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1 Introduction

The problem of quantum gravity is the difficulty to reconcile renormalizability and per-

turbative unitarity. A solution has been recently proposed [1] by turning the ghosts due

to the higher derivatives into fakeons [2], or fake degrees of freedom, which contribute to

the correlation functions, but disappear from the physical spectrum. The idea amounts

to a novel prescription to treat the poles of the free propagators. It is suggested by the

reformulation of the Lee-Wick models [3–6] as nonanalytically Wick rotated Euclidean the-

ories [7, 8]. The fakeons clarify the properties of these models and refine their original,

incomplete formulation. At the same time, they have a broader range of applications, to

the extent that they can be introduced in models that are not of the Lee-Wick type.

Several options for quantum gravity emerge from this approach. A unique one among

them is strictly renormalizable [1]. Its classical Lagrangian contains the cosmological term√
−g, the Hilbert term

√
−gR and the quadratic terms

√
−gRµνRµν and

√
−gR2. The

other options are infinitely many and super-renormalizable, which makes them less attrac-

tive from the physical point of view. The proof of perturbative unitarity can be carried out

to the very end [2], once the effects of the cosmological constant are neglected. The reason

is that a satisfactory scattering theory has not been developed, yet, in the presence of a

cosmological constant (see refs. [9, 10] for some investigations and proposals on this issue)

and it might even not exist. If that were the case, a nonvanishing cosmological constant

(generically turned on by the radiative corrections) would signal a unitarity anomaly in the

universe, which would explain why this quantity is so small. Super-renormalizable theo-

ries of quantum gravity where the cosmological constant is not turned on by the radiative

corrections can be built [1], yet it is hard to argue that they describe the laws of physics.

We think that the strictly renormalizable option is at present the best candidate to ex-

plain quantum gravity, even if the cosmological constant cannot be turned off to all orders.

In this paper, we compute the key quantities of this theory at one loop. Specifically, we

work out the absorptive part of the graviton self energy and the one-loop renormalization,

both in the pure theory and in the presence of matter.

It can be shown [1, 2] that the fakeon prescription does not affect the renormalization,

which coincides with the one of the Euclidean version of the theory. The one-loop beta
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functions can be calculated by working out the divergent parts of the two graviton and

three graviton correlation functions. However, some diagrams with three external gravitons

are very involved. Their computation can be avoided by means of the Ward-Takahashi-

Slavnov-Taylor (WTST) identities [11–14]. The most popular technique to achieve this

goal is the background field method [15–18], which incorporates the WTST identities by

gauge fixing the theory in a clever way. A more standard approach is the one pursued by

Salvio and Strumia in refs. [19, 20]. They replace the computations of the diagrams with

three external gravitons with the computations of the (much simpler) diagrams with one

external graviton and two external matter fields.

In the first part of this paper, we compute the one-loop renormalization of the theory

by means of a third procedure, which does not make use of the background field method

and remains within the gravity sector. We quantize the theory with the help of the Batalin-

Vilkovisky formalism [21–23] and calculate the divergences of the graviton self energy and

those of the diagrams that renormalize the symmetry transformations of the fields. This

approach gives a few results that are not available in the literature, such as the nonlinear

contributions to the field redefinitions of the metric tensor and the Faddeev-Popov ghosts.

Then we turn to the calculation of the absorptive part of the graviton self energy, which

involves novel techniques, suggested by the properties of the fakeons. For simplicity, we

work in the limit of vanishing cosmological constant. A number of tricks allow us to relate

the absorptive part to the renormalization of the low-energy theory, obtained by expanding

the action around the Hilbert term and treating the higher-derivative terms perturbatively.

The calculation obeys the power counting of the ordinary, nonrenormalizable Einstein

theory, but its outcome is convergent and consistent with unitarity, by a peculiar mechanism

due to the fakeons. The final formula of the absorptive part is piecewise local, equal to a

contribution due to the so-called central charge c of the matter fields coupled to gravity

plus a correction due to the nonminimal couplings of the scalar fields plus terms that vanish

on the solutions of the field equations. The results show that the quantum gravity theory

of ref. [1] gives physical predictions that differ from those of any other quantization of the

same classical action [15–20, 24].

We use the dimensional regularization. The paper is organized as follows. In section 2

we quantize the theory to the extent that is strictly necessary for the calculation of the

one-loop renormalization. In section 3 we work out the beta functions at one loop and

the renormalizations of the fields. In section 4 we complete the quantization of the theory

by detailing the graviton/fakeon prescription for the propagators. Then we calculate the

absorptive part of the graviton self energy by relating it to the renormalization of the theory

expanded around the Hilbert term. Section 5 contains the conclusions and an outlook about

generalizations of the calculations performed here.

