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1 Introduction

During the last decades, neutrino experiments that have shown that neutrinos have non-

zero masses [1, 2], also suggest that the first three mass eigenstates are very light with

masses ∼ 1 eV, and the mixing between flavour and mass eigenstates is characterized

by the Pontecorvo-Maki-Nakagawa-Sakata Matrix, UPMNS [3]. Therefore, if these light

masses are produced by means of some see-saw mechanism [4, 5], the existence of one or

more heavier neutrinos is needed. The current experimental uncertainties in the BPMNS

matrix elements allow introduce these new heavy neutral leptons called sterile neutrinos

(SN) [6–10], however the small values of these uncertainties imply a strongly suppressed

interaction between standard model (SM) particles and SN. In addition, due to the fact

that neutrinos are massive particles, a fundamental question arises: are neutrinos Dirac or

Majorana particles?, If neutrinos are Dirac particles, the reactions in which they participate

must preserve the lepton number (∆L = 0). On the contrary, if neutrinos are Majorana

particles, they are indistinguishable from their antiparticles, and the lepton number can

be violated in two units (∆L = 2). On the other hand, Neutrino oscillations (NOs)

experiments have confirmed that θ13 angle of BPMNS is non zero [11, 12], thus, the possibility

of CP violation in the light neutrino sector is still open; nevertheless, extra sources of CP

violation are needed in order to explain Baryogenesis via Leptogenesis [13]. Recent studies

explored the CP violation and the phenomenology of SN neutrinos in the context of rare

meson decays [14–21], however, in this work we will focus in the phenomenology of the rare

tau decays in the framework of tau factories, such as Super Charm-Tau Factory (CTF) in

the Budker Institute of Nuclear Physics (Novosibirsk, Russia), [22, 23] making it possible
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Figure 1. Feynmann diagrams for the process τ+ → M+
1 M

+
2 `
−. Left side: direct channel D.

Right side: crossed channel C.

Figure 2. Feynmann diagrams for the process τ− → M−1 M
−
2 `

+. Left side: direct channel D.

Right side: crossed channel C.

to extend the SN searches to tau decay processes. In this letter we focus in the rare decays

of tau leptons into two scalar mesons and one charged lepton (` = e, µ), via two on-shell

intermediate neutrinos Nj , and look for the possibility of detection of CP asymmetries

in such decays. The relevant processes are the lepton number violating channels τ± →
M±1 M

±
2 `
∓ where M1,M2= π,K and ` = e,µ. We also show that the branching ratios are

very small,1 but could be appreciable enough and could be measured in future τ factories

where huge numbers of taus will be produced [23, 24], if the heavy-light neutrino mixing

elements are sufficiently large but still lower than the present upper bounds.

The program of this paper is the following: in section 2 we present the notation and

formalism for the rare tau decay; in sections 3 we present the relevant expression for the

branching ratio calculations; in sections 4 we present the relevant expression for the CP

asymmetries calculations; in sections 5 we present the results of the relevant parameters

for the future searches; finally, in section 6 we present the summary and conclusions.

2 Process and formalism

As we stated above, we are interested in studying the ∆L = 2 rare tau decays mediated by

two on-shell heavy (0.140 ≤ MN ≤ 1.638 GeV) Majorana neutrinos with the expectation

of obtaining CP violating signal in the neutrino sector. The relevant Feynman diagrams

of the studied processes are presented in figure 1 and figure 2 for τ+ → M+
1 M

+
2 `
− and

τ− →M−1 M
−
2 `

+, respectively.

1Both the branching ratio as CP asymmetries are proportional to the product of square mixing elements

|BτN |2|B`N |2.
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In order to write down the amplitude and all the relevant quantities, we first define

the neutrino flavor state as:

ν` =
3∑
i=1

B`iνi +
n∑
j=1

B`NjNj , (2.1)

where B`Nj are the elements of the PMNS matrix2 (heavy-light neutrino mixings elements)

which are define as follow

B`Nj = |B`Nj |e
iφ`Nj , (2.2)

the left side of eq. (2.1) stand for light neutrino sector and the right side for the heavy

neutrino sector. The amplitude for a general process involving n sterile neutrinos is3

iM+ ≡ iM(τ+ →M+
1 M

+
2 `
−) =MD

+ +MC
+ (2.3a)

