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1 Introduction

The idea that black holes can behave as thermodynamical objects, with a finite tempera-

ture and entropy has been one of the most fascinating yet perplexing breakthroughs in our

understanding of these strongly gravitating objects [2–4]. Not only does this insight give

consistency to thermodynamical systems in gravity, but it also gives a concrete arena for

exploring quantum gravitational effects in a controlled fashion. Thermodynamical consid-

erations also give us key insights into classical aspects of black holes in general relativity,

a nice example being the black string instability [5, 6], where the onset of a classical insta-

bility of black brane solutions in higher dimensional gravity occurs at the point where the

entropy of the black brane drops below that of a black hole. More generally, it seems there

is a link between thermodynamic and dynamical stability of black holes and branes [7–9].

Perhaps most pertinent for the discussion here however, are the properties of black holes

in anti de Sitter (AdS) space, where thermal equilibrium is straightforwardly defined [10]

and physical processes correspond via a gauge/gravity duality to a strongly coupled dual

thermal field theory [11].

Given the central importance of black hole thermodynamics in theoretical gravity, it

is surprising that until recently only the thermodynamics of relatively simple systems had

been explored. Although our catalog of exact black hole solutions is limited (mostly) to

isolated gravitating systems, there is a class of intriguing exceptions, given by axisym-

metric solutions to the Einstein equations [12, 13], including axisymmetric multiple black

holes [14–18], black holes in magnetic flux tubes (including a study of thermodynamics) [19–

21], and most pertinently for our discussion, the accelerating black hole. This last example

has an exact solution known as the C-metric [22, 23], corresponding to a black hole with

a conical deficit emerging from one pole, or unequal conical deficits emerging from each
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pole. Since it can be shown that the conical deficit can be replaced by a finite width

topological defect [24], the physical interpretation of the geometry is that there is a cosmic

string ‘pulling’ the black hole, thus accelerating it to infinity. Although this system does

not represent an isolated black hole, it is nonetheless a legitimate gravitational solution

that should be subject to the usual laws of black hole thermodynamics.

In [1], we made a preliminary step towards studying thermodynamics of accelerating

black holes by considering fixed tension deficits in the context of slowly-accelerating black

holes in AdS space (see also [25–27]). We discovered that the first law of thermodynamics

was still valid, provided one identified the mass of the black hole appropriately normalised

by the conical deficit. The fixing of tension was physically motivated by imagining that

the black holes were accelerated by cosmic strings: topological defect solutions to some

quantum field theory [28] whose tension is typically quantised in terms of the parameters

of this underlying theory, and as such can only vary in discrete amounts (and only by

having the underlying topological invariant also vary).

However, stepping back from this specific manifestation of the C-metric, we can at least

pose the question of what happens if we do allow the tension to vary. Even with physical

cosmic strings replacing the conical deficit, one can still imagine a possible scenario in which

tension could jump as the merger of two accelerating black holes along a polar axis, initially

with one conical deficit angle between the black holes, and a larger conical deficit emerging

from the second black hole. Indeed, initial investigations of the interactions and capture of

cosmic strings by black holes studied precisely the thermodynamics of the system of a black

hole with a string [29–31] (although in these cases, the black holes were not accelerating).

Thus, allowing a cosmic string to have varying tension would appear to be a desirable

feature in a full exploration of the thermodynamics of accelerating black holes.

In this paper we formulate laws of accelerating black hole thermodynamics, allowing

for a varying tension. We perform our analysis in AdS in order to utilise solutions that have

only one horizon, although the first law we derive will still apply to any horizon locally. To

some extent, this is matter of technical convenience; we define temperature via a process of

Euclideanization thus if more than one horizon is present, the Euclidean section will contain

conical singularities. These Euclidean conical singularities are distinct from those of the

accelerating black holes of the C-metric — they are not the result of sources, but instead

should be viewed as necessary singularities arising from analytic continuation. They reflect

the fact that different horizons can be at different temperatures (though can be integrated

in a controlled fashion [32]).

We first present thermodynamics of black holes with varying conical deficit in the

absence of acceleration, partly as a warm-up exercise, but more importantly to motivate

and isolate the impact of a varying tension deficit. We show that the correct first law of

thermodynamics includes a “λδµ” term, where µ is the tension of the deficit, and λ the

corresponding thermodynamic potential. We then turn to the charged accelerating black

hole and derive the general first law for accelerating black holes:

δM = TδS + V δP + ΦδQ− λ+δµ+ − λ−δµ− (1.1)

allowing not only variation of entropy and charge, but also the cosmological constant

(encoded in the thermodynamic pressure P [33–39]) and allowing the tensions along each
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axis µ± to vary independently. We derive the corresponding thermodynamic lengths for

each tension, as well as the appropriate expressions for the normalised thermodynamic

mass and electromagnetic potential. Analogous to the rotating AdS black hole [40], we

find that the electromagnetic potential and thermodynamic mass are modified beyond the

simple geometric conical deficit factor. Finally, we explore the physical consequences of

our results.