2 Quantum gravity in the Batalin-Vilkovisky formalism

The strictly renormalizable theory of quantum gravity proposed in ref. [1] has action

SHD = −µ
−ε

2κ2

∫ √
−g
[
2ΛC + ζR+ α

(
RµνR

µν − 1

3
R2

)
− ξ

6
R2

]
, (2.1)
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where α, ξ, ζ, ΛC and κ are real constants, with α > 0, ξ > 0 and ζ > 0, while µ is the

dynamical scale and ε = 4 − D, D being the continued spacetime dimension introduced

by the dimensional regularization. The action (2.1) is quantized by means of a novel

graviton/fakeon prescription, which is formulated in detail in section 4. We skip this part

for the time being, because we want to concentrate on the one-loop renormalization, which

coincides with the one of the Euclidean version of the theory [1, 2].

To apply the procedure described in the introduction and handle the WTST identities

in a compact form, we use the Batalin-Vilkovisky formalism [21–23], which is a formal

refinement of the Zinn-Justin approach [25]. We collect the fields into the row

Φα = {gµν , Cρ, C̄σ, Bτ},

where Cρ and C̄σ are the Faddeev-Popov ghosts and antighosts of diffeomorphisms, respec-

tively, while Bτ are the Lagrange multipliers for the gauge fixing (also known as Nakanishi-

Lautrup fields [26, 27]). We also introduce a row of external sources

Kα = {Kµν ,KC
ρ ,K

C̄
σ ,K

B
τ },

conjugate to the fields, and define the antiparentheses of two functionals X and Y of Φ

and K as

(X,Y ) ≡
∫ (

δrX

δΦα

δlY

δKα
− δrX

δKα

δlY

δΦα

)
,

where the integral is over the spacetime points associated with repeated indices and the

subscripts l, r in δl, δr denote the left and right functional derivatives, respectively.

The next step is to extend the action SHD into

S(Φ,K) = SHD + (SK ,Ψ) + SK , (2.2)

where Ψ(Φ) is a functional of the fields, called gauge fermion, which is used to fix the

gauge, while

SK = −
∫
Rα(Φ)Kα =

∫
(gµρ∂νC

ρ+gνρ∂µC
ρ+Cρ∂ρgµν)Kµν+

∫
Cσ(∂σC

ρ)KC
ρ −
∫
BσKC̄

σ

collects the infinitesimal symmetry transformations Rα(Φ) of the fields, coupled to the

sources Kα. In particular, the functions

− δrS

δKµν
= Rµν(g, C) ≡ −gµρ∂νCρ − gνρ∂µCρ − Cρ∂ρgµν

are inherited from the infinitesimal transformations δΣgµν = Rµν(g,Σ) of the metric tensor

gµν under diffeomorphisms, where Σρ are functions of the spacetime point.

The action (2.2) satisfies the master equation (also known as Zinn-Justin equation)

(S, S) = 0, (2.3)

which collects the gauge invariance of SHD and the closure of the symmetry transformations.

The generating functional Z of the correlation functions and the generating functional W

of the connected correlation functions are defined by the formulas

Z(J,K) =

∫
[dΦ] exp

(
iS(Φ,K) + i

∫
ΦαJα

)
= exp iW (J,K).

– 3 –
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The “quantum effective action”, i.e. the generating functional Γ(Φ,K) = W (J,K)−
∫

ΦαJα
of the one-particle irreducible diagrams, is defined as the Legendre transform of W (J,K)

with respect to J , where Φα = δrW/δJα. It is easy to see that (2.3) implies that Γ satisfies

an analogous master equation

(Γ,Γ) = 0, (2.4)

which collects all the WTST identities in a compact form.

By renormalizing the action (2.2) and taking advantage of the properties of the Batalin-

Vilkovisky formalism, we can work out the beta functions without computing the renormal-

ization of the three-graviton vertex and without introducing matter fields. It is sufficient

to renormalize SK (which is relatively easy) and the graviton self energy (which is more de-

manding).

We expand the metric tensor gµν around the flat-space metric ηµν = diag(1,−1,−1,−1)

by writing

gµν = ηµν + 2κhµν ,

where hµν is the quantum fluctuation. We further define h ≡ ηµνhµν . The indices of ∂µ,

hµν , the fields Φα (except gµν) and the sources Kα are raised and lowered by means of the

flat-space metric. We raise and lower the indices of the covariant derivatives, the metric

gµν , the Riemann tensor and the Ricci tensor by means of gµν .

We choose the gauge fermion

Ψ = µ−ε
∫
C̄µ (σζ + α�)

(
Gµ −

κ2

λ
Bµ

)
,

where � = ηµν∂µ∂ν is the flat-space D’Alembertian,

Gµ(g) = ηνρ∂ρgµν − (ω + 1)ηνρ∂µgνρ = 2κ[∂νh
ν
µ − (ω + 1)∂µh] (2.5)

is the gauge-fixing function and σ, λ and ω are gauge-fixing parameters.