= G2
F fM1fM2VM1VM2B`Nj

B∗τNj
Pj(D) /L

D
+︸ ︷︷ ︸

MD
+

+ G2
F fM1fM2VM1VM2B`Nj

B∗τNj
Pj(C) /L

C
+︸ ︷︷ ︸

MC
+

,

iM− ≡ iM(τ− →M−1 M
−
2 `

+) =MD
− +MC

− (2.3b)

= G2
F fM1

fM2
V ∗M1

V ∗M2
B∗`Nj

BτNj
Pj(D) /L

D
−︸ ︷︷ ︸

MD
−

+ G2
F fM1

fM2
V ∗M1

V ∗M2
B∗`Nj

BτNj
Pj(C)/L

C
−︸ ︷︷ ︸

MC
−

,

where f1 and f2 are the meson decay constants of M±1 and M±2 , and VM1 , VM2 are the

mixings elements of CKM matrix corresponding to mesons M1 and M2, respectively. The

factors /L
D
± and /L

C
± contain the information related to the kinematics and are given by

/L
D
+ = ū(p`)/p2/p1

Pj(D)(1 + γ5)u(pτ ) ; /L
C
+ = ū(p`)/p1/p2

Pj(C)(1 + γ5)u(pτ ) , (2.4)

/L
D
− = ū(p`)/p2/p1

Pj(D)(1 + γ5)u(pτ ) ; /L
C
− = ū(p`)/p1/p2

Pj(C)(1 + γ5)u(pτ ) , (2.5)

and finally the factors Pj(D) and Pj(C) are the heavy Majorana neutrino propagators

Pj(D)=
n∑
j=1

MNj

(pτ − p1)2 −M2
Nj

+ iΓNjMNj
; Pj(C)=

n∑
j=1

MNj

(pτ − p2)2 −M2
Nj

+ iΓNjMNj
,

(2.6)

here ΓNj is the total decay width of the intermediate neutrinos, and can be approximated

as follow

ΓNj ≈ KMa
j

G2
FM

5
Nj

96π3
, (2.7)

where

KMa
j ≡ Kj(MNj ) = Nej |BeNj |2 +Nµj |BµNj |2 +Nτj |BτNj |2 , (2.8)

the factors N`j being effective mixing coefficients and are presented in figure 3 for our mass

range of interest.

2Experimental limits for |B`Nj |
2 in our mass range of interest are presented in figure figure 7.

3The definitions MD
± and MC

± can be understood as the amplitude for the direct channel and for

the crossed one, respectively. Furthermore, the squared amplitude probability for the process will be

|M±|2 = |MD
± |2 + |MC

±|2 +MD
±MC†

± +MD†
± MC

± .
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Figure 3. Effective mixing coefficients. The dashed line (online red) is for Nej , solid line (online

blue) for Nµj and the dotted one (online black) for Nτj .

The decay with of the process is given as follow

Γ(τ± →M±1 M
±
2 `
∓) ≡ Γ(τ±) =

1

2!
(2− δM1M2)

1

2Mτ

∫
|M±|2 d3 , (2.9)

where 1
2!(2− δM1M2) is the symmetry factor that counts for identical particles in the final

states, d3 denotes the number of states available per unit of energy in the 3-body final state.4

d3 ≡
d3~p1

2E1(~p1)

d3~p2

2E2(~p2)

d3~p`
2E`(~p`)

δ(4) (pτ − p1 − p2 − p`) , (2.10)

here, p1 and p2 denote the momenta of M1 and M2 respectively, and p` the momentum of

the charged lepton (see figure 1 and figure 2).

3 Branching ratio of τ± →M±
1 Nj →M±

1 M
±
2 `

∓ decays

In a scenario with n = 2 sterile neutrinos, the decay widths presented in eq. (2.9) can be

written as the double sum of the contributions of Ni and Nj (i, j = 1, 2), with the mixing

elements factored out

Γ(τ±) =
1

2!
(2− δM1M2)

2∑
i=1

2∑
j=1

k
(±)
i k

(±)∗
j

×
[
Γ̃τ (DD∗)ij + Γ̃τ (CC∗)ij + Γ̃τ±(DC∗)ij + Γ̃τ±(CD∗)ij

]
, (3.1)

here Γ̃’s are the canonical decay widths (without heavy-light explicit mixing), and k
(±)
j are

parameters which contain the corresponding mixing factors and are presented in eq. (3.2).

k
(+)
j = B`NjB

∗
τNj , k

(−)
j = (k

(+)
j )∗ . (3.2)

