
J
H
E
P
0
5
(
2
0
1
8
)
1
0
6

Published for SISSA by Springer

Received: April 9, 2018

Accepted: May 7, 2018

Published: May 16, 2018

Electroweak gauge boson parton distribution functions

Bartosz Fornal,a Aneesh V. Manohara and Wouter J. Waalewijnb,c

aDepartment of Physics, University of California, San Diego,

9500 Gilman Drive, La Jolla, CA 92093, U.S.A.
bInstitute for Theoretical Physics Amsterdam and Delta Institute for Theoretical Physics,

University of Amsterdam,

Science Park 904, 1098 XH Amsterdam, The Netherlands
cNikhef, Theory Group,

Science Park 105, 1098 XG, Amsterdam, The Netherlands

E-mail: bfornal@ucsd.edu, amanohar@ucsd.edu, wouterw@nikhef.nl

Abstract: Transverse and longitudinal electroweak gauge boson parton distribution func-

tions (PDFs) are computed in terms of deep-inelastic scattering structure functions, follow-

ing the recently developed method to determine the photon PDF. The calculation provides

initial conditions at the electroweak scale for PDF evolution to higher energies. Numerical

results for the W± and Z transverse, longitudinal and polarized PDFs, as well as the γZ

transverse and polarized PDFs are presented.

Keywords: Deep Inelastic Scattering (Phenomenology), QCD Phenomenology

ArXiv ePrint: 1803.06347

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP05(2018)106

mailto:bfornal@ucsd.edu
mailto:amanohar@ucsd.edu
mailto:wouterw@nikhef.nl
https://arxiv.org/abs/1803.06347
https://doi.org/10.1007/JHEP05(2018)106


J
H
E
P
0
5
(
2
0
1
8
)
1
0
6

Contents

1 Introduction 1

2 Transverse gauge boson PDFs 2

2.1 Definition 2

2.2 Evaluation 5

3 Longitudinal gauge boson PDFs 12

3.1 Definition 12

3.2 Evaluation 14

4 Comparison with previous results 15

5 PDF computation using factorization methods 16

5.1 Transverse polarization 16

5.2 Longitudinal polarization 18

6 Numerics 20

7 Conclusions 22

1 Introduction

An essential ingredient in calculations of high energy scattering cross sections are the

parton distribution functions (PDFs), which describe the incoming protons. These usually

only encode QCD effects, but at the multi-TeV energies probed by collisions at the Large

Hadron Collider, electroweak effects start becoming important. At Future Circular Collider

energies, electroweak effects are order one [1], because of Sudakov double logarithms in the

electroweak PDF evolution [2, 3], which are absent for QCD. This difference is due to the

spontaneous breaking of electroweak symmetry, implying that PDFs only have to be QCD

(and QED) singlets, but not necessarily electroweak singlets. Indeed, it is the SU(2)×U(1)

non-singlet PDFs that have Sudakov double logarithms in their evolution.

Electroweak contributions to PDF evolution have been computed recently [4–6], which

relates PDFs at different scales. However, the PDFs themselves have to be determined from

experiment. Recently, the photon PDF was calculated directly in terms of deep-inelastic

scattering structure functions [7, 8]. In this paper, we use a similar method to compute

the W and Z PDFs. Massive gauge bosons have both transverse and longitudinal polar-

izations, and a new feature of our analysis is the computation of PDFs for longitudinally

polarized gauge bosons. In contrast to the photon PDF, nonperturbative contributions are

suppressed, allowing us to calculate the gauge boson PDFs in terms of quark PDFs at the

electroweak scale.
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Section 2 computes the transverse and polarized W±, Z and γZ gauge boson PDFs

(which are the sum and difference of the helicity h = ±1 PDFs) using operator methods.

The W± and Z longitudinal PDFs, i.e. h = 0, are computed in section 3. In section 4

we compare our results with previous ones in the literature based on the effective W

approximation [9–11]. We present an alternative derivation in section 5 using factorization

methods. Numerical values for the PDFs are presented in section 6.

2 Transverse gauge boson PDFs

We start this section with defining the PDFs of transverse gauge bosons. We then derive

how these are related to structure functions in deep-inelastic scattering. Evaluating the

structure functions to lowest order in the strong coupling αs, we obtain a formula in terms

of the quark PDFs.

2.1 Definition

We start by briefly reviewing the PDF definition for quarks and gluons in QCD, before

discussing the electroweak gauge boson case. We will frequently use light-cone coordinates,

decomposing a four-vector pµ as

pµ = p−
nµ

2
+ p+ n̄µ

2
+ pµ⊥ , p− = n̄·p , p+ = n·p , (2.1)

where nµ = (1, 0, 0, 1) and n̄µ = (1, 0, 0,−1) are two null vectors with n · n̄ = 2 and p⊥ is

transverse to both nµ and n̄µ. The QCD PDF operators are defined as [12]

OQ(r−) =
1

4π

∫ ∞
−∞

dξ e−iξr− [Q̄(n̄ξ)W(n̄ξ)] /̄n [W†(0)Q(0)] ,

OG(r−) = − 1

2πr−

∫ ∞
−∞

dξ e−iξr− n̄µ[Gµλ(n̄ξ)W(n̄ξ)] n̄ν [W†(0)Gνλ(0)] , (2.2)

for quarks and gluons, respectively. Here W is a Wilson line,1

W(x) = P exp

{
− i g

∫ 0

∞
ds n̄·

[
A(x+ sn̄)

]}
, (2.3)

along the n̄ direction in the fundamental representation for the quark, and in the adjoint

representation for the gluon PDF operator, ensuring gauge invariance. For the anti-quark,

Q↔ Q̄ and the Wilson line is in the anti-fundamental representation. The PDF operators

involve an ordinary product of fields, not the time-ordered product, so the Feynman rules

are those for cut graphs. The quark and gluon PDFs are given by the matrix elements of

these operators in a proton state of momentum p,

fQ(r−/p−, µ) ≡ 〈p|OQ(r−)|p〉c , fG(r−/p−, µ) ≡ 〈p|OG(r−)|p〉c , (2.4)

where only connected graphs contribute.

1It is conventional to use W†(x)Q(x) for the field, so the Wilson line must end at x. We use the sign

convention Dµ = ∂µ + igAµ.

– 2 –



J
H
E
P
0
5
(
2
0
1
8
)
1
0
6

In the Standard Model (SM) at high energies, fermion PDFs are defined in terms

of the SU(2) × U(1) fields q, `, u, d, e, where q, ` are left-handed SU(2) doublet fields,

and u, d, e are right-handed SU(2) singlet fields. The QCD Wilson line is replaced by

a SU(3) × SU(2) × U(1) Wilson line in the representation of the fermion field. The new

feature in the electroweak case is that the PDF operator does not have to be a SU(2)×U(1)

singlet. In particular, for the quark doublet q there are two operators,

O(1)
q (r−) =

1

4π

∫ ∞
−∞

dξ e−iξr− [q̄(n̄ξ)W(n̄ξ)]iα /̄n δij [W†(0) q(0)]jα ,

O(adj,a)
q (r−) =

1

4π

∫ ∞
−∞

dξ e−iξr− [q̄(n̄ξ)W(n̄ξ)]iα /̄n [ta]ij [W†(0) q(0)]jα , (2.5)

where i, j are gauge indices in the fundamental representation of SU(2), ta is an SU(2)

generator, and α is a gauge index in the fundamental representation of SU(3). O
(1)
q is an

SU(3)×SU(2)×U(1) singlet, but O
(adj,a)
q is an SU(3)×U(1) singlet, and transforms as an

SU(2) adjoint. The proton matrix elements of the operators give the uL and dL PDFs,

fuL(r−/p−, µ) = 〈p| 1
2
O(1)
q (r−) +O(adj,a=3)

q (r−) |p〉 ,

fdL(r−/p−, µ) = 〈p| 1
2
O(1)
q (r−)−O(adj,a=3)

q (r−) |p〉 . (2.6)

Since electroweak symmetry is broken, O
(adj,a=3)
q can have a non-zero matrix element in

the proton, such that fuL 6= fdL . The evolution above the electroweak scale of O
(1)
q , O

(adj,a)
q

and of the corresponding gauge and Higgs boson operators was computed in ref. [6].

