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1 Introduction and discussion

Conformal field theories are highly constrained by symmetry, but a complete classification

of unitary CFTs remains out of reach. Prospects are better for two-dimensional CFTs,

which possess an infinite algebra of local conformal symmetries [1]. Assuming no con-

served currents other than the stress tensor, there are two qualitatively different classes

of two-dimensional CFTs: rational CFTs with c < 1 and irrational CFTs with c > 1.

Rational CFTs, which possess a finite number of primary states, are integrable. They have

been classified [2], and the observables are completely computable using Virasoro Ward

identities. Irrational CFTs, which possess an infinite number of primary states, are more

difficult to study. The local conformal symmetries are not sufficient to render these theories

completely integrable, so irrational CFTs are generically expected to exhibit many of the

rich and complicated phenomena of their higher-dimensional cousins, including ergodicity

and chaos (see for example [3]). In this paper we will ask whether this general picture

holds when, in addition to local conformal transformations, the CFTs possess higher spin

symmetries, generated by conserved currents of spin s > 2.
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Theories with higher spin symmetry have been extensively investigated in two and

higher dimensions. In two dimensions the higher spin currents form an algebra of chiral

operators — a W-algebra — which is constrained by associativity of the operator product

expansion (see [4, 5] for early reviews). Most past work has focused on rational theories,

with central charge c less than the number Ncurrents of conserved currents. For Virasoro,

Ncurrents = 1, while more generally for the WN algebra, which is generated by currents of

integer spins s = 2 . . . N , one has Ncurrents = N − 1. When c < Ncurrents it is possible to

construct higher spin CFTs with a finite number of primaries, in analogy with Virasoro

minimal models with c < 1. We will be interested in theories with c > Ncurrents. These are

the higher spin analogue of the irrational CFTs, in the sense that they necessarily contain

an infinite number of primary operators. We will restrict our attention to unitary, modular

invariant theories with a discrete spectrum and a unique, normalizable ground state; this

means we are not, for example, considering Toda theories. Here and below, by primary

operator we mean an operator which is primary with respect to the full chiral algebra, not

just Virasoro. The semiclassical, holographic limit is c� Ncurrents.

These irrational higher-spin CFTs resemble their higher-dimensional cousins, where the

constraints of higher spin symmetry have proven quite powerful. For example, Maldacena

and Zhiboedov [6] have shown that a three-dimensional CFT with a conserved current

of spin s > 2 must contain an infinite tower of higher spin currents, whose correlation

functions equal those of a free theory. Similar results apply in higher dimensions [7, 8].

At first sight this appears quite different from the situation in two dimensions, where it

is possible to construct W-algebras with only a finite number of generators. We will see,

however, that this is somewhat misleading, and that — with appropriate assumptions —

the unitarity constraints on irrational higher spin CFTs are similar to those of Maldacena

and Zhiboedov, while perhaps also allowing for exotic higher spin theories with no higher-

dimensional analogue.

We will focus primarily on the case of WN algebras, although many of our results

can be extended to other W-algebras. For N > 2, these algebras are non-linear. In

Virasoro (i.e. W2) theories without additional higher spin symmetries, the starting point

for the construction of rational CFTs is the computation of the Kac matrix, the matrix of

inner products of states in a lowest weight module of dimension h.1 In irrational (c > 1)

theories, the eigenvalues of the Kac matrix are positive definite whenever h > 0. Thus in

the Virasoro case, the simplest constraint of unitarity — that all states have positive norm

— is essentially trivial.

The central surprise of our paper is that in higher spin CFTs, positivity of the Kac

matrix strongly constraints the spectrum. For example, we will argue that in the WN case

every (non-identity) primary operator must have dimension

h ≥ hcrit =
c− (N − 1)

24

(
1−

6bN2 c
N(N2 − 1)

)
. (1.1)

1Here h = (∆ + J)/2 is the right-moving dimension of a state of scaling dimension ∆ and spin J , and

h̄ = (∆− J)/2 the corresponding left-moving dimension. Since the symmetry algebra factorizes into left-

and right-moving pieces, our results for the unitarity bounds will be stated directly in terms of h, with

similar results for h̄ implied.

– 2 –



J
H
E
P
0
5
(
2
0
1
8
)
0
9
2

All states with h < hcrit are in the identity block of WN , i.e. they are (higher spin) descen-

dants of the vacuum. The bound applies even to uncharged primaries, which necessarily

have descendants carryingW-charge. This is to be contrasted with the typical result of the

conformal or modular bootstrap, which is an upper bound on the dimension of the lightest

non-identity operator. Charged primaries obey stronger bounds. We will give a complete

derivation of (1.1) for N = 3, and numerical evidence for N ≤ 6; for higher N , this bound

is a conjecture based on the structure of null states.

The first thing to note about (1.1) is that it is trivial in the rational case, c < N − 1.

Indeed, the bound becomes stronger as c is increased. Our WN result (1.1) follows directly

from the unitarity of the Kac matrix at level one, and it may be possible to obtain higher

bounds at higher levels (though we suspect not at large c; see appendix A). Irrational

WN CFTs, if they exist, are peculiar indeed: for instance, above the value of c defined

by the equation hcrit(c∗) = 1, a CFT with WN ×WN symmetry is isolated, admitting no

Lorentz-invariant marginal deformations. For W3, the critical central charge is c∗ = 34.

We also provide a simple argument from modular invariance that every CFT has states

with h below a finite ‘twist gap’. Together with (1.1), we now have upper and lower bounds

on h1, the weight of the lowest-twist non-trivial primary in a WN CFT:

hcrit ≤ h1 ≤
c− (N − 1)

24
. (1.2)

This becomes especially tight as N →∞, where the upper and lower bounds coincide. Thus

in the large N limit, with c > N−1, the lowest-twist state must have weight (infinitesimally

close to) h1 = (c−N + 1)/24. (This state may have large h̄1, so in particular it may have

scaling dimension ∆ > (c−N + 1)/12, the threshold for the lightest black hole.)

Specializing to the case of W3, we obtain further constraints on the spectrum by ap-

plying modular bootstrap techniques [9–14], not to the partition function, but to the torus

two-point function of W0, the zero mode of the spin-3 current. This relies on the results

of [15, 16], which computed the modular transformation properties of this and similar ob-

jects. The results are bounds on the dimension and charge of primary operators that are

independent of — and indeed, have non-trivial overlap with — the Kac matrix result (1.1).

We set up the algorithm for numerics, and study the linear functional analytically at large

c. The main results can be found in and around figures 3–4. Similar results can be obtained

at small c using numerical bootstrap.

Let us explore the consequences of (1.1) at large c. In [17] it was shown that the chaos

bound on four-point functions forbids the existence of any non-trivial primary with dimen-

sion that remains finite in the limit c→∞ with N fixed. We will provide a new argument,

similar to that of [17], that rules out light operators at large c based on the lightcone limit

of four-point functions, rather than the Regge limit, and makes fewer assumptions about

the spectrum. For the WN algebra, this dynamical argument is not necessary because

the result is weaker than the unitarity of the Kac matrix (1.1). The advantage is that

unlike (1.1), which is part conjecture, the causality argument applies to any higher spin

chiral algebra.

Our results may be summarized by saying that every WN CFT with a c→∞ limit is

an extremal CFT, where we define “extremal,” slightly relaxing Witten’s strict definition

– 3 –
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in the Virasoro context [18], to include any family of CFTs with no primary operators

whose dimension remains finite in the large c limit. Turning this around, the only way to

construct a family of WN CFTs with a finite dimension primary at large c would be to

scale N linearly with c. This result is in the spirit of Maldacena-Zhiboedov: in the large-c

limit, if there is a higher spin current and a finite dimension primary, then there must be

an infinite tower of higher spin currents.

These large c results have powerful implications for holography, as in [17]. A CFT2

with higher spin symmetry should be dual to a theory of quantum gravity in AdS3 with

higher spin gauge symmetry. In three dimensions, theories of higher spin gravity with a

finite number of higher spin gauge fields may be constructed (classically) from non-compact

Chern-Simons theories, following the example of ordinary gravity [19–21]. These theories

have no local degrees of freedom. In order to construct full-fledged holographic dual pairs,

one must add matter to the bulk theory (e.g. to satisfy modular invariance of the CFT).