2 Thermodynamics with conical deficits

Before discussing the accelerating black hole, it is interesting to revisit the thermodynamics

of a black hole with a ‘cosmic string’: a spacetime first studied by Aryal, Ford and Vilenkin

(AFV) [30]. AFV considered a conical deficit through a Schwarzschild black hole:

ds2 = f(r)dt2 − dr2

f(r)
− r2dθ2 − r2 sin2 θ

(
dφ

K

)2

(2.1)

where f(r) = 1− 2m/r. They considered a first law of thermodynamics to argue that the

entropy of the black hole remained at one quarter of its area, now containing a factor of

K: S = πr2
+/K. The thermodynamics of a black hole with a string was also considered

in greater thoroughness by Martinez and York [29], although the ‘tension’ of the cosmic

string, (defined later in (2.4)) was held fixed. The only context in which a ‘varying’ tension

was considered was in [31], where the varying tension was produced by the capture of a

moving cosmic string by a black hole, and it was argued that in the collision of a black

hole and cosmic string, the black hole would retain a portion of the string thus increasing

its mass.

We will revisit this static system first, as a means of exploring the impact of varying

tension on black hole thermodynamics. We will consider a charged black hole represented

by the metric (2.1), with

f(r) = 1− 2m

r
+
e2

r2
+
r2

`2
, and B = −e

r
dt . (2.2)

The parameters m and e are related to the black hole’s mass and charge respectively, B is

the Maxwell potential, and we allow for a negative cosmological constant via ` =
√
−Λ/3.

In order to treat varying tension we leave the parameter K in (2.1) unspecified. Typ-

ically, this parameter would simply be unity (or a function of rotation in the Kerr-AdS

case), however, by keeping K explicitly in the metric we can study conical defects through

a well-behaved system in a straightforward manner.

Examining the geometry near θ+ = 0 and θ− = π reveals how the parameter K relates

to the conical defect. Near the poles, the metric becomes

ds2
II = r2

[
dϑ2 +

ϑ2

K2
dφ2

]
, (2.3)

on surfaces of constant t and r, where ϑ = ±(θ − θ±) is the ‘distance’ to either pole. If

K 6= 1, there will be a conical defect along the axis of revolution, which corresponds to a
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cosmic string of tension

µ =
δ

8π
=

1

4

[
1− 1

K

]
, (2.4)

where δ is the conical deficit. The interpretation of tension is justified by analysing the

equations of motion for an actual cosmic string vortex in the presence of a black hole [41],

where (2.1) was obtained as the asymptotic form of the metric outside the string core. A

tensionless string corresponds to a regular pole, K = 1, and in this metric, the tension

along either polar axis is equal, allowing simultaneous regularisation of the two poles. The

static black hole is inertial, as the deficits balance each other out. This exercise provides

insight into the role K plays within a metric. Different values for this parameter determine

the severity of an overall defect running through the black hole.

Now let us consider the temperature and entropy of the black hole. We compute T by

demanding regularity of the Euclidean section of the black hole [42], giving

T =
f ′(r+)

4π
=

1

2πr2
+

[
m− e2

r+
+
r3

+

`2

]
(2.5)

thus

2TS =
m

K
− e

r+

( e
K

)
+ 2

(
3

8π`2

)(
4π

3K
r3

+

)
= M − ΦHQ+ 2PV (2.6)

gives a Smarr formula [43] for the black hole, where M = m/K is the mass of the black

hole, Q = 1
4π

∫
?dB = e/K is the charge on the black hole, ΦH = e/r+ the potential at

the horizon, and P = 3/8π`2, V = 4πr3
+/3K the thermodynamic pressure and volume

respectively [33–39].

Now let us consider the effect of changing the parameters of the black hole a small

amount; the location of the horizon of the black hole will also shift so that (f + δf) = 0 at

(r+ + δr+):

0 = f ′(r+)δr+ −
2δm

r+
+

2eδe

r2
+

− 2r2
+

δ`

`3
(2.7)

However, we can now replace the variation of the parameters m, e, ` with the variation

of the corresponding thermodynamic charges M,Q,P , and the variation of r+ with that

of entropy, with the important proviso that we must allow for the variation of tension

through K. Thus δm = KδM + MδK etc. and δK = 4K2δµ from (2.4). After some

rearrangement, (2.7) gives our first law of Thermodynamics with varying tension:

δM = TδS + V δP + ΦHδQ− 2λδµ (2.8)

where

λ = (r+ −KM) (2.9)

is a thermodynamic length conjugate to the string tension. This is the central result of

our paper — that string tension (in this case equal along each axis) can be thought of as

analogous to a thermodynamic charge that therefore has a corresponding thermodynamic

potential. Rather than write a single “λδµ” term, instead we write two “λδµ” terms,

referring to the deficits emerging from each pole. Although these are obviously equal in
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this case, for accelerating black holes the string tensions from each pole are not the same,

and we therefore separate these out now.

Surprisingly perhaps, this thermodynamic length is not simply the geometric length r+

of the string from pole to singularity. Instead, the mass-dependent adjustment emphasises

this is a potential, rather than just an internal energy term that might more appropriately

be placed on the left hand side of the equation.

To see why this is the case, consider the first law in action: the capture, and subsequent

escape, of a cosmic string by a black hole. This example was first proposed in [31] in the

case of a charged vacuum black hole. The idea is that the string is moving and gets briefly

captured by the black hole. In the capture process, the internal energy of the black hole

should remain fixed: the physical intuition is that if a cosmic string were to pass through

a spherical shell of matter, energy conservation would demand that the spherical shell still

have the same total energy throughout the process, thus either it would become denser, or

its radius would increase. Of course, in the case of the spherical shell, the cosmic string

would simply transit through, leaving the system. For the black hole however, we will see

this is not the case, and we have the interpretation of a segment of string having been

captured by the black hole, with the black hole increasing its mass accordingly. (This

process was considered in the probe limit in [44, 45].) We therefore consider the vacuum

Reissner-Nordstrom (RN)

f(r) = 1− 2m

r
+
e2

r2
(2.10)

with the charge of the black hole being defined via Q = e/K, and the electric potential

being Φ = e/r+.