The quark PDF operators in eq. (2.5) in the unbroken theory can be matched onto

PDF operators in the broken theory at the electroweak scale. At tree level this matching

is trivial,

O(1)
q (r−) = OuL(r−) +OdL(r−) ,

O(adj,a=3)
q (r−) =

1

2
OuL(r−)− 1

2
OdL(r−) , (2.7)

where

OuL(r−) =
1

4π

∫
dξ e−iξr− [ūL(n̄ξ)W(n̄ξ)]α /̄n [W†(0)uL(0)]α , (2.8)

and similarly for dL. Essentially all we have done is replace the SU(3)×SU(2)×U(1) Wilson

lines by SU(3)×U(1)em Wilson lines, so W in eq. (2.8) only contains gluons and photons.

The gauge PDF operators in irreducible SU(2) representations were given in ref. [6].

At lowest order in electroweak corrections, the matching onto the broken operators is

analogous to eq. (2.7) and given in eq. (5.1) of ref. [6]. The relevant PDF operators in the
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broken theory are2

OW+
T

(r−) = − 1

2πr−

∫ ∞
−∞

dξ e−iξr− n̄µ[W−µλ(n̄ξ)W(n̄ξ)] n̄ν [W†(0)W+ν
λ(0)] ,

OW−T
(r−) = − 1

2πr−

∫ ∞
−∞

dξ e−iξr− n̄µ[W+µλ(n̄ξ)W(n̄ξ)] n̄ν [W†(0)W−νλ(0)] ,

Oγ(r−) = − 1

2πr−

∫ ∞
−∞

dξ e−iξr− n̄µF
µλ(n̄ξ) n̄νF

ν
λ(0) ,

OZT (r−) = − 1

2πr−

∫ ∞
−∞

dξ e−iξr− n̄µZ
µλ(n̄ξ) n̄νZ

ν
λ(0) ,

OZT γ(r−) = − 1

2πr−

∫ ∞
−∞

dξ e−iξr− n̄µZ
µλ(n̄ξ) n̄νF

ν
λ(0) ,

OγZT (r−) = − 1

2πr−

∫ ∞
−∞

dξ e−iξr− n̄µF
µλ(n̄ξ) n̄νZ

ν
λ(0) , (2.9)

in terms of the field-strength tensors. Note that the PDFs fZT γ and fγZT are related by

complex conjugation. The PDF operators in eq. (2.9) are invariant under SU(3)×U(1)em

gauge transformations. For OW+
T

this involves a U(1)em Wilson line W with Q = 1, and

OW−T
has Q = −1. There are no Wilson lines for γ and Z, since they are neutral.

As we now show, the operators in eq. (2.9) only capture the transverse polarizations.

A gauge boson moving in the n direction has momentum and polarization vectors

kµ = (Ek, 0, 0, k), εµ+ = − 1√
2

(0, 1, i, 0), εµ− =
1√
2

(0, 1,−i, 0), εµ0 =
1

M
(k, 0, 0, Ek),

(2.10)

which satisfy k · ελ = 0 and ε∗λ · εσ = −δλσ. By calculating the matrix element of the

field-strength tensors appearing in eq. (2.9) for a gauge boson state,

〈k, ε|n̄µFµλ(n̄ξ) n̄νF
ν
λ(0)|k, ε〉 =

[
(n̄ · k)2(ε∗ · ε) + (n̄ · ε)(n̄ · ε∗)k2

]
ei(n̄·k)ξ

= −(n̄ · k)2ei(n̄·k)ξ ×

{
1, ε = ε+, ε− ,

0, ε = ε0 ,
(2.11)

we conclude that the PDF operators only pick out transversely-polarized gauge bosons.

The transverse PDFs fW+
T

, etc. defined through the operators in eq. (2.9), sum over

the helicity h = ±1 contributions. The longitudinal gauge boson PDF encodes the h = 0

contribution, and will be discussed in section 3. In addition, we will also consider the

polarized W+ PDF,

f∆W+
T

= fW+(h=1) − fW+(h=−1) , (2.12)

2Note that W is the SU(2) gauge field, and W is the Wilson line. We have switched conventions relative

to ref. [8], n ↔ n̄, p+ ↔ p−. The photon PDF operator in ref. [8] was written as the sum of two terms,

such that it has manifest antisymmetry under x → −x. However, the commutator of light-cone operators

does not contribute to the connected matrix element [13], so the two terms can be combined into a single

term shown in eq. (2.9). The two terms in O∆γ , etc. can be similarly combined.
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(a) (b)

Figure 1. Matrix element of the PDF operator in a proton state for (a) photon and Z PDFs,

and (b) W PDFs, where the U(1)em Wilson line is shown as a double line. The ⊗ vertex is the

field-strength tensor and the bottom part of the graphs is the hadronic tensor Wµν(p, q).

etc. In an unpolarized proton target, the gluon distribution f∆g vanishes, as can be shown

by reflecting in the plane of the incident proton. However, the weak interactions vio-

late parity, so f∆W±T
and f∆ZT do not vanish. The polarized photon PDF can be written

as [14, 15] (see footnote 2),

O∆γ(r−) =
i

2πr−

∫ ∞
−∞

dξ e−iξr− n̄µF
µλ(n̄ξ) n̄νF̃

ν
λ(0) , (2.13)

where F̃αβ = 1
2εαβλσF

λσ with ε0123 = +1, and we use the ’t Hooft-Veltman convention for

the ε-symbol and γ5. Similar expressions hold for the polarized versions of the other PDFs

in eq. (2.9).

2.2 Evaluation

We now discuss how the transverse gauge boson PDFs can be computed from figure 1,

following the procedure in refs. [7, 8]. We start by introducing the hadronic tensor and

structure functions, briefly repeat the argument for the photon case, and then generalize

to the other gauge boson PDFs in eq. (2.9). Only PDFs for unpolarized proton targets will

be considered, but it is straightforward to generalize to polarized protons.

The electroweak PDFs at high energies evolve using anomalous dimensions in the

unbroken theory computed in refs. [5, 6], which contain Sudakov double logarithms. In

this paper, we compute the initial conditions to this evolution at the electroweak scale.

Since the electroweak gauge bosons are massive, the logarithmic evolution is not important

until energies well above the electroweak scale. In addition, there are radiative corrections

for the W PDFs from interactions with the Wilson line from graphs shown in figure 2,

which are absent in the photon case. For this reason, we compute the electroweak PDFs

to order α ∼ α2 ∼ αZ .