A class of examples were proposed by Gaberdiel and Gopakumar [22]; these theories are

rational, with c < Ncurrents. Accordingly, the c → ∞ limit requires simultaneously taking

N → ∞. This yields a bulk dual which is quite far from perturbative Einstein gravity.

With an infinite number of gauge fields, this theory looks more like a theory of tensionless

strings. Moreover, the duality proposal of [22] contains a plethora of light states, so it is

unclear whether these theories have a holographic limit in the usual sense [23–26].

To instead obtain a higher spin dual which resembles Einstein gravity coupled to

matter, one should take a semi-classical limit c → ∞ with Ncurrents fixed. Indeed, the

loop-counting parameter in the bulk is 1/(c−Ncurrents), not 1/c. But in the WN case, our

bound (1.1) constrains the resulting spectrum. In particular, all (non-identity) primaries

have dimensions linear in c. In gravitational language, such primaries would be dual to

particles with mass of order O(`AdS/G). A perturbative particle, on the other hand, such

as that created by a quantum field of fixed mass, would have dimension that remains finite

as c→∞. Therefore, in the semi-classical limit the corresponding theory of gravity would

have no local perturbative degrees of freedom.

Although much of this discussion has been phrased in terms of the WN algebra, many

of our results, with the exception of (1.1) and the modular bootstrap, naturally extend to

any W-algebra. In general, a theory is irrational, in the sense that it must have an infinite

number of primaries, when c > ccurrents where ccurrents is the effective central charge of the

vacuum representation.2 Both the causality argument and the upper bound on the twist

gap apply to any irrational W-algebra, so the smallest h must grow with c and lie below

(c− ccurrents)/24.

In all, the above considerations suggest that irrational higher spin CFTs should be

difficult to construct, especially in the large c limit. Indeed, our initial goal was to prove

that WN theories with c > N − 1 do not exist. We have not managed to do so. However,

the fact remains that there is not a single known example of a WN CFT with c > N − 1

and a normalizable ground state. Moreover, a scan of various examples in the literature

reveals that all unitary CFTs in the irrational regime that have higher spin symmetries,

2That is, logχvac(τ → 0) ∼ iπ
12τ

ccurrents, where χvac is the vacuum character of W.
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with any chiral algebra, contain non-trivial null states in the vacuum module; we collect

some of these examples in appendix B. Based on this and the surprising strength of the

constraints derived herein, a natural question about the space of higher spin CFT2 is:

Does the vacuum module of a unitary, higher spin CFT2 with finite central

charge always have non-trivial null states?

Perhaps so. A slightly narrower possibility is that freely generated algebras, such as WN ,

are only realized in unitary CFT if the theory is rational, with c = ccurrents. This would be

a stronger two-dimensional version of the Maldacena-Zhiboedov result, in which rational

theories are playing the role of the free theories in three dimensions.

The rest of the paper is organized as follows. In section 2, we derive the twist bound,

which is the upper bound in (1.2). In section 3, we derive the absence of light operators

directly at large c using the lightcone limit of four-point functions. These results apply

to any finitely-generated W-algebra. In section 4, we relax to finite c and study the Kac

matrix of WN , deriving the bound (1.1) and providing more detailed plots of the allowed

parameter space. In section 5, we apply modular bootstrap techniques to traces over W3

zero modes, yielding constraints on the charge and dimension of non-identity operators in

a W3 CFT. In appendix A, we prove that the W3 unitarity constraints are saturated by

the level-one Kac matrix for c ≤ 98. In appendix B, we present a partial accounting of

known unitary CFTs with higher spin symmetries and their null states.

2 Upper bound on the twist gap

We begin with a simple argument that, in an irrational theory with WN symmetry, there

must be an accumulation point in the spectrum at

h =
c−Ncurrents

24
, (2.1)

with Ncurrents = N − 1. That is, there is an infinite number of states arbitrarily close

to (2.1). This claim does not assume large c, and it is true and non-trivial even with just

Virasoro symmetry.3 It comes from a chiral limit of the Cardy formula [27]. The states

accumulating at (2.1) have h̄ → ∞; identical statements apply to the spectrum of h̄ as

h→∞. This is therefore an accumulation point in the twist spectrum,

twist ≡ ∆− J = 2 min(h, h̄) , (2.2)

coming from high-energy states with large spin. In conjunction with lower bounds to be

derived later in the paper, this implies a narrow window of twists in which operators must

exist in any WN CFT, as quoted in (1.2).

The strategy is similar to the lightcone bootstrap, initiated in [28, 29]. To briefly sum-

marize the main result of these papers, consider the four-point function G(z, z̄) for a scalar

operator of dimension ∆, in a CFT in d > 2, in Lorentzian signature where the cross-ratios

3This was previously reported and applied to the bootstrap in [13].

– 5 –



J
H
E
P
0
5
(
2
0
1
8
)
0
9
2

z and z̄ are independent real numbers. The crossing equation, G(z, z̄) = G(1− z, 1− z̄), is

expanded in the double lightcone limit, z � 1− z̄ � 1. In this limit, one channel is dom-

inated by the disconnected product of two-point functions — i.e., the identity conformal

block — and to reproduce this singular behavior in the other channel, there must be an

infinite sum over operators with twist accumulating at 2∆.

To derive the accumulation point (2.1), we will apply similar logic to the 2d partition

function, Z(τ, τ̄). The crossing equation in this context is modular invariance:

Z(τ, τ̄) = Z(−1/τ,−1/τ̄) . (2.3)

Modular invariance holds for independent complex τ and τ̄ (see e.g. footnote 3 of [30]),

so we may choose τ = iβL
2π , τ̄ = iβR

2π , with βL and βR independent real numbers.

This corresponds to the partition function with real temperature and angular potential,

Z = Tre−β(H−ΩJ) = Tre−βL(L0−c/24)−βR(L̄0−c/24), and is analogous to the Lorentzian four-

point function used above. The accumulation point (2.1) is derived by solving (2.3) in

the highly rotating, low temperature limit, βR � 1
βL
� 1. This is the partition function

analogue of a double lightcone limit. (In fact they are identical if the partition function is

viewed as a four-point function of twist operators [3].)

This result has a clear bulk interpretation, in both ordinary gravity and higher spin

gravity. Operators with h ≈ c−Ncurrents
24 and parametrically larger h̄ are dual to microstates

of large extremal BTZ black holes. The fact that such operators must exist is a CFT

derivation of the existence of such black holes, at arbitrary c. Said another way, the

“Cardy regime” requires only one of the temperatures to be large.

Derivation. In the limit βR →∞, with βL held fixed, the l.h.s. of (2.3) is dominated by

the vacuum character,

Z(τ, τ̄) =
∑
h,h̄

ρ(h, h̄)χh(τ)χh̄(τ̄) (2.4)

≈ χvac(τ)eβRc/24 , (2.5)

where χh(τ) is the character of the WN algebra with weight h, and χvac(τ) is its vacuum

character. Assuming c > N − 1, there are no non-trivial null states in the vacuum repre-

sentation, so the vacuum character simply counts integer partitions of the current modes

acting on the vacuum state:

χvac(τ) = q−c/24
N∏
s=2

∞∏
n=s

(1− qn)−1 (q ≡ e2πiτ ) . (2.6)

Next, send βL → 0 (q → 1). In this limit, the WN vacuum character can be evaluated by

a saddlepoint approximation (or by the Cardy formula applied to a theory of N − 1 free

chiral bosons) and behaves as

χvac(τ) ≈ (q′)−(N−1)/24 (q′ ≡ e−2πi/τ ) . (2.7)

– 6 –
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Therefore, modular invariance in the limit βR � 1
βL
� 1 requires

exp

(
4π2

βL

N−1

24
+βR

c

24

)
≈
∑
h,h̄

ρ(h, h̄)exp

(
−4π2

βL
(h−c/24)− 4π2

βR
(h̄−c/24)

)
, (2.8)

(On the r.h.s. we have used the density of primaries ρ(h, h̄) to approximate the density of

all states, which is valid in this limit because N is held fixed and finite.).