The gauge-fixed action reads

Sgf = SHD + (SK ,Ψ), (2.6)

where

(SK ,Ψ) = µ−ε
∫
Bµ (σζ + α�)

(
Gµ −

κ2

λ
Bµ

)
+ Sgh (2.7)

and the action Sgh of the Faddeev-Popov ghosts reads

Sgh =µ−ε
∫ [

C̄µ∂ν−(ω+1)ηµνC̄τ∂τ
]
(σζ+α�) [gµρ∂νC

ρ+gνρ∂µC
ρ+Cρ∂ρgµν ] . (2.8)

If we make the field redefinition C̄ ′µ = (σζ + α�) C̄µ on the antighosts, the ghost action

turns into the more conventional form

Sgh = µ−ε
∫ [

C̄ ′µ∂ν − (ω + 1)ηµνC̄ ′τ∂τ
]

[gµρ∂νC
ρ + gνρ∂µC

ρ + Cρ∂ρgµν ] . (2.9)

The ghost actions (2.8) and (2.9) are equivalent for our purposes of this paper.
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3 Renormalization

In this section we calculate the renormalization of the theory at one loop. Let Scount

denote the one-loop counterterm action. A few standard properties allow us to give Scount

an explicit form. First, it is easy to show that the master equations (2.3) and (2.4) imply

the identity

(S, Scount) = 0. (3.1)

Second, Scount cannot depend on B, KC̄ and KB, because no vertices of the action (2.2)

contain them, so no one-particle irreducible diagrams can be built with B, KC̄ and/or

KB on the external legs. Third, S does not depend on Kµν and C̄ρ separately, but only

through the combination

K̃µν = Kµν + µ−ε (σζ + α�)

∫
δGρ
δgµν

C̄ρ,

so the same is true of Scount.

On general grounds,1 the solution of (3.1) can be written as

Scount =
µ−ε

(4π)2ε

∫ √
−g
[
2∆ΛC + ∆ζR+ ∆α

(
RµνR

µν − 1

3
R2

)
− ∆ξ

6
R2

]
+(S,F), (3.2)

where ∆ΛC , ∆ζ, ∆α and ∆ξ are constants and F(Φ,K) is a local functional of ghost

number minus one, equal to the integral of a local function of dimension three. Using (3.1),

it is easy to show that F also depends on Kµν and C̄ρ via the combination K̃µν . Then,

the dimension of F and its ghost number imply that we can parametrize it as

F(Φ,K) =

∫
∆gµνK̃

µν +

∫
∆CρKC

ρ , (3.3)

where ∆gµν and ∆Cρ are the renormalizations of the metric tensor and the Faddeev-Popov

ghosts, respectively. They generalize the more common multiplications by wave function

renormalization constants.

A straightforward calculation gives

(S,F) =

∫
δSHD

δgµν
∆gµν −

∫
∆RµνK̃µν −

∫
∆RρKC

ρ , (3.4)

where

∆Rµν = −(S,∆gµν) +

∫
∆gαβ

δlRµν(g, C)

δgαβ
+

∫
∆Cτ

δlRµν(g, C)

δCτ
,

∆Rρ = −(S,∆Cρ) +

∫
∆Cτ

δlRρ(C)

δCτ
,

1A convenient way to prove formulas (3.2) and (3.3) is by interpolating back and forth between the

background field approach and the ordinary approach [28, 29].
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Kg C

Figure 1. Diagrams that renormalize the symmetry transformations of the fields.

where Rρ(C) = −δrS/δKC
ρ . To the quadratic order in the fields, we can parametrize the

field redefinitions as

∆Cρ = κ2s1C
ρ + κ3s2h

ρ
µC

µ + κ3s3hC
ρ,

∆gµν = κ2t0gµν + κ3(t1hµν + t2ηµνh)

+ κ4[t3h
ρ
µhρν + t4hhµν + ηµν(t5hρσh

ρσ + t6h
2)], (3.5)

where si and ti are constants. They can be determined by evaluating the divergent parts

of the diagrams shown in figure 1, where the wiggled line denotes the field hµν , the con-

tinuous line with the arrow denotes the Faddeev-Popov ghosts and the double lines denote

either the sources Kg coupled to the gµν transformations or the sources KC coupled to the

C transformations.

The calculation proceeds as follows.

1) Using (3.5), the terms proportional to KC
ρ contained in Scount at hµν = 0 are the

integral of

−∆RρKC
ρ = κ2

[(
s1 +

s2

2

)
Cτ (∂τC

ρ) +
s2

2
Cτ (∂ρCτ ) + s3C

ρ(∂τC
τ )
]
KC
ρ .