The lower part of the graph in figure 1 is the hadronic tensor defined as

Wµν(p, q) =
1

4π

∫
d4z eiq·z〈p|

[
j†µ(z), jν(0)

]
|p〉 , (2.14)

– 5 –
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Figure 2. Radiative corrections to W boson PDFs. The right diagram does not allow a simple

factorization in terms of structure functions, as it involves a three-point correlator in the proton.

where p is the proton momentum and q is the incoming gauge-boson momentum at vertex

jν . The standard decomposition of Wµν is

Wµν(p,q) =F1

(
−gµν+

qµqν
q2

)
+
F2

p·q

(
pµ−

p·q qµ
q2

)(
pν−

p·q qν
q2

)
− iF3

2p·q
εµνλσq

λpσ,

(2.15)

in terms of the structure functions F1, F2, F3, which depend on the Bjorken variable

xbj =
Q2

2p · q
, (2.16)

and Q2 = −q2. It is convenient to replace F1 in our results by the longitudinal structure

function,

FL(xbj, Q
2) ≡

(
1 +

4x2
bjm

2
p

Q2

)
F2(xbj, Q

2)− 2xbjF1(xbj, Q
2) . (2.17)

The currents in eq. (2.14) depend on the process. For the photon PDF, jµ is the

electromagnetic current and F3 vanishes. For W PDFs, jµ is the weak charged current,

and for Z PDFs, jµ is the weak neutral current. These currents follow from the interaction

Lagrangian, which is given by [16]

Lint = −eAµjµem −
g2

2
√

2

(
W+
µ j

µ
W +W−µ j

†µ
W

)
− gZ

2
Zµj

µ
Z , (2.18)

using the conventional normalization of currents in deep-inelastic scattering. Here

g2 = e/sin θW and gZ = e/(sin θW cos θW ) and

jµem =
2

3
ūγµu+ . . . ,

jµW = Vud ūγ
µ(1− γ5)d+ . . . ,

jµZ = ū

[
γµ
(

1

2
− 4

3
sin2 θW

)
− 1

2
γµγ5

]
u+ . . . . (2.19)

The structure functions for electromagnetic scattering are denoted by F
(γ)
i , for neutrino

scattering νp→ e−X by F
(ν)
i , for anti-neutrino scattering ν̄p→ e+X by F

(ν̄)
i , for neutral

current scattering by F
(Z)
i , and for γ − Z interference by F

(γZ)
i and F

(Zγ)
i , where the

superscripts indicate the jµ and jν current used in eq. (2.14). In QCD, to lowest order in

– 6 –
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αs, FL = 0 and

F
(ν)
2 (x,Q2) = 4x[fdL(x,Q)+fūR(x,Q)], F

(ν)
3 (x,Q2) = 4[fdL(x,Q)−fūR(x,Q)],

F
(ν̄)
2 (x,Q2) = 4x[fuL(x,Q)+fd̄R(x,Q)], F

(ν̄)
3 (x,Q2) = 4[fuL(x,Q)−fd̄R(x,Q)], (2.20)

and

F
(Z)
2 (x,Q2) = 4x

∑
q=u,d

g2
Lq[fqL(x,Q)+fq̄R(x,Q)]+g2

Rq[fqR(x,Q)+fq̄L(x,Q)],

F
(Z)
3 (x,Q2) = 4

∑
q=u,d

g2
Lq[fqL(x,Q)−fq̄R(x,Q)]−g2

Rq[fqR(x,Q)−fq̄L(x,Q)],

F
(γZ)
2 (x,Q2) =F

(Zγ)
2 (x,Q2)

= 2x
∑
q=u,d

gLqQq[fqL(x,Q)+fq̄R(x,Q)]+gRqQq[fqR(x,Q)+fq̄L(x,Q)],

F
(γZ)
3 (x,Q2) =F

(Zγ)
3 (x,Q2)

= 2
∑
q=u,d

gLqQq[fqL(x,Q)−fq̄R(x,Q)]−gRqQq[fqR(x,Q)−fq̄L(x,Q)] . (2.21)

Here the subscripts L,R denote the parton helicities, not chiralities, Qq is the electric

charge,

gLu =
1

2
− 2

3
sin2 θW , gRu = −2

3
sin2 θW ,

gLd = −1

2
+

1

3
sin2 θW , gRd =

1

3
sin2 θW , (2.22)

and we have neglected CKM mixing and heavier quark flavors. For an unpolarized proton

beam, the expressions can be simplified using fuL = fuR = 1
2fu, etc.

We now briefly review the method that ref. [8] used to compute the photon PDF,

before applying the same procedure to the other PDFs. The computation of figure 1 gives

(see section 6.1 of ref. [8], and dropping vacuum polarization corrections)

fγ(x, µ) =
8πα(µ) (Sµ)2ε

x

1

(4π)D/2
1

Γ(D/2− 1)

∫ 1

x

dz

z

∫ ∞
m2
px

2

1−z

dQ2

Q2
Pγ

×
[
Q2(1− z)− x2m2

p

]D/2−2
[
− z

x(p−)2

] [
(n̄ · q)2W

(D)λ
λ + q2 n̄αn̄βW

(D)
αβ

]
,

f∆γ(x, µ) =
8πα(µ) (Sµ)2ε

x

1

(4π)D/2
1

Γ(D/2− 1)

∫ 1

x

dz

z

∫ ∞
m2
px

2

1−z

dQ2

Q2
Pγ

×
[
Q2(1− z)− x2m2

p

]D/2−2
[
− z

ix(p−)2

]
(n̄ · q) n̄αqβεαµβνW (D)µν . (2.23)

Here

z ≡ x

xbj
, (2.24)
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Q2 = −q2 is the momentum transfer, and Wµν is evaluated at (xbj, Q
2). The label D

is a reminder that the hadronic tensor (and the couplings) are evaluated in D = 4 − 2ε

dimensions, and

S2 =
eγE

4π
. (2.25)

In eq. (2.23), we included Pγ = 1, as it will be replaced by other factors for the electroweak

case, see eq. (2.30) through eq. (2.32) below. The Wµν terms in eq. (2.23) can be written

in terms of the structure functions using eq. (2.15),

− z

x(p−)2

[
(n̄·q)2W

(D)λ
λ +q2 n̄αn̄βW

(D)
αβ

]
=−z2FL,D(x/z,Q2)+

(
zpγq(z)+

2m2
px

2

Q2

)
×F2,D(x/z,Q2)−2εzxF1,D(x/z,Q2) ,

− z

ix(p−)2
(n̄·q)n̄αqβεαµβνW (D)µν =−x

(
2−z−

2Q2
−2ε

Q2

)
F3,D(x/z,Q2) . (2.26)

We retain the F3 term, even though F
(γ)
3 = 0, since we will need it for the other PDFs.

The splitting function in eq. (2.26) is

pγq(z) =
1 + (1− z)2

z
, (2.27)

and

Q2
−2ε ≡ Q2 −Q2

4 (2.28)

is the piece of Q2 in fractional dimensions. Since we already averaged over the angular

directions in obtaining eq. (2.23), we can simply replace

Q2
−2ε →

D − 4

D − 2
Q2
⊥ =

D − 4

D − 2

[
Q2(1− z)− x2m2

p

]
. (2.29)

We can now immediately get the other transverse PDFs. The only change is the

replacement of the photon coupling and propagator by those for massive gauge bosons, and

using the appropriate structure function. The W+ PDF uses the ν̄ structure functions,

and the replacement

α→ 1

8
α2, Pγ → PW =

Q4

(Q2 +M2
W )2

, (2.30)

and the W− PDF uses eq. (2.30) with the ν structure functions. The Z PDF has

α→ 1

4
αZ , Pγ → PZ =

Q4

(Q2 +M2
Z)2

. (2.31)