The βL-dependence on the left of (2.8) must be reproduced on the right by states with h

given by (2.1), or more accurately, by states with h arbitrarily close to (2.1). Furthermore,

the left is singular as βR → ∞, while each character on the right is regular in this limit,

so this term can only be reproduced on the right by the asymptotics of the infinite sum as

h̄→∞. The conclusion is that we must have an accumulation point in the spectrum of h

at (2.1) as h̄→∞. In particular, inserting the factor of 2 from (2.2), the twist gap can be

no larger than twice (2.1).

This result and derivation generalize straightforwardly to other algebras with finite

Ncurrents. One simply replaces N −1 with ccurrents, defined by the asymptotic growth of the

vacuum character as χvac(τ) ≈ (q′)−ccurrents/24. In the absence of null states in the algebra,

ccurrents = Ncurrents.

Note that the assumption c > ccurrents was crucial in this derivation. Otherwise, the

vacuum in one channel can be reproduced by an individual state in the other channel, and

there is no need for an infinite sum. This is how modular invariance is satisfied by a finite

spectrum of primaries in a rational CFT.

3 Large c constraints

Our next goal is to prove that a large-c, irrational 2d CFT, with higher spin symmetry

that couples to at least one light primary, must have Ncurrents = ∞. This is a weaker,

2d version of the Maldacena-Zhiboedov theorem, as discussed in the Introduction. In this

section, ‘light’ means that the conformal dimension h, and higher spin charges, are fixed in

the large-c limit, h ∼ O(c0) (but h� 1 is allowed). The result derived here is weaker than

the more general bound derived from the Kac matrix below, which allows for a range of h

scaling with c, but it has two advantages. First, it is more similar in spirit to the derivations

in higher dimensions, and gives some physical intuition for why higher spin symmetry is

disallowed in the semiclassical limit. Second, it does not rely on the assumption about

null states that we will invoke in section 4 below to extend the Kac results to N > 6, and

applies to any higher spin algebra.

3.1 Causality

The first argument is a slight modification of [17], where the same result was derived under

the extra assumption of a sparse spectrum of low-dimension operators. In [17], the strategy

was to compute the contribution of higher spin exchange to the four-point function of a light

operator in the Regge limit, then to apply the chaos bound of Maldacena, Shenker, and

Stanford [31]. Here, following [32], we will repeat the argument in the lightcone limit, rather

– 7 –
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than the Regge limit. The lightcone limit guarantees that conserved currents dominate the

conformal block expansion, regardless of what other light states appear in the spectrum,

so avoids any assumption about sparseness. The method is otherwise identical to [17], so

we will be brief.

The WN algebra is generated by a tower of spin-s currents with s = 2, 3, . . . N , each

of which admits a Laurent expansion in modes W s
m, with m ∈ Z. Primary states of WN

are labeled by higher spin charges,

|h, q3, . . . , qN 〉 , (3.1)

where

L0 |h, q3, . . . , qN 〉 = h |h, q3, . . . , qN 〉 , W s
0 |h, q3, . . . , qN 〉 = qs |h, q3, . . . , qN 〉 . (3.2)

(We are not considering chiral CFTs, so there are also anti-holomorphic labels which are

suppressed and play no role in this paper.) We take a generic WN -primary operator O to

have these charges, via the state-operator correspondence. The four-point function of O
can be expanded in WN conformal blocks,

G(z, z̄) =
∑
h,h̄

ch,h̄Fh(z)Fh̄(z̄) , (3.3)

where we suppress the dependence of the blocks on the qi. In the lightcone limit, z̄ → 0

with z held fixed, the sum is dominated by operators with zero twist. These are precisely

the conserved currents of the theory, which are all descendants of the vacuum, so only the

vacuum block survives:

G(z, z̄) ≈ z̄−2h̄OFvac(z) . (3.4)

In the large-c limit, the vacuum block is a sum of hypergeometric functions, one for each

conserved current:4

Fvac(z) = z−2hO

N∑
s=2

q2
s

cNs
zs2F1(s, s, 2s; z) , (3.7)

where we have normalized the currents such that 〈W s
sW

s
−s〉 = cNs.

4In general, the vacuum conformal block is the projection

Fvac(z) ≡
∑
p,q

〈O(0)O(z)Qp|0〉〈0|Q†qO(1)O(∞)〉(Kpq)
−1 (3.5)

where the sum is over all states created by acting on the vacuum with any combination of current modes:

Qp ≡ W s1
−n1

W s2
−n2

. . . with ni ≥ si. W
s
m denote modes of the spin-s current W s(z), and Kpq ≡ 〈Q†pQq〉 is

the vacuum Kac matrix. In the limit c→∞ with the external weights held fixed, the leading contributions

to the vacuum block come from states with only a single mode:

W s
−m|0〉, s = 2 . . . N, m ≥ s . (3.6)

These states have norms ∼ c, while all other states have norms scaling as higher powers of c, so they are sub-

leading due to the K−1
pq term in (3.5). In other words, only the single-trace operators, ∂mT (z), ∂nW 3(z), . . .

survive the large-c limit. These states are simply the conserved currents and their SL(2) descendants. It

follows that the large-c vacuum block is a sum of SL(2) blocks, which are given by the hypergeometric

functions written in (3.7) [33, 34].

– 8 –
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To rule out higher spin theories in this context, we will apply the chaos bound of [31],

adapted to lightcone kinematics in [32]. The relevant results of these papers are summarized

as follows. Define the normalized four-point function

Gη(z) = z2hO(ηz)2h̄OG(z, ηz) . (3.8)

Fix η � 1, which is the lightcone limit. This function has a singularity at z = 1. Define

the correlator on the ‘2nd sheet’, Ĝη(z), by analytically continuing around this singularity,

along the path

(1− z)→ (1− z)e−2πi . (3.9)

Then the bound states that |Ĝη(z) − 1| can grow no faster than 1/|z| as |z| → 0. This

follows from analyticity, which in turn follows from causality in the sense that 〈O[O,O]O〉
must vanish in the appropriate regime.

Returning to our argument, the correlator (3.4), using (3.7), behaves in this regime as

Ĝη(z)− 1 ∼ z−(N−1) . (3.10)

Therefore it violates the chaos bound for any finite N > 2. The conclusion is that if there is

any higher spin current coupling to a light primary, then there must be an infinite number

of such currents. If the sum in (3.7) is infinite then the behavior near the origin can be

softened. Although we have phrased this argument in the language of the WN algebra for

definiteness, this was not necessary, and it applies to any theory with higher spin conserved

currents.

The Maldacena-Zhiboedov theorem in higher dimensions has a second part, which

states that the correlators of the infinite tower of higher spin currents are necessarily those

of a free theory. We have not derived any analogue of this statement in 2d. We have

only shown that the higher spin currents must exist. It would be interesting to show that

they have fixed correlators as well. A natural conjecture would be that the currents must

reproduce the W∞[λ] algebra [35].

3.2 Unitarity

The above argument used a dynamical constraint on four-point functions, and applied

only to higher-spin charged operators O. In fact, as we will put in sharp relief in the next

section, dynamics are not necessary to rule out large c WN CFTs with light operators.

Using the WN algebra alone, one can rule out light operators at large c as follows.

The WN algebra contains the sl(N) algebra as its “wedge subalgebra”, obtained by

taking c → ∞ and restricting to modes W s
m with |m| < s. This implies that we may

compute the norms of light states, charged or uncharged, using only the sl(N) algebra. In

particular, let us consider the norm of W s
−1|h〉, which is a level-one, spin-s descendant of an

uncharged state |h〉. Unitarity requires that 〈h|W s
1W

s
−1|h〉 ≥ 0. We compute this using the

– 9 –
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known sl(N) structure constants, which can be found in e.g. [35]. After some massaging,5

we find

〈h|W s
1W

s
−1|h〉 = (−1)shσ2s−4

s−1∏
k=2

(N2 − k2)
s(s− 1)Γ2(s− 1)

(3/2)s−2(5/2)s−2
(3.12)

where σ is a normalization constant. Demanding that the spin-s currents themselves have

positive norm fixes σ ∈ R [36]. Given that and the manifest positivity of the product, the

(−1)sh means that negative norm states exist at level one, even for h > 0.