4The decomposition of the 3-body phase space is presented in appendix B.
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Due to the fact that |/LD+ |2 = |/LD− |2 and |/LC+|2 = |/LC−|2, we can omit the subscripts ±
in the contribution terms Γ̃τ (DD∗)ij and Γ̃τ (CC∗)ij in eq. (3.1). The canonical decay

widths Γ̃τ±(XY ∗)ij , where X,Y stand for direct and crossed channel (X,Y = C,D) and

(i, j = 1, 2), are given by

Γ̃τ±(XY ∗)ij ≡ K2
τ

1

2Mτ

∫
d3 Pi(X)Pj(Y )∗/L

X
± /L

Y †
± , (3.3)

where

K2
τ = G4

F f
2
M1
f2
M2
V 2
M1
V 2
M2

. (3.4)

From now on, we will pay our attention in a scenario where both mesons are equal, then

M1 = M2 ≡MM and the constant K2
τ ≡ K2

M presented in eq. (3.4) becomes K2
π = G4

F f
4
πV

4
ud̄

when the mesons are pions and K2
K = G4

F f
4
KV

4
us̄ when they are kaons. The canonical decay

width has been evaluated numerically by means of Monte-Carlo integrations using Vegas

algorithm [25].5 Furthermore, the evaluation were implemented using small ΓNj = 10−3 in

the heavy neutrino propagators. The numerical results can be summarized as follows:

i) The contribution of (DD∗)jj and (CC∗)jj channels are approximately equal, thus

Γ̃τ (DD∗)jj ≈ Γ̃τ (CC∗)jj .

ii) The contribution of (DC∗)ij and (CD∗)ij channels are approximately equal, thus

Γ̃τ (DC∗)ij ≈ Γ̃τ (CD∗)ij .

iii) The terms Γ̃τ (DD∗)jj ∝ 1/ΓNj ,
6 while Γ̃τ (DC∗)jj and Γ̃τ (DC∗)ij are approximately

independent of ΓNj .

iv) When ΓNi = 10−3, the terms Γ̃τ±(DC∗)ii and Γ̃τ±(CD∗)ii are suppressed by a factor

∼ 10−3, besides taking into account the latter point iii), the terms Γ̃τ±(DC∗)jj and

Γ̃τ±(DC∗)ij are negligible in all cases, in comparison with Γ̃τ (DD∗)jj and Γ̃τ (CC∗)jj .

v) The contribution of (DD∗)ij and (CC∗)ij channels are approximately equal, and can

reach the same order of magnitude than the (DD∗)jj and (CC∗)jj contributions.7

5The integration were performed in two different languages Pyhton and Fortran in order to reduce the

uncertainties.
6It is important to note that the dependence Γ̃τ (DD∗)jj ∝ 1/ΓNj is in agreement with the fact

that sterile neutrino are weakly interacting particles and therefore the narrow width approximation
MNj

(p2
N
−M2

Nj
)2+(MNj

ΓNj
)2
→ π

ΓNj
δ(p2

N −M2
Nj

) is valid.

7The effect of this kind of interference will be studied later in detail.
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Thus, under the above considerations and taking into account that M1 = M2 = Mπ,MK ,

we rewrite the eq. (3.1) only in terms of the dominant contributions, as follows

Γ(τ±) =
1

2!

2∑
i=1

2∑
j=1

k
(±)
i k

(±)∗
j ×

[
Γ̃τ (DD∗)ij + Γ̃τ (CC∗)ij

]
(3.5a)

= |B`N1
|2|BτN1

|2Γ̃τ (DD∗)11 + |B`N2
|2|BτN2

|2Γ̃τ (DD∗)22

+ 2|B`N1
||B`N2

||BτN1
||BτN2

|Γ̃τ (DD∗)11 cos(θ12)δ12 ,

∓ 2|B`N1
||B`N2

||BτN1
||BτN2

|Γ̃τ (DD∗)11
η(y)

y
sin(θ12) , (3.5b)

here δ12 ≡
<
[
Γ̃τ (DD∗)12

]
Γ̃τ (DD∗)11

measures the effect of N1 − N2 overlap,8 the factor η(y)
y will be

discussed later, however, their values are presented in figure 4 and θ12 = φ`N1−φ`N2+φτN2−
φτN1 . The diagonal canonical decay widths, presented in eq. (3.5b), can be implemented

by means of the narrow width approximation

Γ̃τ (DD∗)jj =
K2
M

128π2M3
τMNjΓNj

× λ1/2

(
1,
M2
`

M2
N

,
M2
M

M2
N

)
× Z(Mτ ,MNj ,MM ,M`) , (3.6)

where the functions Z(a, b, c, d) and λ(x, y, z) are kinematical functions, which are defined

in appendix B. The branching ratio for the process τ± →M±1 M
±
2 `
∓ is

Br(τ±) =
Γ(τ±)