We can work out the values of the constants si by computing the first diagram of figure 1,

which gives

∆Cρ =
κ2

12(4π)2αλω2ε

[
3Cρ − 8κ(2ω2 + 1)hρµC

µ + κ(4ω2 − 1)hCρ
]
. (3.6)

2) The terms proportional to Kµν contained in Scount are equal to the integral of

−∆RµνKµν =κ2[(t1−2s1)Kµν∂µCν+t2K∂ ·C]+2κ3(∂µK
µν)(s2hνρC

ρ+s3hCν)

+κ3[(t3−4s1)Kµνhρµ∂νC
ρ−2s1K

µνCρ∂ρhµν+t3K
µ
ν h

ρ
µ∂ρC

ν+t4K
µνhµν∂ ·C

+(t4−2t2)Kµνh∂µCν+2(t5+t2)Khρµ∂ρC
µ+2t6Kh∂ ·C] (3.7)

to the first order in hαβ , where K ≡ Kµ
µ . We can work out the terms of order κ2 by

computing the second diagram of figure 1, which gives

t1π
2ε = − 5

18α
− 1

3αλ
− 1

24αλω2
+

5

18αω
+

1

9ξ
+

1

12ξω2
+

5

36ξω
,

t2π
2ε =

5

72α
− 5

48αλ
− 1

192αλω2
− 5

72αω
− 1

36ξ
− 1

48ξω2
− 5

144ξω
. (3.8)
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3) The other coefficients ti are obtained by computing the third and fourth diagrams of

figure 1, which give

t3π
2ε = − 25

72α
− 1

12αλ
− 5

72αω2
+

1

48αλω2
+

5

12αω
+

7

72ξ
+

7

144ξω2
+

1

12ξω
,

t4π
2ε =

25

144α
+

5

144αω2
− 5

24αω
− 7

144ξ
− 7

288ξω2
− 1

24ξω
,

t5π
2ε =

5

32α
+

5

24αλ
+

25

288αω2
+

1

96αλω2
+

25

144αω
− 1

96ξ
− 11

576ξω2
− 7

144ξω
,

t6π
2ε = − 35

576α
− 5

192αω2
− 5

288αω
+

5

576ξ
+

1

128ξω2
+

5

288ξω
. (3.9)

4) A separate discussion concerns the coefficient t0, which may be seen as the renormal-

ization of the flat-space background metric ηµν (after a redefinition of t1). Observe that

the contribution κ2t0gµν to the field redefinition ∆gµν drops out of (3.7), because it is

covariant. It only adds

κ2t0

∫
δSHD

δgµν
gµν (3.10)

to the first term on the right-hand side of equation (3.4). Since (3.10) is proportional

to the field equations, its coefficient t0 may be gauge dependent. However, (3.10) is also

covariant, so it may mix with the renormalizations of ΛC , ζ, α and ξ. This means that only

the combinations of such coefficients that are not affected by t0 are truly gauge independent.

It is simple to check that such combinations are ΛC/ζ
2, α and ξ. For convenience, we define

t0π
2ε =

3

16αλ
+

1

64αλω2
− 3

64ξω2
− 3

16ξω
+
A

8
, (3.11)

where A is an arbitrary constant that parametrizes the surviving gauge dependence.

5) The coefficients ∆ΛC , ∆ζ, ∆α and ∆ξ of Scount can be worked out by computing the

graviton self energy. We obtain

∆α = −133

10
, ∆ξ =

5

6
+

5ξ

α
+

5ξ2

3α2
, ∆ζ = ζ

(
5

6ξ
+

5ξ

3α2
+A

)
,

∆ΛC = ΛC

(
− 5

α
+

2

ξ
− 2A

)
− 5ζ2

4α2
− ζ2

4ξ2
. (3.12)

As promised, the combinations ζ∆ΛC − 2ΛC∆ζ, ∆α and ∆ξ are independent of the arbi-

trary constant A.

The beta functions are

βα = − 2κ2

(4π)2
∆α, βξ = − 2κ2

(4π)2
∆ξ, βζ = − 2κ2

(4π)2
∆ζ, βΛC

= − 2κ2

(4π)2
∆ΛC . (3.13)

Now we compare our results with those of the literature. To our knowledge, the values

of the coefficients si, i = 1, 2, 3, encoded in formula (3.6), and those of the coefficients ti,

i = 3, 4, 5, 6, of formula (3.9) were not known. The most complete results for the other

– 7 –
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quantities are those of Salvio and Strumia, collected in ref. [20]. The notation of that paper

is related to ours by the redefinitions

α =
2

f2
2

, ξ =
2

f2
0

, ζ = M̄2
Pl, ΛC = Λ, ω =

cg
2
− 1, λ = −f

2
2

ξg
,

together with σ = 0, κ = 1, while our hµν is equal to the one of [20] divided by two.

Formulas (3.13) and the coefficients t1 and t2 of equations (3.8) agree with those of [20],

apart from the following discrepancies: the term −5f4
2 /(3f

4
0 )M̄2

Pl in formula (54a) of [20]

should be replaced by −5f4
2 /(3f

2
0 )M̄2

Pl; moreover, the right-hand side of formula (55) should

be multiplied by an overall minus sign and its first fraction should be multiplied by an extra

factor 1/(cg−2). The authors of [20] have implicitly set t0 = 0. This choice determines the

constant A, which is related to the constant X of [20] by the equation A = −X − 3f2
0 /4.