Let us suppose that the string is light, or µ� 1, then in the first stage where the black

hole captures the string, fixing M and Q implies δm = 4mδµ and δe = 4eδµ (to first order

in µ). Thus

TδS =
r+ − r−

4πr2
+

[
2πr+δr+ − 4πr2

+δµ
]

= (r+ − r−)δµ = 2λδµ (2.11)

as required. Interestingly, because the internal energy has been fixed, the event horizon

has to move outwards to compensate for the conical deficit. Since the entropy contains just

one factor of K, but two of r+, the net effect is an increase of entropy, indicating this is

an irreversible thermodynamic process. The one interesting exception being an extremal

black hole.

In the second step, the string pulls off the black hole, so δµ = −µ, and since the string

is uncharged, δQ must remain zero, and e returns to its original value. However, since

entropy cannot decrease, M must increase

δM = TδS + 2(r+ −m)µ =
(r+ − r−)δr+

2r+
+ 2(r+ − r−)µ (2.12)

In [31], we supposed that m did not change, leading to an increase in M of 4mµ, that

we incorrectly stated was the mass of the string behind the event horizon (this is only

true for the uncharged black hole). Instead, it seems more physically accurate to suppose
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that r+ does not decrease, as otherwise the local geodesic congruence defining the event

horizon would appear to be contracting in contradiction to the area theorem. In this case,

δM = 2(r+ − r−)µ, or the length of cosmic string trapped between the inner and outer

horizons. Even if one allows the local horizon radius to shrink while maintaining constant

entropy, δM = (r+ − r−)µ: half the former amount, but still an increase of mass due to

the capture of a length of cosmic string.

3 Thermodynamics of the C-metric

We would now like to turn to the more general case where the deficits emerging from

each pole are no longer equal. The disparity in the size of the deficit produces an overall

force in the direction of the largest conical deficit, and the geometry is described by the C-

metric [22, 23, 46–48]. Typically, C-metrics have both black hole and acceleration horizons,

however, for simplicity we wish to restrict ourselves to having only the black hole horizon,

in order that we have a well-defined temperature for the space-time. Such a geometry

is called the slowly-accelerating C-metric [48], and we first review this geometry before

turning to its thermodynamics.

3.1 The slowly-accelerating C-metric

In this subsection we briefly review the “slowly accelerating” C-metric. The general C-

metric [22, 23, 46, 47] represents either one or two accelerating black holes with unequal

conical deficits extending from each pole of the black hole either to infinity or an acceleration

horizon. Although the C-metric is well-known among relativists, there are features of the

specific form we will be using that are worth highlighting, discussing how they depend on

the parameters of the solution.

For this paper, we will neglect rotation, hence the general charged, accelerating AdS

black hole is represented by the metric and gauge potential [47]:

ds2 =
1

Ω2

{
f(r)dt2 − dr2

f(r)
− r2

[
dθ2

g(θ)
+ g(θ) sin2 θ

dφ2

K2

]}
, B = −e

r
dt, (3.1)

where

Ω = 1 +Ar cos θ , (3.2)

is the conformal factor that will determine the location of the AdS boundary (which is not

at “r =∞”) in terms of the {r, θ} coordinates, and the functions f(r), g(θ) are

f(r) =
(
1−A2r2

)(
1− 2m

r
+
e2

r2

)
+
r2

`2
,

g(θ) = 1 + 2mA cos θ + e2A2 cos2 θ .

(3.3)

Note we are using the Hong-Teo [49] style coordinates that have a direct relation to the

usual Boyer-Lindquist coordinates for the Kerr metric.
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This spacetime has potential conical singularities on the axes θ+ = 0 and θ− = π. As

before, we associate these conical singularities to cosmic strings with tensions µ± = δ±/8π,

where δ± are the conical deficit angles at each pole, found by expanding near θ = θ±:

4µ± = 1− g(θ±)

K
= 1− 1

K

(
1± 2mA+ e2A2

)
(3.4)

Clearly, µ+ ≤ µ− ≤ 1/4, and in order to avoid negative tension defects, we require µ+ ≥ 0.

For the majority of the paper, we fix K by demanding that one axis be regular (µ+ = 0),

and the other to have a positive tension cosmic string, i.e.

K = g(θ+) = 1 + 2mA+ e2A2 ⇒ µ− =
mA

K
(3.5)

however in the interest of generality we will keep µ+ and µ− as independent variables.

In order to understand the structure of this accelerating black hole, it is useful to

consider the effects of the various parameters. Although we suspect m and e play the roles

of mass and charge for the black hole, the original form of the C-metric has these variables

defined slightly differently. In order to check this, consider the Komar integral for the mass

using the method described in [50]

MK =
1

8π

∫
S2

?dξ − 1

4π

∫
naR

a
b ξ
b
√
hd3x =

m

K
(3.6)

where ξ = ∂t is a timelike Killing vector field, the first integral is performed over a {θ, φ}
surface of topology S2 considered to be near infinity, and the second integral is performed

throughout the interior of this surface at constant ‘time’ (as defined by ξ). Note this

integral is actually independent of A, hence we can associate m with the bare mass of

the black hole, whether accelerating or not. Similarly, e is related to the charge of the

black hole:

Q =
1

4π

∫
S2

?dB =
e

K
(3.7)