Γ(τ± → all)
, (3.7)

where Γ(τ± → all) is the total decay width for τ± lepton and is given by

Γ(τ± → all) =
G2

FM5
τ

192π3
. (3.8)

In order to have a more realistic discussion, we must consider the acceptance factor, which

is defined as the probability of the neutrino Nj decay inside of a detector of length L

PNj ≈
L

γNjτNjβNj
≈

LΓNj
γNjβNj

(3.9)

where γNj is the Lorentz time dilation factor in the Laboratory frame and β is the neutrino

speed.9 Therefore, the effective branching ratio10 is

Breff(τ±) = PNjBr(τ±) =
Γeff(τ±)

Γ(τ± → all)
= PNj

Γ(τ±)

Γ(τ± → all)
. (3.10)

8< stand for the real part.
9In this work, we will provide γNj ∼ 2, β ∼ 1 and L = 1 mts.

10The Breff(τ±) correspond to the real branching ratio, while Γeff(τ±) correspond to the effective decay

with, whose can be measured in an experiment.
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4 CP asymmetry of τ± →M±
1 Nj →M±

1 M
±
2 `

∓ decays

In this section we will calculate the size of CP asymmetry ACP , which is defined as follows

ACP =
Γ(τ+)− Γ(τ−)

Γ(τ+) + Γ(τ−)
, (4.1)

The CP violation comes from the complex phases in the transition amplitudes eq. (2.3a),

and the observable effects only arise due to interference of at least two amplitudes. The

CP-odd phases are those that come from the Lagrangian of the theory, in other words

from the heavy-light mixing elements (B`N ); these phases change sign between a process

and its conjugate. On the other hand, the CP-even phases appear as absorptive parts in

the propagators eq. (2.6) and do not change sign for the conjugate process. In order to

have a more phenomenological discussion about CP violation, it is useful define a new

quantity ACPBr
eff(τ+) which is the corresponding branching ratio for the CP-violating

asymmetry11

ACP Breff(τ+) =
Γ(τ+)− Γ(τ−)

Γ(τ+) + Γ(τ−)
Breff(τ+) ≈ PNj

Γ(τ+)− Γ(τ−)

2Γ(τ+ → all)
(4.2)

The CP-violating difference Γ(τ+) − Γ(τ−) is proportional to the imaginary part of

Γ̃τ (DD∗)12 and can be written as12

Γ(τ+)− Γ(τ−) ≈ 4|B`N1 ||B`N2 ||BτN1 ||BτN2 | sin θ12 =
[
Γ̃τ (DD∗)12

]
(4.3)

where we have neglected all the (DC∗) and (CD∗) interference contributions , due to fact

that numerical simulation shows that they are strongly suppressed in comparison with

(DD∗) and (CC∗). The imaginary part of eq. (4.3) correspond to the imaginary part of

the off-diagonal elements in eq. (3.5)

=
[
Γ̃τ (DD∗)12

]
=

1

2Mτ

∫
d3 =

[
P1(D)P2(D)∗

]
|/LD+ |2 . (4.4)

The imaginary part of the product of propagators (see eq. (A.7b) in appendix. A) can be

expressed using the narrow width approximation as

Im (P1(D)P2(D)∗) =

(
p2
N −M2

N1

)
ΓN2MN2 − ΓN1MN1

(
p2
N −M2

N2

)[(
p2
N −M2

N1

)2
+ Γ2

N1
M2
N1

] [(
p2
N −M2

N2

)2
+ Γ2

N2
M2
N2

] (4.5a)

≈ π

M2
N2
−M2

N1

[
δ(p2

N −M2
N2

) + δ(p2
N −M2

N1
)
]

; (4.5b)

the validity of eq. (4.5b) strongly depends on the assumption ΓNj � |∆MN | ≡MN2−MN1 .

However, it is useful introduce the parameter η(y) where y ≡ ∆MN
ΓN

= ∆MN
1
2

(ΓN1
+ΓN2

)
, which

11In eq. (4.2) we have used Γ(τ+) + Γ(τ−) ≈ 2Γ(τ+).
12Here we assumed the fact that =

[
Γ̃τ (DD∗)12

]
≈ =

[
Γ̃τ (CC∗)12

]
.