Finally, we make a nontrivial check of ∆gµν by adding Ns scalar fields with the mini-

mal action

Ss =
1

2

Ns∑
i=1

∫ √
−ggµν(∂µϕ

i)(∂νϕ
i). (3.14)

The total action SHD + Ss is renormalizable. Indeed, the external scalar legs of every

diagram carry derivatives, so the vertex
√
−gϕ4 and the nonminimal term

√
−gRϕ2 are not

generated as counterterms, if they are absent at the classical level. No other counterterms

are compatible with power counting and invariance under diffeomorphisms.

We find that the scalar self energy and the scalar-graviton vertex are renormalized by the

field redefinitions ∆gµν found above plus

∆ϕi = − κ2

(4π)2ε

(
A+

3

2ξ

)
ϕi. (3.15)

4 Absorptive part

In this section we calculate the absorptive part of the graviton self energy. We work in

the limit ΛC = 0 and include Ns scalar fields ϕi coupled to gravity by the action (3.14).

At the end, we add other types of matter fields. The calculation gives us the chance to

show that the graviton/fakeon prescription is consistent and leads to physical predictions

that are different from those obtained by quantizing the classical action (2.1) by means of

standard prescriptions [15–20, 24].

For simplicity, we set the gauge-fixing parameters λ and σ to one, but keep ω arbitrary

to check that the physical quantities we compute are gauge independent. However, due to

the complications of some formulas, we report the gauge-dependent results only for ω =

−1/2 (which is the de Donder gauge). The results for arbitrary ω can be downloaded from

http://renormalization.com/Math/QG, together with the Mathematica programs used for

the calculations of this paper.

It is convenient to integrate Bµ out in formula (2.7), which is equivalent to replacing

it with the solution

Bµ =
1

2κ2
Gµ

– 8 –
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of its own field equation, or making the replacement

(SK ,Ψ)→ µ−ε

4κ2

∫
Gµ (ζ + α�)Gµ + Sgh

in formula (2.6). The free propagator of the metric fluctuation hµν reads

〈hµν(p)hρσ(−p)〉0 =
iIµνρσ

2p2(ζ − αp2)
+

i(α− ξ)$µν$ρσ

6(p2)2(ζ − αp2)(ζ − ξp2)
(4.1)

at ω = −1/2, where

Iµνρσ = ηµρηνσ + ηµσηνρ − ηµνηρσ, $µν = p2ηµν + 2pµpν .

We define the graviton/fakeon prescription by introducing two widths ε and E as fol-

lows:

(a) replace p2 with p2 + iε everywhere in the denominators of the propagators;

(b) turn the massive poles into fakeons by means of the replacement

1

ζ − u(p2 + iε)
→ ζ − up2

(ζ − u(p2 + iε))2 + E4
,

where u is equal to α or ξ.

(c) calculate the diagrams in the Euclidean framework, nonanalytically Wick rotate them

as explained in refs. [2, 7, 8], then make ε tend to zero first and E tend to zero last.

It is convenient to apply the prescription after separating the graviton poles from the fakeon

poles by means of a partial fractioning. Specifically, we use formulas such as

1

z(1− az)
=

1

z
+

a

1− az
,

1

z2(1− az)(1− bz)
=

1

z2
+
a+ b

z
+

1

a− b

(
a3

1− az
− b3

1− bz

)
,

(4.2)

etc., with z = p2, a = α/ζ and b = ξ/ζ, to decompose the propagator (4.1) as the sum

〈hµν(p)hρσ(−p)〉0 = 〈hµν(p)hρσ(−p)〉0grav + 〈hµν(p)hρσ(−p)〉0fake (4.3)

of a graviton part plus a fake part, where the graviton part collects the poles at p2 = 0,

while the fake part collects the poles at p2 = ζ/α and p2 = ζ/ξ. Once we apply the

graviton/fakeon prescription as explained above, we obtain

〈hµν(p)hρσ(−p)〉0grav =
i

2ζ(p2 + iε)

[
Iµνρσ +

(α− ξ)$µν$ρσ

3ζ2

(
ζ

p2 + iε
+ α+ ξ

)]
,

〈hµν(p)hρσ(−p)〉0fake =
iαIµνρσ(ζ − αp2)

2ζ[(ζ − α(p2 + iε))2 + E4]

+
i$µν$ρσ

6ζ3

(
α3(ζ − αp2)

(ζ − α(p2 + iε))2 + E4
− ξ3(ζ − ξp2)

(ζ − ξ(p2 + iε))2 + E4

)
.