We have already seen how the parameter K is related to the conical deficits, thus

the only remaining parameter to explore is A. In order to understand the structure of

the spacetime and the relevance of A, first consider the Rindler space found by setting

m = e = 0 in (3.1):

ds2 =
1

Ω2

[(
1 +

r2

`2
(
1−A2`2

))
dt2 − dr2

1 + r2

`2
(1−A2`2)

− r2
(
dθ2 + sin2 θdφ2

)]
(3.8)

This spacetime no longer has a conical singularity and is locally pure AdS, however in these

coordinates the boundary of AdS is not at r = ∞, but at r = −1/(A cos θ). For θ in the

southern hemisphere, this occurs at finite r, but in the northern hemisphere r = ∞ lies

within the AdS spacetime (see figure 1). To transform to global AdS coordinates {R,Θ},
one takes [48]

1 +
R2

`2
=

1 +
(
1−A2`2

)
r2/`2

(1−A2`2) Ω2
; R sin Θ =

r sin θ

Ω
(3.9)
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θ=π/4

θ=0

θ=π

θ=π/2

θ=3π/4

AdS Boundary

�=ℓ

�=ℓ/�

�=�ℓ

�=��ℓ

r=∞

Figure 1. Left : the slowly-accelerating Rindler spacetime shown here with A` = 1/4, and ` = 1

for simplicity. The spatial sections of AdS have been compactified to a Poincaré disc, with the

constant r Rindler coordinate indicated in black and constant θ in blue. The origin of the Rindler

coordinates is clearly visible as being displaced from the centre of the disc, with the limit of the

r−coordinate being the thick dashed black line. Right : the black hole distorts the Poincaré disc

with a conical deficit, and is displaced from the origin of AdS. The spacetime is again static, and

a cross section is shown.

the boundary, R → ∞ now clearly corresponds to Ω → 0, and the origin of Rindler

coordinates corresponds to R0 = A`2/
√

1−A2`2, i.e. the Rindler coordinates represent

those of an observer displaced from the origin of AdS, clearly requiring A` < 1. If A` =

1, (3.8) simply becomes the Poincaré patch of AdS, with a horizon appearing at z =

r cos θ = −`. The C-metric with A` = 1 was considered in [51].

Adding in a black hole now introduces a conical singularity as described above, as well

as a black hole horizon f(r+) = 0, given by a rather unhelpful algebraic expression. If

A` > 1, the black hole will have an acceleration horizon at large r, and if A` < 3
√

3/4
√

2 '
0.919, there is only the black hole event horizon present in the spacetime. However, as

a consequence of picking the Hong-Teo coordinates and parametrisation, the boundary

between having or not having an acceleration horizon no longer lies at a single value of

A`,1 but is instead determined by a mass dependent relation. For 3
√

3/4
√

2 < A` < 1,

there can be an acceleration horizon beyond r = ∞ for suitable values of mA < 1/2.

Typically, in holographic applications, the conical deficit of the C-metric is desired to be

cloaked by such an horizon [52], however, in our case we are interested in thermodynamics,

so to keep our thermodynamic variables unambiguous, we will take A sufficiently small so

1Note that in the traditional C-metric, the delineation between having an acceleration horizon and not

is Ã` = 1 (considered in [51]), however, this is not the same acceleration parameter as in the Hong-Teo

description.

– 8 –



J
H
E
P
0
5
(
2
0
1
7
)
1
1
6

that we have a single horizon, that of the black hole, and thus a well-defined temperature

corresponding to the periodicity of Euclidean time at the regular Euclidean black hole

horizon. We refer to this as a slowly-accelerating black hole, and for clarity in plots we

will simply indicate this boundary as the value A` = 1. A comprehensive exploration of

the structure of AdS C-metric spacetimes, including their distortion of the boundary, was

given in [53].

3.2 Thermodynamics of the slowly-accelerating C-metric

In this section we perform a similar analysis to that of the string threading the black hole,

but now we must allow for the tension of each of the conical deficits of the C-metric to vary.

We start by finding the temperature and entropy of the black hole using the conventional

relations2

T =
f ′(r+)

4π
=

1

2πr2
+

[(
1−A2r2

+

)(
m− e2

r+

)
+

r3
+

`2
(
1−A2r2

+

)]

S =
Area

4
=

πr2
+

K
(
1−A2r2

+

) . (3.10)

Checking the Smarr relation, we compute

2TS =
m

K
− e2

Kr2
+

+
r3

+

K`2
(
1−A2r2

+

)2 (3.11)

The charge of the black hole is given by (3.7), Q = e/K, and defining

V =
4πr3

+

3K
(
1−A2r2

+

)2 (3.12)

as the modified thermodynamic volume, we obtain

m

K
= 2TS +QΦH − 2PV . (3.13)

Although it is tempting to identify M = m/K, this would be to ignore the asymptotics of

the spacetime. The experience of the rotating AdS black hole [40] is that thermodynamic

potentials should be normalised at infinity, and in the case of rotation, the Boyer-Lindquist

coordinates give a boundary that is rotating. Subtracting off this rotation leads to an extra

renormalisation of the thermodynamic mass, a correct Smarr formula and correct first law.