– 7 –



J
H
E
P
0
5
(
2
0
1
7
)
1
1
0

parametrizes any deviation of eq. (4.5a) when ΓNj 6� |∆MN |

η(y) =
=
[
Γ̃τ (DD∗)12

]
NWA

=
[
Γ̃τ (DD∗)12

]
NUM

(4.6)

In eq. (4.6) the subscripts NWA and NUM stand for “Narrow Width Approximation”

and “Numerical”, respectively. The values of η(y) were evaluated numerically using finite

∆MN and their values are presented in figure 4 as a function of y ≡ ∆MN/ΓN . The

general expression of eq. (4.4) including the η(y) parameter and under the assumptions

MN1 +MN2 ≈ 2MN is given by13

=
[
Γ̃τ (DD∗)12

]
≈ η(y)

K2
M

128π2M3
τMN∆MN

× λ1/2

(
1,
M2
`

M2
N

,
M2
M

M2
N

)
× Z(Mτ ,MN ,MM ,M`)

(4.7)

finally, the CP-violating difference becomes

Γ(τ+)− Γ(τ−) ≈ η(y)
K2
M |B`N1 ||B`N2 ||BτN1 ||BτN2 |

32π2M3
τMN∆MN

sin θ12

× λ1/2

(
1,
M2
`

M2
N

,
M2
M

M2
N

)
× Z(Mτ ,MN ,MM ,M`) (4.8)

From eq. (4.1), eq. (4.8) and figure 4 we can conclude that the best scenario for simultaneous

maximization of ACP and Br(τ), occurs when y = 1. From now on, we will focus in a

scenario where heavy neutrinos are almost degenerate ∆MN ∼ ΓN ; within this context

we have assumed |B`N1 | ≈ |B`N2 | ≡ |B`N |, where ` = e, µ, τ and the mixing elements are

KMa
1 ≈ KMa

2 ≡ KMa, therefore, the CP asymmetry becomes

ACP ≈ η(y)
ΓN

∆MN

sin θ12

1 + δ12 cos θ12
≡ η(y)

y

sin θ12

1 + δ12 cos θ12
, (4.9)

consequently

ACP Breff(τ+) ≈ η(y)

y

L

γN
|B`N |2|BτN |2 sin θ12

3πK2
M

2G2
FM

8
τMN

× λ1/2

(
1,
M2
`

M2
N

,
M2
M

M2
N

)
× Z(Mτ ,MN ,MM ,M`) . (4.10)

There is just one caveat in the expressions above: we have disregarded the effect of

N1−N2 oscillation, these type of oscillations have been studied in detail in ref. [19] and it

13Due to the fact that ΓN ∼ KMa
j ∼ |B`N |2 the mass difference becomes ∆MN � 1, hence the assumption

MN1 +MN2 ≈ 2MN is reasonable In eq. (4.7).

– 8 –
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Figure 4. Solid line (online red) overlap function δ12. Dashed line (online blue) η(y) function.

Dotted line (online black) η(y)/y function.

is straightforward to show that the L dependent effective differential decay width is14

d

dL
Γ

(osc)
eff (τ+ → π+π+µ−;L) ≈ 1

γNβN
Γ(τ+ → π+N)Γ(N → π+µ−)

×

{
2∑
j=1

|BµNj |2|BτNj |2 + 2|BµN1 ||BτN1 ||BµN2 ||BτN2 | cos

(
L

∆MN

βNγN
+ θ12

)}
(4.11)

where Γ(τ+ → π+N) and Γ(N → π+µ−) are kinematical functions presented in ap-

pendix A. In eq. (4.11) it is also possible to notice that the oscillation length is Losc =
2πβNγN

∆MN
. Then, the argument of cosine in eq. (4.11) can be written as 2π L

Losc
+ θ12, there-

fore, in order to integrate out there are two possible scenarios:

1. L � Losc: in this regime we recover the main contributions of the L-independent

effective decay width (eq. (3.10)), because the oscillation term ∼ cos
(

f (L) + θ12

)
gives a relatively negligible contribution when integrated over several Losc.