The γZ and Zγ PDFs use the γZ and Zγ structure functions, with

α→ 1

2

√
ααZ , Pγ → PγZ =

Q2

(Q2 +M2
Z)
, (2.32)

where α2 = α/sin2 θW and αZ = α/(sin2 θW cos2 θW ).
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Proceeding as in ref. [8], the integral in eq. (2.23) over Q2 is divided into an integral

from m2
px

2/(1 − z) to µ2/(1 − z), and from µ2/(1 − z) to ∞, where we assume µ �
mp. Following the terminology of ref. [8], the two contributions are called the “physical

factorization” term fPF and the MS correction, fMS. The physical factorization integral

is finite, so one can set D = 4. The MS integral is divergent, and needs to be evaluated

in the MS scheme (hence the name) to get the MS PDF. As an example, we illustrate this

for the W+ PDF. Using eqs. (2.23), (2.26), and (2.30),

xfPF
W+
T

(x, µ) =
α2(µ)

16π

∫ 1

x

dz

z

∫ µ2

1−z

m2
px

2

1−z

dQ2

Q2

Q4

(Q2 +M2
W )2

×

[
−z2F

(ν̄)
L (x/z,Q2) +

(
zpγq(z) +

2m2
px

2

Q2

)
F

(ν̄)
2 (x/z,Q2)

]
, (2.33)

and

xfMS
W+
T

(x,µ) =πα2(µ)(Sµ)2ε 1

(4π)D/2
1

Γ(D/2−1)

∫ 1

x

dz

z

∫ ∞
µ2

1−z

dQ2

Q2

Q4

(Q2+M2
W )2

(2.34)

×[Q2(1−z)]D/2−2
[
−z2(1−ε)F (ν̄)

L,D(x/z,Q2)+
(
zpγq(z)−εz2

)
F

(ν̄)
2,D(x/z,Q2)

]
.

Since the integral in eq. (2.34) is for Q2 � m2
p, we have dropped m2

p/Q
2 terms. Changing

variables to

s =
Q2(1− z)

µ2
, (2.35)

gives

xfMS
W+
T

(x,µ) =
α2(µ)

16π

eεγE

Γ(1−ε)

∫ 1

x

dz

z

∫ ∞
1

ds

s1+ε

µ4s2[
µ2s+M2

W (1−z)
]2 (2.36)

×
[
−z2(1−ε)F (ν̄)

L,D

(
x/z,µ2s/(1−z)

)
+
(
zpγq(z)−εz2

)
F

(ν̄)
2,D

(
x/z,µ2s/(1−z)

)]
.

Since µ is large, the dependence of Fi(x/z, µ
2s/(1 − z)) on µ is perturbative. To lowest

order in αs and α2, we can therefore set the second argument of Fi to µ2 without incurring

large logarithms, and drop the FL term since it is order αs. This results in

xfMS
W+
T

(x, µ) =
α2(µ)

16π

eεγE

Γ(1− ε)

∫ 1

x

dz

z

∫ ∞
1

ds

s1+ε

µ4s2[
µ2s+M2

W (1− z)
]2

×
[(
zpγq(z)− εz2

)
F

(ν̄)
2,D(x/z, µ2)

]
. (2.37)

The s integral yields

eεγE

Γ(1−ε)

∫ ∞
1

ds

s1+ε

µ4s2

[µ2s+M2
W (1−z)]2

=
1

ε
+ln

µ2

M2
W (1−z)+µ2

−
M2
W (1−z)

M2
W (1−z)+µ2

+O (ε) .

(2.38)
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The 1/ε term is cancelled by the UV counterterm, and the sum of eqs. (2.33) and (2.37) gives

xfW+
T

(x, µ) =
α2(µ)

16π

∫ 1

x

dz

z


∫ µ2

1−z

m2
px

2

1−z

dQ2

Q2

Q4

(Q2 +M2
W )2

×

(
−z2F

(ν̄)
L (x/z,Q2) +

(
zpγq(z) +

2x2m2
p

Q2

)
F

(ν̄)
2 (x/z,Q2)

)
+ zpγq(z)

(
ln

µ2

M2
W (1− z) + µ2

−
M2
W (1− z)

M2
W (1− z) + µ2

)
F

(ν̄)
2 (x/z, µ2)

− z2F
(ν̄)
2 (x/z, µ2)

 +O(α2
2) . (2.39)

The 1/ε counterterm agrees with the anomalous dimensions for PDF evolution com-

puted in refs. [5, 6]. Alternatively, one can also directly take the µ derivative of eq. (2.39),

for which the contribution from the upper limit of the first integral cancels the contribution

from rational function of µ2 and M2
W , leaving the usual evolution

µ
d

dµ
fW+

T
(x, µ) =

α2(µ)

8π

∫ 1

x

dz

z
pγq(z)

F
(ν̄)
2 (x/z,Q2)

x/z
+O(α2 αs) . (2.40)

The largest effect not included is the QCD evolution of F (ν̄). Eq. (2.40) agrees with the

anomalous dimension in refs. [5, 6],

µ
d

dµ
fW+

T
(x, µ) =

α2(µ)

2π

∫ 1

x

dz

z
pγq(z)

[
fuL(x/z,Q2) + fd̄R(x/z,Q2)

]
+ . . . (2.41)

using eq. (2.20). In obtaining eq. (2.40) we can neglect FL, the µ-dependence of the

structure functions and α2(µ), since these give terms that are higher order in α2 or αs.

The diagonal WW term in the PDF evolution, which contains Sudakov double logarithms,

is also missing, since fWT
only starts at order α2.

Similarly, for f∆WT
, using eqs. (2.23) and (2.26),

fPF
∆W+

T
(x, µ) = −α2(µ)

16π

∫ 1

x

dz

z

∫ µ2

1−z

m2
px

2

1−z

dQ2

Q2

Q4

(Q2 +M2
W )2

(2− z)F
(ν̄)
3,D(x/z,Q2) (2.42)

and

fMS
∆W+

T
(x, µ) = −α2(µ)

16π

eεγE

Γ(1− ε)

∫ 1

x

dz

z

∫ ∞
1

ds

s1+ε

µ4s2[
µ2s+M2

W (1− z)
]2

×
(

2− z +
4ε

2− 2ε
(1− z)

)
F

(ν̄)
3,D

(
x/z, µ2s/(1− z)

)
. (2.43)
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Replacing the second argument of F3 by µ2, as before, and using eq. (2.38) gives

f∆W+
T

(x, µ) = −α2(µ)

16π

∫ 1

x

dz

z


∫ µ2

1−z

m2
px

2

1−z

dQ2

Q2

Q4

(Q2 +M2
W )2

(2− z)F
(ν̄)
3 (x/z,Q2)


+ (2− z)

(
ln

µ2

M2
W (1− z) + µ2

−
M2
W (1− z)

M2
W (1− z) + µ2

)
F

(ν̄)
3 (x/z, µ2)

+ 2(1− z)F
(ν̄)
3 (x/z, µ2)

+O(α2
2) . (2.44)

Differentiating eq. (2.44) w.r.t. µ gives the evolution equation

µ
d

dµ
f∆W+

T
(x, µ) = −α2(µ)

8π

∫ 1

x

dz

z
(2− z)F

(ν̄)
3 (x/z,Q2) +O(α2 αs) , (2.45)

which agrees with ref. [6].