Here, however, we cannot simply perform a similar electromagnetic gauge transforma-

tion. Our electrostatic potential no longer vanishes at infinity, and our boundary has an

electric flux from pole to pole

F = eA sin θ dt ∧ dθ (3.14)

We obviously cannot subtract this charge, as that would be a physical change, but it

does lead us to suspect that there may be a renormalization of electrostatic potential and

2See [18] for a discussion of the area law in the presence of conical singularities.
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thermodynamic mass. We will show how to do this presently, but first consider just the

uncharged black hole, and consider variations in the position of the horizon as in (2.7):

δf(r+) = f ′+δr+ − 2
δm

r+

(
1−A2r2

+

)
− 2AδAr+ (r+ − 2m)− 2

r2
+

`3
δ` = 0 (3.15)

The procedure is similar to the previous section, but we now have more algebra involved

in the variation of the thermodynamic parameters. For example, in relating δr+ to δS,

we have:

δS =
2πr+δr+

K
(
1−A2r2

+

)2 +
2πr4

+AδA

K
(
1−A2r2

+

)2 − πr2
+(

1−A2r2
+

) δK
K2

(3.16)

where our expressions for the tensions (3.4) give

δK

K2
= 2 (δµ+ + δµ−) ;

m

K
δA = −

[
δµ+ − δµ− +Aδ

(m
K

)]
. (3.17)

Defining M = m/K, after some algebra one gets

δM = V δP + TδS − δµ+

[
r+

1 +Ar+
−KM

]
− δµ−

[
r+

1−Ar+
−KM

]
. (3.18)

Thus, the accelerating black hole has the same thermodynamic first law as the non-

accelerating black hole, but now with a thermodynamic length for the piece of string

attaching at each pole:

λ± =
r+

1±Ar+
−KM (3.19)

This obviously agrees with (2.9) for the string threading the black hole, where r+ has now

been replaced by r+/Ω(r+, θ±) at each pole. Note, a remarkably similar expression was

obtained by Kastor and Traschen [54] in the context of a “Kaluza-Klein-like” gravitational

tension (see e.g. [55, 56]) associated to the rotational symmetry of the black hole.

Now let us consider the addition of charge. Following the same procedure of varying

the horizon as before leads to the relation

δ
(m
K

)
= TδS + V δP + ΦHδQ−

r+δµ+

1 +Ar+
− r+δµ−

1−Ar+
+
mδK

2K2
(3.20)

where now our expressions for the tensions lead to

m

K
δA = −δµ+ + δµ− −Aδ

(m
K

)
[
1− e2A2

] δK
2K2

= A2eδQ− e2A2

m
δ
(m
K

)
+ δµ+

[
1− Ae2

m

]
+ δµ−

[
1 +

Ae2

m

] (3.21)

Keeping an open mind, we define our thermodynamic mass and electrostatic poten-

tial as:

M = γ(e,A)
m

K
; Φ = ΦH − Φ0 (3.22)

where Φ0 is a correction, re-zeroing the potential, analogous to the correction of the angular

potential of the Kerr-AdS black hole, but without the corresponding interpretation of being

the value of the original potential at infinity.

– 10 –
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Next, we compare

δM = γδ
(m
K

)
+
m

K
(γeδe+ γAδA)

= γδ
(m
K

)
+mγeδQ+meγe

δK

K2
+ γA

m

K
δA

(3.23)

to

TδS + V δP + ΦδQ− λ+δµ+ − λ−δµ− = δ
(m
K

)
− Φ0δQ−

mδK

2K2

+

[
r+

1 +Ar+
− λ+

]
δµ+ +

[
r+

1−Ar+
− λ−

]
δµ−

(3.24)

where λ± are to be determined. After some algebra, we obtain

δM − TδS − V δP − ΦδQ+ λ+δµ+ + λ−δµ−

=
[(

1− e2A2
)
γ − 2e3A2γe −A

(
1− e2A2

)
γA − 1

] δ (m/K)

(1− e2A2)

+
[
m
(
1 + e2A2

)
γe +mA2e+

(
1− e2A2

)
Φ0

] δQ

(1− e2A2)

+

[
λ+ −

r+

1 +Ar+
− γA +

(2eγe + 1)

1− e2A2

(
m− e2A

)]
δµ+

+

[
λ− −

r+

1−Ar+
+ γA +

(2eγe + 1)

1− e2A2

(
m+ e2A

)]
δµ−

(3.25)

for our first law to hold, clearly the r.h.s. of this equation must vanish, leading to a con-

straint for γ:

(
1− e2A2

)
γ − 2e3A2γe −A

(
1− e2A2

)
γA = 1 ⇒ γ =

1

1 + e2A2
(3.26)

thus specifying our thermodynamic mass and determining Φ0 and λ±:

M =
m

K (1 + e2A2)

Φ0 =
meA2

1 + e2A2

λ± =
r+

1±Ar+
−
m
(
1− e2A2

)
(1 + e2A2)2 ∓

e2A

(1 + e2A2)

(3.27)

This is a rather unusual set of relations, the off-set of the electrostatic potential depends on

mass, and the thermodynamic mass depends on charge. We view this as a consequence of

the fact that for the accelerating black hole, the electric potential cannot be gauged away

at infinity — there is a polar electric field at the AdS boundary, thus mass and charge are

inextricably intertwined.

– 11 –
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4 The thermodynamic length

To recap, we have shown that allowing for a varying conical deficit in black hole spacetimes,

the first law of thermodynamics becomes

δM = TδS + V δP + ΦδQ− λ+δµ+ − λ−δµ− (4.1)

where the relevant thermodynamical variables are given in (3.27). In order to accommodate

varying tension, we have to define a thermodynamic length,

λ± =
r+

1±Ar+
−
m
(
1− e2A2

)
(1 + e2A2)2 ∓

e2A

(1 + e2A2)
(4.2)

for each conical deficit emerging from each pole. This length consists of a direct geometrical

part, a mass dependent correction, and finally, a shift in the presence of charge.