4 Unitarity bounds at finite c

Unitarity of a 2d CFT implies that the theory must have a positive semi-definite Kac

matrix. In this section we use the W-algebra commutation relations to compute the eigen-

values of the Kac matrix at level one, and impose positivity to derive constraints on the

spectrum. The analysis applies only to the algebra WN , defined for example by Drinfeld-

Sokolov reduction from SU(N). In this context, it is a significant extension of [17] and the

results of the previous section, which required c� 1.

We perform this computation explicitly for theories with WN symmetry for

N = 3, 4, 5, 6. The commutation relations for these algebras appear in the literature, but

with varying levels of accuracy. The Jacobi relations for our implementation of the alge-

bras have been verified using the Mathematica package OPEdefs.nb by K. Thielemans [37].

Some of the Kac matrix calculations were performed with the help of the Mathematica

package Virasoro.nb by M. Headrick.6

Although the Kac matrix may be computed explicitly using the WN algebra for small

enough N , the computation becomes exceedingly tedious and intractable with increasing

N . We will therefore turn to the Coulomb gas formalism in sections 4.3–4.4 to extrapolate

the results to N > 6.

4.1 Setup

We will compute the analogue of the Kac matrix for the WN theory, at level one. There

are N − 1 basis states given by

|2〉 = L−1 |h, q3, . . . , qN 〉 , (4.1)

|3〉 = W 3
−1 |h, q3, . . . , qN 〉 , (4.2)

...

|N〉 = WN
−1 |h, q3, . . . , qN 〉 . (4.3)

5The result requires just a single structure constant of sl(N), equivalently, hs[λ] with λ = N . One uses

the commutation relations and the primary condition to obtain

〈h|[W s
1 ,W

s
−1]|h〉 = gss2s−2(N)〈h|L0|h〉 = gss2s−2(N)h (3.11)

where gss2s−2(N) is a standard hs[λ] notation for structure constants. It can be computed using closed-form

expressions given in [35].
6Available at http://people.brandeis.edu/∼headrick/Mathematica/.
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The Kac matrix is

Mij = 〈i|j〉 , i, j = 2, . . . , N. (4.4)

The question is simply for what values of h, qi this matrix is positive semi-definite.

The Kac determinant is known for WN [38, 39], so this may appear trivial, but in fact

it is not. The closed form expression in the literature is in terms of auxiliary Coulomb

gas parameters whose relation to the charges is nonlinear and unknown, so in particular,

restricting to real qi (as required for unitarity) is not straightforward in that language. To

overcome this obstacle, our strategy is to use explicit computations at low N to guess the

correct reality conditions, then to extend this to all N using the Coulomb gas.

4.2 Explicit calculations for N = 3, 4, 5, 6

4.2.1 W3

The W3 algebra can be found in e.g. [5, 15, 40–42]. The level-one Kac matrix is given by

M =

(
〈h, q3|L1L−1 |h, q3〉 〈h, q3|L1W

3
−1 |h, q3〉

〈h, q3|W 3
1L−1 |h, q3〉 〈h, q3|W 3

1W
3
−1 |h, q3〉

)
, (4.5)

which can be explicitly computed as

M =

(
2h 3q3

3q3
h(2−c+32h)

22+5c

)
. (4.6)

The eigenvalues are

κ1 =
h(46 + 9c+ 32h) +

√
(42 + 11c− 32h)2h2 + 36(22 + 5c)2q2

3

2(22 + 5c)
, (4.7)

κ2 =
h(46 + 9c+ 32h)−

√
(42 + 11c− 32h)2h2 + 36(22 + 5c)2q2

3

2(22 + 5c)
.

We see that κ1 is positive for all h > 0 and c > 0 but κ2 can be negative. Primaries with

κ2 < 0 are excluded. In fact this bound has a simple global minimum: for arbitrary q3,

the conformal weight must satisfy

h ≥ c− 2

32
. (4.8)

This is easily derived analytically from (4.7). Let us emphasize: this holds for all values of

c. In the large-c limit, this means that there can be no light primaries, of any charge, in

a theory with W3 symmetry. This corroborates the causality analysis of section 3, though

here the result is more general, because now we allow for q3 = 0 and for a finite range of

h/c. The full exclusion plot on the (h, q3) plane is shown in figure 1. For nonzero q3, one

has a refined bound,

2h2(32h− (c− 2))

5c+ 22
≥ 9q2

3. (4.9)
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Figure 1. Exclusion plot forW3, with c = 104. The weight and charge (h, q3) of all primaries must

fall in the shaded region, where κ2 > 0.

4.2.2 W4

The W4 algebra can be found in [43–45]. Requiring the three eigenvalues of the level-one

Kac matrix to be positive imposes complicated nonlinear constraints on (h, q3, q4). The

minimal conformal weight satisfying the constraints, for any values of the charges, is

h ≥ 1

30
(c− 3) . (4.10)

Again, the large-c limit does not admit light states. Note that in this case, the minimum

is obtained for a state that has q3 = 0 but q4 6= 0; the lower bound on uncharged states is

stronger than (4.10).

We will not give a rigorous proof of the lower bound (4.10), but it can be checked

for any fixed value of c as follows. An n × n symmetric matrix is positive definite if and

only if the n leading principal minors are positive. That is, we impose detM(k) > 0 for

k = 1 . . . 3, where M(k) is the matrix formed by the first k rows and columns of M . Then

we fix c to some numerical value, and minimize h subject to these polynomial constraints

using Mathematica. The result is (4.10). We have checked this for thousands of random

rational values of c > 3 and for c =∞ (with all charges scaling as c).7

An exclusion plot is shown in figure 2.

7A subtlety here is that unitarity of the level-one Kac matrix only requires that M is positive semi-

definite, while the algorithm just describes actually finds inf h subject to the constraint that M is positive

definite, with strict inequalities. These bounds are in fact different: the minimal h with non-negative eigen-

values is zero. This is because there is a sublocus in charge space, with null states at level one, which extends

all the way down to h = 0. In figure 2, this sublocus is the dashed curve. We are excluding these degenerate

cases from the discussion. For W4, at least for q3 = 0, the level-2 Kac matrix imposes new constraints and

restricts even these null states to h ≥ (c−3)/40, so in this case the conclusion that there are no light states

at large c applies also to degenerate representations. For N ≥ 5 we will not consider the degenerate case.
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Figure 2. Exclusion plot for W4 charge q4 and conformal weight h, with c = 104, q3 = 0. The

shaded region is allowed, i.e. has all eigenvalues positive. One eigenvalue of the level-one Kac matrix

is non-negative everywhere in the plotted region, and the pluses/minuses show the signs of the other

two eigenvalues. The dashed curve shows the null states referred to in footnote 7.

4.2.3 W5

The W5 algebra is derived in [45, 46]. From the level-one Kac matrix, we claim the global

minimum conformal weight is

h ≥ 3

80
(c− 4). (4.11)

The bound is obtained for q3 = q5 = 0, but q4 6= 0. Again we do not have a proof,

but the evidence for this lower bound is as follows. First, we have checked numerically

that it is a local minimum for various values of the parameters. Second, if we assume the

odd charges vanish, then we have checked that (4.11) is a global minimum for thousands

of random values of c, using exactly the same method described for W4 above. Third,

without assuming the odd charges vanish, we have scanned numerically over the charge

space with c = 4.4, 5.6, 8, 15, 20, 40, 80, 200, and the minimum (4.11) is the lowest value of

h obtained in these scans. The numerical scan uses a simple grid over a finite region in

charge space, so it is not guaranteed to find a global minimum, but we have scanned over

a region approximately 100 times larger than the values of h, q4 at the minimum, without

finding any violation of (4.11).

4.2.4 W6

By the same methods, the W6 algebra [46] leads to the lower bound

h ≥ 4

105
(c− 5). (4.12)

In this case the numerics are more difficult, and while we believe this to be a global lower

bound, the evidence is not overwhelming. We have confirmed numerically that it is a
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local minimum, and by scanning over charge space at various values of c we failed to find

any lower global minimum. However the scan is now limited by computational time to a

relatively small region around the point saturating (4.12).