The W−T PDF is given by eq. (2.39), eq. (2.44) with ν̄ structure functions replaced

by ν structure functions. The ZT PDF is given by eq. (2.39), eq. (2.44) with ν̄ structure

functions replaced by Z structure functions, MW → MZ , and α2 → 2αZ . The γZ PDFs

require the s integral

eεγE

Γ(1− ε)

∫ ∞
1

ds

s1+ε

µ2s

µ2s+M2
Z(1− z)

=
1

ε
+ ln

µ2

µ2 +M2
Z(1− z)

+O (ε) , (2.46)

since there is only one massive propagator. This gives

xfγZT (x,µ) =

√
α(µ)αZ(µ)

4π

∫ 1

x

dz

z


∫ µ2

1−z

m2
px

2

1−z

dQ2

Q2

Q2

Q2+M2
Z

(2.47)

×

(
−z2F

(γZ)
L (x/z,Q2)+

(
zpγq(z)+

2x2m2
p

Q2

)
F

(γZ)
2 (x/z,Q2)

)
+ zpγq(z)

(
ln

µ2

M2
Z(1−z)+µ2

)
F

(γZ)
2 (x/z,µ2)−z2F

(γZ)
2 (x/z,µ2)

+O(α2
2) ,

where we consider both α and αZ of order α2 in writing O(α2
2). Similarly,

f∆γZT (x,µ) =−
√
α(µ)αZ(µ)

4π

∫ 1

x

dz

z


∫ µ2

1−z

m2
px

2

1−z

dQ2

Q2

Q2

Q2+M2
Z

(2−z)F
(γZ)
3 (x/z,Q2)


+ (2−z)

(
ln

µ2

M2
Z(1−z)+µ2

)
F

(γZ)
3 (x/z,µ2)+2(1−z)F

(γZ)
3 (x/z,µ2)


+O(α2

2) , (2.48)

and the Zγ PDF is obtained by γZ → Zγ.
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3 Longitudinal gauge boson PDFs

In this section we repeat the analysis of section 2 for the PDFs of longitudinal gauge bosons.

We start again with defining them, using the equivalence theorem to express them in terms

of scalar PDFs, and then calculate them in terms of structure functions.

3.1 Definition

The operators in eq. (2.9) give the PDFs for transversely polarized gauge bosons. Longi-

tudinally polarized gauge bosons are not produced at leading power in M/Q by the gauge

field-strength tensor. Instead, they have to be computed in terms of Goldstone bosons using

the Goldstone-boson equivalence theorem [17, 18], as was done for electroweak corrections

to scattering amplitudes in refs. [19, 20]. The scalar (Higgs) PDFs we need are

OH+(r−) =
r−

2π

∫ ∞
−∞

dξ e−iξr− [H†(n̄ξ)W(n̄ξ)]1 [W†(0)H(0)]1 ,

OH̄−(r−) =
r−

2π

∫ ∞
−∞

dξ e−iξr− [W†(n̄ξ)H(n̄ξ)]1 [H†(0)W(0)]1 ,

OH0(r−) =
r−

2π

∫ ∞
−∞

dξ e−iξr− [H†(n̄ξ)W(n̄ξ)]2 [W†(0)H(0)]2 ,

OH̄0(r−) =
r−

2π

∫ ∞
−∞

dξ e−iξr− [W†(n̄ξ)H(n̄ξ)]2 [H†(0)W(0)]2 ,

OH̄0H0(r−) =
r−

2π

∫ ∞
−∞

dξ e−iξr− [W†(n̄ξ)H(n̄ξ)]2 [W†(0)H(0)]2 ,

OH0H̄0(r−) =
r−

2π

∫ ∞
−∞

dξ e−iξr− [H†(n̄ξ)W(n̄ξ)]2 [H†(0)W(0)]2 , (3.1)

with SU(2) × U(1) Wilson lines W. The indices 1, 2 in eq. (3.1) pick out the charged and

neutral components of the Higgs multiplet,

H =

(
H+

H0

)
=

1√
2

(
i
√

2ϕ+

v + h− iϕ3

)
, (3.2)

in the unbroken and broken phase, respectively. Here h is the physical Higgs particle, and

the unphysical scalars ϕ3, ϕ± = (ϕ1∓ iϕ2)/
√

2 are related to the longitudinal gauge bosons

ZL,W
±
L through the Goldstone-boson equivalence theorem. For the incoming gauge bosons

this is given by iϕ+ → W+
L , iϕ3 → ZL, and for gauge bosons on the other side of the cut
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in figure 1, −iϕ+ →W+
L , −iϕ3 → ZL. This leads to

fW+
L

(x, µ) = 〈p|OH+(xp−)|p〉 ,

fW−L
(x, µ) = 〈p|OH−(xp−)|p〉 ,

fZL(x, µ) =
1

2
〈p|
[
OH0(xp−) +OH̄0(xp−)−OH̄0H0(xp−)−OH0H̄0(xp−)

]
|p〉 ,

fh(x, µ) =
1

2
〈p|
[
OH0(xp−) +OH̄0(xp−) +OH̄0H0(xp−) +OH0H̄0(xp−)

]
|p〉 ,

fhZL(x, µ) =
1

2
〈p|
[
OH0(xp−)−OH̄0(xp−) +OH̄0H0(xp−)−OH0H̄0(xp−)

]
|p〉 ,

fZLh(x, µ) =
1

2
〈p|
[
OH0(xp−)−OH̄0(xp−)−OH̄0H0(xp−) +OH0H̄0(xp−)

]
|p〉 , (3.3)

which are equivalent to eqs. (5.4) and (5.5) of ref. [6]. Note that fhZL and fZLh are complex

conjugates of each other.

It is instructive to rederive eq. (3.3), by expanding the Wilson lines in eq. (3.1) to first

order

H†(x)W(x) = H†(x)P exp

{
−i

∫ 0

∞
ds n̄ · [g2W (x+ n̄s) + g1B(x+ n̄s)]

}
=
(
−iϕ−(x) 1√

2

[
v + h(x) + iϕ3(x)

])
− i

v√
2

∫ 0

∞
ds
(
g2√

2
n̄ ·W−(x+ n̄s) −1

2gZ n̄ · Z(x+ n̄s)
)

+ . . . , (3.4)

where g2 = e/sin θW and gZ = e/(sin θW cos θW ). Using integration by parts, we have the

identity

− i r−
∫ ∞
−∞

dξ e−iξr−
∫ 0

∞
ds n̄ · Z(n̄ξ + n̄s) =

∫ ∞
−∞

dξ

[
d

dξ
e−iξr−

] ∫ 0

∞
ds n̄ · Z(n̄ξ + n̄s)

= −
∫ ∞
−∞

dξ e−iξr− d

dξ

∫ 0

∞
ds n̄ · Z(n̄ξ + n̄s) = −

∫ ∞
−∞

dξ e−iξr− n̄ · Z(n̄ξ), (3.5)

setting the gauge field at infinity to zero, and similarly for the W− term. As a result,

H†(n̄ξ)W(n̄ξ) =
(
−iϕ−(n̄ξ)−MW

r− n̄·W
−(n̄ξ) 1√

2

[
v+h(n̄ξ)+iϕ3(n̄ξ)+MZ

r− n̄·Z(n̄ξ)
])

+. . . (3.6)

inside an integral of the form as in eq. (3.1), where we used MW = g2v/2 and MZ = gZv/2.

One can make a similar substitution for the W†(0)H(0) term. The argument 0 does not

depend on the integration variable ξ. However, we can use translation invariance of eq. (3.1)

to switch the field arguments in eq. (3.1) from n̄ξ and 0 to 0 and −n̄ξ. Eq. (3.5) can be

applied again, with an additional minus sign because of the switch n̄ξ → −n̄ξ. Then

W†(0)H(0) is given by the conjugate of eq. (3.6) with r− → −r− and ξ → 0.

The linear combinations in eq. (3.6) are those required by the equivalence theorem.