It is interesting to compare this mass-dependent shift of the thermodynamic length to

the correction of the thermodynamic volume for a rotating black hole [36, 57]:

V =
4π

3

{
r+

(
r2

+ + a2
)

K
+ a2M

}
(4.3)

In this case, the first term is the expected geometric volume of the interior of the black

hole, the second term being a rotation dependent correction. With this appropriately

shifted thermodynamic volume, the black hole always satisfies a Reverse Isoperimetric

Inequality [36], that is to say, the entropy of a black hole of a given thermodynamic volume

is always maximised for the purely spherical (Schwarzschild) black hole. (We verified

in [1] that the accelerating black hole satisfies the reverse isoperimetric inequality; allowing

tension to vary does not alter this result.)

Notice that the correction term for this thermodynamic volume is always positive,

whereas the correction term for thermodynamic length is actually negative. This means

that for large enough mass, the thermodynamic length itself becomes negative, as shown

in figure 2 for an uncharged black hole. The picture for a charged black hole is similar,

although the critical value of M for which λ− becomes negative is larger.

From figure 2, we see that the thermodynamic length becomes negative for ‘large’ black

holes, i.e. those for which the thermodynamic mass is of similar order (or higher) than the

AdS scale. Setting this in the context of the ‘cosmic string’ capture process considered

in section 2 for the vacuum black hole, this would mean that the thermodynamic mass

must increase during a capture, as entropy cannot decrease. This seems at first counter

to the notion that the string itself does not carry ‘ADM’ mass, however, the heuristic

argument of section 2 relies somewhat on the notion that a cosmic string and black hole

can be sufficiently separated so that one can consider their thermodynamical (and other)

properties independently. For large black holes in AdS this is manifestly not the case.

It is also interesting to compare these results for varying tension to our previous

work [1], where K and µ± were held fixed. With these assumptions, eA and mA were

– 12 –
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Figure 2. A plot of thermodynamic length of the south pole tension for regular north pole, µ+ = 0.

The limit of the Schwarzschild-AdS black hole is shown in pink (µ− = 0). The slowly-accelerating

régime, A` < 1, is shown as a solid line, and A` > 1 is shown dashed.

fixed, however, we did not alter the thermodynamic mass from m/K, nor the electrostatic

potential from ΦH . The two sets of results are consistent, since

Φ0Q =
me2A2

K (1 + e2A2)
=
m

K

[
1− 1

1 + e2A2

]
=
m

K
−M (4.4)

The shift in electrostatic potential multiplied by charge therefore balances the shift in

thermodynamic mass in both the Smarr formula, and indeed the first law with the as-

sumptions made in [1] since eA was required to be fixed. However, it is worth revisiting

these assumptions in the light of our work here on varying tension.

First, notice that our charged C-metric has parameters: m, relating to the mass of the

black hole, e to its charge, A to its acceleration, and K, that relates to an overall conical

deficit. K is the one parameter that has no immediately obvious physical interpretation,

indeed seems more like a coordinate choice, thus fixing K was natural. However, now

armed with our better understanding of the metric and its thermodynamics, we see that

in fixing the tensions of the deficits, we are fixing two physical quantities, thus we should

only find that two combinations of the solution parameters are fixed. Therefore, we should

not fix K a priori, but instead just the combinations of parameters that fix the tensions:

2 (µ+ + µ−) = 1− 1 + e2A2

K

µ+ − µ− = −mA
K

(4.5)
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From these expressions, we see that if charge vanishes, then indeed fixing tensions fixes K

and the combination mA, but if charge does not vanish, then we can no longer conclude

that δK = 0. Instead
δK

K
=
δ(mA)

mA
= 2

eAδ(eA)

1 + e2A2
(4.6)

i.e. we have two constraints on the variation of our parameters. Thus, for example if we

throw a small mass m0 into the black hole, we expect δM = m0, δQ = δP = 0. Using the

expression for M and the tensions we then find:

δK

K2
= −2

e2A2

m
δM δA = −

(
1− e2A2

) AK
m

δM

δm =
(
1− 3e2A2

)
KδM δe = −2

e3A2K

m
δM

(4.7)

indicating that the acceleration of the black hole drops, as expected.

5 Critical behaviour of accelerating black holes

Given that we are working in anti-de Sitter spacetime, we can ask whether there is some-

thing analogous to a Hawking-Page phase transition [10] for our accelerating black holes,

although it is difficult to see how one could actually have a phase transition between a

system with a conical deficit along one polar axis only, and a presumably totally regular

radiation bath. However, recall that a black hole in AdS behaves similarly to a black hole

in a reflecting box, with the negative curvature of the AdS providing the qualitative reflec-

tion. For small black holes, the effect of the negative curvature is sub-dominant to the local

curvature of the black hole, and the black hole has negative specific heat, as in the vacuum

Schwarzschild case. For black holes larger than the AdS radius, the vacuum curvature

dominates, and the black hole has positive specific heat, in particular, there is a minimum

temperature for a black hole in AdS, below this temperature, only a radiation bath can

be a solution to the Einstein equations at finite T . Plotting the Gibbs free energy as a

function of temperature shows both the allowed states, as well as the preferred one for a

given temperature. At very low T , the only allowed state is a radiation bath. Above a crit-

ical temperature Tc =
√

3/2π`, one can have either a radiation bath, or a black hole (that

may be either ‘small’ or ‘large’). However for T > 1/π`, the large black hole is not only

thermodynamically stable (in the sense of positive specific heat) but thermodynamically

preferred, and a radiation bath will spontaneously transition into a large black hole.