4.3 Coulomb gas review

The explicit results for N = 3, 4, 5, 6 match the result (1.1) quoted in the introduction.

Now we aim to extend this to all N . The strategy is to identify the null states at the global

minimum for N ≤ 6, find a pattern, then extrapolate.

The WN algebras can be realized by N − 1 free fields. Closely following the review [4],

our conventions are as follows. For SU(N), we have N−1 simple roots which are normalized

such that the Cartan matrix, ei · ej is 2 along the diagonal. They can be represented as

vectors in RN , as e1 = (−1, 1, 0, . . . ), e2 = (0,−1, 1, 0, . . . ), etc. The N − 1 fundamental

weights λi are dual to the simple roots:

λi · ej = δij . (4.13)

We also define the weights of the vector representation hµ with µ = 1, . . . , N :

hµ = λ1 −
µ−1∑
i=1

ei. (4.14)

The Weyl vector is given by ρ = −
∑n

µ=1 µhµ.

In the Coulomb gas construction, the stress tensor T and the higher spin fields W s are

constructed from free fields φi where the index i = 1, . . . , N − 1. A convenient choice of

basis in this (N − 1)-dimensional space is provided by the fundamental weights of SU(N).

The holomorphic stress tensor can be derived from the action

S =
1

8π

∫
d2z
√
g(∂φ · ∂φ+ 2iα0Rρ · φ) (4.15)

and is given by

T (z) = −1

2
:∂φ(z) · ∂φ(z) : +2iα0ρ · ∂2φ(z), (4.16)

where ρ is the Weyl vector and α0 is a constant. The corresponding central charge is

related to α0 as

α0 = ±
√
−c+N − 1

2
√
N (N2 − 1)

. (4.17)

The vertex operators defined as

VΛ ≡ : exp(iΛ · φ(z)) : (4.18)

are Virasoro primaries with holomorphic weight

∆2(Λ) =
1

2
Λ · (Λ− 4α0ρ). (4.19)
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The highest weight states of the W-algebra are obtained from the action of the vertex

operators on the SL(2,C) invariant vacuum,

|Λ〉 ≡ VΛ(0). (4.20)

These states can be labelled by their eigenvalues under the zero modes of the stress-tensor

and the higher spin currents:

L0 |Λ〉 = ∆2 |Λ〉 , Ŵ s
0 |Λ〉 = ∆s |Λ〉 . (4.21)

To construct the higher spin fields Ŵ s, consider the currents us defined by the so called

quantum Miura transformation:

:

N∏
µ=1

[2iα0∂ + hµ · ∂φ(z)] : = (2iα0)n∂N +

n∑
s=1

(2iα0)n−sus(z)∂N−s, (4.22)

where hµ are the weights of the vector representation of SU(N) as defined above. These

generate the W symmetry, but they are not Virasoro primaries (see e.g. [5]), as can be

confirmed by computing the OPE with the stress tensor. Virasoro primaries can be con-

structed from combinations of the normal ordered products of these currents as well as their

derivatives. This implies that the eigenvalues of the highest weight states with respect to

the zero modes of the higher spin charges can be constructed from the eigenvalues of the

zero modes of the currents us. For example8

Ŵ 3 = u3 −
n− 2

2
2iα0∂u2,

∆3(Λ) = ∆̃3(Λ) + 2iα0(n− 2)∆̃2(Λ) (4.24)

where us|Λ〉 = ∆̃s(Λ)|Λ〉. The ∆̃s(Λ) can be written in closed form:

∆̃s(Λ) = (−i)s
∑

µ1>µ2>...µs

s∏
n=1

[hµn · Λ + 2α0(s− n)]. (4.25)

Finally, we need to understand when a primary |Λ〉 has null descendants. Let α± be the

two solutions of

α2
± − 2α0α± = 1. (4.26)

Null descendants appear when the vector Λ, expanded in the basis of fundamental weights,

takes the form

Λ =
N−1∑
j=1

((1− lj)α− + (1− l′j)α+)λj (4.27)

8Note that Ŵ 3 differs from W 3 defined in section 4.2.1 by a normalization factor√
22 + 5c

48
iW 3 = Ŵ 3 . (4.23)
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with lj and l′j positive integers for some j (see e.g. [4] for the derivation). In what follows

it will be convenient to parameterize Λ as

Λ =
N−1∑
j=1

iLjλj . (4.28)

If any Li is zero, then there is a null state at level one.

There is a closed-form expression for the Kac determinant withWN symmetry [38, 39].

At level one,

detM ∝

(∏
e∈∆

(Λ− 2α0ρ) · e− (α+ + α−)

)
, (4.29)

where ∆ is the set of adjoint weight vectors of SU(N). Evaluating this expression for the

case of W3 yields

detM = −
L1L2

(√
6
√

2− c− 6iL1

) (√
6
√

2− c− 4iL1 − 4iL2

)
108(5c+ 22)

×
(√

6
√

2− c− 6iL2

)(√
6
√

2− c− 12iL1 − 12iL2

)
. (4.30)

This can be easily verified to match determinant of (4.6) using

h = ∆2(Λ),

q3 = − 4i
√

3√
5c+ 22

∆3(Λ). (4.31)

Furthermore, one can verify that setting any of the Li to zero yields a vanishing determinant

for any N , consistent with the description of the null states provided above.

4.4 Unitarity bound for general N

To recap, in the Coulomb gas formalism, states are labeled by the parameters (L1, . . . LN−1)

defined in (4.28). In principle, our task is to find the range of Li’s allowed by unitarity,

then evaluate the minimal weight using (4.19). This appears to be difficult in general, but

we can make some progress guided by the fact that this minimum will always appear at

the boundary of the allowed region, so it will lie at a point with one or more null states.

For example, it is apparent from figure 1 that the W3 optimum has one null state, while

the optimum for W4 sits at the intersection of two curves in figure 2 so has two null states.

We will use these low-lying examples to guess a pattern in the null states at the optimum,

and conjecture a lower bound on the conformal weight for all N .

4.4.1 W3 example

The W3 Kac matrix at level one is given by (4.6) and the eigenvalues are given by (4.7).

Setting κ2 = 0 we find the curve hmin(q3) corresponding to null states as shown by the

black curve in figure 1.
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This curve may also be obtained starting from the null state equation (4.27). For

generic Λ =
∑
iLjλj we find

∆2 =
1

12

(√
6
√
c−2L1+

√
6
√
c−2L2−4

(
L2

1+L2L1+L2
2

))
(4.32)

∆3 =
1

216
(L1−L2)

(
−6
√

6
√
c−2L1−6

√
6
√
c−2L2+3c+8(2L1+L2)(L1+2L2)−6

)
. (4.33)

As described above, setting one of the Li’s to zero gives a null state at level one. If we

choose L2 = 0,9 and use
√

22+5c
48 iq3 = ∆3, the two equations (4.32), (4.33) reduce to exactly

the same equation h = hmin(q3) found in section 4.2.1. The constant of proportionality

relating q3 to ∆3 follows from the conventions chosen to normalize the W3 current.

To find the optimum, in the Coulomb gas language, we then extremize ∆2(L1) with

respect to L1. This reproduces the same global lower bound as before, h ≥ c−2
32 . Note that

this extremum is not necessarily a minimum for real L1.

4.4.2 General case

Motivated by this success we will proceed for general N in the same way: set some of the

Li’s to zero, then extremize ∆2 over the remaining Li. This procedure guarantees that we

will find null states but does not necessarily guarantee that we will find the global minimum

h. To find the global minimum requires that we pick the correct null state equations and

choose the correct extremum. Working through the low-level examples as we did for W3

reveals a simple pattern that we conjecture extends to all N .

The details depend on whether N is even or odd. For N even, we take the ansatz that

the odd Li’s vanish,

L1 = L3 = · · · = LN−1 = 0, (4.35)

then extremize the weight

∆2(Λ) =
1

2
Λ · (Λ− 4α0ρ),

with respect to the remaining, even Li’s:

∂∆2(Λ)

∂La
= −

∑
b even

Lbλb · λa − 2iα0λa · ρ

= − 1

N

∑
b even

[a(N − b)δa≤b + b(N − a)δa>b]Lb − iα0a(N − a)

= 0, (a even).