– 9 –



J
H
E
P
0
5
(
2
0
1
8
)
0
2
7

We compute the absorptive part of the graviton self energy at ΛC = 0. Recall that the

absorptive part of an amplitude is equal to its imaginary part, so the one of a diagram is

equal to minus its real part. The calculation involves three bubble diagrams with external

legs hµν . The loop can be made of scalar fields, Faddeev-Popov ghosts or hµν itself.

The scalar contributions are not interested by the fakeons, so they coincide with those of

Einstein gravity. The same conclusion applies to the contributions of the Faddeev-Popov

ghosts, as is evident by working with the action (2.9). So, we focus on the bubble diagram

of the metric fluctuation hµν .

Now we prove that the fakeons do not affect the real part of this diagram, so we

can drop them and replace the propagators (4.1) with 〈hµν hρσ〉0grav. The hµν bubble

diagram obviously contains two propagators. Decomposing each of them as shown in

formula (4.3), we obtain the sum of three terms: (i) the pure graviton contributions,

where each propagator is replaced by its graviton part 〈hµν hρσ〉0grav; (ii) the pure fakeon

contributions, where each propagator is replaced by its fakeon part 〈hµν hρσ〉0fake; (iii) the

mixed contributions, where one propagator is replaced by its graviton part and the other

propagator is replaced by the fakeon part.

The contributions of type (ii) and (iii) can be dropped, because they are purely imag-

inary. To see this, recall that the diagram must be calculated in the Euclidean framework

and then nonanalytically Wick rotated as explained in refs. [2, 7, 8]. Moreover, we must

first work at finite E , let ε tend to zero while E is finite and nonzero, and finally let E
also tend to zero. Varying the energy p0 of the external momentum p, the poles of the

propagators may pinch the integration domain. When p0 is located below the thresholds of

the pinchings, the result of the loop integral is purely imaginary. Indeed, an overall factor

i is brought by the residue theorem, applied to the integral on the loop energy k0. After

that, the iε prescription is redundant below the thresholds, which allows us to let ε→ 0 at

the level of the integrand. Since the integrand is real in this limit, the result of the integral

is purely imaginary.

In case (iii), no threshold is located on the real p0 axis for E > 0, ε → 0, since the

pinchings occur far away (at a distance roughly equal to E). Then, the Wick rotation is

analytic for real p and the result is purely imaginary (for every E > 0 and so also when E
tends to zero).

In case (ii) the iε prescription is redundant from the beginning, because only the

fakeons circulate in the loop. Some thresholds of the pinchings lie on the real axis of the

complex p0 plane. Again, the result is purely imaginary below the thresholds. We can reach

the regions above the thresholds by means of the average continuation [2, 7, 8], which is

the arithmetic average of the two analytic continuations that circumvent the thresholds.

Clearly, the average continuation of a function that is purely imaginary in a real interval

of the complex p0 plane, is purely imaginary on the entire real p0 axis.

In conclusion, we can concentrate on the contributions of type (i), which can be eval-

uated by using 〈hµν hρσ〉0grav as the propagator of hµν . If we make some further steps, we

can prove that the surviving contributions are uniquely determined by the divergent part

of the graviton self energy, calculated in the low-energy expansion, which means expanding

the action SHD of formula (2.1) around the Hilbert term
∫ √
−gR and treating the param-
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eters α and ξ perturbatively. At the same time, the result obtained with this method is

exact in α and ξ.

To show these properties, we first make some observations about the expansion in

question. It can be worked out by starting from the self energy diagram studied in the

previous section and expanding its integrand in powers of α and ξ. Since the vertices

depend on such parameters polynomially, it is sufficient to concentrate on the expansions

of the propagators. When we expand the propagator (4.1), or its ω 6= −1/2 version, we

just obtain poles at p2 = 0. It is sufficient to truncate the expansion of the propagator

to the quadratic order in α and ξ, because higher powers simplify the poles and just

multiply polynomials of the momentum. Inside the bubble diagram, these corrections give

massless tadpoles (polynomials times a single massless propagator) and are set to zero by

the dimensional regularization.

It is obvious [and easy to check, using formulas of type (4.2)] that the propagator,

once truncated to the quadratic order in α and ξ, coincides with 〈hµν hρσ〉0grav, up to

polynomials, which, again, are negligible for our purposes. Thus, the absorptive part of

the graviton self energy can be calculated by means of the low-energy expansion. It remains

to show that it is uniquely determined by the divergent part.