First consider the situation where our accelerating black hole is uncharged.3 Fixing

the tension of the string, we can plot the temperature of our black hole as a function of

its mass, M , as shown in figure 3. This figure shows how increasing acceleration actually

makes a black hole of given mass more thermodynamically stable in the sense of positive

specific heat. Figure 3 also shows the corresponding Gibbs free energy, indicating the

would-be Hawking-Page transition occurs at lower temperatures as acceleration increases.

3Note: in all explicit examples and figures in this section we take the θ = 0 axis to be regular (µ+ = 0).

This is for simplicity, including a nonzero north pole tension does not alter the essential physics of what we

present here.
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Figure 3. Left: a plot of temperature as a function of mass (in units of `) for the uncharged black

hole. The slowly-accelerating régime is shown as a solid line, and the inferred local horizon temper-

ature for A` > 1 is shown dashed. Note how for larger string tension (hence greater acceleration)

the region of positive specific heat increases. Right: a similar plot, but now showing the Gibbs free

energy as a function of temperature.

At first sight, this is rather curious, as a naive examination of the uncharged C-metric

shows that the Newtonian potential, f(r) has the cosmological constant ameliorated by the

acceleration: f(r) = r2(1/`2 − A2) ' r2/`2eff . Given that one often imagines that it is the

black hole radius relative to the confining ‘box’ of AdS that is causing the thermodynamic

stability of the large black holes, this looks rather confusing: increasing acceleration appears

to counteract the AdS length scale. However, this intuition is too naive: the relevant

effect is the spacetime curvature in the vicinity of the horizon, and whether the black

hole or the cosmological constant is dominant (larger black holes having smaller tidal

forces). Computing the Kretschmann scalar at the event horizon demonstrates that indeed,

increasing acceleration for a given mass lowers the local tidal forces due to the black hole.

In fact, it is easy to compute the “Hawking-Page” transition temperature, assuming the

radiation bath to have zero Gibbs energy from the expressions for TS and M in terms of

r+, A and `. A brief calculation gives

THP (r+, `, A) =
1

4πr+

[
3r2

+

`2
(
1−A2r2

+

) + 1

]

' 1

2π`

(
1− 3

2
A2`2 +O

(
A4`4

))
.

(5.1)

While the acceleration parameter A is not a thermodynamic charge, instead being re-

lated to the tension via M , nonetheless, the general picture is that increasing tension

increases acceleration, thereby decreasing the temperature at which the “Hawking-Page”

transition occurs.

Now consider adding a charge to the black hole, for which we might now expect a

richer phase structure, possibly with critical phenomena analogous to the isolated charged

AdS black hole [58–60]. The critical phenomena occur due to the three possible phases of

black hole behaviour for varying mass. In the presence of charge, there is now a lower limit
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Figure 4. A plot of temperature as a function of mass for the charged black hole, with fixed

Q = 0.05`, and varying tension as labelled. As before, the slowly-accelerating régime is shown as a

solid line, and A` > 1 is shown dashed.

on the mass parameter of the black hole, set by the extremal limit where the temperature

vanishes. Increasing the mass of the black hole moves it away from extremality, thus

increasing temperature, rendering the specific heat positive near this lower limit. For large

mass black holes, we are also in a positive specific heat régime where the local vacuum

curvature is dominant in the near horizon geometry. Depending on the size of the charge

relative to the vacuum energy, there can be an additional negative specific heat régime

where the black hole is small enough that its local curvature is dominant, but is far enough

from extremality that the usual Schwarzschild negative specific heat type of behaviour

pervades. Given that for uncharged accelerating black holes, increasing tension lowers the

critical temperature at which the transition to positive specific heat occurs, we expect this

‘swallowtail’ behaviour to be mitigated for charged accelerating black holes in the canonical

ensemble, and indeed this is what is observed.

We first explore the accelerating black hole in the canonical ensemble, i.e. where the

charge, Q, of the black hole is fixed, but we allow M and µ− to vary. In figure 4, we give

a representative plot of temperature as a function of black hole mass for Q = 0.05` to

illustrate how increasing tension gradually removes the negative specific heat phase of the

black hole. Figure 5 shows the variation of the free energy F = M−TS with temperature for

varying tension and charge. As tension is increased, the swallowtail becomes smaller, and

eventually disappears, analogous to the situation where the charge is gradually increased,

shown on the right in figure 5. The free energy plot tells us that at low temperatures,

we have the near extremal black hole, however as the mass of the black hole increases

there is a critical value at which there is a spontaneous transition to a larger black hole

with positive specific heat. The existence of this transition relies on the presence of the

intermediate region of negative specific heat for the charged black hole. For large enough

tension (or charge relative to `), there is a critical point at which this intermediate régime
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Figure 5. A plot of the free energy as a function of temperature for varying tension with Q = 0.05`

on the left, and varying charge with 4µ− = 0.3 on the right.
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Figure 6. The coexistence line for the charged black hole shown for varying tension and cosmo-

logical constant with the black hole charge is fixed at Q = 0.05. On the left, ` = 1, and the value

of tension at the critical point is µc = 0.219. On the right, 4µ− = 0.3, and the critical value of the

AdS radius is `c = 0.36.

disappears, and the phase transition along with it. Figure 6 shows the “van der Waals” like

behaviour of this coexistence curve for varying tension (in analogy to the varying potential

plots of [58]), and cosmological constant (in analogy to [38]).