2. L � Losc: in this scenario the integration of expression (4.11) is

Γ
(osc)
eff (τ+→π+π+µ−;L) ≈ L

γNβN
Γ(τ+→π+N)Γ(N→π+µ−)×

[
2∑
j=1

|BµNj |2|BτNj |2

+
Losc

πL
|BµN1 ||BτN1 ||BµN2 ||BτN2 |

(
sin

(
2π

L

Losc
+ θ12

)
− sin

(
θ12

))]
, (4.12)

in (4.12) we can see, immediately, that when Losc � L and Losc = L the oscilla-

tion effect disappear and we recover the L-independent main contributions of the

eq. (3.10). On the other hand, when L ∼ Losc neutrinos have traveled enough to

14In eq. (4.11) L is the distance between production vertex and detector; the quantities γN and βN are:

γN = 1
2
(γN1 + γN2) and βN + 1

2
(βN1 + βN2), respectively.
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Figure 5. Effective branching ratios per unit of |BeN |2|BτN |2. Here we use the following input

parameters: cos θ12 = 1/
√

2, overlap factor δ12 = 0.5, detector length L = 1 mts, neutrino speed

β = 1 and Lorentz factor γN = 2.

have a well-defined oscillation, which means that neutrinos have not decayed yet (i.e.

PN � 1). Moreover, L ∼ Losc means y ≡ ∆MN
ΓN

≈ 2π
PN
� 1 and then from figure 4

we notice that y � 1 destroy the effect of resonant CP violation. Therefore, the fact

that disregard the N1 −N2 oscillation when we have chosen η(y) ∼ 1 is valid.

It is important to note that the oscillation effect is present when L ∼ Losc, therefore,

in general CP violating scenarios (i.e. when we are off CP resonant region) this must be

taken into account.

5 Results

In this section the main results obtained in this work will be applied in order to provide

a clue for future searches in tau factories. The result for the effective branching ratios

presented in eq. (3.10) are shown in figure 5 and figure 6.

The difference between the cases with MM = π and MM = K in the final states is

mainly due to the elements of CKM matrix, whereas for pions Vπ ≈ 0.97 and VK ≈ 0.22,

respectively. Moreover, the values of meson decay constant are fπ ≈ 0.13 GeV and fK ≈
0.15 GeV, therefore K2

π/K
2
K ≈ 2 × 102. In order to estimate the region of heavy-light

mixings elements |B`N |2|BτN |2 which can be explored in future experiment15 we define the

following relation

ACPBr
eff(τ+)×Nτ ≥ 1 ⇒ |B`N |2|BτN |2 ≥

γN

LNτ sin θ12S(MN )
, (5.1)

here Nτ is the number of τ lepton produced in an experiment and S(MN ) is given by

S(MN ) =
3πK2

M

4GFM8
τMN

λ1/2

(
1,
M2
`

M2
N

,
M2
M

M2
N

)
× Z(Mτ ,MN ,MM ,M`) . (5.2)

15The eq. (5.1) is presented in order to detect at least 1 event of difference between Br(τ+) and Br(τ−),

here we have chosen η(y)/y = 1/2.
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Figure 6. Effective branching ratios per unit of |BµN |2|BτN |2. Here we use the following input

parameters: cos θ12 = 1/
√

2, overlap factor δ12 = 0.5, detector length L = 1 mts, neutrino speed

β = 1 and Lorentz factor γN = 2.

Figure 7. (a) Exclusion regions of |B`N |2 taken from [26]. The dotted line (online black) stand

for |BτN |2 , solid line (online red) stand for |BµN |2 and the dashed one (online blue) for |BeN |2.

(b): exclusion regions for the product of heavy-light mixings |BτN |2|B`N |2. The dashed line (online

blue) stand for |BτN |2|BeN |2 and the solid one (online red) for |BτN |2|BµN |2.

The actual experimental limits for heavy-light mixing elements are given in ref. [26],

and we have summarized them in figure 7(a) for the range of mass of interest. On the

other hand, and due to the fact that our results depend on |BτN |2|B`N |2, we present in

figure 7(b) the product of the experimental limits of interest.

The CTF in Novosibirsk, Russia is expected to collect 1010 pairs of τ± leptons after

few years of operation [23], therefore under the latter considerations we can estimate the

mixing region that can be explored in such experiment, this region is presented in figure 8.

It is important to point out that due to the CKM elements suppresion only channels

with pions in the final state offer real possibilities to constrain the heavy-light mixings

parameters.
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Figure 8. The shaded region (online green) show the limits over the mixings parameter which

could be reached in the future τ± factory [23]. Right side: limits for |BeN |2|BτN |2. Left side:

limits for |BµN |2|BτN |2. Here we use the following input parameters: η(y)/y = 0.5, Nτ = 1010,

cos θ12 = 1/
√

2, L = 1 mts, β = 1 and γN = 2.

