγj`(∂Kgij)(∂Igk`)vK = 0, (B.12)

where ∇̂ is the intrinsic covariant derivative in the original extremal surface. We can now

covariantize the extremality condition by using

∂I∂Jgij = 2
(
δKLεIKεJLaiaj +Ri(I;J)j +K`

I;jKJ ;i`

)
+ · · ·

= 2
(
−4δIJaiaj +Ri(I;J)j +K`

I;jKJ ;i`

)
+ · · · (B.13)

and we obtain

− ηIJγij∇i∇jvJ + γijRi(I;L)jv
L −KI;ijK

ij
L v

L = 0. (B.14)

This is the final form of the extremality condition we will work with.

Area. Next, we wish to compute δVAext., i.e. the change in the area of the extremal

surface to linear order in the shape deformation and simultaneously linear order in the

bulk metric deformation. The area of the RT surface is

Aext =

∫
S
dd−1y

√
dethij , hij = gmn(x(y))∂ix

m∂jx
n (B.15)

If we deform the background geometry slightly, then this changes as

δAext =
1

2

∫
S
dd−1y

√
dethhijδhij (B.16)
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Importantly, δhij has two terms:

δhij = δgmn∂ix
m∂jx

n + (δxp∂pgmn∂ix
m∂jx

n + 2gmn∂iδx
m∂jx

n) (B.17)

where the first term is the change in the induced metric on the original surface, while

the second term comes from the change in the minimal surface due to change in the bulk

geometry. At the order we are working, we can discard the second term, because the

original surface is extremal and so the change in the area coming from the second term

should vanish. So we find

δAext =
1

2

∫
S
dd−1y

√
dethhijδgmn∂ix

m∂jx
n. (B.18)

We actually want to compute the first shape-derivative δV -derivative of this term

δV δAext =
1

4

∫
dy
√

dethhijδV hijh
klδgmn∂kx

m∂lx
n +

1

2

∫
dy
√

deth δV h
klδgmn∂kx

m∂lx
n

+
1

2

∫
dy
√

dethhklδV δgmn∂kx
m∂lx

n +

∫
dy
√

dethhklδgmn∂kδV x
m∂lx

n

(B.19)

where we have

δV δgmn = vI∂Iδgmn (B.20)

δV hij = vI∂Igmn∂ix
m∂jx

n + 2gIn∂iv
I∂jx

n = 2vIKI;ij (B.21)

So we obtain (now using Gaussian normal coordinates)

δV δAext =
1

2

∫
dy
√

det γ vIγijKI;ijγ
klδgkl −

∫
dy
√

det γ vIKij
I δgij

+
1

2

∫
dy
√

det γ γijvI∂Iδgij +

∫
dy
√

det γ γijδgIj∂iv
I (B.22)

We can drop the first term because TrKI = 0. Finally, covariantizing the remaining terms,

we obtain

δV δA =

∫
S
dd−1y

√
det γ

(
1

2
γijvI∇Iδgij + γijδgIj∇ivI

)
. (B.23)

It is easy to see that this is equivalent to (B.2) up to integrations by parts in the

y-directions. When integrating by parts, there is a boundary contribution which vanishes

as long as the leading asymptotic of δgij is fixed at the boundary (and thus the leading

contribution comes from turning on the stress tensor). This boundary term doesn’t vanish

if we had gIj instead of δgIj and it is in fact the only contribution to the shape deformation

of the entropy δVA (see for example equation (3.10) of [52]).
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C Details of the symplectic 2-form and boundary terms

In this appendix, we spell out the details of the ω term and χ term from equation (3.7).

ω-term. Let us first consider the ω term. Recall from section 2, that the gravitational

symplectic form density is given by

ω(δ1g, δ2g) =
1

16πGN
εaP

a(bc)d(ef)[g] (δ1gbc∇dδ2gef − δ2gbc∇dδ1gef ) , (C.1)

P abcdef = gdcgeagfb − 1

2
gdagebgfc − 1

2
gdcgefgab − 1

2
gdfgeagbc +

1

2
gdagefgbc. (C.2)

We wish to integrate the symplectic form over the cylindrical tube Σ (or radius b) sur-

rounding the HRRT surface, with δ2g = LV g. It is convenient to rewrite this integral as∫
Σ
ω(δ1g, δ2g) =

1

16πGN

∫
r=b

bdθdd−1y
√
γ
(
δ1gbcδ2Πbc − δ2gbcδ1Πbc

)
, (C.3)

where we have defined the covariant momentum

δΠbc = P r(bc)def∇dδgef =
e−iθ

2
P+bcdef∇dδgef +

e+iθ

2
P−bcdef∇dδgef . (C.4)

We are interested in the limit b → 0. Let us evaluate the various components of the

covariant momentum for small b:

δΠ++ = 2e−iθ∇−δg−− − 2eiθ
(
∇+δg−− +

1

2
gij∇−δgij

)
+O(b). (C.5)

δΠ−− = 2e+iθ∇+δg++ − 2e−iθ
(
∇−δg++ +

1

2
gij∇+δgij

)
+O(b). (C.6)

δΠ+− =
1

2
e−iθ

(
gij∇−δgij − 2∇iδgi−

)
+

1

2
e+iθ

(
gij∇+δgij − 2∇iδgi+

)
+O(b). (C.7)

δΠ+i = e−iθgij∇jδg−− − eiθ
(
gij∇+δg−j − gij∇−δg+j + gijgkl∇jδgkl

)
+ g−i

(
e−iθ∇−δg−− − e+iθ∇+δg−−

)
+O(b). (C.8)

δΠij =
e−iθ

2

(
2gk(igj)l∇lδg−k − gikgjl∇−δgkl − 2gij∇+δg−− + 2gij∇−δg+−

− gijgkl∇kδgl− + gijgkl∇−δgkl
)

+
eiθ

2

(
2gk(igj)l∇lδg+k − gikgjl∇+δgkl + 2gij∇+δg−+ − 2gij∇−δg++

− gijgkl∇kδgl+ + gijgkl∇+δgkl

)
+O(b) (C.9)

Note that in the second line of equation (C.8), we have kept an O(b) term as it is relevant

for our calculation (this term is O(b) because g−i = 2aix−), and neglected other O(b) as

well as higher order terms.

– 26 –



J
H
E
P
0
5
(
2
0
1
8
)
1
4
7

Additionally, since one of the arguments of the symplectic 2-form is LV g, it is also

convenient to work out the various components of LV g up to O(b2):

LV gIJ = δIK∂JV
K + δJK∂IV

K + V KxL∂K∂LgIJ +O(b2)

= V KxL∂K∂LgIJ +O(b2). (C.10)

LV giI = δIK∂iV
K + aiεKIV

K + aiεLKx
L∂IV

K + ∂K∂LgiIx
LV K +O(b2)

= δIK∂iV
K + aiεKIV

K + ∂K∂LgiIx
LV K +O(b2). (C.11)

LV gij = 2KK;ijV
K + ∂K∂Lgijx

LV K + aiεLKx
L∂jV

K + ajεLKx
L∂iV

K +O(b2). (C.12)

We are now in a position to extract the terms in the symplectic form which get suffi-

ciently enhanced to survive in the b → 0 limit. These are terms which contain covariant

tensors of modular weight ±2 (or higher), for e.g., δg±±, ∇iδg±± and ∇±δg±± etc. For

simplicity, let us focus on the — terms. We will use the notation hV = LV g for conve-

nience. We have two types of contributions in the symplectic flux density: (i) terms of the

type δg−−ΠhV and (ii) terms of the type hV Πδg (where we only keep objects with modular

weight –2). The first type of contribution is given by:

δg−−Π−V− = δg−−

{
2e+iθ∇+h

V
++ − 2e−iθ

(
∇−hV++ +

1

2
gij∇+h

V
ij

)}
= δg−−

{
2
(
e+iθ∂+h

V
++ − e−iθ∂−hV++

)
− gij∇+h

V
ij

}
= 2δg−−

(
e+iθ∂+∂Kg++ − e−iθ∂−∂Kg++

)
V K

− δg−− gij
(
V I∂+∂Igij − 4K l

+,iKI,jkV
I + 4aiajV

−
)
, (C.13)

where we have used

∇+h
V
ij = ∂+h

V
ij − 2Γk+(ihj)k − 2Γ+

+(ihj)+

= V I∂+∂Igij + 2a(i∂j)V
− − 4K l

+,(iKI,j)kV
I − 4a(i

(
1

2
∂j)V

− − aj)V −
)
. (C.14)

The second type of contribution is of the type hV Πδg:

hV Πδg =hV++

(
2e−iθ∇−δg−−−2e+iθ∇+δg−−

)
+2hVi+e

−iθgij∇jδg−−−e−iθgijhVij∇+δg−−

=V KxL∂K∂Lg++

(
2e−iθ∂−δg−−−2e+iθ∂+δg−−

)
−e−iθgijhVij∇+δg−−

+2

(
1

2
∂iV

−−aiV −
)
e−iθgij (∇jδg−−−2ajδg−−) . (C.15)