Finally, for completeness we consider the thermodynamics of the accelerating charged

black hole in the grand canonical ensemble, where we now allow charge to vary. The Gibbs

potential is now G = M − TS −QΦ, with

Φ = ΦH − Φ0 =
e

r+
− meA2

1 + e2A2
(5.2)

kept fixed. The interesting feature of fixed potential, as noted in [58] for an isolated RNAdS

black hole, is that there is a critical value of Φ delineating two qualitatively different be-

haviours of the black hole. For small fixed potentials, the charged AdS black hole can never

approach extremality. This can be seen by noting that f = f ′ = 0 at extremality, where

f(r) is the RNAdS black hole potential. Solving these algebraic equations, and substituting
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Figure 7. The Gibbs potential in the grand canonical ensemble as a function of temperature, on

the left with 4µ− = 0.3 for varying potential as labelled, and on the right with Φ = 0.9 and varying

tension as labelled in the plot.
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Figure 8. A plot of the critical value of Φc(µ−) at which a black hole is always preferred for all

temperatures as a function of the tension.

ΦRN = e/r+, one finds the constraint 3r2
+/`

2 = Φ2
RN − 1, thus for |ΦRN | < 1 there is no

possibility of extremality. In our case, for the charged accelerating black hole, the algebraic

relations for extremality at fixed potential are considerably more complicated partly due

to the extra acceleration parameter, but mostly because of the complicated expression for

Φ (5.2). However, the same principle applies, and we also observe a similar phase transition

from small to large Φ, where the critical value of Φ is now tension dependent. Figure 7

demonstrates this behaviour showing the analogous plot to [58] with acceleration for fixed

µ−, and also how the behaviour depends on µ− at fixed Φ, illustrating how increasing µ−
improves the thermodynamic viability of the black hole. Figure 8 shows how the critical

value of the potential, where only positive specific heat black holes are allowed, varies

with tension.
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6 Conclusion

To sum up: we have shown how to allow for a varying conical deficit in black hole space-

times, and found the relevant thermodynamical variables to describe the system. The

appropriate first law has a varying tension term, with a thermodynamic length as its po-

tential. This length consists of a direct geometrical part, a mass dependent correction, and

finally, a shift in the presence of charge. The thermodynamic phases of accelerating black

holes exhibit similar behaviour to their non-accelerating AdS cousins, however, the impact

of acceleration is to improve the thermodynamic stability of the black holes.

It is interesting to note that the first law indicates that if the tension of a defect is fixed,

then there is no contribution to the variation of M coming from tension, yet, if the black

hole increases its mass and hence its horizon radius, the horizon will now have consumed a

portion of the string along each pole. This does not appear in the thermodynamic relation.

This reinforces the interpretation of M as the enthalpy of the black hole [34]. Although

the black hole increases its internal energy by swallowing some cosmic string, it has also

displaced the exact same amount of energy from the environment, resulting in no net overall

gain in the total energy of the thermodynamic system (other than the mass that was added

to the black hole in the first place).

It would be interesting to consider whether there are any holographic applications for

these solutions. (See [61] for a discussion of the CFT stress-energy at the background

Rindler temperature.) The boundary is now at 1/Ar + cos θ → 0, and has metric:

ds2
b =

[
1−A2`2g(θ) sin2 θ

]dt2
`2
− g(θ) sin2 θ

dφ2

K2
− dθ2

g(θ)
[
1−A2`2g(θ) sin2 θ

] (6.1)

Typically, one avoids having such distorted boundaries, however, the fact that the thermo-

dynamics of these systems is now well defined perhaps suggests this is worth a second look.

Finally, we have not discussed rotating accelerating black holes here. Even for the

non-accelerating rotating black hole, the thermodynamics are more subtle, requiring an

adjustment of the angular velocity [40] in order to define it relative to a non-rotating frame

at infinity. For a conical defect running through the black hole (though see [62, 63] for a

full discussion of subtleties of replacing deficits by finite width defects) one can follow the

method of section 2 to generalise the appropriate thermodynamical variables of Gibbons

et al. [40] to:

M =
m

KL
; V =

4π

3

[
r+

(
r2

+ + a2
)

K
+ a2M

]

J =
am

K2
; Ω = ΩH − Ω∞ =

aK

r2
+ + a2

+
aK

`2L
;

Q =
e

K
; Φ =

er+

r2
+ + a2

(6.2)

where K is the (arbitrary) parameter determining the periodicity of the azimuthal angle

as before, and L is a new parameter due to black hole rotation:

L = 1− a2

`2
(6.3)
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In [40], K = L was mandated by having no conical deficit on the rotation axis, however,

here we are being more general. Allowing the tension of any deficit to vary leads to the

thermodynamic length:

λ =

(
r+ −KM

1 + a2

`2

1− a2

`2

)
=

(
r+ −

KM

L
(2− L)

)
(6.4)

Thus our black hole obeys a standard first law,

δM = TδS + V δP + ΩδJ + ΦδQ− 2λδµ (6.5)

as well as a conventional Smarr relation:

M = 2TS + ΦQ− 2PV + 2ΩJ (6.6)

Once the black hole is accelerating, it is no longer possible to have a completely non-

rotating frame at infinity due to the distortion of the boundary. The potential therefore

has a more complicated adjustment involving not only a shift, but also a decision on the

appropriate frame to use at infinity. Computing the relevant parameters for the rotating

accelerating black hole is underway.
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