6 Summary and conclusions

In this letter we studied the (∆L = 2) rare tau decays τ± → M±1 M
±
2 `
∓, where M1 and

M2 are pseudo scalar mesons (M1, M2 = π,K) and the charged lepton can be ` = e, µ,

also we studied the possibility of CP violation detection in future tau factories. We have

assumed that the decays occur via the exchange of two on-shell sterile neutrinos Nj at tree

level, and we have shown that the amplitude of these processes is suppressed by the mixing

elements of the PMNS matrix |BτN |2|B`N |2. The aforementioned CP violation effects

come from the interference between the N1 and N2 propagators and the complex phases

(CP-odd phases φ`Nj , see eq. (2.2)) in the PMNS mixing matrix. Our results shows that

these signals of CP violation could be detected in future tau factories for τ± → π±π±`∓

tau decays, where ` = e, µ if there exist, at least, two sterile neutrinos in the on-shell mass

range, their masses are almost degenerate ∆MN ∼ ΓN , the CP odd phases sin θ12 6� 1

and the mixing parameters are in the allowed region of figure 7. In such a case, the CP-

violating difference Γ(τ+)−Γ(τ−) becomes large and comparable with Γ(τ+) + Γ(τ−) and

the corresponding CP asymmetry ACP becomes ACP ∼ 1. In addition, there exist several

models with quasi-degeneracy ∆MN ∼ ΓN , between them it is worth to mention the well-

know νMSM model [27, 28], where the quasi-degeneracy of the two heavy neutrinos (with

mass MNj ∼ 1 GeV) is fundamental in order to get a successful dark matter candidate.

However, our results can be framed in the context of the νMSM model or more general

models [21, 29] with at least two quasi-degenerate neutrinos.
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A Amplitude and kinematic relations for τ± →M±
1 M

±
2 `

∓

The amplitude for the process via two on-shell intermediate heavy neutrino is

|M+|2 = K2
τ

[
|B`1|2|Bτ1|2

(
|P1(D)|2 |/LD+ |2 + |P1(C)|2 |/LC+|2

)
+ |B`2|2|Bτ2|2

(
|P2(D)|2 |/LD+ |2 + |P2(C)|2 |/LC+|2

)
+ 2|B`1||Bτ1||B`2||Bτ2| cos θ21

(
<
[
P1(D)P2(D)∗

]
|/LD+ |2+<

[
P1(C)P2(C)∗

]
|/LC+|2

)
+
(

2|B`1|2|Bτ1|2<
[
P1(D)P1(C)∗

]
+ 2|B`2|2|Bτ2|2<

[
P2(D)P2(C)∗

]
/L
D
+ /L

C†
+

+B`1B
∗
τ1B

∗
`2Bτ2

(
P1(D)P2(C)∗ /L

D
+ /L

C†
+ + P1(C)P2(D)∗ /L

C
+/L

D†
+

)
+B∗`1Bτ1B`2B

∗
τ2

(
P2(D)P1(C)∗ /L

D
+ /L

C†
+ + P2(C)P1(D)∗ /L

C
+/L

D†
+

)]
(A.1)

|M−|2 = K2
τ

[
|B`1|2|Bτ1|2

(
|P1(D)|2 |/LD− |2 + |P1(C)|2 |/LC−|2

)
+ |B`2|2|Bτ2|2

(
|P2(D)|2 |/LD− |2 + |P2(C)|2 |/LC−|2

)
+ 2|B`1||Bτ1||B`2||Bτ2| cos θ21

(
<
[
P1(D)P2(D)∗

]
|/LD− |2+<

[
P1(C)P2(C)∗

]
|/LC−|2

)
+
(

2|B`1|2|Bτ1|2<
[
P1(D)P1(C)∗

]
+ 2|B`2|2|Bτ2|2<

[
P2(D)P2(C)∗

]
/L
D
− /L

C†
−

+B∗`1Bτ1B`2B
∗
τ2

(
P1(D)P2(C)∗ /L

D
− /L

C†
− + P1(C)P2(D)∗ /L

C
−/L

D†
−

)
+B`1B

∗
τ1B

∗
`2Bτ2

(
P2(D)P1(C)∗ /L

D
− /L

C†
− + P2(C)P1(D)∗ /L

C
−/L

D†
−

)]
. (A.2)