Note that we have also kept terms of the form∇+δg−− for completeness, and in the last line,

the aj term comes from integrating by parts the second line of equation (C.8). Combining

all the terms together, we find that the δg−− contribution (or more precisely the weight –2

contribution) to the symplectic form is given by:

= δg−− γ
ij
(
− V I∂+∂Igij + 4K l

+,iKI,jkV
I − 4aiajV

− +∇j
(
∂iV

− − 2aiV
−) )

= δg−− γ
ij
(
− V I∂+∂Igij + 4K l

+,iKI,jkV
I + ∇̂j

(
∂iV

− − 2aiV
−)− 2ai

(
∂iV

−) ) (C.16)
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where note that we have integrated by parts along the yi direction, and it can be checked

that the boundary term vanishes by the asymptotic boundary conditions. Finally, rewriting

∂+∂Igij in Gaussian normal coordinates, we find that the coefficient of δg−− is precisely

the extremality condition.

ω-term using the canonical symplectic form. Above, we used the covariant version

of the symplectic form. There is a second, quicker way to arrive at the above result using

the canonical version of the symplectic form, which we now briefly explain. In the canonical

formalism, we have:

ω = δ1hmnδ2p
mn − δ2hmnδ2p

mn (C.17)

where h, p are the induced metric and momenta in the tube Σ surrounding the extremal

surface S. The momentum is defined by:

pmn =
√
h(Kmn

b − hmnKb) (C.18)

where the b subindex denotes that this is the extrinsic curvature in the codimension 1 sur-

face.

In this case, the rule for enhancement is that we only have to keep the δh±±, δp±±
terms. Since δV h±± = 0, i.e., the surface translation doesn’t change the τ, τ component

of the metric, we only get a contribution from δV p
±±. For simplicity, let us work with

cylindrical coordinates, we have:

pττ =
√
γb−1γijKτ

b,ij (C.19)

and thus its v variation will be given by:22

δV p
ττ b = δV (

√
γK+)eiτ + δV (

√
γδK−)e−iτ (C.20)

where we used that Kτ
b,ij = K+,ije

iτ + K−,ije
−iτ . In this way since δgττ = e2iτδg++ +

e−2iτδg−− + 2δg+−, the only contribution which gets enhanced will be:

ω = δg−−δV (
√
γK+)e−iτ + δg++δV (

√
γK−)eiτ + . . . (C.21)

χ-term. Now recall that

χ(δg, V ) =
1

16πGN
εabχ

ab,

χab =

(
δgac∇cV b − 1

2
δgcc∇aV b + V c∇bδgac − V b∇cδgac + V b∇aδgcc

)
.

(C.22)

Let us first focus on the contribution coming from the cut Σ±. Here we get

χ(δg, V ) =
1

16πGN

√
g dy1 ∧ · · · ∧ dyd−1 × i

2b

(
χ+− − χ−+

)
, (C.23)

22In (C.19) we plugged the background value for the components of the metric which are not changed

under δV : δV gIJ = 0, so δVKij depends on both δgij , δgIi.
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where we have

χ+− =
(
δg+c∇cV − + V c∇−δg+

c − V −∇cδg+c + V −∇+δgcc
)

(C.24)

=
(
δg+i∇iV − + V I∇−δg+

I − V −∇iδg+i − V −∇Iδg+I + V −∇+δgii + V −∇+δgI I
)
,

and similarly,

χ−+ =
(
δg−i∇iV + + V I∇+δg−I − V +∇iδg−i − V +∇Iδg−I + V +∇−δgii + V +∇−δgI I

)
.

Combining equations (C.24) and (C), we find that the only terms which survive are given by

χ(δg, V ) =
i

8πGN

√
γ dy1 ∧ · · · ∧ dyd−1

×
(
δgi−∇iV − +

1

2
V −∇−δgii − δgi+∇iV + − 1

2
V +∇−δgii + δgij∇ivj

) (C.25)

which is the result used in the main text. Note that the vIKij
I δgij = ∇ivjδgij term

comes from the integration by parts of ∇iδgI− term, since we are integrating by parts in

a codimension 2 surface.

Finally, the χ term at the asymptotic boundary can be evaluated using Fefferman-

Graham coordinates. We use the asymptotic expansions:

g =
dz2 + dxµdx

µ

z2
+ · · · , (C.26)

vI = V I + · · · , δ̂gµν = zd−2 16πGN
d

: Tµν : + · · · . (C.27)

Substituting in equation (C.22), we find that in the z → 0 limit the only contribution

comes from the vIz∇zδgrI term which gives∫
Σ0

χ(δ̂g, v) =

∮
Σ0

V µnν : Tµν : (B, θ, y). (C.28)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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