This can be solved by setting all of the even Li’s to Li = −4iα0. So in the end we find

the state

N even : Λ∗ = 4α0

∑
i even

λi. (4.36)

9Solving (4.32) we find

L1 =
1

4

√
3

2

(√
c− 2±

√
c− 32∆2 − 2

)
, (4.34)

which is complex valued for ∆2 ∈ R. However plugging this back into ∆3 in (4.33) and normalizing

appropriately we find we find the curve plotted in figure 1 which is real valued.
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In the case where N is odd we instead set the even-indexed Li to zero, and extremize

∆2 with respect to the odd Li. We find the extremum

N odd : Λ∗ = 3α0λ1 + 4α0

∑
i>1 odd

λi . (4.37)

Evaluating the weight of these states gives, for all N ,

hcrit ≡ ∆2(Λ∗) =
c− (N − 1)

24

(
1−

6bN2 c
N(N2 − 1)

)
. (4.38)

This agrees with the explicit global minima for N = 3, 4, 5, 6 constructed in section 4.2,

so at least in those cases, we have found the Coulomb gas representation of these minimal

weight states. Furthermore, by construction the states (4.36), (4.37) have null descendants

at level one, and extremize h with respect to the remaining parameters. We take this as

evidence that we have indeed identified the minimal states for all N , leading to the lower

bound h ≥ hcrit discussed in the introduction.

5 A modular bootstrap for W3 CFTs

In this section we explore the constraints of modular invariance for WN CFTs. In addition

to modular invariance of the torus partition function, we will also use the modular trans-

formation properties of the partition function with insertions of higher spin charges. The

result will be a set of upper bounds on the dimension of the lightest non-identity primary

operator in the theory. These constraints are in tension with our earlier bounds arising

from the unitarity of the Kac matrix, which ruled out primary states which were too light.

We will not, however, obtain a direct contradiction which would rule out WN theories with

c > N − 1. We will focus on the W3 case, where the modular transformation properties of

characters with insertions of higher spin currents were worked out in [16]. It is in principle

straightforward (although in practice tedious) to generalize this to higher N . A similar

modular bootstrap strategy for W3 CFTs was discussed in [14].

We will follow the modular bootstrap approach initiated in [9], where modular invari-

ance of the torus partition was used to place an upper bound on the dimension of the lightest

non-identity primary operator. This bound is simplest to state at large central charge:

h1 + h̄1 ≤
c

6
+O(1), (5.1)

where O(1) denotes a numerical constant which remains finite as c → ∞. This result

assumes only unitarity, modular invariance and that the theory has a discrete spectrum

with a normalizable ground state.

5.1 Review of modular bootstrap for the partition function

Let us start by recalling the derivation of these bounds in the Virasoro case. We begin by

writing the torus partition function as a sum of two terms:

Z(τ, τ̄) ≡ Tr
(
qL0− c

24 q̄L̄0− c
24

)
= Trvac

(
qL0− c

24 q̄L̄0− c
24

)
+
∑
p

TrVp

(
qL0− c

24 q̄L̄0− c
24

)
, (5.2)
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where q = e2πiτ . The first term is the contribution of the vacuum state and its descendants,

and the second is the contribution from all of the non-identity primaries, labelled by an

index p. Here Vp is the Verma module built on the primary state of weight (hp, h̄p); we

assume that c is large enough that there are no null states. This allows us to write the

condition of modular invariance, Z(τ, τ̄) = Z(−1/τ,−1/τ̄), as(
Trvac

(
qL0− c

24 q̄L̄0− c
24

)
− Trvac

(
q̂L0− c

24 ˆ̄qL̄0− c
24

))
+
∑
p

(
TrVp

(
qL0− c

24 q̄L̄0− c
24

)
− TrVp

(
q̂L0− c

24 ˆ̄qL̄0− c
24

))
= 0

(5.3)

where q̂ = e−2πi/τ . The traces appearing in this equation are the usual characters of

the Virasoro algebra. We then proceed by evaluating this expression order by order in a

derivative expansion around τ = i, where q = q̂. This leads to an expression of the form

Ξ(n,n̄)
vac (c) +

∑
p

Ξ(n,n̄)(c, hp, h̄p) = 0 (5.4)

where

Ξ(n,n̄)
vac ≡ (q∂q)

n(q̄∂q̄)
n̄
(

Trvac

(
qL0− c

24 q̄L̄0− c
24

)
− Trvac

(
q̂L0− c

24 ˆ̄qL̄0− c
24

))∣∣∣
τ=i

(5.5)

with a similar expression for Ξ(n,n̄). For small (n, n̄) these constraints can be studied

analytically, where they lead to (5.1) [9]. At higher (n, n̄) they can be studied numeri-

cally [10, 13].

The computation described generalizes immediately to WN theories. One starts by

organizing the partition function into representations of WN , and replacing (5.3) by a

sum over WN primaries rather than Virasoro primaries. The vacuum and Verma module

characters are |χvac(τ)|2 and |χp(τ)|2, with

χp(τ) =
qhp−

c−N+1
24

η(q)N−1
, χvac(τ) = χ0(τ)

N−1∏
n=1

(1− qn)N−n . (5.6)

Just as in the Virasoro case, it is straightforward to work out the modular transformations

of these characters. The result is that one can write the equations (5.4) explicitly in any

WN theory. The modular bootstrap analysis can then be carried out, just as in the Virasoro

case. In fact, the difference between the WN and Virasoro computations is unimportant at

large c. In particular, at large c one recovers precisely the bound (5.1) [30, 47]. The only

important difference is that (5.1) is now interpreted as a bound on the dimension of the

lightest WN -primary, rather than the lightest Virasoro primary.

5.2 Spin-3 charged modular bootstrap

Instead, we will describe a somewhat more powerful technique. We will consider the mod-

ular transformation properties of the torus partition function with insertions of the higher-

spin charge W0. We will focus on the W3 case, where Iles and Watts [16] have already
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determined the relevant modular transformation properties. These authors derived the

elegant result

Tr
(
W 2

0 q̂
L0− c

24 ˆ̄qL0− c
24

)
= τ6 Tr

(
W 2

0 q
L0− c

24 q̄L̄0− c
24

)
+

α

iπτ

[
D(2)D(0) +

c

1440
E4(q)

]
Tr
(
qL0− c

24 q̄L̄0− c
24

)
(5.7)

where α = 16
22+5c . Here En(q) is an Eisenstein series and

D(r) ≡ q∂q −
r

12
E2 (5.8)

is the Serre derivative. To understand this formula, note that the zero mode of any

dimension-6 primary operator will transform like a modular form of weight 6; this trans-

formation rule is the first line of the equation. The second line comes from the fact that,

while W 2
0 is not the zero mode of a dimension 6 operator, it is — using the W3 algebra

— possible to find a primary operator whose zero mode is a linear combination of W 2
0

and a polynomial in L0. The second line of this formula reflects the “anomalous” modular

transformation properties coming from the addition of this polynomial in L0.