Exploiting gauge invariance, we can evalute the PDFs in the broken phase in unitary gauge
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using eq. (3.6) with ϕi → 0. This does not affect renormalizability, since the PDFs in the

broken phase only have radiative corrections due to dynamical gluons and photons, i.e. the

W and Z are treated as static fields in the same way as heavy quark fields in heavy quark

effective theory. Thus we reproduce eq. (3.3), identifying the longitudinal PDFs as

fW+
L

(x, µ) =
M2
W

2πr−

∫ ∞
−∞

dξ e−iξr− 〈p|[n̄ ·W−(n̄ξ)W(n̄ξ)] [W†(0) n̄ ·W+(0)]|p〉 ,

fW−L
(x, µ) =

M2
W

2πr−

∫ ∞
−∞

dξ e−iξr− 〈p|[n̄ ·W+(n̄ξ)W(n̄ξ)] [W†(0) n̄ ·W−(0)]|p〉 ,

fZL(x, µ) =
M2
Z

2πr−

∫ ∞
−∞

dξ e−iξr− 〈p|n̄ · Z(n̄ξ) n̄ · Z(0)|p〉 ,

fh(x, µ) =
r−

2π

∫ ∞
−∞

dξ e−iξr− 〈p|h(n̄ξ) h(0)|p〉 ,

fhZL(x, µ) =
MZ

2π

∫ ∞
−∞

dξ e−iξr− 〈p|h(n̄ξ) n̄ · Z(0)|p〉 ,

fZLh(x, µ) =
MZ

2π

∫ ∞
−∞

dξ e−iξr− 〈p|n̄ · Z(n̄ξ) h(0)|p〉 , (3.7)

where the Wilson lines W in the W PDFs only contain photon fields.

3.2 Evaluation

Before evaluating the longitudinal gauge boson PDFs, we note that the Higgs PDFs in

eq. (3.3) are suppressed,

fh(x, µ) = O
(
m2
p

M2
Z

)
, fhZL(x, µ) = O

(
mp

MZ

)
, fZLh(x, µ) = O

(
mp

MZ

)
. (3.8)

This happens because the gauge field couplings to the proton are of order g2, gZ , whereas

the dominant coupling of the Higgs field to the proton is given by the scale anomaly [21],

and is order mp/v (for a pedagogical discussion see ref. [22]). (There are of course also

contributions of the order of light fermion Yukawa couplings mu,d/v.) We therefore neglect

the Higgs PDFs in eq. (3.8) in this paper, but they can be computed using the same method

as the gauge boson PDFs.

We now repeat the steps in section 2.2 for longitudinal gauge bosons, starting with

fW+
L

. The matrix element of the PDF operator gives

fW+
L

(x, µ) =
πα2(µ) (Sµ)2ε

x

1

(4π)D/2
1

Γ(D/2− 1)

∫ 1

x

dz

z

∫ ∞
m2
px

2

1−z

dQ2

Q2

Q4

(Q2 +M2
W )2

×
[
Q2(1− z)− x2m2

p

]D/2−2
[
zM2

W

x(p−)2

]
n̄µn̄νW (ν̄)

µν , (3.9)

where [
zQ2

2x(p−)2

]
n̄µn̄νW (ν̄)

µν =

(
1− z −

m2
px

2

Q2

)
F

(ν̄)
2 +

1

4
z2F

(ν̄)
L , (3.10)
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which combine to yield

fW+
L

(x,µ) =
πα2(µ)(Sµ)2ε

x

1

(4π)D/2
1

Γ(D/2−1)

∫ 1

x

dz

z

∫ ∞
m2
px

2

1−z

dQ2

Q2

Q4

(Q2+M2
W )2

(3.11)

×
[
Q2(1−z)−x2m2

p

]D/2−2
[

2M2
W

Q2

][(
1−z−

m2
px

2

Q2

)
F

(ν̄)
2 +

1

4
z2F

(ν̄)
L

]
.

Using the same procedure of splitting the integral as before gives

xfW+
L

(x, µ) =
α2(µ)

8π


∫ 1

x

dz

z

∫ µ2

1−z

m2
px

2

1−z

dQ2

Q2

M2
WQ

2

(Q2 +M2
W )2

×

((
1− z −

x2m2
p

Q2

)
F

(ν̄)
2 (x/z,Q2) +

1

4
z2F

(ν̄)
L (x/z,Q2)

)

+
M2
W (1− z)2

µ2 +M2
W (1− z)

F
(ν̄)
2 (x/z, µ2)

+O(α2
2) , (3.12)

and similarly for fW−L
, with the replacement F

(ν̄)
i → F

(ν)
i . For fZL this requires replacing

F
(ν̄)
i → F

(Z)
i , MW →MZ and α2 → 2αZ .

Comparing eq. (3.12) with eq. (2.39) for the transverse W PDF, we see that WL has

an extra M2
W /Q

2 factor in the Q2 integral. The WT integral grows as lnµ2 for large values

of µ, whereas the WL integral is finite, and dominated by Q2 ∼ M2
W . The WL PDF is

thus smaller than the WT PDF by lnµ2/M2
W . The split of the longitudinal PDFs into two

pieces in eq. (3.12) is not necessary, and one can instead use eq. (3.12) with µ → ∞, but

it is useful when comparing with the other PDFs. Differentiating eq. (3.12) with respect

to µ gives

µ
d

dµ
xfW+

L
(x, µ) = 0 +O(α2αs) , (3.13)

as expected. Eq. (3.12) was obtained starting from eq. (3.7) in the broken phase. For µ

much larger than MW , we need the PDFs in the unbroken theory, which are related to

Higgs PDFs by eq. (3.3). Since there is no quark contribution to the Higgs PDF evolution

when fermion Yukawa couplings are neglected, eq. (3.13) is expected.

4 Comparison with previous results

W and Z PDFs have been computed previously using the effective W,Z approxima-

tion [9–11], i.e. the Fermi-Weizsäcker-Williams [23–25] approximation for electroweak gauge

bosons. We will compare these with our results.
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Considering for concreteness the transverse W PDF, the leading-logarithmic contribu-

tion from eq. (2.39) is given by

xfW+
T

(x, µ) ≈ α2(µ)

16π

∫ 1

x

dz

z

∫ µ2
dQ2

Q2

Q4

(Q2 +M2
W )2

zpγq(z)F
(ν̄)
2 (x/z,Q2)

≈ α2(µ)

16π
ln

µ2

M2
W

∫ 1

x

dz

z
zpγq(z)F

(ν̄)
2 (x/z, µ2) , (4.1)

and agrees with the effective W approximation result in refs. [9–11]. The subleading terms

(the last two lines in eq. (2.39)) are smaller by a factor of lnµ2/M2
W . These differ from the

corresponding terms in previous results.

The longitudinal W PDF is smaller by a factor of lnµ2/M2
W , and is obtained by

integrating

xfW+
L

(x, µ) ≈ α2(µ)

8π

∫ 1

x

dz

z

∫ ∞
0

dQ2

Q2

M2
WQ

2

(Q2 +M2
W )2

(1− z)F
(ν̄)
2 (x/z,Q2)

≈ α2(µ2)

8π

∫ 1

x

dz

z
(1− z)F

(ν̄)
2 (x/z, µ2) , (4.2)

which agrees with refs. [9–11]. Again, the subleading terms given by the last line in

eq. (3.12) differ from previous results.

5 PDF computation using factorization methods

In this section we present an alternative derivation for the massive gauge boson PDF us-

ing standard factorization methods. We will consider both transverse and longitudinal

polarizations, and consider a massive gauge boson in a broken U(1) theory to keep the

presentation simple. Our calculation exploits the fact that the cross section for the hy-

pothetical process of electron-proton scattering producing a new heavy lepton or scalar in

the final state can be written in two ways: in terms of proton structure functions or using

proton PDFs. This approach was used in ref. [7] for the photon case. The new feature in

the calculation is broken gauge symmetry, which results in massive gauge bosons that can

have a longitudinal polarization.