Since no parameters of positive dimensions in units of mass are present (the cosmo-

logical constant being set to zero), the result of the loop integral, calculated by expanding

the integrand in α and ξ, must be a polynomial times ln(−p2), where p is the external mo-

mentum. Then it is clear that the divergent part and the absorptive part of the diagram

are unambiguously related to each other. A quick way to see this is by means of the chain

of relations

1

ε
→ 1

2
ln Λ2 → 1

2
ln

Λ2

−p2
→ −1

2
ln(−p2)

prescr−→ −1

2
ln(−p2 − iε) abs−→ i

π

2
θ(p2). (4.4)

The first arrow relates the poles of the dimensional regularization to the logarithms of

an ordinary cutoff Λ. The second and third arrow relate them to the logarithms of the

external momentum p. The fourth arrow restores the Feynman prescription (which is the

only prescription to be used at this point, since no fakeons have survived). The last arrow

extracts the contribution to the absorptive part.

To summarize, the absorptive part of the graviton self energy can be calculated from

the divergent part of the expansion in powers of α and ξ and the result is exact in α

and ξ. Thanks to this, the outcome is guaranteed to be gauge invariant (after applying

field redefinitions and procedures analogous to the ones described in the previous section,

adapted to the power counting of the low-energy expansion).

Note that we have slightly modified the prescription given ref. [1] to make gauge

invariance manifest. Strictly speaking, the widths ε and E break gauge invariance, which

must be recovered in the limit ε→ 0 followed by E → 0. In general, it might be necessary to

add corrections proportional to ε and/or E to implement the recovery of gauge invariance.

The graviton/fakeon prescription formulated in this section is optimized to make this extra

effort unnecessary.
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Let us comment on how the chain of relations (4.4) is modified in the case of the

fakeons. There we have

1

ε
→ 1

2
ln Λ2 → 1

2
ln

Λ2

−p2
→ −1

2
ln(−p2)

prescr−→ −1

4
ln(−p2)2 abs−→ 0, (4.5)

so no absorptive part survives. The explanation of the fourth arrow can be found in ref. [1]

and amounts to the fakeon prescription. In practice, the ultraviolet behavior of a two-point

function is governed by two types of logarithms of the momentum. One, ln(−p2 − iε), is

inherited from the Feynman prescription, which is associated with the physical degrees of

freedom. The other one, (1/2) ln(p2)2, is inherited from the fakeon prescription. From the

point of view of the ultraviolet divergences, they are both equal to −2/ε, which is why

we had to use the tricks described above to disentangle them. Their difference gives the

absorptive part, due to the identity

− ln(−p2 − iε) +
1

2
ln(p2)2 = iπθ(p2). (4.6)

Because of the fakeons, the imaginary and real parts of a loop diagram are unrelated

to each other. The divergent part obeys the renormalizable power counting of the higher-

derivative theory, while the absorptive part obeys the (nonrenormalizable) power counting

of the low-energy expansion and is consistent with unitarity. Contributions of higher dimen-

sions (multiplied by large powers of α and ξ) can appear in the absorptive part, multiplied

by either side of (4.6), without affecting the divergent part. This is the basic mechanism

by means of which the fakeons make renormalization and unitarity compatible with each

other, in the limit of vanishing cosmological constant.

At this point, the calculation is straightforward. With the help of field redefinitions of

the form

∆gµν = κ3 iπ

2
θ(−�) [−2a1�hµν − a2ηµν�h− a3ηµν∂

ρ∂σhρσ − a4∂µ∂νh

− 2a5(∂µ∂
ρhρν + ∂ν∂

ρhρµ) + a6∂µ∂ν∂
ρ∂σhρσ] , (4.7)

where ai, i = 1, . . . 6, are functions of �, the absorptive part of the graviton self energy is

encoded into the contribution

Γabs =
iNsµ

−ε

120(16π)

∫ √
−g
[
Rµνθ(−�c)R

µν +
1

2
Rθ(−�c)R

]
−
∫
δSHD

δgµν
∆gµν (4.8)

to the functional Γ, where �c = gρσDρDσ is the covariant D’Alembertian, Dρ being the

covariant derivative. The coefficients of the field redefinitions (4.7) are rather lengthy, so

we just report them in the simple case ω = −1/2:

2160a1(4π)2ζ6 = −α(α2 − ξ2)2�5 − ζ(α− ξ)2(23α2 + 24αξ + ξ2)�4

−2ζ2(115α3 − 99α2ξ − 27αξ2 + 11ξ3)�3

+4ζ3(89α2 − 106αξ + 17ξ2)�2 + 72ζ4(2α+ ξ)�− 4392ζ5,

3240a2(4π)2ζ6 = (α+ 5ξ)(α2 − ξ2)2�5 + 4ζ(α− ξ)2(7α2 + 6αξ − ξ2)�4

+4ζ2(α− ξ)2(55α+ 38ξ)�3 − 48ζ3(7α2 − 53αξ + 46ξ2)�2

+432ζ4(3α+ 29ξ)� + 9072ζ5,

9(a2 + a3)(4π)2ζ6 = −2ζ4(α− ξ)�. (4.9)
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Their ω-dependent expressions can be found at http://renormalization.com/Math/QG.

The other coefficients of the field redefinition remain undetermined.