The kinematical factors presented in eq. (2.3a), eq. (A.1) and eq. (A.2) are given by

|/LD+ |2 = |/LD− |2 = 32(p1 · p2)(p2 · p`)(p1 · pτ )− 16M2
2 (p1 · pτ )(p1 · p`)

− 16M2
1 (p2 · pτ )(p2 · p`) + 8M2

1M
2
2 (p` · pτ ) (A.3)

|/LC+|2 = |/LC−|2 = 32(p1 · p2)(p1 · p`)(p2 · pτ )− 16M2
1 (p2 · pτ )(p2 · p`)

− 16M2
2 (p1 · pτ )(p1 · p`) + 8M2

1M
2
2 (p` · pτ ) (A.4)

/L
D
± /L

C†
± =∓ 16iεp1,p2,p`,pτ (p1 · p2) + 16M2

2 (p1 · pτ )(p1 · p`) + 16M2
1 (p2 · pτ )(p2 · p`)

+ 16(p1 · p2)2(p` · pτ )− 16(p1 · p2)(p2 · p`)(p1 · pτ )− 16(p1 · p2)(p1 · p`)(p2 · pτ )

(A.5)

/L
D†
± /L

C
± =

(
/L
D
± /L

C†
±

)∗
(A.6)

The product of propagators P1(X)P2(X)∗ (where X = D,C) can be expressed as the
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sum of the real and imaginary parts

P1(X)P2(X)∗=MN1MN2

(P 2
N (X)−M2

N1
)(P 2

N (X)−M2
N2

) + ΓN1ΓN2MN1MN2(
(P 2

N (X)−M2
N1

)2+ Γ2
N1
M2
N1

)(
(P 2

N (X)−M2
N2

)2+ Γ2
N2
M2
N2

)
︸ ︷︷ ︸

Rear part

(A.7a)

− iMN1MN2

(P 2
N (X)−M2

N2
)MN1ΓN1 − (P 2

N (X)−M2
N1

)MN2ΓN2(
(P 2

N (X)−M2
N1

)2+ Γ2
N1
M2
N1

)(
(P 2

N (X)−M2
N2

)2+ Γ2
N2
M2
N2

)
︸ ︷︷ ︸

Imaginary part

(A.7b)

The partial decay widths presented in eq. (4.11) are:

Γ(τ± → π±N) =
1

8π
G2
F f

2
π |Vπ|2

1

Mτ
λ1/2

(
1,
M2
π

M2
τ

,
M2
N

M2
τ

)
×[(

M2
τ −M2

N

)2
−M2

π

(
M2
τ +M2

N

)]
, (A.8a)

Γ(N → µ±π∓) =
1

16π
G2
F f

2
π |Vπ|2

1

MN
λ1/2

(
1,
M2
π

M2
N

,
M2
e

M2
N

)
×[(

M2
N +M2

e

)(
M2
N −M2

π +M2
e

)
− 4M2

NM
2
e

]
. (A.8b)

B Phase space relations

The integration presented in eq. (2.9) can be performed in the following way:

Γ(τ±) =
1

2!
(2− δM1M2)

1

64π3Mτ

∫
|M±|2 dE1 dE2 ; (B.1)

the integration limits over E2 and E1 for the (DD∗) channel are

E2 ≥
1

2m2
23

(
(Mτ − E1)(m2

23 +M2
2 −M2

3 )−
√

(E2
1 −M2

1 )λ(m2
23,M

2
2 ,M

2
3 )

)
, (B.2)

E2 ≤
1

2m2
23

(
(Mτ − E1)(m2

23 +M2
2 −M2

3 ) +
√

(E2
1 −M2

1 )λ(m2
23,M

2
2 ,M

2
3 )

)
, (B.3)

M1 ≤ E1 ≤
M2
τ +M2

1 − (M2 +M3)2

2Mτ
, (B.4)

where

m2
23 = M2

τ +M2
1 − 2MτE1 . (B.5)

Finally, the kinematical functions λ(x, y, z) and Z(a, b, c, d) are

λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz (B.6)

Z(a, b, c, d) =
(

(b2 − d2)2 − c2(d2 + b2)
)(

(a2 − b2)2 − c2(b2 + a2
)

×
√(

a2 − (b− c)2
)(
a2 − (b+ c)2

)
(B.7)
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