5.1 Transverse polarization

Following refs. [7, 8], consider the hypothetical inclusive scattering process

l(k) + p(p)→ L(k′) +X, (5.1)

shown in figure 3, where l is a massless fermion, and L is a fermion with mass ML. We will

assume that they interact with the massive U(1) gauge boson (called Z) via a magnetic

momentum coupling,

Lint =
g

Λ
L̄ σµνZµν l + h.c. . (5.2)
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Figure 3. Feynman diagram for heavy lepton production l + p→ L+X.

Here g is the gauge coupling, and we work to leading order in the scale of the new interaction

Λ � v. The interaction between Z and the protons is governed by LZp = −gZµjµ. We

will now calculate the Z PDF by first factorizing the cross section into the hadronic and

leptonic tensor, and then factorizing it in terms of PDFs. In doing so, we assume ML →∞.

The cross section averaged over initial spins and summed over final states is given by

σlp =
1

4p · k

∫
d4q

(2π)4

g2

(q2 −M2
Z)2

4πWµν(p, q) Lµν(k, q) 2πδ[(k − q)2 −M2
L] θ(k0 − q0)

× θ[(p+ q)2 −m2
p] θ(p

0 + q0) , (5.3)

in terms of the hadronic tensor Wµν(p, q) and the leptonic tensor Lµν(k, q), with q = k−k′.
The lepton tensor, averaging over initial spins and summing over final ones is

Lµν =
1

2

g2

Λ2
tr
(
/k [/q, γ

µ](/k
′
+ML)[γν , /q]

)
=

8g2

Λ2

[
(k · q) (q2 − 2k · q)gµν − 2q2kµkν + (k · q) (2qµkν + 2qνkµ − qµqν)

]
=

4g2

Λ2

[(
M2
L +Q2

) (
qµqν −M2

Lg
µν
)

+ 4Q2kµkν − 2(M2
L +Q2) (kµqν + kνqµ)

]
. (5.4)

The decomposition of the hadronic tensor in terms of structure functions was given by

eq. (2.15). F3 does not contribute to the spin-averaged cross section, since eq. (5.4) is

symmetric in µ ↔ ν. The rest of the derivation of σlp is then identical to section 3 of

ref. [8], after accounting for the gauge boson mass in the propagator 1/q4 → 1/(q2−M2
Z)2.

The total cross section in the ML →∞ limit is thus given by

σlp =
g4

2πΛ2

∫ 1

x

dz

z

∫ µ2

1−z

m2
px

2

1−z

dQ2

Q2

Q4

(Q2+M2
Z)2

[
−z2FL(x/z,Q2)+

(
zpγq(z)+

2x2m2
p

Q2

)
F2(x/z,Q2)

]

+
g4

2πΛ2

∫ 1

x

dz

z

∫ M2
L(1−z)
z

µ2

1−z

dQ2

Q2

Q4

(Q2+M2
Z)2

[(
−2zQ2

M2
L

+
z2Q2

M2
L

+zpγq(z)

)
F2(x/z,Q2)

]
, (5.5)

where the kinematic variables are

xbj =
Q2

2p · q
=
x

z
, p · k =

M2

2x
, s = (p+ k)2, (5.6)
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and we have split the Q2 integral into two parts. If µ is large compared to ΛQCD, we

can replace F2(x/z,Q2) in the second integral by F2(x/z, µ2) since the µ evolution is

perturbative, and evaluate the integral to obtain

σlp =
g4

2πΛ2

∫ 1

x

dz

z

∫ µ2

1−z

m2
px

2

1−z

dQ2

Q2

Q4

(Q2+M2
Z)2

[
−z2FL(x/z,Q2)+

(
zpγq(z)+

2x2m2
p

Q2

)
F2(x/z,Q2)

]

+
g4

2πΛ2

∫ 1

x

dz

z
zpγq(z)

[
ln

M2
L(1−z)2

z[M2
Z(1−z)+µ2]

− M2
Z(1−z)

M2
Z(1−z)+µ2

]
F2(x/z,µ2)

+
g4

2πΛ2

∫ 1

x

dz

z
(−z2+3z−2)F2(x/z,µ2) . (5.7)

We now factorize the cross section into a convolution of hard-scattering cross sections

and parton distributions,

σlp(xs) =
∑

a=Z,q,...

∫ 1

x

dz

z
σ̂la(zs, µ)

x

z
fa/p

(x
z
, µ
)
. (5.8)

These hard-scattering cross sections are the same as in ref. [8],

σ0 =
4πg2

Λ2
,

σ̂lZ = σ0 δ(1− z),

σ̂lq = σ0
g2

8π2

[
−2 + 3z + zpγq(z) ln

M2
L(1− z)2

zµ2

]
, (5.9)

with z = M2
L/ŝ. It should not come as a surprise that this only describes transverse

polarizations, since it is the same as for photons. Indeed, the contribution to the cross

section of this process is power suppressed by M2
Z/M

2
L for longitudinally polarized gauge

bosons. Thus the factorization formula in eq. (5.8) gives the Z PDF summed over the two

transverse polarizations only.

We can then extract fZT by combining eqs. (5.7) and (5.8),

xfZT (x) =
g2

8π2

∫ 1

x

dz

z

∫ µ2

1−z

m2
px

2

1−z

dQ2

Q2

Q4

(Q2+M2
Z)2

[
−z2FL(x/z,Q2)+

(
zpγq(z)+

2x2m2
p

Q2

)
F2(x/z,Q2)

]

+
g2

8π2

∫ 1

x

dz

z
zpγq(z)

[
ln

µ2

M2
Z(1−z)+µ2

− M2
Z(1−z)

M2
Z(1−z)+µ2

]
F2(x/z,µ2)

+
g2

8π2

∫ 1

x

dz

z
(−z2)F2(x/z,µ2) , (5.10)

which agrees with eq. (2.39). The overall normalization differs by 8 because the coupling

for the W is g/(2
√

2) rather than g.

5.2 Longitudinal polarization

Longitudinal gauge boson PDFs present novel features, because they only exist after spon-

taneous symmetry breaking. The first step is to identify a process to which they contribute

at leading power, for which we consider

h(k) + p(p)→ s(k′) +X , (5.11)
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Figure 4. Feynman diagram for heavy scalar production via Higgs-proton scattering h+p→ s+X.

shown in figure 4. Here the interaction between the Z boson and scalars is described by

the gauge invariant Lagrangian

Lint =
i

Λ
∂µs

[
Φ†DµΦ− (DµΦ†)Φ

]
, (5.12)

where Φ is a charged scalar whose vacuum expectation value breaks the gauge symmetry,

and s is a heavy neutral scalar with mass Ms. After spontaneous symmetry breaking,

Φ =
v + h√

2
(5.13)

in unitary gauge, where h denotes the Higgs field. Eq. (5.12) then becomes

Lint = −gv
Λ
h ∂µsZ

µ. (5.14)

Note that to obtain a term in which interactions with longitudinal gauge bosons are not

power suppressed requires operators involving the Higgs field Φ, resulting in interactions

proportional to the vacuum expectation value v, as shown in eq. (5.14).