The important point is that, just like the partition function, the coefficients in the

q-expansion of Tr
(
W 2

0 q̂
L0− c

24 ˆ̄qL̄0− c
24

)
are positive. Thus one can apply the same modular

bootstrap logic to this expression. In particular, we separate out the vacuum contribution

to write (5.7) as

0 =

(
Trvac

(
W 2

0 q̂
L0− c

24

)
χ̄vac(ˆ̄q)− τ6Trvac

(
W 2

0 q
L0− c

24

)
χ̄vac(q̄)

− α

iπτ

[
D(2)D(0) +

c

1440
E4(q)

]
χvac(q)χ̄vac(q̄)

)
+
∑
p

(
TrVp

(
W 2

0 q̂
L0− c

24

)
χ̄p(ˆ̄q)− τ6TrVp

(
W 2

0 q
L0− c

24

)
χ̄p(q̄)

− α

iπτ

[
D(2)D(0) +

c

1440
E4(q)

]
χp(q)χ̄p(q̄)

)
, (5.9)

where χvac and χp are the characters of the W3 algebra (5.6); it is then straightforward

to compute the derivatives D(2)D(0) of these characters appearing in (5.9). The Verma

module trace with the insertion of W 2
0 was computed in [15]:

TrVp

(
W 2

0 q
L0− c

24

)
=

(
1

864
αc−24hp−2

(
E2(q)2−E4(q)

)
+
αc+30(E2(q)E4(q)−E6(q))

8640

+
1

648
α
(
E2(q)3−3E4(q)E2(q)+2E6(q)

)
+w2

p

)
qhp−

c−2
24

η(q)2
. (5.10)

The important feature of this expression is that it depends on both the dimension hp and

the W3-charge wp of the primary state — this means that, unlike the Virasoro case, our

final bound will involve the charge wp of the lightest non-trivial primary operator. We

– 20 –



J
H
E
P
0
5
(
2
0
1
8
)
0
9
2

can now use (5.10), along with equation (2.14) of [15] (derived using the Kazhdan-Lusztig

algorithm [48]), to compute the trace in the vacuum module:

Trvac

(
W 2

0 q
L0− c

24

)
= TrV0,0

(
W 2

0 q
L0− c

24

)
−TrV1,w−

(
W 2

0 q
L0− c

24

)
−TrV1,−w−

(
W 2

0 q
L0− c

24

)
+TrV3,w+

(
W 2

0 q
L0− c

24

)
+TrV3,−w+

(
W 2

0 q
L0− c

24

)
−TrV4,0

(
W 2

0 q
L0− c

24

)
(5.11)

where Vh,w is the Verma module built on a primary with dimension h and charge w, and

w± =

√
6(±t+ 1)√

(5− 3t)(5t− 3)
, t =

1

48

(√
c2 − 100c+ 196− c+ 50

)
. (5.12)

Finally, one can use the modular transformation properties of η(q) and En(q) to write the

various terms in (5.9) evaluated at q̂ in terms of these functions evaluated at q, rather than

q̂. The result is a final expression for (5.9), which we write as

Ξvac(τ, c) +
∑
p

Ξ(τ, c, hp, wp) = 0 (5.13)

where Ξvac and Ξ can be written in terms of elementary modular functions. We will not

write the explicit expressions here, as they are lengthy and not particularly illuminating,

instead leaving them to the reader’s imagination.

We now proceed as in the Virasoro case, extracting constraints on the spectrum of

theory by acting with linear functionals on (5.13). In particular, we expand order by order

in derivatives around τ = i to obtain

Ξ(n)
vac(c) +

∑
p

Ξ(n)(c, hp, wp) = 0 (5.14)

where Ξ(n) ≡ (q∂q)
nΞ|τ=i. These equations give a set of linear constraints on the spectrum,

which can be analysed using the standard techniques of linear programming. In particular,

if one can find a set of real numbers {αk}, k = 0, . . . , Nmax, such that

Nmax∑
k=0

αkΞ
(k)
vac(c) > 0 (5.15)

then equation (5.14) implies the existence of an operator such that

Nmax∑
k=0

αkΞ
(n)(c, h, w) < 0. (5.16)

These constraints can be analyzed numerically to find optimal bounds for any fixed c. We

have performed this numerical analysis up to sixth order in derivatives. We have also

performed an analytic computation to obtain bounds which are valid at large c. Our

numerical results are qualitatively similar to this analytic result, so we will just describe

our analytic result at large c.
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We begin by choosing a particular linear combination of the constraints (5.14) which

annhilate the vacuum contribution. In particular, we define

Ψ(i,j)(c, h, w) =

(
Ξ

(j)
vac(c)

Ξ
(i)
vac(c)

)
Ξ(i)(c, h, w)− Ξ(j)(c, h, w) (5.17)

so that (5.14) implies that for any i, j we must have∑
p

Ψ(i,j)(c, hp, wp) = 0 . (5.18)

This implies that there must at least one operator with Ψ(i,j) > 0, and at least one operator

with Ψ(i,j) < 0. This leads to simple analytic bounds on the spectrum at large c. For

example, at large c we have

Ψ(1,3) =

√
πc4

(
(δ − 1)δ

(
(2δ − 1)3 + 135η2

)
+ 15η2

)
155520Γ

(
1
4

)2 +O(c)3 (5.19)

where we have defined the rescaled charges

δ ≡ 12h

c
, η ≡ 12w

c
. (5.20)

The sign of this function is plotted in figure 3.10 There must be at least one state in the

red region, where Ψ(1,3) is positive. The boundary of this region (where Ψ(1,3) = 0) is given

by the curves

η(δ) = ± i
√
δ − 1

√
δ(2δ − 1)3/2

√
135δ2 − 135δ + 15

. (5.21)

For uncharged operators, this coincides with the usual bound (5.1) (i.e. δ < 1). For charged

operators, this bound is stronger; our modular bound intersects the Kac matrix bound at

δ ≈ 0.882.

These bounds can be improved by considering linear combinations of the form∑
i,j γi,jΨ

(i,j). For any choice of constants γi,j , there must be an operator with∑
i,j γi,jΨ

(i,j) < 0 and also an operator with
∑

i,j γi,jΨ
(i,j) > 0. We will consider the

linear combination

Ψ(1,3) − cγΨ(0,1) =

√
πc4

(
(δ − 1)δ

(
(2δ − 1)3 + 135η2

)
+ 360πγη2 + 15η2

)
155520Γ

(
1
4

)2 +O(c)3,

(5.22)

where γ is a constant. The regions where these are positive are plotted in figure 4, as a

function of γ. The boundary of these regions is given by the curves

η(δ) = ± i
√
δ − 1

√
δ(2δ − 1)3/2√

360πγ + 135δ2 − 135δ + 15
. (5.23)

10Figure 3 shows the positive region for the leading O(c4) part of Ψ(1,3). The plot does not change

qualitatively when one studies Ψ(1,3) at large but finite c.
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η

δ

Figure 3. The red region is where Ψ(1,3) > 0; modular invariance implies the existence of an oper-

ator in this region. The blue region is the unitarity bound set by the positivity of the Kac matrix.

-0.10 -0.05 0.00 0.05 0.10
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

η

δ

Figure 4. The red regions are where Ψ(1,3)−cγΨ(0,1) > 0; modular invariance implies the existence

of an operator in each of these regions for any value of γ. The regions become narrower as γ is

increased. The blue region is the unitarity bound set by the positivity of the Kac matrix. This is

a stronger constraint than the one in figure 3.
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In the limit where γ becomes large the bounding region corresponds to a narrow slit in

the η-δ plane bounded by 1
2 < δ < 1. We conclude that every W3 CFT must possess an

uncharged primary operator with c
24 < h < c

12 .

We have shown that modular invariance strongly constrains the spectrum of irrational

W3 CFTs, but we have not obtained any results which are in contradiction with positivity

of the Kac matrix. It would be interesting to perform a higher order numerical analysis,

and to consider separately the constraints obtained by acting with q̄ derivatives, follow-

ing [10, 13]. This would lead to more powerful constraints, which one might hope are in

direct contradiction with unitarity.
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A No constraints from W3 higher-level Kac matrix for c ≤ 98

In this appendix we prove that for c ≤ 98, imposing unitarity of the W3 Kac matrix above

level one yields no new bounds.