Adding (massless) matter fields of all types and using the results of refs. [30–32],

formula (4.8) turns into

Γabs =
iµ−ε

16π

∫ √
−g
[
c

(
Rµνθ(−�c)R

µν − 1

3
Rθ(−�c)R

)
+
Nsη

2

36
Rθ(−�c)R

]
−
∫
δSHD

δgµν
∆gµν , (4.10)

where ∆gµν is unmodified,

c =
1

120
(Ns + 6Nf + 12Nv)

is known as “central charge” (Nf being the numbers of Dirac fermions plus one half the

number of Weyl fermions and Nv being the number of massless vectors) and η is related

to the coefficient of the nonminimal coupling of the scalar fields, obtained by extend-

ing (3.14) into

Ss =
1

2

Ns∑
i=1

∫ √
−g
[
gµν(∂µϕ

i)(∂νϕ
i) +

1

6
(1 + 2η)Rϕi2

]
.

Note that formula (4.10) is nonlocal, because it is the convergent part of an amplitude.

Since the nonlocality is just due to the θ function, we can call it piecewise local. We recall

that the amplitudes satisfy nonlocal WTST identities, encoded into the Γ master equa-

tion (2.4). Although the field redefinitions and the symmetry transformations involved in

such identities are nonlocal, their nonlocalities are under control, because they are gener-

ated by other kinds of amplitudes. See [33] for details on the general theory and references.

We stress again that formulas (4.8), (4.9) and (4.10) are exact in α and ξ, even if we

worked them out by means of an expansion. The results (4.8) and (4.10) are gauge invariant

and gauge independent, as they should, apart from the last term, which vanishes on the

solutions of the SHD field equations. In particular, we have verified that every dependence

on ω can be absorbed into a suitable ∆gµν . On the other hand, the contributions of the

matter fields cannot be absorbed into a piecewise local redefinition ∆̄gµν of the metric

tensor, because they do not vanish on the solutions of the SHD field equations.

It is worth to point out that when the Feynman prescription is used for all the poles

of the free propagators, which is what is done in the ordinary approaches [15–20, 24], the

absorptive part of the graviton self energy receives nontrivial contributions from the spin-2

ghosts. This proves that the graviton/fakeon prescription leads to a different theory.

Finally, we can check that the physical degrees of freedom are indeed the graviton

and the matter fields by showing that the graviton self energy satisfies the correct optical

theorem. At the perturbative level, the optical theorem and the unitarity equation SS† = 1

are encoded into the so-called cutting equations [34, 35]. Since the absorptive part of the

graviton self energy is determined by the low-energy expansion, it satisfies the cutting

equations of that expansion, which are consistent with unitarity at vanishing cosmological

constant [36]. Then, the cut propagators of the complete theory, which encode the physical

spectrum, coincide with those of the low-energy expansion, which are determined by the

– 13 –
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Hilbert term and the matter action. Thus, they receive contributions from the graviton

and the matter fields, but not the fakeons.

5 Conclusions and outlook

In this paper we have studied the theory of quantum gravity proposed in ref. [1], by

computing its renormalization at one loop and the absorptive part of the graviton self

energy. The theory is the unique strictly renormalizable one of a larger class of theories,

where the ghosts are eliminated by turning the poles of the free propagators that are due

to the higher derivatives into fakeons. The fakeons are degrees of freedom that contribute

to the correlation functions (to the extent that they make the theory renormalizable) but

disappear from the physical spectrum, saving perturbative unitarity.

The renormalization coincides with the one of the Euclidean version of the theory

and the results we have found are consistent with those that can be found the literature.

Without making use of the background field method, we managed to save the calculation

of the diagrams with three external graviton legs by computing the renormalization of

the symmetry transformations and using the WTST identities. We have extended the

results available in the literature by computing the first nonlinear corrections to the field

renormalizations of the metric tensor and the Faddeev-Popov ghosts.

The absorptive part of the graviton self energy is a key quantity to appreciate the

crucial differences between the theory of quantum gravity studied here and other quantiza-

tions of the same classical action. At zero cosmological constant, a number of tricks allow

us to relate it to the renormalization of the theory expanded around the Hilbert term. The

final result is the sum of a term proportional to the central charge c of the matter fields

coupled to gravity, plus a term due to the nonminimal coupling of the scalar fields, plus

corrections that vanish on the solutions of the field equations. The correct optical theorem

is satisfied, with no contributions from the fakeons.

We conclude by mentioning some interesting outlooks. With some additional effort,

the calculation of the absorptive part can be extended to ΛC 6= 0. However, contributions

similar to those of massive tadpoles (which are divergent, but have no absorptive part) are

present, so the relation (4.4) cannot be applied straightforwardly. Since the free propagator

〈hµνhρσ〉0 has a massive scalar pole with a positive residue, another interesting possibility is

to let the theory propagate an additional massive scalar field, which was implicitly turned

into a fakeon in this paper.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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