The first step in obtaining the longitudinal Z PDF is to factorize the cross section for

the process in eq. (5.11) in terms of structure functions,

σhp =
1

4 p · k

∫
d4q

(2π)4

g2

(q2 −M2
Z)2

[
4πWµνS

µν
]

(2π) δ[(k − q)2 −M2
s ] θ(k0 − q0)

× θ[(p+ q)2 −m2
p] θ(p

0 + q0) , (5.15)

where the scalar tensor Sµν is

Sµν(k) =
g2v2

Λ2
k′µk′ν =

g2v2

Λ2
(k − q)µ(k − q)ν . (5.16)

The scalar tensor couples only to longitudinally-polarized gauge bosons and not to trans-

verse ones, so factorization directly gives the longitudinal Z PDF. The scattering cross

section in the limit Ms →∞ is given by

σhp =
g4v2

16πΛ2

∫ 1

x

dz

z

∫ M2
s (1−z)
z

x2m2
p

1−z

dQ2

Q2

Q4

(Q2 +M2
Z)2

{
z2Q2

4M4
s

(
1 +

M2
s

Q2

)2

FL
(
x/z,Q2

)
− 1

M2
s

[
z + (z − 1)

M2
s

Q2
+
x2m2

p

M2
s

(
1 +

M2
s

Q2

)2
]
F2

(
x/z,Q2

)}
. (5.17)
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Splitting the Q2 integral into two parts at Q2 = µ2/(1−z), and neglecting power corrections

gives

σhp =
g4v2

16πΛ2

∫ 1

x

dz

z


∫ µ2

1−z

x2m2
p

1−z

dQ2

(Q2+M2
Z)2

[
z2

4
FL
(
x/z,Q2

)
+

(
1−z−

x2m2
p

Q2

)
F2

(
x/z,Q2

)]

+

[
(1−z)2

M2
Z(1−z)+µ2

]
F2

(
x/z,µ2

) . (5.18)

Again, this cross section can also be written in terms of proton PDFs using eq. (5.8).

In the limit MZ/Ms → 0, the Z boson cross section σ̂hZ is

σ̂hZ(x, µ) =
πg2

4Λ2

v2

M2
Z

δ(1− x) (5.19)

for longitudinally polarized Z bosons, and power suppressed for transversely polarized Z

bosons. Thus eq. (5.8) picks out the longitudinal Z PDF. The contribution from quarks is

calculated from tree-level Higgs-quark scattering via Z exchange, and is

σ̂hq(z, µ) =
g4v2z

16πΛ2M2
s

[
2

ε
− ln

M2
s (1− z)2

zM2
Z

]
, (5.20)

where z = M2
s /ŝ, and is power suppressed relative to eq. (5.19). From eq. (5.18) and

eq. (5.19), we get the longitudinal Z boson PDF

xfZL(x,µ) =
g2M2

Z

4π2

∫ 1

x

dz

z

∫ µ2

1−z

x2m2
p

1−z

dQ2

(Q2+M2
Z)2

[(
1−z−

x2m2
p

Q2

)
F2

(
x/z,Q2

)
+
z2

4
FL
(
x/z,Q2

)]

+
g2M2

Z

4π2

∫ 1

x

dz

z
F2

(
x/z,µ2

)[ (1−z)2

M2
Z(1−z)+µ2

]
. (5.21)

This agrees with eq. (3.12) taking into account the overall factor of 1/8, as in eq. (5.10).

To simplify the presentation, the calculations in this section have been done for a

spontaneously broken U(1) gauge theory. However, it should be clear how these can be

extended to the case of a spontaneously broken SU(2) ×U(1) in the Standard Model.

6 Numerics

In this section we present numerical results for the electroweak gauge boson PDFs, ob-

tained using eqs. (2.39), (2.44), (2.47), (2.48), and (3.12). The equations have corrections

of order α2
2, arising from e.g. the graphs in figure 2. All QCD corrections and m2

p/M
2
W

power corrections are included automatically by using the deep-inelastic scattering struc-

ture functions.

The expressions for the electroweak gauge boson PDFs involve integrations over Q2

between m2
px

2/(1−z) and µ2/(1−z), and thus include the elastic scattering and resonance

regions. Compared to the photon PDF, the integrands have factors of Q2/(Q2 + M2),

where M = MW ,MZ . Thus the low-Q2 part of the integration region is suppressed by
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Figure 5. The transverse gauge boson PDFs fW+
T

(red), fW−
T

(blue), fZT (green) and fγZT (purple)

for µ = MZ and µ = 1000 GeV. The unpolarized photon PDF (dashed, brown) has also been shown

for comparison, multipled by 0.1 at µ = MZ and by 0.5 at µ = 1000 GeV, so it fits on the same plot.

∼ m2
p/M

2
W ∼ 10−4, the size of low-energy weak interaction corrections and smaller than

the missing α2
2 corrections, so we only need values of the structure functions for Q2 of

order the electroweak scale. The x integral still includes elastic scattering at x/z = 1,

but for large Q2 the elastic form-factors are power suppressed. This justifies using the

expressions for the F2 and F3 structure functions at lowest order QCD in terms of PDFs

in eq. (2.20), eq. (2.21), and setting FL to zero (since it starts at order αs), to evaluate

the PDFs. This method is not as accurate as using the experimentally measured structure

functions, because it introduces order αs(MW ) radiative corrections as well as m2
p/M

2
W

power corrections.3

The numerical integrations are done using the PDF set NNPDF31 nlo as 0118 luxqed

PDFs [26] and the LHAPDF [27] and ManeParse [28] interfaces. A detailed numerical

analysis including PDF evolution and errors is beyond the scope of this paper. The re-

sults for electroweak gauge boson PDFs are shown in figure 5, 6, and 7 for µ = MZ and

µ = 1000 GeV using the NNPDF31 central PDF set. The electroweak PDFs have been renor-

malized in the MS scheme, so they do not have to be positive. They start at order α2,

rather than order unity, and NLO corrections can be negative.

The transverse PDFs (figure 5) are small at µ = MZ , and rapidly grow with energy to

be almost comparable to the photon at µ = 1000 GeV due to the evolution in eq. (2.40).

The W+
T PDF is larger than W−T , since fu > fd in the proton. The PDFs are negative

at µ = MZ , but rapidly become positive as the lnQ2 part dominates over the MS sub-

traction term. The polarized PDFs (figure 6) are negative, since quark PDFs are larger

than antiquark PDFs, and left-handed quarks prefer to emit left-hand circularly polarized

W bosons. The longitudinal PDFs (figure 7) are comparable to the transverse ones at

µ = MZ . Since the longitudinal PDFs are µ-independent, only one plot has been shown.

The transverse PDFs rapidly become larger than the longitudinal ones as µ increases.

3The radiative corrections depend on αs and α2 evaluated at Q2 scales that contribute to the integral.

One can minimize these corrections by including higher-order terms in the expressions for Fi. If, instead,

the experimentally measured structure functions are used, the corrections depend on α2(µ), where µ > MZ

is the scale at which the PDF is evaluated.
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Figure 6. The polarized gauge boson PDFs f∆W+
T

(red), f∆W−
T

(blue), f∆ZT (green) and f∆γZT

(purple) for µ = MZ and µ = 1000 GeV.
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Figure 7. The longitudinal gauge boson PDFs fW+
L

(red), fW−
L

(blue), and fZL (green) for µ = MZ .

The longitudinal PDF does not depend on µ to the order computed in the plot.

7 Conclusions

We have computed the electroweak gauge boson PDFs at a scale µ ∼ MW,Z � mp for

transversely and longitudinally polarized gauge bosons, by computing the proton matrix

element of the PDF operator in terms of proton structure functions for charged and neu-

tral current scattering. The PDFs can be evolved to higher energies using the evolution

equations derived recently in refs. [5, 6]. The electroweak gauge boson PDFs have been

computed previously using the effective W approximation [9–11]. The leading logarithmic

piece of our result agrees with their expressions, but the full order α results differ. Numer-

ical values for the PDFs at the representative scales µ = MZ and µ = 1000 GeV are given

in section 6. More detailed numerical results are beyond the scope of this paper, and will

be given elsewhere.
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