Following [42, 49], the determinant of the Kac matrix of W3 at level L is of the form

detML =
L∏
k=1

∏
mn=k

(fmn(h, c)− q2
3)P2(L−k) × (positive) (A.1)

where
∞∑
n=0

P2(n)qn =

∞∏
n=1

1

(1− qn)2
(A.2)

and

fmn(h, c) =
64

9(5c+ 22)

[
h+ (4− n2)α2

+ + (4−m2)α2
− − 2 +

mn

2

]
×
[
h− 4((n2 − 1)α2

+ + (m2 − 1)α2
−)− 2(1−mn)

]2 (A.3)

with

α2
± =

50− c±
√

(2− c)(98− c)
192

. (A.4)
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Note that fmn(h, c)− q2
3 ∈ R for c ≥ 98. The first several P2(n) are

P2(n) = {1, 2, 5, 10, 20, 36, 65, 110, 185, 300, 481}. (A.5)

First let’s take c = 98. The level-one bound is h2(h − 3) ≥ 72q2
3. For this value of c,

α2
+ = α2

−. This implies a symmetry,

fmn(h, 98) = fnm(h, 98). (A.6)

Due to the structure of the mn product in (A.1), the only terms that are not raised to even

powers — and can thus potentially give a negative determinant — have m = n. This can

only occur at levels L = 1, 4, 9, . . .. We have

fmm(h, 98) =
1

72

(
m2 + h− 4

) (
h+ 4m2 − 4

)2
. (A.7)

Noting that fmm increases with m, we see that fmm − q2
3 > 0 for any m once the level-one

constraint is satisfied. This implies that no new constraints will arise from L > 1.

Now let’s take c < 98. Now α2
± are complex. But the structure of fmn(h, c) implies

the following:

c < 98 : fmn(h, c) = Smn + iAmn, (A.8)

where

Smn = Snm , Amn = −Anm. (A.9)

Thus,

(fmn − q2
3)(fnm − q2

3) = (Smn − q2
3)2 +A2

mn ≥ 0. (A.10)

Therefore, all of the m 6= n terms give positive contributions. Finally, for any c,

fmm(h, c) =

(
(c− 2)m2 − c+ 24h+ 2

)2 (
96h+ (c− 2)(m2 − 4)

)
7776(5c+ 22)

. (A.11)

Noting again that this increases with m, we see that terms fmm(h, c)−q2
3 ≥ 0 for all m ≥ 1

after imposing the level-one constraint. This concludes the proof.

For c > 98, the m = n terms still give no constraint, but the off-diagonal terms are

harder to analyze, due to the reality of fmn. Experiments reveal nothing new; this is to be

contrasted with the W4 case, as explained in footnote 7.

B A sampling of irrational unitary CFTs with higher spin algebras, and

their null states

In this appendix, we discuss some examples of unitary CFTs which are irrational with

respect to a higher spin W-algebra symmetry — that is, c > ccurrents. While we do not

give a complete taxonomy,11 all such CFTs that we are aware of have the property that

11A full classification of finitely-generatedW-algebras, much less a classification of irrational unitary CFT

realizations thereof, is still absent. The literature on such CFTs is both vast and sporadic. Many early

advances are summarized in the review of Bouwknegt and Schoutens [5].
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the vacuum module of W has non-trivial null states. The obvious examples are the higher

spin minimal models, but it is true in other cases as well. This encourages the speculation

in the Introduction. We will occasionally use the terminology “generic” to refer to algebras

without non-trivial null states.

Vir2/Z2. Consider taking a Z2 orbifold of two copies of any irrational Virasoro CFT,

with central charge c > 1.12 The resulting theory has central charge 2c, ccurrents = 2, and a

unique stress tensor. It also contains higher spin Virasoro primary currents. The simplest

is a s = 4 current, of the form

J4(z) =
2∑

i,j=1

cij :Ti(z)Tj(z) : +
2∑
i=1

ci∂
2Ti(z), (B.1)

where the Ti(z) are holomorphic stress tensors on the two copies, and the constants ci, cij
are determined by the primary condition with respect to the new stress tensor T (z) =

T1(z) + T2(z). The theory also contains more currents, and many null states.

We can see this by studying the vacuum character (e.g. [50])

χVir2/Z2
vac (τ) =

1

2
(χ2

vac(τ) + χvac(2τ)), (B.2)

where χvac(τ) is the Virasoro vacuum character. For convenience, define

F (τ) ≡
∞∏
n=1

(1− qn)−1 = q1/24η−1(τ). (B.3)

We now establish the following two facts. First, there are more higher spin currents than

T and J4. And second, there are non-trivial null states. To see this, we may subtract the

generic vacuum character for W (2, 4), the chiral algebra generated by T and J4 [43, 44],

from χ
Vir2/Z2
vac . The former is

χW (2,4)
vac (τ) = (1− q)2(1− q2)(1− q3)F 2(τ), (B.4)

where the prefactors account for the trivial null states. Expanding at small q, one finds(
χVir2/Z2

vac (τ)− χW (2,4)
vac (τ)

)
F−1(τ) = q6 + q8 + q10 + . . . (B.5)

Using the generating function for the branching of some function χ(τ) into non-vacuum

Virasoro primaries,

χ(τ)F−1(τ) =
∑
h

dp(h)qh , (B.6)

where dp(h) is the number of Virasoro primaries at level h, (B.5) implies that we must add a

s = 6 Virasoro primary current. This cannot be a composite, so it is a generating element.

We would still need to add (at least) this current if we had allowed null states in the algebra

generated by T and J4, since that would have subtracted fewer states from Vir2/Z2. Now,

12We thank Simeon Hellerman for bringing our attention to this setup.
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because we have found three bosonic currents, and 3 > ccurrents = 2, there must be non-

trivial null states. We can see them explicitly by subtracting the generic vacuum character

of W (2, 4, 6), the chiral algebra generated by currents of spins s = 2, 4, 6, which gives(
χVir2/Z2

vac (τ)− χW (2,4,6)
vac (τ)

)
F−1(τ) = q8 − 2q10 + . . . (B.7)

The negative degeneracy indicates the presence of non-trivial null states.

We note that there are many similar, but more intricate, examples of W-algebras with

and c > ccurrents that are formed via cosets. See e.g. [51], or section 7.3 of [5] for an earlier

and less complete treatment.13 These always contain non-trivial null states.

Calabi-Yau sigma models. Consider sigma models on CYd manifolds. Such theories

have N = 2 SUSY, and c = 3d. In addition to the super-Virasoro generators, the current

sector includes four Virasoro primary currents of spins s = d/2, (d + 1)/2, two of each.

Thus, the full algebra has ccurrents = 6. This algebra was constructed and studied by

Odake [53–55], who observed that for all d, there exist null states. The first ones occur at

level one: if J is the s = 1 super-Virasoro current and (G,G†) are the s = d/2 currents, then

(JG)(z) = ∂G(z) , (JG†)(z) = −∂G†(z). (B.8)

So for d ≥ 4, these models contain higher spin currents, are irrational with respect to the

above algebra, and contain non-trivial null states.

Sigma models on manifolds of G2, Spin(7) holonomy. There exists a c = 12 sigma

model whose target space is a manifold of Spin(7) holonomy [56]. The full chiral algebra is

the so-called SW (3/2, 2) algebra, generated by the N = 1 super-Virasoro algebra together

with a s = 2 superconformal primary. Hence the set of Virasoro primary generating cur-

rents includes a higher spin current at s = 5/2. The algebra has ccurrents = 3. Unitary

realizations of SW (3/2, 2) lie in a discrete set, of which c = 12 is a member, but contain non-

trivial null states. These states, and the discreteness, may be understood as a direct con-

sequence of the existence of a Virasoro subalgebra of SW (3/2, 2) which has central charge

c < 1 [57, 58]. Since irreducible highest weight representations that are unitary with respect

to the full algebra must also be unitary with respect to all real subalgebras, the minimal

model subalgebra (which is, at c = 12, that of the Ising model) implies the above properties.

The G2 case is similar. There is a c = 21/2 sigma model whose target space is a

manifold of G2 holonomy. The full chiral algebra may be obtained from the so-called

SW (3/2, 3/2, 2) algebra, which is generated by the N = 1 super-Virasoro algebra together

with two superconformal primaries of s = 3/2, 2, modded out by an extra ideal [59–61].

This implies ccurrents = 9/2. Again, the set of Virasoro primary currents includes one with

s = 5/2. Unitary realizations of SW (3/2, 3/2, 2) form a discrete set, of which c = 21/2 is

a member, but contain non-trivial null states on account of a minimal model subalgebra

(which is, at c = 21/2, that of the tricritical Ising model).

13Similarly, there are many such algebras formed via projection of generic algebras. One of the simpler

ones is a non-generic W (2, 4, 6) algebra constructed by projection of the N = 1 super-Virasoro algebra [52].
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